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Semileptonic B meson decays into the four lightest excited charmed meson states (D∗0 , D∗1 , D1,
and D∗2) and their counterparts with s quarks are investigated, including the full lepton mass de-
pendence. We derive the standard model predictions for the differential branching fractions, as well
as predictions for the ratios of the semi-tauonic and light lepton semileptonic branching fractions.
These can be systematically improved using future measurements of the total or differential semilep-
tonic rates to e and µ, as well as the two-body hadronic branching fractions with a pion, related
by factorization to the semileptonic rate at maximal recoil. To illustrate the different sensitivities
to new physics, we explore the dependence of the ratio of semi-tauonic and light-lepton branching
fractions on the type-II and type-III two-Higgs-doublet model parameters, tanβ and m±H , for all
four states.

I. INTRODUCTION

The study of semileptonic b→ c decays has been a cen-
tral focus of the B factory experiments BABAR and Belle,
as well as LHCb. Such decays are important for the mea-
surement of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element |Vcb| and are also probes of physics be-
yond the standard model (SM). Theoretically, exclusive
semileptonic B decays to D and D∗ are well understood
and inclusive semileptonic B → Xc`ν̄ decay has also been
the focus of extensive research. Semileptonic B decays to
excited charmed mesons received less attention, but are
important for the following reasons.

1. Recently, BABAR, Belle, and LHCb reported dis-
crepancies from the SM predictions in semi-tauonic
decays compared to the l = e, µ light lepton final
states [1–4]. Their average shows a disagreement
with the SM expectation at the 4σ level [5]. This
tension is intriguing, because it occurs in a tree-
level SM process, and most new physics explana-
tions require new states at or below 1 TeV [6].

Semileptonic decays into excited charmed mesons
with light leptons are an important background,
and their better understanding is needed to im-
prove the precision of these ratios.

2. Determinations of the CKM matrix element |Vcb|
from exclusive and inclusive semileptonic B decays
exhibit a nearly 3σ tension [5]. Decays involving
heavier charmed mesons are an important back-
ground of untagged exclusive measurements, and
are also important in inclusive |Vcb| measurements
since efficiency and acceptance effects are modeled
using a mix of exclusive decay modes that includes
decays into excited charmed mesons.

3. Semi-tauonic decays into excited charmed mesons
provide a complementary probe of the enhance-
ments observed in the semi-tauonic decays to D

and D∗. Moreover, the measured semi-tauonic de-
cays to D and D∗ appear to saturate the inclu-
sive B̄ → X τν̄ rate [6]. This motivates measuring
this decay, and if the enhancement is verified, new
physics modifying the D(∗) rates must also fit the
semi-tauonic rates for higher mass charm states.

Heavy quark symmetry [7] provides some model inde-
pendent predictions for exclusive semileptonic B decays
to excited charmed mesons, even including ΛQCD/mc,b

corrections [8]. Approximations based on those results
constitute the LLSW model [9], used in many experi-
mental analyses. The key observation was that some of
the ΛQCD/mc,b corrections to semileptonic form factors
at zero recoil are determined by the masses of orbitally
excited charmed mesons [8, 9].

The isospin averaged masses and widths of the four
lightest excited D meson states are shown in Table I. In
the quark model, they correspond to combining the heavy
quark and light quark spins with L = 1 orbital angular
momentum. In the heavy quark limit, the spin-parity of
the light degrees of freedom, sπll , is a conserved quantum
number [12]. This spectroscopy is important, because
in addition to the impact on the kinematics, they give
important information on HQET matrix elements and

Particle s
πl
l JP m (MeV) Γ (MeV)

D∗0
1
2

+
0+ 2330 270

D∗1
1
2

+
1+ 2427 384

D1
3
2

+
1+ 2421 34

D∗2
3
2

+
2+ 2462 48

B1
3
2

+
1+ 5727 28

B∗2
3
2

+
2+ 5739 23

TABLE I. Isospin averaged masses and widths of some excited

D mesons, rounded to 1 MeV. For the 3
2

+
states we averaged

the PDG with LHCb measurements [10, 11] not included in
the PDG. The D∗0 mass is discussed in the text; see Table II.
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m (MeV) Γ (MeV) reference

2405± 36 274± 45 FOCUS [13]

2308± 36 276± 66 Belle [14]

2297± 22 273± 49 BABAR [15]

2360± 34 255± 57 LHCb [16]

2330± 15 270± 26 our average

TABLE II. Isospin averaged D∗0(2400) masses and widths.
The LHCb measurement [16] is missing from the PDG.

s
πl
l Particles m (MeV) Particles m (MeV)

1
2

−
D, D∗ 1973 B, B∗ 5313

1
2

+
D∗0 , D∗1 2403 B∗0 , B∗1 —

3
2

+
D1, D∗2 2445 B1, B∗2 5734

TABLE III. Isospin and heavy quark spin symmetry averaged
masses of lightest B and D multiplets (with weights 2J + 1).

the QCD dynamics. The level of agreement between the
measurements of the masses and widths of the excited
D states in the top 4 rows of Table I is not ideal. In
particular, the mass of the D∗0(2400) varies in published
papers by 100 MeV, as shown in Table II. The confidence
level of our mass average in the last row is 5%.

The masses of a heavy quark spin symmetry doublet
of hadrons, H±, with total spin J± = sl ± 1

2 can be
expressed in HQET as

mH± = mQ + Λ̄H − λH1
2mQ

± n∓ λ
H
2

2mQ
+ . . . , (1)

where n± = 2J± + 1 is the number of spin states of each
hadron, and the ellipsis denote terms suppressed by more
powers of ΛQCD/mQ. The parameter Λ̄H is the energy of
the light degrees of freedom in the mQ → ∞ limit, and
plays an important role, as it is related to the semilep-
tonic form factors [8, 9]. We use the notation Λ̄, Λ̄′, and

Λ̄∗ for the 1
2

−
, 3

2

+
, and 1

2

+
doublets, respectively. The

λH1 and λH2 parameters are related to the heavy quark
kinetic energy and chromomagnetic energy in hadron H.

The current data suggest that the mD∗
1
− mD∗

0
mass

splitting is substantially larger than the mD∗
2
−mD1 split-

ting. This possibility was not considered in Refs. [8, 9],
since at that time both of these mass splittings were
about 40 MeV. The smallness of mD∗

2
−mD1 and mD∗

1
−

mD∗
0

compared to mD∗ −mD ' 140 MeV was taken as
an indication that the chromomagnetic operator matrix
elements are suppressed for the four D∗∗ states, in agree-
ment with quark model predictions. We explore the con-
sequences of relaxing this constraint.

The isospin and heavy quark spin symmetry averaged
masses in Table III and Eq. (1.10) in Ref. [9], which is
valid to O(Λ3

QCD/m
2
c,b), yield Λ̄′ − Λ̄ = 0.40 GeV (using

mb = 4.8 GeV and mc = 1.4 GeV, but the sensitivity to
this is small). While the masses of the broad D∗0 and
D∗1 states changed substantially since the 1990s, their

Parameter Λ̄ Λ̄′ Λ̄∗ Λ̄s Λ̄′s Λ̄∗s

Value [GeV] 0.40 0.80 0.76 0.49 0.90 0.77

TABLE IV. The HQET parameter estimates used.

2J + 1 weighted average mass is essentially unchanged
compared to Ref. [9]. We estimate Λ̄′ − Λ̄∗ ' 0.04 GeV
from Table III. We summarize the parameters used in
Table IV. The uncertainty of Λ̄ is substantially greater
than that of Λ̄′− Λ̄ and Λ̄′− Λ̄∗, but as we see below, our
results are less sensitive to Λ̄ than to these differences.
The parameters with s subscripts in Table IV are relevant
for Bs → D∗∗s `ν̄ discussed in Sec. IV.

Another effect suppressed in the heavy quark limit and
neglected in Refs. [8, 9], is the mixing between D1 and
D∗1 . It was recently argued that this could be substan-
tial [17]. However, even a small mixing of the D1 with
the much broader D∗1 would yield ΓD1

> ΓD∗
2
, in contra-

diction with the data, which suggests that this ΛQCD/mc

effect may be small [18–20]. Until the masses are unam-
biguously measured, we neglect the effects of this mixing,
which we expect to be modest, and leave it for another
study, should future data suggest that it is important.

The rest of this paper is organized as follows. Sec-
tion II reviews the B → D∗∗ ` ν̄ decays to the four states
collectively denoted

D∗∗ = {D∗0 , D∗1 , D1, D
∗
2} , (2)

and provides expressions for these decay rates with the
full lepton mass dependence. In Sec. II B the expansion of
the form factors based on heavy quark symmetry [8, 9] is
briefly reviewed. Section III summarizes the experimen-
tal analysis to determine the leading Isgur-Wise function
normalization and slope, and we obtain predictions for
the ratios of semileptonic rates for τ and light leptons,

R(D∗∗) =
B(B → D∗∗τ ν̄)

B(B → D∗∗l ν̄)
, l = e, µ . (3)

Section IV studies predictions for Bs → D∗∗s `ν̄. Sec-
tion V explores extensions of the SM with scalar cur-
rents. Predictions for the rates and R(D∗∗) are derived
to illustrate the complementary sensitivity of each mode.
Section VI summarizes our main findings.

II. THE B → D∗∗` ν̄ DECAYS IN THE SM

The effective SM Lagrangian describing b→ c ` ν̄ is

Leff = −4GF√
2
Vcb
(
c̄ γµPLb

)(
ν̄ γµPL`

)
+ h.c. , (4)

with the projection operator PL = (1− γ5)/2, GF is the
Fermi constant, and ` denotes any one of e, µ, τ . The
matrix elements of the B → D∗∗ vector and axial-vector
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currents (V µ = c̄ γµ b and Aµ = c̄ γµγ5 b) can be param-

eterized for the 3
2

+
states as

〈D1(v′, ε)|V µ|B(v)〉
√
mD1

mB
= fV1

ε∗µ + (fV2
vµ + fV3

v′µ)(ε∗ · v) ,

〈D1(v′, ε)|Aµ|B(v)〉
√
mD1

mB
= i fA ε

µαβγε∗αvβv
′
γ ,

〈D∗2(v′, ε)|Aµ|B(v)〉
√
mD∗

2
mB

= kA1
ε∗µαvα

+ (kA2v
µ + kA3v

′µ) ε∗αβ v
αvβ ,

〈D∗2(v′, ε)|V µ|B(v)〉
√
mD∗

2
mB

= i kV ε
µαβγε∗ασv

σvβv
′
γ , (5)

while for the 1
2

+
states

〈D∗0(v′)|V µ|B(v)〉 = 0,

〈D∗0(v′)|Aµ|B(v)〉
√
mD∗

0
mB

= g+ (vµ + v′µ) + g− (vµ − v′µ) ,

〈D∗1(v′, ε)|V µ|B(v)〉
√
mD∗

1
mB

= gV1ε
∗µ + (gV2v

µ + gV3v
′µ) (ε∗ · v) ,

〈D∗1(v′, ε)|Aµ|B(v)〉
√
mD∗

1
mB

= i gA ε
µαβγ ε∗αvβ v

′
γ . (6)

Here the form factors gi, fi and ki are dimensionless func-
tions of w = v · v′. At zero recoil (w = 1 and v = v′)
only the g+, gV1

, and fV1
form factors can contribute,

since v′ dotted into the polarization (ε∗µ or ε∗µα) van-
ishes. The variable w is related to the four-momentum
transfer squared, q2 = (pB − pD∗∗)2, as

w = v · v′ =
m2
B +m2

D∗∗ − q2

2mBmD∗∗
. (7)

A. Differential decay rates

We define θ as the angle between the charged lepton
and the charmed meson in the rest frame of the virtual
W boson, i.e., in the center of momentum frame of the
lepton pair. It is related to the charged lepton energy via

y = 1− rw − r
√
w2 − 1 cos θ

+ ρ`
1− rw + r

√
w2 − 1 cos θ

1− 2rw + r2
, (8)

where y = 2E`/mB is the rescaled lepton energy and
ρ` = m2

`/m
2
B . For the double differential rates in the SM

for the sπl = 3
2

+
states we obtain

dΓD1

dw d cos θ
= 3Γ0 r

3
√
w2 − 1

(
1 + r2 − ρ` − 2rw

)2
(9)

×

{
sin2 θ

[[
fV1

(w − r) + (fV3
+ rfV2

)(w2 − 1)
]2

(1 + r2 − 2rw)2
+ ρ`

f2
V1

+
(
2f2
A + f2

V2
+ f2

V3
+ 2fV1fV2 + 2wfV2fV3

)
(w2 − 1)

2(1 + r2 − 2rw)2

]
+ (1 + cos2 θ)

[
f2
V1

+ f2
A(w2 − 1)

1 + r2 − 2rw
+ ρ`

[f2
V1

+ (w2 − 1)f2
V3

](2w2 − 1 + r2 − 2rw)

2(1 + r2 − 2rw)3

+ ρ`(w
2 − 1)

2fV1
fV2

(1− r2) + 4fV1
fV3

(w − r) + f2
V2

(1− 2rw − r2 + 2r2w2) + 2fV2
fV3

(w − 2r + r2w)

2(1 + r2 − 2rw)3

]
− 2 cos θ

√
w2 − 1

[
2fAfV1

1 + r2 − 2rw
− ρ`

[
fV1

(w − r) + (fV3
+ rfV2

)(w2 − 1)
]
[fV1

+ fV2
(1− rw) + fV3

(w − r)]
(1 + r2 − 2rw)3

]}
,

where r = mD∗∗/mB for each D∗∗ state, as appropriate, Γ0 = G2
F |Vcb|2m5

B/(192π3). For B → D∗2`ν̄ we find

dΓD∗
2

dw d cos θ
= Γ0 r

3(w2 − 1)3/2
(
1 + r2 − ρ` − 2rw

)2
(10)

×

{
sin2 θ

[
2
[
kA1(w − r) + (kA3 + rkA2)(w2 − 1)

]2
(1 + r2 − 2rw)2

+ ρ`
3k2
A1

+
(
3k2
V + 2k2

A2
+ 2k2

A3
+ 4kA1

kA2
+ 4wkA2

kA3

)
(w2 − 1)

2(1 + r2 − 2rw)2

]
+ (1 + cos2 θ)

[
3

2

k2
A1

+ k2
V (w2 − 1)

1 + r2 − 2rw
+ ρ`

[k2
A1

+ (w2 − 1)k2
A3

](2w2 − 1 + r2 − 2rw)

(1 + r2 − 2rw)3

+ ρ`(w
2 − 1)

2kA1
kA2

(1− r2) + 4kA1
kA3

(w − r) + k2
A2

(1− 2rw − r2 + 2r2w2) + 2kA2
kA3

(w − 2r + r2w)

(1 + r2 − 2rw)3

]
− 2 cos θ

√
w2 − 1

[
3kV kA1

1 + r2 − 2rw
− 2ρ`

[
kA1(w − r) + (kA3 + rkA2)(w2 − 1)

]
[kA1 + kA2(1− rw) + kA3(w − r)]

(1 + r2 − 2rw)3

]}
.

For the 1
2

+
D∗∗ mesons, the rate for dΓD∗

1
/dw d cos θ is obtained from the D1 rate above via the replacements
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{fA → gA, fV1
→ gV1

, fV2
→ gV2

, fV3
→ gV3

}, and for B → D∗0`ν̄ we find

dΓD∗
0

dw d cos θ
= 3Γ0 r

3
√
w2 − 1

(
1− 2rw + r2 − ρ`

)2{
sin2 θ

[g+(1 + r)− g−(1− r)]2 (w2 − 1) + ρ`[g
2
+(w + 1) + g2

−(w − 1)]

(1 + r2 − 2rw)2

+ (1 + cos2 θ) ρ`

[
g2

+(w + 1) + g2
−(w − 1)

](
w − 2r + r2w

)
− 2g−g+(1− r2)(w2 − 1)

(1 + r2 − 2rw)3

− 2 cos θ ρ`
√
w2 − 1

[g+(1 + r)− g−(1− r)] [g−(1 + r)(w − 1)− g+(1− r)(w + 1)]

(1 + r2 − 2rw)3

}
. (11)

The sin2 θ terms are the helicity zero rates, while the
1 + cos2 θ and cos θ terms determine the helicity λ = ±1
rates. The decay rates for |λ| = 1 vanish for massless
leptons at maximal recoil, wmax = (1 + r2 − ρτ )/(2r), as
implied by the (1− 2rw + r2 − ρτ ) factors.

At zero recoil, the leading contributions to the ma-
trix elements of the weak currents are determined by
fV1

(1), gV1
(1), and g+(1), which are of order ΛQCD/mc,b.

The contributions of other form factors are suppressed
by powers of w − 1. The model independent result is
that these numerically significant O(ΛQCD/mc,b) effects
at w = 1 are determined in terms of hadron masses and
the leading Isgur-Wise function, without dependence on
any subleading O(ΛQCD/mc,b) Isgur-Wise functions [8].
The results in Eqs. (9)–(11) show that this holds even for
ρ` 6= 0, and treating ρ` = O(1), since
√

6 fV1(w) = −
[
w2 − 1 + 8 εc(Λ̄

′ − Λ̄)
]
τ(w) + . . . ,

g+(w) = −3

2
(εc + εb) (Λ̄∗ − Λ̄) ζ(w) + . . . , (12)

gV1
(w) =

[
w − 1 + (εc − 3 εb) (Λ̄∗ − Λ̄)

]
ζ(w) + . . . ,

where εc,b = 1/2mc,b and the ellipses denote O[εc,b(w −
1)], O[(w − 1)αs], and higher order terms. In contrast,
Eqs. (A1) – (A4) in Appendix A show that the other
form factors depend on subleading Isgur-Wise functions,
even at w = 1. The B → D∗∗τ ν̄ rate and R(D∗∗) were
previously studied using QCD sum rule calculation of the
leading Isgur-Wise function [21].

B. Form factors and approximations

Heavy quark symmetry [7] implies that in the mc,b �
ΛQCD limit the form factors defined in Eqs. (5) and (6)
are determined by a single universal Isgur-Wise function,
which we denote by τ(w) and ζ(w), respectively, for the
3
2

+
and 1

2

+
states.1 In the mc,b � ΛQCD limit, the con-

tributions of τ and ζ vanish at w = 1, thus the rates
near zero recoil entirely come from ΛQCD/mc,b correc-
tions. Some of the ΛQCD/mc,b corrections can be ex-
pressed in terms of the leading Isgur-Wise function and

1 Another often used notation in the literature is τ(w) =√
3 τ3/2(w) and ζ(w) = 2 τ1/2(w).

meson mass splittings [8, 9]. The full expressions are
reproduced for completeness in Appendix A. The lead-

ing order Isgur-Wise function for the 3
2

+
states can be

parametrized as

τ(w) = τ(1)
[
1 + (w − 1) τ ′(1) + . . .

]
, (13)

and τ(1) can be constrained from the measured B̄ →
D1 ` ν̄ branching fraction. In Ref. [9] the dependence of
the predictions was studied as a function of τ ′, taken to
be near −1.5, based on model predictions [22–25]; with
more data a fit to all information is preferred.

In any nonrelativistic constituent quark model with
spin-orbit independent potential [24, 26] the Isgur-Wise

functions for the sπl = 3
2

+
and sπl = 1

2

+
states are related,

ζ(w) =
w + 1√

3
τ(w) . (14)

This relation determines the form factor for the broad
states from the narrow states’ form factor slope and nor-
malization. (See Refs. [27, 28] for exploratory calcula-
tions of these Isgur-Wise functions using lattice QCD.)

The form factors at order ΛQCD/mc,b depend on sev-
eral additional functions. The τi and ζi parameterize
corrections to the b→ c current, while ηi and χi param-
eterize matrix elements involving time ordered products
of subleading terms in the HQET Lagrangian. Since the
range in w is small, for simplicity these functions may be
taken to be proportional to the leading Isgur-Wise func-
tion. Since the kinetic energy operator does not violate
heavy quark spin symmetry, its effects can be absorbed
into the leading Isgur-Wise functions by the replacements

τ → τ + εc η
(c)
ke + εb η

(b)
ke and ζ → ζ + εc χ

(c)
ke + εb χ

(b)
ke .

In what Ref. [9] called Approximation A, the kine-
matic range, 0 ≤ w − 1 <∼ 1.3, is treated as a quantity
of order ΛQCD/mc,b, and the rates are expanded to or-

der ε2 beyond the
√
w2 − 1 phase space factors, where

ε = O(w − 1) = O(ΛQCD/mc,b). Its generalization for
ρ` 6= 0 is given in Appendix B. An advantage is that this
approach unambiguously truncates the number of fit pa-
rameters to a small number; only 5 parameters occur for

each of the the 3
2

+
and 1

2

+
states, {τ, τ̂ ′, η̂1, η̂3, η̂b} and

{ζ, ζ̂ ′, χ̂1, χ̂2, χ̂b}, respectively. Among these, the first
two are the zero-recoil values and slopes of the Isgur-
Wise functions, and the latter three are matrix elements
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of time ordered products involving the chromomagnetic
operator. These η-s and χ-s were neglected in Ref. [9].

To study lepton universality, another reason to con-
sider Approximation A is because it would be advanta-
geous both theoretically [6] and experimentally [29] to
consider instead of R(X) in Eq. (3), ratios in which the
range of q2 integration is the same in the numerator and
the denominator,

R̃(X) =

∫ (mB−mX)2

m2
τ

dΓ(B → Xτν̄)

dq2
dq2

∫ (mB−mX)2

m2
τ

dΓ(B → Xlν̄)

dq2
dq2

. (15)

Including the 0 < q2 < m2
τ region in the denominator

in Eq. (3) dilutes the sensitivity to new physics, and
the uncertainties of the form factors increase at larger
w (smaller q2). Taking the average D∗∗ mass as near
2.4 GeV, the kinematic range in B → D∗∗τ ν̄ is only
about 1 ≤ w <∼ 1.2. Approximation A should work better
for this reduced kinematic range, 0 ≤ w − 1 <∼ 0.2, than
for the total D∗∗ rates.

In Approximation B and C the full w dependence
known at order ΛQCD/mc,b is included. To reduce the
number of free parameters, Ref. [9] assumed a linear
shape for the leading Isgur-Wise functions, and that the
subleading ones have the same shapes. Motivated by the
form of the constraints imposed by the equations of mo-
tions on the ΛQCD/mc,b corrections, two variants were
explored,

Approx. B1 :

{
3
2

+
states: τ1 = τ2 = 0 ,

1
2

+
states: ζ1 = 0 ,

(16)

Approx. B2 :

{
3
2

+
states: τ1 = Λ̄τ, τ2 = −Λ̄′τ ,

1
2

+
states: ζ1 = Λ̄ζ .

(17)

In this paper we also study a generalization,

Approx. C :

{
3
2

+
states: τ1 = τ̂1τ, τ2 = τ̂2τ ,

1
2

+
states: ζ1 = ζ̂1ζ ,

(18)

where the normalization of the subleading Isgur-Wise
functions is determined from experimental constraints.
We also study in Approximation C the impact of not
neglecting the chromomagnetic matrix elements. As ex-
plained above, this is motivated by the sizable mass split-
ting, mD∗

1
−mD∗

0
. Note also the large coefficients of η1

(10 and 12) in the fV2
and fV3

form factors in Eq. (A3).

III. FORM FACTOR FIT

The parameters that occur in the expansions of the
form factors can be constrained by the measured semilep-
tonic rates. Belle and BABAR measured the total branch-
ing fraction of the four D∗∗ states and Belle in ad-
dition the q2 distribution of B → D∗2lν̄ and B →

D0lν̄ [30, 31]. The measurements were carried out in
the D∗∗ → D(∗)+ π− channels, and to confront the mea-
sured branching fractions with decay rate predictions,
one needs to account for missing isospin conjugate de-
cay modes and other missing contributions. The missing
isospin modes can be accounted for with the factor

fπ =
B(D∗∗ → D(∗) 0 π−)

B(D∗∗ → D(∗)π)
=

2

3
. (19)

The measurements of the B− → D∗2
0 l ν̄ branching frac-

tion that enter the world average are converted to only
account for the D∗2

0 → D∗+ π− decay. To account for
the missing D∗2

0 → D+ π− decay a correction factor

fD∗
2

=
B(D∗2

0 → D∗+ π−)

B(D∗2
0 → D+ π−)

= 0.65± 0.06 , (20)

from Ref. [32] is applied.
The measurements of the B− → D0

1 l ν̄ branching frac-
tion do not include contributions of the observed three-
body decay of the D1. This is corrected with a factor

fD1
=
B(D0

1 → D∗+ π−)

B(D0
1 → D0 π+ π−)

= 2.32± 0.54 , (21)

as calculated from the ratio of nonleptonic B+ → D̄0
1 π

+

decays of Ref. [33]. Assuming no intermediate resonances
are present in the three-body decay of a D∗∗ meson, one
obtains an isospin correction factor of

fππ =
B(D∗∗ → D(∗)− π+ π−)

B(D∗∗ → D(∗)ππ)
=

9

16
. (22)

If the three-body final state of a D∗∗ meson is reached
through resonances, i.e., via f0(500)→ ππ or ρ→ ππ de-
cays, this factor is either 2/3 or 1/3, respectively. In what
follows we adapt the prescription proposed in Ref. [34]
and apply an average correction factor

fππ =
1

2
± 1

6
, (23)

with an uncertainty spanning all three scenarios. After
these corrections we make the explicit assumption that

B(D̄∗2 → D̄ π) + B(D̄∗2 → D̄∗ π) = 1 ,

B(D̄1 → D̄∗ π) + B(D̄1 → D̄ π π) = 1 ,

B(D̄∗1 → D̄∗ π) = 1 ,

B(D̄∗0 → D̄ π) = 1 , (24)

and then all semileptonic rates and differential rates
can be related. Table V summarizes the corrected to-
tal branching fractions. The summed B → D(∗)ππ l ν̄`
contributions can be compared with the measurement of
Ref. [34]. The reported semi-inclusive B+ → Dπ π l ν̄`
rates can be nearly accommodated by the expected D1 →
Dπ π contribution

B(B+ → D̄0 π π l ν̄)− B(B+ → D̄0
1(→ D̄0 π π) l ν̄)

= (0.06± 0.16)× 10−2 . (25)
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Decay mode Branching fraction

B+ → D̄∗2
0 l ν̄ (0.30± 0.04)× 10−2

B+ → D̄0
1 l ν̄ (0.67± 0.05)× 10−2

B+ → D̄∗1
0 l ν̄ (0.20± 0.05)× 10−2

B+ → D̄∗0
0 l ν̄ (0.44± 0.08)× 10−2

TABLE V. The corrected world averages of the semileptonic
decay rates into excited charmed mesons [32]. The corrections
described in the text involve factors to account for missing
isospin conjugate modes and observed three-body decays.

w B+ → D̄∗2
0 l ν̄ B+ → D̄∗0

0 l ν̄

1.00− 1.08 0.06± 0.02 0.05± 0.02

1.08− 1.16 0.30± 0.05 0.02± 0.05

1.16− 1.24 0.38± 0.03 0.30± 0.08

1.24− 1.32 0.26± 0.06 0.30± 0.09

1.32− 1.40 — 0.33± 0.13

TABLE VI. The normalized differential decay rates for B+ →
D̄∗2

0 l ν̄ and B+ → D̄∗0
0 l ν̄ as functions of w [30].

Decays of the type D̄∗∗ → D̄∗ππ have been searched
for [35], but no sizable contribution that could explain
the large reported B(B+ → D̄∗ 0 π π l ν̄) branching frac-
tion [34] have been observed. It seems likely that such
contributions originate either from higher excitations or
nonresonant semileptonic decays, which would not affect
the predictions discussed in this paper. Table VI sum-
marizes the measured normalized differential decay rates
of B+ → D̄∗2

0 l ν̄ and B+ → D̄∗0
0 l ν̄ as functions of w.

Additional constraints on the form factors at maxi-
mal recoil come from nonleptonic B0 → D∗∗− π+ decays.
Factorization should be a good approximation for B de-
cays into charmed mesons and a charged pion [36, 37].
Contributions that violate factorization are suppressed
by ΛQCD divided by the energy of the pion in the B
restframe or by αs(mQ). Neglecting the pion mass, the
two-body decay rate, Γπ, is related to the differential
decay rate dΓsl/dw at maximal recoil for the analogous
semileptonic decay (with the π replaced by the lν̄ pair)

Γπ =
3π2 |Vud|2 C2f2

π

m2
B r

(
dΓsl

dw

)
wmax

. (26)

Here C is a combination of Wilson coefficients of four-
quark operators and numerically |Vud|C is very close to
unity. Table VII summarizes the measured nonleptonic
rates, after all correction factors for missing isospin and
three-body decays are applied. The smallness of B(B0 →
D∗0
−π+) is puzzling [38, 39], and measurements using the

full BABAR and Belle data sets would be worthwhile. It
would also be interesting to measure in Belle II the color
suppressed B0 → D∗∗ 0π0 rates, for which SCET predicts
B(B0 → D∗ 0

2 π0)/B(B0 → D0
1π

0) = 1 [40].
The narrow and broad states semileptonic and nar-

Decay mode Branching fraction

B0 → D∗2
−π+ (0.59± 0.13)× 10−3

B0 → D−1 π
+ (0.75± 0.16)× 10−3

B0 → D∗0
−π+ (0.09± 0.05)× 10−3

TABLE VII. World averages of nonleptonic B0 → D∗∗−π+

branching ratios [32], after the corrections described in the
text are applied.

row states nonleptonic inputs are analyzed to construct
a likelihood to determine the form factor parameters of
Approximation A, B and C. This is done separately for

the narrow 3
2

+
and broad 1

2

+
states.

A. Approximation A

The main parameters that determine Approximation A
are the normalization and slope of the leading Isgur-
Wise function for the narrow and broad states, {τ(1),
τ ′} and {ζ(1), ζ ′}. In addition, the inclusion of one
or two subleading Isgur-Wise functions parameterizing
chromomagnetic contributions is explored. These are ex-
tracted by building a likelihood using experimental quan-
tities, which are less sensitive to the absence of sublead-
ing Isgur-Wise functions from matrix elements of sub-
leading currents in Approximation A (see, Appendix B).
These are the semileptonic branching fractions to the

narrow 3
2

+
states and the nonleptonic B0 → D∗2

−π+

branching fraction. The constraint from the nonleptonic
B0 → D−1 π

+ branching fraction is not included in the
fit, as the semileptonic rate to D1 near q2 = m2

π receives
large corrections from subleading Isgur-Wise functions
that do not enter Approximation A. Such contributions
only mildly affect the total branching fraction. The anal-

ysis of the broad 1
2

+
states uses the measured semilep-

tonic branching fractions only.
Figure 1 (top left) shows the 68% and 95% confidence

regions for the normalization and slope of the leading

Isgur-Wise function for the narrow 3
2

+
states. The sce-

narios explored are: no chromomagnetic contributions,
one chromomagnetic term (either η1, η3, or ηb; note that
ηb and η1 are degenerate in Approximation A), or two
chromomagnetic terms (either η1 or ηb with η3) marginal-
ized. Table VIII summarizes the best fit points. There
is no sensitivity to disentangle the different chromomag-
netic contributions, and the fitted values are compati-
ble with zero. The extracted value for the slope of the
leading Isgur-Wise function is compatible with the −1.5
quark model prediction in all scenarios.

Figure 1 (top right) shows the 68% and 95% confidence
regions for the normalization and slope of the leading

Isgur-Wise function for the broad 1
2

+
states. The avail-

able experimental information only loosely constrains the
form factor parameters and introducing one chromomag-
netic contribution results only in marginal shifts of the
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FIG. 1. The allowed 68% and 95% regions for τ(1) and τ ′ or ζ(1) and ζ′, respectively, are shown for the narrow 3
2

+
(left) and

broad 1
2

+
states (right) for Approximation A (top) and Approximation B (bottom).

extracted normalization and slope of the leading Isgur-
Wise function. The extracted value for the slope of
the leading Isgur-Wise function is compatible with quark
model predictions of −1.0 and the obtained chromomag-
netic contributions are compatible with zero. Table VIII
summarizes the extracted best fit points. Table IX sum-
marizes the χ2 values of all fits and the agreement of the
best fit points with the experimental input is good for

the 3
2

+
states and 1

2

+
states for all scenarios.

Using the extracted values of the normalization and
slope of the leading Isgur-Wise function, and possible
chromomagnetic contributions, the ratio of semi-tauonic
and semileptonic rates can be predicted. Including chro-
momagnetic contributions change the central values of
the predicted ratios only marginally, but increase the un-
certainties. Using the fitted values, we predict

R(D∗2) = 0.06± 0.01 , R̃(D∗2) = 0.14± 0.01 ,

R(D1) = 0.06± 0.01 , R̃(D1) = 0.17± 0.02 ,

R(D∗1) = 0.06± 0.01 , R̃(D∗1) = 0.17± 0.02 ,

τ(1) τ ′ ηi

— 0.63± 0.02 −1.29± 0.17 —

η1 0.63± 0.02 −1.53± 0.52 −0.10± 0.19

η3 0.64± 0.02 −1.50± 0.45 0.14± 0.29

ηb 0.63± 0.02 −1.53± 0.52 0.67± 1.32

ζ(1) ζ′ χi

— 0.72± 0.15 −0.30± 1.81 —

χ1 0.73± 0.15 −0.53± 2.16 0.03± 0.15

χ2 0.72± 0.15 −0.54± 2.22 −0.05± 0.30

TABLE VIII. The best fit points of the Approximation A
fits, with and without chromomagnetic contributions for the

narrow 3
2

+
(above) and broad 1

2

+
(below) states.

R(D0) = 0.07± 0.03 , R̃(D0) = 0.22± 0.04 , (27)

and for the ratio of the sum of all four D∗∗ modes,

R(D∗∗) = 0.061± 0.006 . (28)
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χ2 / ndf Prob.

— 2.8 / 5 0.73

η1 2.5 / 4 0.64

η3 2.5 / 4 0.64

ηb 2.5 / 4 0.64

χ2 / ndf Prob.

— 8.7 / 6 0.19

χ1 8.7 / 5 0.12

χ2 8.7 / 5 0.12

TABLE IX. The χ2 values and fit probabilities for the Ap-

proximation A fits for the narrow 3
2

+
(left) and broad 1

2

+

(right) states.

The uncertainties are from the fit to the experimental
information and also contain the impact from possible
chromomagnetic contributions. In Approximation A, the

predictions for R̃(D∗∗) are more precise and more reliable
than for R(D∗∗), as the w range is smaller. However, the
experimental input to make full use of this is not available
yet, as partial branching fractions with a w cut would be
needed. Then the parameters in Approximation A could
be determined just from the q2 > m2

τ part of phase space,
resulting in better precision for these predictions.

The obtained values can be compared to the prediction
of the LLSW model. As input we re-fit the normalization
of the leading Isgur-Wise function τ(1) = 0.64 using the
averaged semileptonic D1 branching fraction from Ta-
ble V, and use

ζ(1) =
2√
3
τ(1) , ζ ′ = τ ′ +

1

2
, (29)

to relate the narrow 3
2

+
and broad 1

2

+
Isgur-Wise func-

tions. For the slope we use τ̂ ′ = −1.5 discussed in Sec-
tion II B based on model predictions. We find

R(D∗2) = 0.06 , R̃(D∗2) = 0.15 ,

R(D1) = 0.06 , R̃(D1) = 0.17 ,

R(D∗1) = 0.06 , R̃(D∗1) = 0.17 ,

R(D0) = 0.08 , R̃(D0) = 0.23 , (30)

and for the ratio of the sum of all four D∗∗ modes,

R(D∗∗) = 0.064 , (31)

which are in excellent agreement with Eqs. (27) and (28).

B. Approximation B and C

The parameters of interest for Approximation B are
the normalization and slope of the leading Isgur-Wise
function, and the normalizations of the subleading Isgur-
Wise functions, τ1, τ2 or ζ1 (see Section II B). These
parameters are again extracted separately for the broad
and narrow states using a simultaneous analysis of all
semileptonic and nonleptonic branching fractions. In ad-
dition, Approximations B1 and B2 are explored, with the
normalizations fixed.

Figure 1 (bottom left) shows the 68% and 95% confi-

dence regions for τ(1) and τ ′ for the narrow 3
2

+
states.

All three fit scenarios are in good agreement for the nor-
malization and slope of the leading Isgur-Wise function.
Table X summarizes the best fit points and the obtained
slope is compatible with the quark model predictions
used in Ref. [9]. Introducing the normalizations of the
subleading Isgur-Wise functions as free parameters, pulls
them outside the interval covered by Approximations B1

and B2. This is interesting, as in many experimental
analyses the difference between Approximations B1 and
B2 is used as a measure of the uncertainties associated
with D∗∗ contributions. The Approximation C parame-
ter correlations for {τ(1), τ ′, τ1, τ2}. are

C 3
2
+ =


1 −0.83 0.66 −0.63

−0.83 1 −0.27 0.20

0.66 −0.27 1 −0.93

−0.63 0.20 −0.93 1

 . (32)

Figure 1 (bottom right) shows the 68% and 95% confi-

dence regions for ζ(1) and ζ ′ for the broad 1
2

+
states.

There is good consistency of the normalizations and
slopes of the leading Isgur-Wise function, and the results
for all three fits are listed in Table X. The normaliza-
tion of the subleading Isgur-Wise function, ζ1, is again
outside the interval covered by Approximations B1 and
B2. Table XI summarizes the compatibility of the best fit
points, and the agreement is fair, with the exception of

the Approximation B2 fit for the narrow 3
2

+
states. The

Approximation C parameter correlation for {ζ(1), ζ ′, ζ1}
are

C 1
2
+ =

 1 −0.95 −0.35

−0.95 1 0.51

−0.35 0.51 1

 . (33)

Using the fit results, with the normalizations of the
subleading Isgur-Wise functions floated, in Approxima-

τ(1) τ ′ τ1 τ2

B1 0.78± 0.06 −1.7± 0.2 0 0

B2 0.78± 0.06 −1.7± 0.2 0.40 −0.80

C 0.71± 0.07 −1.6± 0.2 −0.5± 0.3 2.9± 1.6

ζ(1) ζ′ ζ1

B1 0.73± 0.18 −0.7± 0.8 0

B2 0.66± 0.19 0± 1.1 0.4

C 0.68± 0.20 −0.2± 1.2 0.3± 0.3

TABLE X. The best fit points of the Approximation B and C

fits for the narrow 3
2

+
(above) and broad 1

2

+
(below) states.
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FIG. 2. The colored bands show the allowed 68% regions for m` = 0 (blue) and m` = mτ (orange) for the differential decay
rates in Approximation C. The dashed (dotted) curves show the predictions of Ref. [9] for Approximations B1 (B2). The data
points correspond to the differential semileptonic or nonleptonic branching fraction measurements described in the text.

tion C we obtain

R(D∗2) = 0.07± 0.01 , R̃(D∗2) = 0.17± 0.01 ,

R(D1) = 0.10± 0.01 , R̃(D1) = 0.20± 0.01 ,

R(D∗1) = 0.06± 0.02 , R̃(D∗1) = 0.18± 0.02 ,

R(D0) = 0.08± 0.03 , R̃(D0) = 0.25± 0.03 , (34)

and for the ratio for the sum over all four D∗∗ states,

R(D∗∗) = 0.085± 0.010 . (35)

χ2 / ndf Prob.

B1 6.1/6 0.42

B2 11.6/6 0.07

C 2.4/4 0.66

χ2 / ndf Prob.

B1 10.1/5 0.07

B2 9.2/5 0.10

C 9.1/4 0.06

TABLE XI. The χ2 values and fit probabilities for the Ap-

proximation B and C fits for the narrow 3
2

+
(left) and broad

1
2

+
states (right).

These values can be compared with the LLSW prediction,
including the lepton mass effects in Eqs. (9), (10), and
(11). Using Eq. (13) for the Isgur-Wise functions for the
3
2

+
states, and the model prediction in Eq. (14) to relate

it to the 1
2

+
states, we find in Approximation B1 and B2,

respectively,

R(D∗2) = {0.072, 0.068}, R̃(D∗2) = {0.159, 0.158},

R(D1) = {0.096, 0.099}, R̃(D1) = {0.221, 0.231},

R(D∗1) = {0.092, 0.083}, R̃(D∗1) = {0.200, 0.196},

R(D0) = {0.107, 0.118}, R̃(D0) = {0.272, 0.275},
(36)

and for the sum of the four D∗∗ states,

R(D∗∗) = {0.0949, 0.0946} . (37)

The ranges spanned by these Approximation B1 and B2

results do not necessarily give conservative estimates of
the uncertainties. These ratios, however, are in good
agreement with Eqs. (34) and (35).
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Of the mass parameters, Λ̄ has substantially bigger un-
certainty than Λ̄′− Λ̄ or Λ̄∗− Λ̄. Varying Λ̄ by ±50 MeV
while keeping the differences fixed has a negligible im-
pact compared to other uncertainties included. This is
consistent with the fact that in Approximation A the only
dependence on Λ̄ is via Λ̄′ − Λ̄ and Λ̄∗ − Λ̄.

Figure 2 shows the differential decay rates of the Ap-
proximation C fits as functions of w for m` = 0 and
m` = mτ , with the corresponding 68% uncertainty
bands. The LLSW model prediction is also shown for
the differential decay rates: the dashed (dotted) curves
show Approximation B1 (B2) and the normalization of
the leading Isgur-Wise function was determined using the
averaged semileptonic D1 branching fraction, which gives
τ(1) = 0.80. The Approximation C fit using the full dif-
ferential semileptonic and nonleptonic information con-
strain the shape stronger than the LLSW model, which
only uses the D1 rate information.

We also explore in Approximation C the impact of
additional chromomagnetic contributions. The available
experimental information does not allow to disentangle
subleading Isgur-Wise function contributions from chro-
momagnetic terms. Figure 3 shows the dependence of
R(D∗∗) on one of the chromomagnetic contributions at

a time. For the narrow 3
2

+
states the only strong depen-

dence comes from η1. This originates from large factors
in the rate expressions, and if introduced as an additional
free parameter in the Approximation C fit, its size is con-
strained to be about ±200 MeV, but it is also strongly
correlated to other subleading Isgur-Wise function nor-

malizations. For the broad 1
2

+
states the strongest de-

pendence comes from χ1. If introduced as an additional
free parameter in the Approximation C fit, its size is con-
strained to be about ±100 MeV.

To account for these subleading Isgur-Wise functions
parameterizing chromoagnetic effects, we can recalculate
the ratios of semi-tauonic and semileptonic rates by in-
troducing an additional uncertainty of ±200 MeV and
±100 MeV on η1 and χ1, respectively. We thus obtain

R(D∗2) = 0.07± 0.01 , R̃(D∗2) = 0.17± 0.01 ,

R(D1) = 0.10± 0.02 , R̃(D1) = 0.20± 0.02 ,

R(D∗1) = 0.06± 0.02 , R̃(D∗1) = 0.18± 0.02 ,

R(D0) = 0.08± 0.04 , R̃(D0) = 0.25± 0.06 , (38)

and for the ratio of the sum over all four D∗∗ states,

R(D∗∗) = 0.085± 0.012 . (39)

These uncertainties are not much greater than those in
Eqs. (34) and (35).

IV. Bs → D∗∗
s ` ν̄ DECAYS

An important difference between B → D∗∗`ν̄ and
Bs → D∗∗s `ν̄ is that the two lightest excited Ds states

observed are fairly narrow. They are lighter than the
mD(∗) +mK mass thresholds, so they can only decay to

D
(∗)
s π, which violate isospin (if these are the D∗∗s isos-

inglet sπll = 1
2

+
orbitally excited states). Due to these

narrow widths, semi-tauonic Bs decay to the spin-zero
meson, Bs → D∗s0τ ν̄, may be easier to measure than
B → D∗0τ ν̄, and may provide good sensitivity to pos-
sible scalar interactions from new physics.2 Table XII
summarizes the relevant masses and widths.

While the sπll = 3
2

+
doublets in both the D∗∗s and

B∗∗s cases have masses “as expected”, about 100 MeV
above their non-strange counterparts, the masses of the

sπll = 1
2

+
doublet of D∗∗s states are surprisingly close to

their non-strange counterparts. (Which is why the dis-
covery of the D∗s0 [41] was such a surprise.) This unex-
pected spectrum makes the analysis in this Section more
uncertain than in the previous ones.

It is possible that interpreting the D∗s0 and D∗s1 as the
lightest orbitally excited states is oversimplified (and this
is what our description assumes), and we have higher con-

fidence that our description of the decays to the sπll = 3
2

+

Ds1 and D∗s2 states should be reliable. The first ex-
ploratory lattice QCD studies that obtain the D∗s0 and
D∗s1 masses in agreement with data appeared only re-
cently [42]. To be more specific, assuming that the
D∗s0 is the lightest orbitally excited Ds state, theoreti-
cal predictions for B(Ds0 → D∗sγ)/B(Ds0 → Dsπ) tend
to be above [43–45] the CLEO upper bound, B(Ds0 →
D∗sγ)/B(Ds0 → Dsπ) < 0.059 (90% CL) [46]. TheD(∗)K
molecular picture of these states also faces challenges,
e.g., the lack of observed isospin partners [47]. It is pos-
sible that the correct description is a mixture of these.
However, given that the CLEO bound [46] was obtained
with 13.5/fb data, and the Belle bound on the above ra-
tio < 0.18 (90% CL) [48] used 87/fb, while the BABAR
result < 0.16 (95% CL) [49] used 232/fb, remeasuring
B(Ds0 → D∗sγ)/B(Ds0 → Dsπ) using the full BABAR
and Belle data would be desirable.

Another piece of data is that the mass splittings within
each heavy quark spin symmetry doublets appear to
be consistent with nominal SU(3) breaking between the
strange and non-strange states. This supports the fact

that the mass splittings in the sπll = 1
2

+
doublets are

comparable to mD∗ − mD ' mD∗
s
− mDs , unlike what

LLSW considered based on the data in 1997.

For the HQET mass parameters we use Λ̄s = Λ̄ +
90 MeV, motivated by mBs−mB . We also estimate Λ̄′s−
Λ̄s = 0.41 GeV using Eq. (1.10) in Ref. [9]. For Λ̄′s −
Λ̄∗s = 0.13 GeV from the (2555− 2425) MeV difference in
Table XIII. (These values are also shown in Table IV.).

Using SU(3) flavor symmetry to relate the B → D∗∗`ν̄
decay parameters to Bs → D∗∗s `ν̄, in Approximation C

2 We thank Marcello Rotondo for drawing our attention to this.
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FIG. 3. The impact of chromomagnetic contributions ηi and χi on the exclusive ratios R(D∗∗) (below 0.15) and R̃(D∗∗) (above
0.15). For the leading and subleading Isgur-Wise functions the best fit parameters of Approximation C (without including
chromomagnetic terms) are used. The explored range is motivated by the experimental constraints of η1 and χ1 (see the text).

Particle s
πl
l JP m (MeV) Γ (MeV)

D∗s0
1
2

+
0+ 2318 < 4

D∗s1
1
2

+
1+ 2460 < 4

Ds1
3
2

+
1+ 2535 1

D∗s2
3
2

+
2+ 2567 17

Bs1
3
2

+
1+ 5829 1

B∗s2
3
2

+
2+ 5840 1

TABLE XII. Same as Table I, but for Ds mesons. For the 3
2

+

states we averaged the PDG with a recent LHCb measure-
ment [50] not included in the PDG.

s
πl
l Particles m (MeV) Particles m (MeV)

1
2

−
Ds, D

∗
s 2076 Bs, B

∗
s 5403

1
2

+
D∗s0, D∗s1 2425 B∗s0, B∗s1 —

3
2

+
Ds1, D∗s2 2555 Bs1, B∗s2 5836

TABLE XIII. Same as Table III, but for Ds and Bs mesons.

we predict for the ratios of the τ to light-lepton rates

R(D∗s2) = 0.07± 0.01 , R̃(D∗s2) = 0.16± 0.01 ,

R(Ds1) = 0.09± 0.02 , R̃(Ds1) = 0.20± 0.02 ,

R(D∗s1) = 0.07± 0.03 , R̃(D∗s1) = 0.20± 0.02 ,

R(D∗s0) = 0.09± 0.04 , R̃(D∗s0) = 0.26± 0.05 . (40)

This is the analog of Eq. (38), with increased uncer-
tainties to account for the impact of additional chromo-
magnetic contributions, which cannot be constrained well
yet. These predictions will improve when more data is
available on B → D∗∗`ν̄, or Bs → D∗∗s `ν̄, or related
B(s) → D∗∗(s)π rates.

V. B → D∗∗τ ν̄ AND SCALAR INTERACTIONS

To illustrate the complementary sensitivities to new
physics, in this section we explore the impacts of possible
scalar interactions on R(D∗∗). We consider the effective
Hamiltonian,

H =
4GF√

2
Vcb
[
(c̄γµPLb) (τ̄ γµPLν) (41)

+ SL(c̄PLb) (τ̄PLν) + SR(c̄PRb) (τ̄PLν)
]
.

This notation follows Ref. [2], although without speci-
fying details of the underlying model, one may expect
SL,R = O[m2

W /(|Vcb|Λ2)]. For simplicity, we consider
two scenarios. (i) In the type-II 2HDM, SL = 0 and
SR = −mbmτ tan2 β/m2

H± . This scenario is motivated
by being the Higgs sector of the MSSM; it does not give
a good fit to the current data, however, the central val-
ues of R(D(∗)) may change in a way that this conclusion
is altered, but a robust deviation from the SM remains.
(ii) In another scenario that we consider, SL+SR = 0.25
and we study the dependence of R(D∗∗) on SL−SR. This
is motivated by giving a good fit the current data, and
can arise, e.g., in other extensions of the Higgs sector.

While Eq. (41) is natural to write in terms of left- and
right-handed operators, the hadronic matrix elements are
simpler to address in terms of the scalar (c̄b) and pseu-
doscalar (c̄γ5b) currents. In particular,

〈D∗0 |c̄b|B〉 = 0 , 〈D∗1 |c̄γ5b|B〉 = 0 ,

〈D∗2 |c̄b|B〉 = 0 , 〈D1|c̄γ5b|B〉 = 0 , (42)

whereas 〈D∗|c̄b|B〉 = 0 and 〈D|c̄γ5b|B〉 = 0 for the D and
D∗. The non-vanishing (pseudo)scalar matrix elements
can be related to those of the SM currents via

〈X|c̄γ5b|B〉 =
−qµ

mb +mc
〈X|c̄γµγ5b|B〉 ,

〈X|c̄b|B〉 =
qµ

mb −mc
〈X|c̄γµb|B〉 . (43)
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The charged Higgs contribution is simplest to include
by writing the rate in terms of a helicity decomposition.
The differential decay rate with its full lepton mass de-
pendence can be written as

dΓ(B → D∗∗` ν̄)

dq2
=
G2
F |Vcb|2 |~p ′| q2

96π3m2
B

(
1− m2

`

q2

)2

×
[ ∑
k=±,0,t

H2
k

(
1 +

m2
`

2q2

)
+

3

2

m2
`

q2
H2
t

]
, (44)

with the helicity amplitudes Hk=±,0,t (we use the no-
tation of Ref. [51]). Here |~p ′| is the magnitude of the
three-momentum of the D∗∗. It is related to q2 as

|~p ′|2 =

(
m2
B +m2

D∗∗ − q2

2mB

)2

−m2
D∗∗ = m2

D∗∗(w2 − 1) .

(45)
Setting m` = 0, one recovers the expression

dΓ(B → D∗∗`ν̄)

dq2
=
G2
F |Vcb|2 |~p ′| q2

96π3m2
B

∑
k=±,0,t

H2
k , (46)

which is an excellent approximation for l = e, µ.
The contributions of the scalar operators can be in-

cluded by replacing Ht according to

Ht → HSM
t

[
1 + (SR ± SL)

q2

mτ (mb ∓mc)

]
, (47)

where the upper signs are for the final states D, D∗1 and
D1, and the lower signs are for D∗, D∗0 , and D∗2 . The
helicity amplitudes H±,0,t are related to the form factors
defined in Eqs. (5) and (6), and the full expressions for
all four D∗∗ states are given in Appendix C.

The upper plot in Fig. 4 shows the ratios of τ to light-
lepton rates as functions of tanβ/mH± for the four D∗∗

states and for comparison for the D(∗) mesons as well.
For the quark masses in Eq. (47) the values of mb(mb) =
4.2 GeV and mc(mb) = 1.1 GeV were used. The plot
shows for each hadronic final state R(X)

/
R(X)

∣∣
SM

as a
function of tanβ/mH± . While to such scalar currents the
sensitivity of the B → D`ν̄ appears to be the best, that is
not generic for all new physics scenarios. The lower plot
in Fig. 4 shows the ratios of τ to light-lepton rates as
functions of SR−SL for SR +SL = 0.25 for the D∗, D∗0 ,
and D∗2 final states. The rates to the other three states
we consider only depend on SR + SL [see Eq. (47)], so
those are not plotted. This scenario is motivated by being
able to fit, besides R(D(∗)), the q2 spectrum measured in
Ref. [2] as well. The vertical blue shaded bands show the
best fit regions [2]. Measurements of R(D∗∗) can help
discriminate between the currently allowed solutions of
SL and SR, and also distinguish more complex scenarios.

VI. SUMMARY AND CONCLUSIONS

We performed the first model independent study of
semileptonic B → D∗∗`ν̄ decays based on heavy quark

RHDL
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FIG. 4. Upper plot: Ratios of τ to light-lepton rates in the
type-II 2HDM, as functions of tanβ/mH± . For the four D∗∗

states and the two D(∗) mesons R(X)/R(X)
∣∣
SM

is shown as
functions of tanβ/mH± . Lower plot: Ratios of τ to light-
lepton rates as functions of SR − SL, for SR + SL = 0.25, for
D∗, D∗0 , and D∗2 final states. The vertical blue shaded bands
show the allowed regions for SR−SL as measured in Ref. [2].

symmetry, including the full dependence on the charged
lepton mass. This is important, because future measure-
ments of R(D∗∗) give complementary sensitivity to new
physics than R(D(∗)). It is also important to better un-
derstand the semileptonic B → D∗∗ decays in the zero
lepton mass channels, which are significant contributions
to the systematic uncertainties for the measurements of
|Vcb| and |Vub|, in addition to R(D(∗)).

There are at least two measurements which could be
done with existing data, that would add substantially to
our understanding of D∗∗ states and the decays discussed
in this paper: (1) The nonleptonic B → D∗∗π rates have
only been measured with small fractions of the BABAR
and Belle data, and are the sources of tensions. Redoing
these measurements with the full data sets would be im-
portant. (2) In the strange sector, one should revisit the
ratio B(Ds0 → D∗sγ)/B(Ds0 → Dsπ), for which CLEO
obtained a ∼ 3 times stronger upper bound than BABAR
and Belle, and the latter experiments have much more
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data not yet analyzed for this ratio.
Our main results for R(D∗∗) are Eqs. (34) and the even

more conservative Eqs. (38). The precision of these pre-
dictions can be improved in a straightforward manner in
the future, with more precise measurements of the differ-
ential decay rates in the e and µ modes. That will allow
to better constrain the (relevant combinations of) sub-
leading Isgur-Wise functions, thereby reducing the uncer-
tainty of R(D∗∗). Measuring the e and µ modes should
be high priority also for their potential impacts on reduc-
ing the uncertainties in |Vcb| and |Vub| measurements.

For the semi-tauonic rate to the sum of four states we
obtain B(B → D∗∗τ ν̄) = (0.14± 0.03)%. This is smaller
than the estimate in Ref. [6]; nevertheless, it sharpens
the tension between the data on the inclusive and sum
over exclusive b→ cτ ν̄ mediated rates.
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Appendix A: LLSW Form Factor expansion

The used mass splittings and quark masses are listed in
Table IV. The ratios, εc,b = 1/(2mc,b), and the sublead-
ing Isgur-Wise functions τ1/2/3 also enter the form factor
expansion. Here τ1/2 and τ3/2 are the leading Isgur-Wise

function of the sπl = 1
2

+
and sπl = 3

2

+
states, respectively.

Below, we repeat for completeness the expansion of the
form factors to order 1/mc,b [8, 9].

The form factors for B → D∗0 ` ν̄ are

g+ = εc

[
2(w − 1)ζ1 − 3ζ

wΛ̄∗ − Λ̄

w + 1

]
− εb

[
Λ̄∗(2w + 1)− Λ̄(w + 2)

w + 1
ζ − 2(w − 1) ζ1

]
,

g− = ζ + εc

[
χke + 6χ1 − 2(w + 1)χ2

]
+ εb χb . (A1)

The form factors for B → D∗1 ` ν̄ are

gA = ζ + εc

[
wΛ̄∗ − Λ̄

w + 1
ζ + χke − 2χ1

]
− εb

[
Λ̄∗(2w + 1)− Λ̄(w + 2)

w + 1
ζ − 2(w − 1) ζ1 − χb

]
,

gV1
= (w − 1)ζ + εc

[
(wΛ̄∗ − Λ̄)ζ + (w − 1)(χke − 2χ1)

]
− εb

{[
Λ̄∗(2w + 1)− Λ̄(w + 2)

]
ζ − 2(w2 − 1)ζ1 − (w − 1)χb

}
,

gV2 = 2εc (ζ1 − χ2) ,

gV3
= −ζ − εc

[
wΛ̄∗ − Λ̄

w + 1
ζ + 2ζ1 + χke − 2χ1 + 2χ2

]
+ εb

[
Λ̄∗(2w + 1)− Λ̄(w + 2)

w + 1
ζ − 2(w − 1) ζ1 − χb

]
. (A2)

The form factors for B → D1 ` ν̄ are
√

6 fA = −(w + 1)τ − εb
{

(w − 1)
[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2

]
+ (w + 1)ηb

}
− εc

[
4(wΛ̄′ − Λ̄)τ − 3(w − 1)(τ1 − τ2) + (w + 1)(ηke − 2η1 − 3η3)

]
,

√
6 fV1

= (1− w2)τ − εb(w2 − 1)
[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb

]
− εc

[
4(w + 1)(wΛ̄′ − Λ̄)τ − (w2 − 1)(3τ1 − 3τ2 − ηke + 2η1 + 3η3)

]
,

√
6 fV2 = −3τ − 3εb

[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb

]
− εc

[
(4w − 1)τ1 + 5τ2 + 3ηke + 10η1 + 4(w − 1)η2 − 5η3

]
,

√
6 fV3 = (w − 2)τ + εb

{
(2 + w)

[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2

]
− (2− w)ηb

}
+εc

[
4(wΛ̄′ − Λ̄)τ + (2 + w)τ1 + (2 + 3w)τ2

+(w − 2)ηke − 2(6 + w)η1 − 4(w − 1)η2 − (3w − 2)η3

]
. (A3)

The form factors for B → D∗2 ` ν̄ are

kV = −τ − εb
[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb

]
− εc(τ1 − τ2 + ηke − 2η1 + η3) ,

kA1
= −(1 + w)τ − εb

{
(w − 1)

[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2

]
+ (1 + w)ηb

}
− εc

[
(w − 1)(τ1 − τ2) + (w + 1)(ηke − 2η1 + η3)

]
,
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kA2
= −2εc(τ1 + η2) ,

kA3
= τ + εb

[
(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb

]
− εc(τ1 + τ2 − ηke + 2η1 − 2η2 − η3) . (A4)
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FIG. 5. The colored bands show the allowed 68% regions for m` = 0 (blue) and m` = mτ (orange) for the differential decay
rates in Approximation A. The dashed curves show the predictions of Ref. [9]. The data points correspond to the differential
semileptonic or nonleptonic branching fraction measurements described in the text.

Appendix B: Approximation A

We attempt to keep the definition as similar to Ref. [9] as possible. In light of Eqs. (9)–(11), we factor out
(1− 2rw+ r2− ρ`)2/(1− 2rw+ r2)2, which reduces to 1 in the ρ` → 0 limit. Expanding in powers of w− 1, we write

for the 3
2

+
states,

dΓD1

dw dcos θ
= Γ0 τ

2(1) r3
√
w2 − 1

(1− 2rw + r2 − ρ`)2

(1− 2rw + r2)2

∑
n

(w − 1)n
{

sin2 θ s
(n)
1

+ (1− 2rw + r2)
[
(1 + cos2 θ) t

(n)
1 − 4 cos θ

√
w2 − 1u

(n)
1

]}
, (B1)

dΓD∗
2

dw dcos θ
=

3

2
Γ0 τ

2(1) r3 (w2 − 1)3/2 (1− 2rw + r2 − ρ`)2

(1− 2rw + r2)2

∑
n

(w − 1)n
{

4

3
sin2 θ s

(n)
2

+ (1− 2rw + r2)
[
(1 + cos2 θ) t

(n)
2 − 4 cos θ

√
w2 − 1u

(n)
2

]}
, (B2)
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and for the 1
2

+
states,

dΓD∗
0

dw dcos θ
= 3Γ0 ζ

2(1) r3
√
w2 − 1

(1− 2rw + r2 − ρ`)2

(1− 2rw + r2)2

∑
n

(w − 1)n
{

sin2 θ s
(n)
0

+
[
(1 + cos2 θ) t

(n)
0 − 4 cos θ

√
w2 − 1u

(n)
0

]}
, (B3)

dΓD∗
1

dw dcos θ
= 3Γ0 ζ

2(1) r3
√
w2 − 1

(1− 2rw + r2 − ρ`)2

(1− 2rw + r2)2

∑
n

(w − 1)n
{

sin2 θ s
(n)
1∗

+ (1− 2rw + r2)
[
(1 + cos2 θ) t

(n)
1∗ − 4 cos θ

√
w2 − 1u

(n)
1∗

]}
. (B4)

The structure of the expansion for D∗0 changes for ρ` 6= 0
compared to Ref. [9], where (w2 − 1)3/2 occurred before
the sum in the analog of Eq. (B3). One power of (w2−1)

suppression is eliminated for ρ` 6= 0. In Eq. (B3), s
(0)
0 ,

t
(n)
0 , and u

(n)
0 are proportional to ρ`, and s

(1,2)
0 correspond

to s
(0,1)
0 in Ref. [9]. For the decays to D∗1 , D1, and D∗2 ,

Approximation A in this paper coincides with Ref. [9]
in the ρ` → 0 limit, while for D∗0 there is this small
difference, which is higher order in w − 1.3

The subscripts of the coefficients s, t, u denote the spin
of the excitedD meson, while the superscripts refer to the

order in the w−1 expansion. The u
(n)
i terms proportional

to cos θ only affect the lepton spectrum, since they vanish
when integrated over θ. (We do not expand the factors

of
√
w2 − 1 multiplying these cos θ terms.)

We obtain for the coefficients in the D1 decay rate

s
(0)
1 = 16ε2

c (Λ̄′ − Λ̄)2
[
2(1− r)2 + ρ`

]
+O(ρ2

`ε
2, ε3) ,

s
(1)
1 = 12ρ` + 32εc(Λ̄

′ − Λ̄)
(
1− r2 + ρ`

)
+ 8ρ`

[
εc(3η̂ke + 10η̂1 − 5η̂3) + 3εbη̂b

]
+O(ρ2

`ε, ε
2),

s
(2)
1 = 8 (1 + r)2 + 8ρ` (2 + 3τ̂ ′) +O(ρ2

` , ε) ,

t
(0)
1 = 16ε2

c (Λ̄′ − Λ̄)2

[
2 +

ρ`
(1− r)2

]
+O(ρ2

`ε
2, ε3) ,

t
(1)
1 = 4

[
1 +

2ρ`
(1− r)2

][
1 + 2εc(η̂ke − 2η̂1 − 3η̂3) + 2εbη̂b

]
+ 32εc(Λ̄

′ − Λ̄)

[
1 +

ρ`(1 + r)

(1− r)3

]
+ 32εcρ`

4η̂1 + η̂3

(1− r)2

+O(ρ2
`ε, ε

2) ,

t
(2)
1 = 8 (1 + τ̂ ′) + 16ρ`

[
1 + τ̂ ′

(1− r)2
+

3r

(1− r)4

]
+O(ρ2

` , ε) ,

u
(0)
1 = 8εc (Λ̄′ − Λ̄)

[
1− ρ`

(1− r)2

]2

+O(ε2) ,

3 In Ref. [9] there is a typo in the s
(0)
0 coefficient in Eq. (3.18): the

4εbχ̂b term should read 2εbχ̂b, since εcχ̂ke and εbχ̂b must have

the same coefficients. This is corrected in s
(1)
0 in Eq. (B7) below;

note the shift of the upper index by 1, as explained above.

u
(1)
1 = 2− 4ρ`

1 + r

(1− r)3
+O(ρ2

` , ε) , (B5)

where εn denotes any term of the form εmc ε
n−m
b , with

n, n −m ≥ 0. For the decay rate into D∗2 , the first two
terms in the w − 1 expansion are

s
(0)
2 =

[
4(1− r)2 + ρ`

][
1 + 2εc (η̂ke − 2η̂1 + η̂3) + 2εb η̂b

]
+O(ρ2

`ε, ε
2) ,

s
(1)
2 = 4 (1− r)2(1 + 2τ̂ ′) + ρ`

(
7

2
+ 2τ̂ ′

)
+O(ρ2

` , ε) ,

t
(0)
2 = 4

[
1 + 2εb η̂b + 2εc(η̂ke − 2η̂1 + η̂3)

][
1 +

2ρ`
3(1− r)2

]
+O(ρ2

` , ε) ,

t
(1)
2 = 2(3 + 4τ̂ ′) + 4ρ`

[
(1 + r)2

(1− r)4
+

4τ̂ ′

3(1− r)2

]
+O(ρ2

` , ε) ,

u
(0)
2 = 2− ρ`

4(1 + r)

3(1− r)3
+O(ρ2

` , ε) . (B6)

Note that aiming at higher accuracy for the D∗2 rate by

keeping the s
(2)
2 and t

(2)
2 coefficients, even at leading or-

der, would introduce a new parameter, τ ′′(1), hence re-
ducing the simplicity of this approximation (besides de-
viating from the “power counting”).

For the decay rate into D∗0 we get

s
(0)
0 =

9 ρ`
2

(εc + εb)
2 (Λ̄∗ − Λ̄)2 +O(ρ2

`ε
2, ρ`ε

3) ,

s
(1)
0 =

[
2(1− r)2 − ρ`

][
1 + 2εc(χ̂ke + 6χ̂1 − 4χ̂2) + 2εbχ̂b

]
+ 6(εc + εb)(Λ̄

∗ − Λ̄) (1− r2) +O(ρ2
`ε, ε

2) ,

s
(2)
0 = (1− r)2 (1 + 4ζ̂ ′)− 2 ρ` ζ̂

′ +O(ρ2
` , ε) .

t
(0)
0 =

9 ρ`
2

(εc + εb)
2 (Λ̄∗ − Λ̄)2 +O(ρ2

`ε
2, ρ`ε

3) ,

t
(1)
0 = ρ`

[
1 + 2εc(χ̂ke + 6χ̂1 − 4χ̂2) + 2εbχ̂b

]
+ 6ρ` (εc + εb) (Λ̄∗ − Λ̄)

1 + r

1− r
+O(ρ2

`ε, ρ`ε
2),

t
(2)
0 = ρ`

[
2ζ̂ ′ +

(1 + r)2

(1− r)2

]
+O(ρ2

` , ρ`ε) ,

u
(0)
0 = − 3 ρ`

2(1− r)2
(εc + εb) (Λ̄∗ − Λ̄) +O(ρ2

`ε, ρ`ε
2) ,
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u
(1)
0 = −ρ` (1 + r)

2(1− r)3
+O(ρ2

` , ρ`ε) . (B7)

For the decay into D∗1 the coefficients are

s
(0)
1∗ = (εc − 3εb)

2 (Λ̄∗ − Λ̄)2

[
(1− r)2 +

ρ`
2

]
+O(ρ2

`ε
2, ε3),

s
(1)
1∗ = 3ρ` − 2(εc − 3εb) (Λ̄∗ − Λ̄)

[
(1− r2)− 2ρ`

]
+ 2ρ`

[
εc(3χ̂ke − 6χ̂1 + 4χ̂2) + 3εbχ̂b

]
+O(ρ2

`ε, ε
2),

s
(2)
1∗ = (1 + r)2 + ρ` (2 + 6ζ̂ ′) +O(ρ2

` , ε) ,

t
(0)
1∗ = (εc − 3εb)

2 (Λ̄∗ − Λ̄)2

[
1 +

ρ`
2(1− r)2

]
+O(ρ2

`ε, ε
2) ,

t
(1)
1∗ =

[
2 +

ρ`
(1− r)2

][
1 + 2εc(χ̂ke − 2χ̂1) + 2εbχ̂b

]
+ 2(εc − 3εb)(Λ̄

∗ − Λ̄)

[
2− ρ`(1 + r)

(1− r)3

]
+ εc

8ρ` χ̂2

(1− r)2
+O(ρ2

`ε, ε
2) ,

t
(2)
1∗ = 2 + 4ζ̂ ′ + ρ`

[
1 + 4r + r2

(1− r)4
+

2ζ̂ ′

(1− r)2

]
+O(ρ2

` , ε) ,

u
(0)
1∗ = (εc − 3εb)(Λ̄

∗ − Λ̄)

[
1 +

ρ`
2(1− r)2

]
+O(ρ2

`ε, ε
2) ,

u
(1)
1∗ = 1− ρ` (1 + r)

2(1− r)3
+O(ρ2

` , ε) . (B8)

Figure 5 compares the differential decay rates in Ap-
proximation A using the fitted values for the narrow and
broad Isgur-Wise function parametrization in Table VIII
with Ref. [9].

Appendix C: Helicity amplitudes

1. Helicity amplitudes for B → D∗
0 `ν̄

The H± helicity amplitudes vanish for semileptonic de-
cays to scalar final state mesons, and only the zero helic-
ity amplitudes, H0 and Ht contribute to the decay rate,

HS
± = 0 , (C1)

HS
0 = −mB

√
r√

q2
|~p ′|
[(

1 +
1

r

)
f+ +

(
1− 1

r

)
f−

]
, (C2)

HS
t = −mB

√
r√

q2

(
t+ f+ + t− f−

)
, (C3)

with r = mD∗∗/mB , t± = mB ∓mD∗∗ − E′(1 ∓ 1/r) =
mB −E′ ∓ (mB r −E′/r), and E′ denotes the energy of
the D∗∗ meson in the B rest frame.

2. Helicity amplitudes for B → D1 `ν̄ and D∗
1 `ν̄

For vector final state mesons all four helicity ampli-
tudes contribute:

HV
± = mB

√
r fV1 ∓

1√
r
|~p ′| fA , (C4)

HV
0 =

1√
r q2

[
mB(E′ −mBr

2) fV1
+
|~p ′|2

r

(
rfV2

+ fV3

)]
,

(C5)

HV
t = mB

|~p ′|√
r q2

[
fV1

+

(
1− E′

mB

)
fV2

+

(
E′

mB r
− r
)
fV3

]
.

(C6)

The helicity amplitudes for D∗1 can be obtained by the
replacements fV1,V2,V3,A → gV1,V2,V3,A.

3. Helicity amplitudes for B → D∗
2 `ν̄

For tensor final states also all four helicity amplitudes
contribute:

HT
± = ∓ 1√

2 r

|~p ′|2

mBr
kV −

1√
2 r
|~p ′| kA1 , (C7)

HT
0 =

√
2

3

|~p ′|√
r3 q2

[
(E′ −mB r

2) kA1

+
|~p ′|2

mB

(
kA2 +

1

r
kA3

)]
, (C8)

HT
t =

√
2

3

|~p ′|2√
r3 q2

[
kA1

+

(
1− E′

mB

)
kA2

+

(
E′

mB r
− r
)
kA3

]
.

(C9)
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