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T. Kuhr,39 R. Kulasiri,29 A. Kuzmin,3, 55 Y.-J. Kwon,79 J. S. Lange,9 C. H. Li,42 L. Li,59 Y. Li,76

L. Li Gioi,41 J. Libby,20 D. Liventsev,76, 15 M. Lubej,26 T. Luo,57 M. Masuda,71 T. Matsuda,43

D. Matvienko,3, 55 K. Miyabayashi,48 H. Miyata,54 R. Mizuk,37, 44, 45 H. K. Moon,33

T. Mori,46 M. Nakao,15, 11 T. Nanut,26 K. J. Nath,19 Z. Natkaniec,52 M. Nayak,77, 15

M. Niiyama,34 N. K. Nisar,57 S. Nishida,15, 11 S. Ogawa,69 S. Okuno,27 H. Ono,53, 54

Y. Onuki,72 W. Ostrowicz,52 G. Pakhlova,37, 45 B. Pal,6 C.-S. Park,79 H. Park,35 R. Pestotnik,26

L. E. Piilonen,76 C. Pulvermacher,15 M. Ritter,39 A. Rostomyan,7 Y. Sakai,15, 11 S. Sandilya,6

L. Santelj,15 T. Sanuki,70 V. Savinov,57 O. Schneider,36 G. Schnell,1, 17 C. Schwanda,22

Y. Seino,54 K. Senyo,78 M. E. Sevior,42 V. Shebalin,3, 55 T.-A. Shibata,73 J.-G. Shiu,51

B. Shwartz,3, 55 F. Simon,41, 67 A. Sokolov,23 E. Solovieva,37, 45 M. Starič,26 J. F. Strube,56
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Abstract

We report the first search for the JPC = 0−− glueball in Υ(1S) and Υ(2S) decays with data samples

of (102 ± 2) million and (158 ± 4) million events, respectively, collected with the Belle detector. No

significant signals are observed in any of the proposed production modes, and the 90% credibility level

upper limits on their branching fractions in Υ(1S) and Υ(2S) decays are obtained. The inclusive branching

fractions of the Υ(1S) and Υ(2S) decays into final states with a χc1 are measured to be B(Υ(1S) →

χc1 + anything) = (1.90 ± 0.43(stat.) ± 0.14(syst.)) × 10−4 with an improved precision over prior

measurements and B(Υ(2S) → χc1 + anything) = (2.24 ± 0.44(stat.) ± 0.20(syst.)) × 10−4 for the

first time.

PACS numbers: 12.39.Mk, 13.25.Gv, 14.40.Pq, 14.40.Rt
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I. INTRODUCTION

The existence of bound states of gluons (so-called “glueballs”), with a rich spectroscopy and

a complex phenomenology, is one of the early predictions of the non-abelian nature of strong

interactions described by quantum chromodynamics (QCD) [1]. However, despite many years of

experimental efforts, none of these gluonic states have been established unambiguously. Possible

reasons for this include the mixing between glueballs and conventional mesons, the lack of solid

information on the glueball production mechanism, and the lack of knowledge about glueball

decay properties.

Of these difficulties, from the experimental point of view, the most outstanding obstacle is the

isolation of glueballs from various quarkonium states. Fortunately, there is a class of glueballs

with three gluons and quantum numbers incompatible with quark-antiquark bound states, called

oddballs, that are free of this conundrum. The quantum numbers of such glueballs include JPC

= 0−−, 0+−, 1−+, 2+−, 3−+, and so on. Among oddballs, special attention should be paid to

the 0−− state (G0−−), since it is relatively light and can be produced in the decays of vector

quarkonium or quarkoniumlike states. Two 0−− oddballs are predicted using QCD sum rules [2]

with masses of (3.81 ± 0.12) GeV/c2 and (4.33 ± 0.13) GeV/c2, while the lowest-lying state

calculated using distinct bottom-up holographic models of QCD [3] has a mass of 2.80 GeV/c2.

Although the masses have been calculated, the width and hadronic couplings to any final states

remain unknown. Possible G0−− production modes from bottomonium decays are suggested in

Ref. [2] including Υ(1S, 2S) → χc1+G0−− , Υ(1S, 2S) → f1(1285)+G0−−, χb1 → J/ψ+G0−− ,

and χb1 → ω +G0−− .

In this paper, we search for 0−− glueballs in the production modes proposed above and de-

fine G(2800), G(3810), and G(4330) as the glueballs with masses fixed at 2.800, 3.810, and

4.330 GeV/c2, respectively. All the parent particles in the above processes are copiously produced

in the Belle experiment, and may decay to the oddballs with modest rates. Since the widths are

unknown, we report an investigation of the 0−− glueballs with different assumed widths. The χc1

is reconstructed via its decays into γJ/ψ, J/ψ → ℓ+ℓ− and ℓ = e or µ, f1(1285) via ηπ+π− with

η → γγ, and ω via π+π−π0 with π0 → γγ. As the χc1 are observed clearly as tagged signals in

Υ(1S, 2S) decays, the corresponding production rates may be measured with improved precision.
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II. THE DATA SAMPLE AND BELLE DETECTOR

This analysis utilizes the Υ(1S) and Υ(2S) data samples with a total luminosity of 5.74 and

24.91 fb−1, respectively, corresponding to 102 × 106 Υ(1S) and 158 × 106 Υ(2S) events [4].

An 89.45 fb−1 data sample collected at
√
s = 10.52 GeV is used to estimate the possible ir-

reducible continuum contributions. Here,
√
s is the center-of-mass (C.M.) energy of the collid-

ing e+e− system. The data were collected with the Belle detector [5, 6] operated at the KEKB

asymmetric-energy e+e− collider [7, 8]. Large Monte Carlo (MC) samples of all of the inves-

tigated glueball modes are generated with EVTGEN [9] to determine signal line-shapes and effi-

ciencies. The angular distribution for Υ(2S) → γχb1 is simulated assuming a pure E1 transi-

tion (dN/d cos θγ ∝ 1 − 1
3
cos2 θγ [10], where θγ is the polar angle of the Υ(2S) radiative photon

in the e+e− C.M. frame), and uniform phase space is used for the χb1 decays. We use the uniform

phase-space decay model for other decays as well. Note that G0−− inclusive decays are mod-

elled using PYTHIA [11]. Inclusive Υ(1S) and Υ(2S) MC samples, produced using PYTHIA with

four times the luminosity of the real data, are used to identify possible peaking backgrounds from

Υ(1S) and Υ(2S) decays.

The Belle detector is a large solid-angle magnetic spectrometer that consists of a silicon ver-

tex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov

counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an

electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting

solenoid coil that provides a 1.5 T magnetic field. An iron flux-return yoke located outside the coil

is used to detect K0
L mesons and to identify muons. A detailed description of the Belle detector

can be found in Refs. [5, 6].

III. EVENT SELECTION

Charged tracks from the primary vertex with dr < 0.5 cm and |dz| < 4 cm are selected, where

dr and dz are the impact parameters perpendicular to and along the beam direction, respectively,

with respect to the interaction point. In addition, the transverse momentum of every charged track

in the laboratory frame is restricted to be larger than 0.1 GeV/c. We require the number of well-

reconstructed charged tracks to be greater than four to suppress the significant background from

quantum electrodynamics processes. For charged tracks, information from different detector sub-
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systems including specific ionization in the CDC, time measurements in the TOF and the response

of the ACC is combined to form the likelihood Li for particle species i, where i = π, K, or p [12].

Charged tracks with RK = LK/(LK + Lπ) < 0.4 are considered to be pions. With this condi-

tion, the pion identification efficiency is 96% and the kaon misidentification rate is about 9%. A

similar likelihood ratio is defined as Re = Le/(Le + Lnon−e) [13] for electron identification and

Rµ = Lµ/(Lµ + LK + Lπ) [14] for muon identification. An ECL cluster is taken as a photon

candidate if it does not match the extrapolation of any charged track and its energy is greater than

50 MeV.

To reduce the effect of bremsstrahlung and final-state radiation, photons detected in the ECL

within a 50 mrad cone of the original electron or positron direction are included in the calculation

of the e+/e− four-momentum. For the lepton pair ℓ+ℓ− used to reconstruct the J/ψ, both of the

tracks should have Re > 0.95 in the e+e− mode; or one track should have Rµ > 0.95 and the

other Rµ > 0.05 in the µ+µ− mode. The lepton pair identification efficiencies for e+e− and

µ+µ− are 96% and 93%, respectively. After all event selection requirements, significant J/ψ

signals are seen in the Υ(1S) and Υ(2S) data samples, as shown in Figs. 1 (a) and (b). Since

different modes have almost the same J/ψ mass resolutions, we define the J/ψ signal region in

the window |Mℓ+ℓ− −mJ/ψ| < 0.03 GeV/c2 (∼ 2.5σ) indicated by the arrows, where mJ/ψ is the

J/ψ nominal mass [15], while the J/ψ mass sideband is 2.97 GeV/c2 < Mℓ+ℓ− < 3.03 GeV/c2

or 3.17 GeV/c2 < Mℓ+ℓ− < 3.23 GeV/c2, which is twice as wide as the signal region. In order to

improve the J/ψ momentum resolution, a mass-constrained fit is applied to the J/ψ candidates in

the signal region.
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FIG. 1: The ℓ+ℓ− invariant mass distributions in the Υ(1S) (a) and Υ(2S) (b) data samples. The solid

arrows show the J/ψ signal region, and the dashed arrows show the J/ψ mass sideband regions.
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IV. MEASUREMENTS OF Υ(1S, 2S) → χc1 + anything

Before searching for the G0−− in Υ(1S, 2S) → χc1 + G0−− , we measure the inclusive χc1

production in Υ(1S, 2S). The J/ψ candidate is combined with any one of the photon candidates

to reconstruct the χc1 signal. The γJ/ψ invariant mass distributions for the χc1 candidates are

shown in Figs. 2(a) and 3(a) from Υ(1S) and Υ(2S) decays, respectively. Clear χc1 signals are

observed in both data samples, while no clear χc2 signals are seen. No evidence for χc1 signals is

found in the J/ψ-mass sideband events nor the continuum data sample, as can be seen from the

same plots.
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FIG. 2: (Color online) Invariant mass distributions of the χc1 candidates in the entire x region (a) and for

x bins of size 0.2 (b–f). The dots with error bars are the Υ(1S) data. The solid lines are the best fits,

and the dotted lines represent the backgrounds. The shaded histograms are from the normalized J/ψ mass

sidebands and cross-hatched histograms are from the normalized continuum contributions described in the

text. The arrows in (a) show the χc1 signal region that will be used to search for glueballs in the channel

Υ(1S) → χc1 +G0−− below.

The continuum background contribution is determined using a large amount of data taken at
√
s = 10.52 GeV, extrapolated down to the lower resonances. The scale factor used for this

extrapolation is fscale = LΥ/Lcon × σΥ/σcon × εΥ/εcon, where LΥ/Lcon, σΥ/σcon, and εΥ/εcon

are the ratios of the integrated luminosities, cross sections, and efficiencies, respectively, for the

Υ and continuum samples. The cross section extrapolation with beam energy is assumed to have

a 1/s2 [16–18] dependence. Contributions from e+e− annihilation without J/ψ events have been
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FIG. 3: (Color online) Invariant mass distributions of the χc1 candidates in the entire x region (a) and for

x bins of size 0.2 (b–f). The dots with error bars are the Υ(2S) data. The solid lines are the best fits,

and the dotted lines represent the backgrounds. The shaded histograms are from the normalized J/ψ mass

sidebands and cross-hatched histograms are from the normalized continuum contributions described in the

text. The arrows in (a) show the χc1 signal region that will be used to search for glueballs in the channel

Υ(2S) → χc1 +G0−− below.

subtracted to avoid double counting of continuum events. The resulting scale factor is about 0.10

for Υ(1S) and 0.35 for Υ(2S) decays. For Υ(2S) → χc1 + anything, another background is the

intermediate transition Υ(2S) → π+π−Υ(1S) or π0π0Υ(1S) with Υ(1S) decaying into χc1. Such

contamination is removed by requiring the ππ recoil mass to be outside the [9.45, 9.47] GeV/c2

region for all ππ combinations.

Considering the slight differences in the MC-determined reconstruction efficiencies for dif-

ferent χc1 momenta, we partition the data samples according to the scaled momentum x =

p∗χc1
/( 1

2
√
s
× (s − m2

χc1
)) [19], where p∗χc1

is the momentum of the χc1 candidate in the e+e−

C.M. system, and mχc1
is the χc1 nominal mass [20]. The value of 1

2
√
s
× (s−m2

χc1
) is the value of

p∗χc1
for the case where the χc1 candidate recoils against a massless particle. The use of x removes

the beam-energy dependence in comparing the continuum data to that taken at the Υ(1S, 2S) res-

onances. The γJ/ψ invariant mass distribution in each ∆x = 0.2 bin is shown in Figs. 2(b–f) and

3(b–f) for Υ(1S) and Υ(2S) decays, respectively.

An unbinned extended likelihood fit is applied to the x-dependent χc1 spectra to extract the

signal yields in the Υ(1S) or Υ(2S) data sample. Due to the slight dependence on momentum, the

10



χc1 shape in each x bin is described by a Breit-Wigner (BW) function convolved with a Novosi-

birsk function [21], where all parameter values are fixed to those from the fit to the MC-simulated

χc1 signal. Since no peaking backgrounds are found, a third-order Chebyshev polynomial shape

is used for the backgrounds. The fit results are shown in Figs. 2 and 3, and the fitted χc1 sig-

nal yields (Nfit) in the entire x region and each x bin from Υ(1S) and Υ(2S) decays are item-

ized in Table I, together with the reconstruction efficiencies from MC signal simulations (ε), the

total systematic uncertainties (σsyst)—which are the sum of the common systematic errors (dis-

cussed below)—and fit errors estimated in each x bin or the full range in x, and the corresponding

branching fractions (B). The total numbers of χc1 events, i.e., the sums of the signal yields in

all of the x bins, the sums of the x-dependent efficiencies weighted by the signal fraction in that

x bin, and the measured branching fractions are listed in the bottom row. In comparison with

the previous result of (2.3 ± 0.7) × 10−4 [19] for Υ(1S) → χc1 + anything, our measurement

of (1.90 ± 0.43(stat.) ± 0.14(syst.)) × 10−4 has an improved precision and lower continuum

background due to the requirement that the number of charged tracks be greater than four. The

branching fraction for Υ(2S) → χc1 + anything is measured for the first time and found to be

(2.24± 0.44(stat.)± 0.20(syst.))× 10−4. The differential branching fractions of Υ(1S, 2S) de-

cays into χc1 are shown in Fig. 4. A fit with an additional χc2 signal shape is also performed in

the entire x region in the Υ(1S) or Υ(2S) data sample, as shown in Fig. 5. The difference in

the number of fitted χc1 yields is included in the systematic error. The χc2 signal significance

from the fit is less than 2.7σ (3.2σ) in the Υ(1S) (Υ(2S)) data sample. The 90% credibility level

(C.L.) [22] upper limit (measured as described below) for the Υ(1S) → χc2+anything branching

fraction is 3.09 × 10−4, with systematic errors included, to be compared with the previous result

of (3.4 ± 1.0) × 10−4 [19], and the measured Υ(2S) → χc2 + anything branching fraction is

(2.28± 0.73(stat.)± 0.34(syst.))× 10−4 (< 3.28× 10−4 at 90% C.L.).

V. SEARCH FOR 0−− GLUEBALLS IN Υ(1S), Υ(2S), AND χb1 DECAYS

In the channels Υ(1S, 2S) → χc1+G0−− , Υ(1S, 2S) → f1(1285)+G0−−, χb1 → J/ψ+G0−− ,

and χb1 → ω + G0−− , we search for the G0−− signals in the recoil mass spectra of the χc1,

f1(1285), J/ψ, and ω with G0−− widths varying from 0.0 to 0.5 GeV in steps of 0.05 GeV. After

all selection requirements, no peaking backgrounds are found in the χc1, f1(1285), J/ψ, or ω mass

sideband events, or in the continuum production in the G0−− signal regions, in agreement with the

11



TABLE I: Summary of the branching fraction measurements of Υ(1S, 2S) inclusive decays into χc1,

where Nfit is the number of fitted signal events, ε (%) is the reconstruction efficiency, σsyst (%) is

the total systematic error on the branching fraction measurement, and B is the measured branching

fraction.

Υ(1S) → χc1 + anything Υ(2S) → χc1 + anything

x Nfit ε(%) σsyst(%) B(10−4) Nfit ε(%) σsyst(%) B(10−4)

(0.0, 0.2) 34.0±18.0 31.77 17.0 0.25± 0.13± 0.04 43.0±25.1 30.56 15.6 0.22± 0.13± 0.03

(0.2, 0.4) 65.2±30.7 29.09 7.2 0.53± 0.25± 0.04 161.3±44.1 27.11 9.6 0.93± 0.25± 0.09

(0.4, 0.6) 58.4±26.9 27.70 9.5 0.50± 0.23± 0.05 85.5±39.0 26.50 9.6 0.49± 0.22± 0.05

(0.6, 0.8) 43.4±18.3 25.72 13.0 0.40± 0.17± 0.05 72.7±28.5 24.25 12.6 0.47± 0.18± 0.06

(0.8, 1.0) 14.4±9.5 15.35 22.3 0.22± 0.15± 0.05 13.1±14.2 15.69 17.4 0.13± 0.14± 0.02

All x 215.4±49.2 27.54 7.1 1.90± 0.43± 0.14 375.6±73.2 26.41 9.1 2.24± 0.44± 0.20

Scaled Momentum, x
0 0.2 0.4 0.6 0.8 1

)
-4

dB
/d

x 
(1

0

0

1

2

3

4

5

6 +X
c1

χ→(1S)Υ

+X
c1

χ→(2S)Υ

FIG. 4: Differential branching fractions for Υ(1S) and Υ(2S) inclusive decays into χc1 as a function of the

scaled momentum x, defined in the text. The error bar of each point is the sum in quadratic of the statistical

and systematic errors.

expectation according to the Υ(1S, 2S) generic MC samples.

An unbinned extended maximum-likelihood fit to all the recoil mass spectra is performed to

extract the signal and background yields in the Υ(1S) and Υ(2S) data samples. The signal shapes

of the G0−− signals used in the fits are obtained directly from MC simulations, while for the

background a third-order Chebyshev polynomial function is adopted. In each fit, only one glueball

candidate with fixed mass and width is included and the upper limit on the number of signal events

is obtained.
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FIG. 5: (Color online) The γJ/ψ invariant mass distributions in the entire x region in Υ(1S) (a) and Υ(2S)

(b) data. The dots with error bars are the Υ(1S, 2S) data. The arrows show the expected positions of the

χc1 and χc2 signals. The solid lines are the best fits with the χc1 and χc2 signals included, and the dotted

lines represent the backgrounds. The shaded histograms are from the normalized J/ψ mass sidebands and

cross-hatched histograms are from the normalized continuum contributions described in the text.

A. MEASUREMENTS OF Υ(1S, 2S) → χc1 +G0−−

For Υ(1S, 2S) → χc1+G0−− , Figs. 6(a) and (b) show the scatter plots of the γJ/ψ recoil mass

versus the energy of the photon in the γJ/ψ C.M. frame in the Υ(1S) and Υ(2S) data samples,

respectively. We require the photon energy from χc1 radiative decays in the γJ/ψ C.M. frame to

satisfy 0.36 GeV < E∗
γ < 0.41 GeV to suppress the non-χc1 backgrounds. The χc1 mass sidebands

are defined as 0.25 GeV < E∗
γ < 0.28 GeV or 0.43 GeV < E∗

γ < 0.50 GeV. After the application

of the above requirements, Fig. 7 shows the recoil mass spectra of χc1 candidates in the Υ(1S, 2S)

data. There are no evident signals for any of the G0−− states at any of the expected positions.

Since the width is unknown, the fit is repeated with G0−− widths from 0 to 0.5 GeV in steps of

0.05 GeV. The fit results for the G(2800), G(3810), and G(4330) signals with their widths fixed

at 0.15 GeV are shown in Fig. 7 as an example. The fit yields −3.8± 3.9 (6.2± 6.4), −20.4± 7.8

(−18.5 ± 9.2), and −5.7 ± 11.3 (12.5 ± 14.9) events for the G(2800), G(3810), and G(4330)

signals, respectively, in the Υ(1S) (Υ(2S)) data sample.

Since the statistical significance in each case is less than 3σ, upper limits on the num-

bers of signal events, NUL, are determined at the 90% C.L. by solving the equation
∫ NUL

0
L(x)dx/

∫ +∞
0

L(x)dx = 0.9, where x is the number of signal events and L(x) is the max-

imized likelihood of the data assuming x signal events. The signal significances are calculated

using
√

−2 ln(L(0)/Lmax), where Lmax is the maximum of L(x). To take into account systematic

uncertainties discussed below, the above likelihood is convolved with a Gaussian function whose

13
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FIG. 6: Scatter plots of the recoil mass of γJ/ψ versus the photon energy from χc1 radiative decays in the

γJ/ψ C.M. frame in Υ(1S) (a) and Υ(2S) (b) data. The dotted lines show the expected χc1 signal region.
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FIG. 7: (Color online) The χc1 recoil mass spectra in the Υ(1S) (a) and Υ(2S) (b) data samples. The solid

curves show the results of the fit described in the text, including the G(2800), G(3810), and G(4330) states,

with a common width fixed to 0.15 GeV (for illustration) and with central values indicated by the arrows.

The dashed curves show the fitted background. The shaded histograms are from the normalized χc1 mass

sideband events and the cross-hatched histograms show the normalized continuum contributions.

width equals the total systematic uncertainty.

The calculated upper limits on the numbers of signal events (NUL) and branching fraction

(BUL) with widths from 0.0 to 0.5 GeV for each G0−− state are listed in Table II, together with the

reconstruction efficiencies (ε) and the systematic uncertainties (σsyst). The results are displayed

graphically in Fig. 8.

B. MEASUREMENTS OF Υ(1S, 2S) → f1(1285) +G0−−

Candidate f1(1285) states are reconstructed via ηπ+π−, η → γγ. The energies of the pho-

tons from the η decays are required to be greater than 0.25 GeV to suppress background pho-

tons. The photons from possible π0 decays are vetoed if the invariant mass of one photon from
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FIG. 8: (Color online) The upper limits on the branching fractions for Υ(1S) → χc1 + G0−− (a) and

Υ(2S) → χc1 +G0−− (b) as a function of the assumed G0−− decay width.

the η candidate and any other photon satisfies |M(γγ) − mπ0 | < 18 MeV/c2, where mπ0 is

the π0 nominal mass. We perform a mass-constrained kinematic fit to the surviving η candi-

dates and require χ2 < 10. A clear K0
S signal is seen in the π+π− invariant mass distribution

and such backgrounds are removed by requiring that the π+π− mass not fall between 0.475 and

0.515 GeV/c2. After the application of these requirements, the scatter plots of the ηπ− invari-

ant mass versus the ηπ+ invariant mass in Υ(1S) and Υ(2S) data are shown in Figs. 9(a) and

(b), respectively; here, a0(980) signals are observed. Since the f1(1285) decays into ηπ+π−

primarily via the a0(980)π intermediate state, we require either M(ηπ+) or M(ηπ−) to be in a

±60 MeV/c2 mass window centered on the a0(980) nominal mass. The ηπ+π− invariant mass

spectra are shown in Fig. 10; clear f1(1285) and η(1405) signals are observed. BW functions

are convolved with Novosibirsk functions for the f1(1285) and η(1405) signal shapes and a

third-order Chebychev function is taken for the background shape in the fits to the ηπ+π− in-

variant mass spectra. The fit results are shown in Fig. 10 as the solid lines. We define the

f1(1285) signal region as 1.23 GeV/c2 < M(ηπ+π−) < 1.33 GeV/c2 and its mass sideband

as 1.50 GeV/c2 < M(ηπ+π−) < 1.60 GeV/c2.

After applying all of the above requirements, Fig. 11 shows the recoil mass spectra of the

f1(1285) in Υ(1S, 2S) data, together with the background from the normalized f1(1285) mass

sideband events and the normalized continuum contributions. No evident G0−− signals are seen.

An unbinned extended maximum-likelihood fit, repeated with G0−− widths from 0 to 0.5 GeV in

steps of 0.05 GeV, is applied to the recoil mass spectra. The results of illustrative fits including

G(2800), G(3810), and G(4330) signals with widths fixed at 0.15 GeV are shown in Fig. 11. The

fits yield 20.2 ± 14.2 (25.0 ± 22.3) G(2800) signal events, −23.0 ± 25.2 (31.7 ± 39.0) G(3810)
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FIG. 9: (Color online) Scatter plots of M(ηπ−) versus M(ηπ+) in Υ(1S) (a) and Υ(2S) (b) data. The

dotted lines show the a0(980) signal region.

)2) (GeV/c-π+πηM(

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

2
E

ve
nt

s/
10

 M
eV

/c

0

100

200

300

400

500

600

700

800

900

1000
(a)

)2) (GeV/c-π+πηM(

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

2
E

ve
nt

s/
10

 M
eV

/c

0

200

400

600

800

1000

1200

1400

1600

1800 (b)

FIG. 10: The ηπ+π− invariant mass spectra in Υ(1S) (a) and Υ(2S) (b) data with the ηπ mass within the

a0(980) mass region. The solid lines are the best fits and the dotted lines represent the backgrounds. The

red arrows show the f1(1285) signal region.

signal events, and 31.8± 30.0 (68.3± 47.2) G(4330) signal events in Υ(1S) (Υ(2S)) data.

C. MEASUREMENTS OF χb1 → J/ψ +G0−−

The χb1 is identified through the decay Υ(2S) → γχb1. Figure 12 shows the scatter plot of the

recoil mass of γJ/ψ versus the energy of the Υ(2S) radiative photon in the e+e− C.M. frame and

the E∗
γ distribution. To select the χb1 signal, we require 0.115 GeV < E∗

γ < 0.145 GeV. Figure 13

shows the recoil mass spectrum of γJ/ψ in Υ(2S) data after all of the above selections, together

with the background estimated from the normalized J/ψ mass sideband events and the normalized

continuum contributions. No evident G0−− signal is observed. An unbinned extended maximum-

likelihood fit is applied to the γJ/ψ recoil mass spectrum. The result of a typical fit including

G(2800), G(3810), and G(4330) signals with widths fixed at 0.15 GeV is shown in Fig. 13. The

fit yields −11.4± 6.8 G(2800) signal events, −7.1± 13.5 G(3810) signal events, and 27.0± 19.5
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FIG. 11: (Color online) The f1(1285) recoil mass spectra in the Υ(1S) (a) and Υ(2S) (b) data samples.

The solid curves show the results of the fit described in the text, including the G(2800), G(3810), and

G(4330) states, with a common width fixed to 0.15 GeV and with central values indicated by the arrows.

The dashed curves show the fitted background. The shaded histograms are from the normalized f1(1285)

mass sideband events and the cross-hatched histograms show the normalized continuum contributions.

G(4330) signal events.
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FIG. 12: Scatter plot of the recoil mass of γJ/ψ versus the energy of the Υ(2S) radiative photon in the

e+e− C.M. frame (a) and the distribution of the Υ(2S) radiative photon’s energy (b). The dotted lines

indicate the expected χb1 signal region. The arrow shows the position of χb1.

D. MEASUREMENTS OF χb1 → ω +G0−−

Candidate ω states are reconstructed via π+π−π0. We perform a mass-constrained kinematic

fit to the selected π0 candidate and require χ2 < 10. To remove the backgrounds with K0
S , the

π+π− invariant mass must not lie between 0.475 and 0.515 GeV/c2. As shown in Fig. 14, a

clear ω signal is seen in the π+π−π0 invariant mass spectrum in Υ(2S) data. We define the

ω signal region as 0.755 GeV/c2 < M(π+π−π0) < 0.805 GeV/c2 and its mass sideband as

0.820 GeV/c2 < M(π+π−π0) < 0.870 GeV/c2. Figure 15 shows the scatter plot of the recoil mass
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FIG. 13: (Color online) The γJ/ψ recoil mass spectrum for Υ(2S) → γχb1 → γJ/ψ + anything in the

Υ(2S) data sample. The solid curve shows the result of the fit described in the text, including the G(2800),

G(3810), and G(4330) states, with a common width fixed to 0.15 GeV and with central values indicated by

the arrows. The dashed curve shows the fitted background. The shaded histogram is from the normalized

J/ψ mass sideband events and the cross-hatched histogram shows the normalized continuum contributions.

of γω versus the energy of the Υ(2S) radiative photon in the e+e− C.M. and the distribution of the

energy of the Υ(2S) radiative photon. From the plots, no clear χb1 signal is observed. Figure 16

shows the recoil mass spectrum of γω for events in the ω signal region, and the background from

the normalized ω mass sideband events and from the normalized continuum contributions. No

evident G0−− signal is observed. An unbinned extended maximum-likelihood fit is applied to the

γω recoil mass spectrum. The result of a fit including G(2800), G(3810), and G(4330) signals

with widths fixed at 0.15 GeV is shown in Fig. 16. The fit yields 22.0±34.1G(2800), 129.6±75.2

G(3810), and 132.9± 364.5 G(4330) signal events.
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FIG. 14: The π+π−π0 invariant mass distribution in Υ(2S) data. The arrows show the ω signal region.

Using the same method as described for Υ(1S, 2S) → χc1 +G0−− , the calculated upper limits

on the numbers of signal events (NUL), the reconstruction efficiencies (ε), and the systematic

uncertainties (σsyst) for Υ(1S, 2S) → f1(1285)+G0−−, χb1 → J/ψ+G0−− and χb1 → ω+G0−−
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FIG. 15: (Color online) Scatter plot of the recoil mass of γω versus the energy of the Υ(2S) radiative

photon in the e+e− C.M. frame (a) and the distribution of the energy of the Υ(2S) radiative photon (b).

The dotted lines in (a) indicate the expected χb1 signal region. The arrow in (b) shows the position of χb1.
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FIG. 16: (Color online) The γω recoil mass spectrum for Υ(2S) → γχb1 → γω + anything in the

Υ(2S) data sample. The solid curve shows the result of the fit described in the text, including the G(2800),

G(3810), and G(4330) states, with a common width fixed to 0.15 GeV and with central values indicated by

the arrows. The dashed curve shows the fitted background. The shaded histogram is from the normalized ω

mass sideband events and the cross-hatched histogram shows the normalized continuum contributions.

with different G0−− widths from 0.0 to 0.5 GeV in steps of 0.05 GeV are listed in Table II. The

results are displayed graphically in Fig. 17.

VI. SYSTEMATIC ERRORS

Several sources of systematic errors are taken into account in the branching fraction measure-

ments. The systematic uncertainty of 0.35% per track due to charged-track reconstruction is deter-

mined from a study of partially reconstructed D∗+ → D0(→ K0
Sπ

+π−)π+ decays. It is additive.

The photon reconstruction contributes 2.0% per photon, as determined using radiative Bhabha
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FIG. 17: (Color online) The upper limits on the branching fractions for Υ(1S) → f1(1285) + G0−− (a),

Υ(2S) → f1(1285) + G0−− (b), χb1 → J/ψ + G0−− (c), and χb1 → ω + G0−− (d) as a function of the

assumed G0−− decay width.

events. Based on the measurements of the particle identification efficiencies of lepton pairs from

γγ → ℓ+ℓ− events and pions from a low-background sample of D∗ events, the MC simulation

yields uncertainties of 3.6% for each lepton pair and 1.3% for each pion. The MC statistical er-

rors are estimated using the numbers of selected and generated events; these are 1.0% or less.

The trigger efficiency evaluated from simulation is approximately 100% with a negligible un-

certainty. Errors on the branching fractions of the intermediate states are taken from Ref. [20].

The uncertainties of the branching fractions of Υ(2S) → γχb1, χc1 → γJ/ψ, J/ψ → ℓ+ℓ−,

f1(1285) → a0(980)π, η → γγ, ω → π+π−π0 and π0 → γγ are 5.8%, 3.5%, 1.1%, 19.4%, 0.5%,

0.8% and 0.04%, respectively. By changing the order of the background polynomial and the range

of the fit, the decay-dependent relative difference in the upper limits of the number of signal events

is obtained; this is taken as the systematic error due to the uncertainty of the fit. Finally, the uncer-

tainties on the total numbers of Υ(1S) and Υ(2S) events are 2.2% and 2.3%, respectively, which

are mainly due to imperfect simulations of the charged-track multiplicity distributions from inclu-

sive hadronic MC events. Assuming that all of these systematic-error sources are independent, the

total systematic errors are summed in quadrature and listed in Table II for all the studied modes

under the assumptions of different G0−− widths.
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VII. RESULTS AND DISCUSSION

In summary, using the large data samples of 102 × 106 Υ(1S) and 158 × 106 Υ(2S) events

collected by the Belle detector, we have searched for the 0−− glueball in Υ(1S), Υ(2S), and

χb1 decays for the first time. No evident signal is found at three theoretically-predicted masses

in the processes Υ(1S, 2S) → χc1 + G0−− , Υ(1S, 2S) → f1(1285) + G0−− , χb1 → J/ψ +

G0−− , and χb1 → ω + G0−− and 90% C.L. upper limits are set on the branching fractions for

these processes. Figures 8 and 17 show the upper limits on the branching fractions as a function

of the 0−− glueball width. The results presented in this article do not strongly depend on the

spin-parity assumption of the glueballs. We also scan with fits across the mass regions up to 6.0

GeV/c2 for all of the modes under study. All the signal significances are less than 3σ except for

Υ(1S) → f1(1285) + G0−− , where the maximum signal significance is 3.7σ at 3.92 GeV/c2. It

should be noted that we report here the local statistical significances without considering the look-

elsewhere effect, which will largely reduce the significances. As we do not observe signals in

any of the modes under study, the upper limits can be applied almost directly to the glueballs in

this mass region with the same width and opposite spin parity and charge-conjugate parity, such

as JPC = (0, 1, 2, 3)+− and (1, 2, 3)−− [23]. In addition, distinct χc1 signals are observed in the

Υ(1S) and Υ(2S) inclusive decays. The corresponding branching fractions are measured to be

B(Υ(1S) → χc1 + anything) = (1.90 ± 0.43(stat.) ± 0.14(syst.)) × 10−4 with substantially

improved precision compared to the previous result of (2.3 ± 0.7) × 10−4 [19], and B(Υ(2S) →
χc1 + anything) = (2.24± 0.44(stat.)± 0.20(syst.))× 10−4, measured for the first time.
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TABLE II: Summary of the upper limits for Υ(1S, 2S) → χc1 + G0−− , f1(1285) + G0−− , and χb1 →

J/ψ +G0−− , ω +G0−− under different assumptions of G0−− width (Γ in GeV), where NUL is the upper

limit on the number of signal events taking into account systematic errors, ε is the reconstruction efficiency,

σsyst is the total systematic uncertainty and BUL is the 90% C.L. upper limit on the branching fraction.

Υ(1S) → χc1 +G(2800)/G(3810)/G(4330) Υ(2S) → χc1 +G(2800)/G(3810)/G(4330)

Γ NUL ε(%) σsyst(%) BUL(×10−6) NUL ε(%) σsyst(%) BUL(×10−6)

0.00 5.5/4.4/9.2 19.9/24.6/26.3 6.6/10.8/7.6 6.8/4.5/8.8 12.9/6.9/11.3 19.7/24.6/25.6 6.6/15.9/8.6 10.6/4.4/7.3

0.05 6.1/5.6/11.1 19.5/25.1/26.5 6.7/8.1/9.6 7.8/5.3/10.6 14.7/8.2/16.6 19.2/24.7/25.6 6.7/14.2/16.4 12.7/5.5/10.8

0.10 6.8/7.0/13.3 20.2/24.6/26.0 7.1/7.2/11.4 8.6/7.2/13.0 16.2/9.5/23.7 19.8/24.5/25.2 7.0/16.8/21.5 13.5/6.4/15.6

0.15 7.3/9.9/15.2 20.1/25.0/26.4 7.3/6.3/12.9 9.1/10.0/14.6 16.9/10.9/30.6 19.6/24.5/26.0 7.4/18.9/21.8 14.4/7.3/19.6

0.20 7.6/11.6/17.2 19.8/25.0/25.9 7.3/6.3/13.9 9.8/11.8/16.8 17.0/11.8/38.4 19.7/24.0/25.2 7.6/20.6/27.1 14.4/8.0/25.8

0.25 8.5/14.5/21.4 19.6/24.5/26.4 7.4/6.3/16.5 10.9/15.1/20.6 18.7/14.6/47.1 18.8/24.0/25.6 8.6/23.8/28.4 16.6/10.0/30.6

0.30 8.7/16.3/24.9 18.9/24.4/26.6 6.7/6.5/16.2 11.6/17.0/23.8 20.6/16.5/54.9 18.6/23.8/25.7 11.4/26.4/29.7 18.4/11.5/34.9

0.35 8.9/19.3/28.2 19.6/24.3/26.6 6.3/7.2/19.8 11.8/20.0/26.8 20.1/18.0/62.5 18.8/23.7/25.6 12.5/27.3/34.2 17.8/12.5/39.9

0.40 9.0/21.8/29.7 19.2/24.8/26.3 10.3/7.3/20.3 12.0/22.3/28.7 21.4/21.3/75.7 18.6/24.2/25.8 9.2/31.0/42.3 19.0/14.6/48.9

0.45 9.2/22.7/32.3 19.2/24.3/26.4 10.1/7.5/21.2 12.2/23.7/31.1 21.5/22.2/85.6 18.8/23.9/25.2 9.9/31.7/44.4 19.1/15.5/56.5

0.50 9.6/24.2/36.8 19.4/24.8/26.8 7.7/8.1/22.7 12.5/24.7/35.0 22.4/24.1/103.7 18.7/24.0/25.9 11.7/33.0/47.8 19.9/16.6/66.8

Υ(1S) → f1(1285) +G(2800)/G(3810)/G(4330) Υ(2S) → f1(1285) +G(2800)/G(3810)/G(4330)

Γ NUL ε(%) σsyst(%) BUL(×10−5) NUL ε(%) σsyst(%) BUL(×10−5)

/ 0.00 23.0/19.5/33.0 8.3/9.9/10.4 22.5/22.4/23.0 2.5/1.4/2.2 38.6/61.1/83.4 7.7/9.7/10.2 20.5/22.4/22.1 2.2/2.8/3.7

0.05 33.4/22.4/49.7 8.3/9.9/10.5 22.7/21.0/25.2 2.8/1.6/3.3 45.1/69.8/107.3 7.8/9.7/10.2 20.7/20.4/23.2 2.6/3.2/4.7

0.10 40.3/26.9/70.5 8.2/9.8/10.3 23.3/24.7/28.3 3.4/1.9/4.7 53.6/80.1/118.6 7.8/9.7/10.2 20.9/21.1/25.0 3.1/3.7/5.2

0.15 43.0/31.6/83.0 8.1/10.0/10.5 24.0/31.5/29.5 3.7/2.2/5.5 58.6/92.4/143.2 7.8/9.6/10.1 21.0/21.4/24.3 3.3/4.3/6.3

0.20 45.7/35.8/97.2 8.2 /9.9/10.3 24.4/33.6/32.5 3.9/2.5/6.5 68.2/92.8/165.5 7.8/9.5/10.3 21.2/22.0/24.6 3.9/4.3/7.2

0.25 59.8/48.0/123.6 8.2/9.8/10.3 26.4/27.5/34.4 5.1/3.4/8.8 73.4/110.7/213.3 7.8/9.5/10.2 21.4/22.6/25.3 4.2/5.2/9.3

0.30 63.4/57.1/152.3 8.1/9.8/10.4 26.8/25.4/35.9 5.4/4.0/10.0 95.0/134.2/239.4 7.8/9.6/10.1 21.9/21.7/25.7 5.4/6.3/10.5

0.35 74.8/63.3/163.7 8.0/9.8/10.3 27.7/22.5/36.8 6.5/4.5/11.0 101.3/156.9/299.2 7.7/9.5/10.1 22.1/21.2/25.6 5.9/7.3/13.2

0.40 82.1/68.3/195.1 7.9/9.7/10.3 29.3/22.2/36.8 7.2/4.9/13.1 119.6/165.8/337.5 7.8/9.7/10.1 22.7/20.4/25.6 6.8/7.6/14.8

0.45 90.4/86.5/229.4 7.9/9.7/10.3 30.2/20.3/38.5 7.9/6.1/15.4 120.4/187.4/388.4 7.5/9.4/10.1 22.7/23.2/26.0 7.1/8.9/17.2

0.50 103.8/89.1/248.1 8.1/9.8/10.3 30.4/23.0/38.7 8.8/6.3/16.6 135.8/214.6/416.3 7.6/9.4/10.1 23.3/22.5/26.0 8.0/10.2/18.4

χb1 → J/ψ +G(2800)/G(3810)/G(4330) χb1 → ω +G(2800)/G(3810)/G(4330)

Γ NUL ε(%) σsyst(%) BUL(×10−5) NUL ε(%) σsyst(%) BUL(×10−4)

0.00 5.9/11.4/29.4 17.8/23.6/26.2 9.4/9.5/21.2 2.6/4.0/9.1 57.7/132.7/133.5 4.1/5.6/6.3 9.8/11.0/14.4 1.4/2.5/2.2

0.05 7.8/15.8/43.6 18.3/22.7/25.6 9.6/9.9/15.3 3.4/5.7/13.9 66.2/148.2/223.7 4.1/5.8/6.5 9.7/10.3/9.4 1.7/2.6/3.6

0.10 8.9/19.6/51.4 18.4/22.6/25.0 9.2/10.0/14.6 3.9/7.1/16.7 74.0/161.4/285.9 4.1/5.6/6.4 10.3/14.9/9.0 1.8/3.0/4.7

0.15 9.3/22.3/55.6 18.2/23.1/26.2 9.2/8.3/13.6 4.0/7.9/17.4 91.1/166.6/384.5 4.2/5.5/6.3 9.8/19.1/8.5 2.2/3.2/6.3

0.20 9.5/25.5/56.6 18.5/23.4/25.9 9.2/7.8/13.0 4.1/8.9/17.8 110.0/178.6/494.9 4.2/5.4/6.2 9.7/20.2/12.3 2.7/3.4/8.2

0.25 9.7/29.8/60.8 18.0/24.1/25.9 8.3/7.8/12.7 4.2/10.1/19.1 119.5/185.7/603.9 4.0/5.4/6.2 9.4/20.9/9.3 3.2/3.6/10.1

0.30 9.8/31.9/71.5 17.8/23.8/25.9 9.3/8.0/13.1 4.3/10.9/22.6 131.9/200.3/686.3 4.0/5.6/6.4 9.9/22.0/10.8 3.4/3.7/11.2

0.35 9.9/34.0/77.9 18.2/24.0/25.1 10.8/8.1/14.0 4.4/11.6/25.4 144.6/210.8/761.1 4.1/5.5/6.3 10.8/19.7/8.9 3.6/4.0/12.5

0.40 9.9/38.6/83.5 18.0/23.7/25.5 9.2/8.5/13.4 4.5/13.3/26.7 164.1/226.4/814.8 4.0/5.4/6.3 11.6/17.2/17.7 4.2/4.3/13.5

0.45 10.3/38.9/95.5 17.8/23.2/25.6 8.9/8.5/13.6 4.6/13.7/30.6 201.9/235.6/906.0 4.0/5.4/6.3 11.8/16.1/10.4 5.2/4.5/14.9

0.50 10.4/42.9/105.1 18.1/23.3/25.5 10.1/8.5/14.0 4.7/15.0/33.7 209.0/244.4/983.7 3.9/5.4/6.5 11.6/11.7/9.3 5.6/4.7/15.7
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