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We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and
differences between the time dependence of correlation functions in various states in rational and
non-rational CFTs. We also consider the distinction between global and local thermalization and
explain how states obtained by acting with a diffeomorphism on the ground state can appear locally
thermal, and we review why the time-dependent expectation value of the energy-momentum tensor
is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of
commuting conserved charges, generic initial states might be expected to give rise to a generalized
Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic
dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a
BTZ black hole. The extra conserved charges, while rendering c < 1 theories essentially integrable,
therefore seem to have little effect on large-c conformal field theories.

I. INTRODUCTION

Systems perturbed away from equilibrium have been
shown to exhibit a rich array of behaviors that depend
on the type of initial perturbation and the characteris-
tics of the systems. At asymptotically late times, how-
ever, they are generically expected to exhibit behavior
characteristic of thermal equilibrium, regardless of the
short-time behavior following the perturbation, so long
as the perturbation injects sufficient energy into the sys-
tem. This behavior can be investigated from the point of
view of a subsystem, where the system is defined to have
thermalized if its reduced density matrix is equal to that
of a thermal (mixed) state; however, isolated quantum
systems starting from a pure quantum mechanical state
can also be described as “thermalized” if the expectation
values of observables at late times are in agreement with
those of a thermal ensemble [1–4].

Theoretical and experimental evidence on non-
equilibrium behavior has increasingly shown that the ex-
pectation that all systems equilibrate to a simple ther-
mal state may be misleading in 1+1-dimensional systems,
where in some cases thermalization appears to be inhib-
ited entirely1. In holographic contexts, where thermal-
ization in the field theory is understood to be dual to
black hole formation in the holographically dual asymp-
totically anti-de-Sitter (AdS) bulk spacetime, such non-
thermalization would appear to be at odds with the ex-
pectation that perturbations of AdS of sufficiently high
energy should generically backreact to form black holes2.

Absence of thermalization in certain 1+1-dimensional
isolated systems has been attributed to the presence of a

∗ J.deBoer@uva.nl
† engelhardt@physics.ucla.edu
1 See [5–7] for recent reviews.
2 The question of whether exact, non-trivial, eternally oscillating
asymptotically-AdS solutions (with energies equal to that of a
large AdS black hole) exist is currently an open issue; we com-
ment on it briefly in Sec. VI.

large number of conserved currents and is associated with
the notion of quantum integrability, with such systems
proposed to behave in accordance with the generalized
Gibbs ensemble (GGE) instead of the usual Gibbs ensem-
ble [8]. The critical behavior of many 1+1-dimensional
systems is described by conformal field theories (CFTs),
suggesting that there may be qualitative differences be-
tween the thermalization behavior of 2D CFTs with their
infinite dimensional conformal symmetry as compared to
that of higher-dimensional CFTs, where the stress tensor
and its descendants are the only conserved currents to be
found.

Nonetheless, even for unitary 2D CFTs there are im-
portant differences between the behavior of CFTs whose
central charge is below or above some critical value ccrit,
where ccrit depends on the chiral algebra of the 2D CFT
and determines whether the CFT is rational (c < ccrit)
or not3 (c > ccrit). For CFTs whose symmetry is only
the Virasoro algebra, i.e. with no additional extended
symmetries, ccrit = 1. In the rational case, the spec-
trum of the theory consists of a finite number of pri-
maries for the chiral algebra with rational conformal di-
mensions of the form p

q , with integer p, q. For a CFT
on a circle of radius R, time translations are thus gen-
erated by U(t) = exp

(
−it

(
L0 + L̄0 − c

12

)
/R
)
, so that

all correlation functions will be periodic in time4, where
the existence of such revivals follows from the rationality
of the conformal dimensions in the CFT, and their pe-
riod depends on the operator spectrum and on the size
R of the system. Clearly, theories with c < ccrit do not
thermalize, although it is still in principle possible for
subsystems to behave approximately as thermal systems
for times t that are much smaller than the revival time
of the system.

3 While this appears to be the case in known examples, we are not
aware of a rigorous proof of this statement.

4 It should be emphasized that these revivals are different from
Poincaré recurrences and occur on far shorter time scales.
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For c > ccrit, this argument no longer applies, and
there is no a priori mechanism to prevent thermalization
for generic perturbations. There are nonetheless special
states that fail to thermalize in any CFT, the simplest
examples being states that are built from descendants of
the ground state only. These states are linear superpo-
sitions of states with integer conformal dimension, and
their period is proportional to the system size L alone.
Even in such states, sufficiently small subsystems will ex-
hibit approximately thermal behavior for times t � L,
however globally the system undergoes periodic revivals.

Special descendants of the ground states, coherent
states, have a geometric interpretation as conformal
transformations of the CFT on the plane or a subspace
thereof. In the case of a bounded subspace, such bound-
ary states in the form of a strip or a rectangle have been
used to analyze certain quantum quenches and CFT non-
equilibrium behavior (see, e.g., [9–17]), with conditions
on the Euclidean boundary defining the initial conditions
of the system, whose time-evolved correlation functions
are computed by analytic continuation from Euclidean
time. Such states can be understood to define an ini-
tial state via a Euclidean path integral over a portion
of the boundary, with correlation functions computed
by joining together domains representing an in- and an
out-state. For example, a path integral over a rectan-
gle with suitable boundary conditions on three sides pro-
vides a state in the CFT on the interval formed by the
remaining side; a correlation function in this state can
be computed by joining together such an in-state with
an out-state, resulting in a full rectangle5. Similarly, in
the case of the strip opposite halves represent the in-
and out-states. While strip states have been shown to
exhibit behavior consistent with thermalization, one has
to be careful with CFTs defined on the entire real line.
Paraphrasing the result of [14], a conformal compactifi-
cation of the real line maps it to a finite interval6, and
it maps all of Minkowski spacetime to a causal diamond
based on the finite interval. Therefore, measurements in
Minkowski space are insensitive to the presence of the
boundaries of the interval, which introduce a finite size
in the system that determines the period of revivals. The
restriction of strip observations to a causal subset thus
prevents non-thermal features of such states from being
detected. This paper therefore made it clear that the ap-
parent thermalization in strip states observed in [9–12] is
due to the restriction to a limited amount of time.

These observations can be further motivated by not-
ing that many features of global thermalization of a CFT,
such as the appearance of a suitable coarse-grained en-
tropy, should be conformally invariant. In fact, one could

5 This is discussed in more detail in Sec. III.
6 The precise map is eiz̃ = (ez−1)/(ez +1), where z ∈ [−∞,∞]×

[0, π] is the coordinate on the Euclidean strip of infinite spatial
extent, and z̃ ∈ [0, π] × [−∞,∞] a coordinate on a finite strip
with infinite extent in Euclidean time.

argue that a better (and conformally invariant) defini-
tion of thermalization would be to require that expec-
tation values at late times approach those of a thermal
state or those of a conformally transformed thermal state.
In particular, in holographic theories, where conformal
mappings are dual to bulk diffeomorphisms, thermaliza-
tion invariance under conformal mappings is equivalent
to the evident statement that black hole formation (or
lack thereof) is diffeomorphism invariant. Since black
hole formation following an injection of energy is rather
generic in AdS, this calls into question which CFT states
do in fact thermalize. As we show here, in non-rational
CFTs, i.e. where c > ccrit, no revivals would be ob-
served in expectation values of primary operators in gen-
eral states constructed as linear superpositions of states
obtained by local operator insertions. To the extent that
the absence of revivals in the system is indicative of its
thermalization, this is in line with the expectation from
holography.

An interesting additional feature of 2D CFTs is the
existence of an infinite number of commuting conserved
charges, even when the chiral algebra is just the Vira-
soro algebra. The lowest two charges are L0, the zero
mode of T , and the zero mode K0 of : TT :. These
charges are a quantum version of the infinite number of
conserved charges that appear in the KdV hierarchy [18].
One would more generally expect that generic states in
a 2D CFT at late times should be describable in terms
of a generalized Gibbs ensemble with chemical potentials
for all conserved charges instead of the thermal ensemble.
This has indeed been confirmed in [19–21].

A nice heuristic picture of some of the features of
thermalization in 2D CFTs arises by assuming that all
excitations can be described in terms of free quasi-
particles [9, 10, 22, 23]. If after a quench correlated pairs
of quasi-particles are locally emitted, the entanglement
between an interval of length L and its complement will
increase until time T ∼ L/2 and then remain constant.
This picture of growth and saturation is qualitatively in
keeping with the holographic predictions [24–27]. In the
case of a union of disjoint intervals, on the other hand,
the post-quench behavior of the entanglement entropy
given by the quasi-particle picture only correctly corre-
sponds to the behavior for c < ccrit [16] systems. There
therefore appear to be close connections between inte-
grability, rational conformal dimensions, and the valid-
ity of the quasi-particle picture for c < ccrit on the one
hand, and between irrational conformal dimensions, lack
of integrability, and the breakdown of the quasi-particle
picture for c > ccrit.

The inhibition of thermalization that we find in ratio-
nal CFTs by contrast to general CFTs thus further asserts
such connections. In this paper, we clarify some addi-
tional aspects of these connections and make contact with
the dual holographic picture that they provide. We begin
by discussing the holographic dual picture of local ther-
malization in a pure state and analyze the capacity of the
CFT stress tensor for serving as a thermalization diag-
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nostic (Sec. II). We then exploit the conformal invariance
of global thermalization in a CFT by evaluating whether
local perturbations of the rectangle state are followed by
initial-value revivals of observables at asymptotically-late
times; such revivals are indicative of the system’s inabil-
ity to establish an asymptotic thermal state, and we show
that as is expected from holography, they naively do not
take place for a general (non-rational) CFT (Sec. IV).
This discussion is preceded by a review of the boundary-
state setup and the strip and rectangle states (Sec. III).
Finally, we consider the holographic dual of the general-
ized Gibbs ensemble with chemical potentials for all con-
served charges and show that it is still described by the
BTZ black hole (Sec. V). We conclude with a discussion
of future directions.

II. PROBES OF LOCAL AND GLOBAL
THERMALIZATION

The general thermalization setup is to consider a CFT
in a pure state |ψ〉, let the system time evolve, and ask
to what extent the state of system can be well approxi-
mated by a thermal state (global thermalization) and to
what extent a subsystem can be well approximated by a
subsystem of a thermal system (local thermalization).

A unique feature of 2D CFTs is that they have an
infinite symmetry algebra that creates new states |ψ′〉 ∼∑∏

L−ki |ψ〉 from |ψ〉. We would expect that these sym-
metries do not affect whether or not a system globally
thermalizes, but it is not a priori clear in what way these
symmetry generators affect local thermalization. The
example of the rectangle state (which is related to the
ground state by symmetries) shows that local thermaliza-
tion can occur even in states that are descendants of the
ground state: by restricting observations to a small inter-
val on the rectangle, the geometry observed is effectively
that of the infinite strip and therefore thermalization is
observed. It would be quite interesting to develop a more
quantitative theory explaining to what extent subsystems
in states that are descendants of the ground state are
approximately thermal. Given that the behavior of the
systems of interest seems to be fixed by geometry and
symmetries alone, such a quantitative description should
be possible, and we hope to report on it elsewhere. In
the meantime we will present the holographic dual point
of view.

In holography, states that are descendants of the
ground state and that have a semiclassical gravitational
dual are described by geometries that are diffeomorphic
to global AdS3. General descendants of the ground state
are described by AdS3 with many graviton excitations,
and different semiclassical AdS3 geometries correspond to
various Virasoro coherent states. Diffeomorphisms that
preserve a convenient Fefferman-Graham gauge choice
act on AdS3 as follows. We start with vacuum AdS with
metric ds2 = (dw2+dzdz̄)/w2, and perform the following

coordinate transformation

w → w
√
∂f∂̄f̄

N
, z → f(z)− w2

2

∂f∂̄2f̄

∂̄f̄N
,

z̄ → f̄(z̄)− w2

2

∂̄f̄∂2f

∂fN
, (II.1)

where

N = 1 +
w2

4

∂2f∂̄2f̄

∂f ∂̄f̄
. (II.2)

We then obtain a metric of the form

ds2 =
dw2 + dzdz̄

w2
− 6

c
T (z)dz2 − 6

c
T̄ (z̄)dz̄2

+
36

c2
w2T (z)T̄ (z̄)dzdz̄

(II.3)

where

T (z) =
c

12
{f, z}, T̄ (z̄) =

c

12
{f̄ , z̄}, (II.4)

where the Schwarzian derivative is as usual

{f, z} =
∂3f

∂f
− 3

2

(
∂2f

∂f

)2

. (II.5)

and where T (z) and T̄ (z̄) are to be understood as
expectation values of the CFT holomorphic and anti-
holomorphic stress tensors (with the brackets omitted for
notational simplicity when denoting these quantities.)

If we restrict to an interval where the expectation val-
ues of T (z) and T̄ (z̄) are approximately constant, then
the bulk geometry in the neighborhood of that interval
will be close to the BTZ geometry7 [28], and correlation
functions computed there are approximately the same
as the finite temperature correlation functions obtained
from the BTZ geometry. Thus in order to obtain local
thermalization we should apply a diffeomorphism that
produces a locally constant T (z) and T̄ (z̄). An example
of such a diffeomorphism is one that is locally approxi-
mately an exponential f(z) = exp(αz) as this has a con-
stant Schwarzian derivative. This is not too surprising
as an exponential map essentially produces a local ver-
sion of the Unruh effect whereby accelerated observers
observe a thermal state.

Globally, then, these diffeomorphisms produce what
would appear as a local concentration of energy-density
repeatedly oscillating (due to the global periodic time-
dependence) in AdS, but that does not form a black
hole even at arbitrarily late times. It is therefore clear
that diffeomorphisms alone, absent additional energy in-
jections into AdS, never produce global thermalization.
This leads to an interesting reverse question: given the

7 The metric II.3 corresponds to the metric of [28] under the vari-
able change ρ = − lnw and upon setting c = 3`

2G
.
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expectation values of T (z) and T̄ (z̄) in some state, is it
possible to come up with a diagnostic for whether or not
the dual description of this state involves a black hole?
In order to find such a diagnostic, we need to make sure
that our diagnostic is not sensitive to diffeomorphisms,
as the question of whether or not there is a black hole is
clearly diffeomorphism invariant.

Perhaps the simplest way to analyze this problem is to
find a diffeomorphism that makes T (z) and T̄ (z̄) constant
and to read off the relevant constant values8. If both are
larger than 0 in the planar case (or larger than c/24 in
the global case) then the dual description can possibly
involve a black hole, whereas for smaller values this is
impossible and the system does not exhibit global ther-
malization. Note that this is a necessary, not a sufficient,
condition for the existence of a black hole, as a large
amount of dilute matter could also produce the relevant
energy densities without there being a black hole.

The Chern-Simons description of three-dimensional
gravity suggests a different way to do this computation.
Diffeomorophisms act as gauge transformations on the
SL(2,R) gauge field

A =

(
0 1

6
cT 0

)
(II.6)

and therefore the relevant constant values of T can also
be read off from the Wilson loop [30]

cosh
6

c
Tconst =

1

2
TrP exp

∮
Adx. (II.7)

One can think of the coordinates that yield constant val-
ues for T (z) as the AdS3 analogue of the “center of mass”
frame.

As a side remark, the geometries (II.3) have recently
been used to study gravitational hair for black holes, see
e.g. [31–33], with T (z) and T̄ (z̄) playing the role of the
gravitational hair. From the Chern-Simons point of view
the only gauge-invariant observables in the theory are the
Wilson loops (II.7), which commute with all the Virasoro
generators and which can be viewed as a Casimir for the
Virasoro generators. These measure the invariant mass

8 There is a subtlety here, as such a diffeomorphism may not al-
ways exist. As nicely reviewed in [29], one can classify the T (z)
that are inequivalent under diffeomorphisms of the circle, which
is the same as the classification of the so-called Virasoro coadjoint
orbits. Besides the orbits which contain a point with constant
T (z), there are several other orbits, but all of these orbits ex-
cept one have an energy L0 which is unbounded from below and
are therefore most likely unphysical. The one remaining orbit,
labeled P−1 in [29], has energy bounded from below, and its phys-
ical relevance (if any) is not clear to us. In any case, if we use the
Chern-Simons description, and use SL(2,R) gauge transforma-
tions instead of diffeomorphisms, we can always achieve constant
T . We will ignore this subtlety in the remainder of the paper and
would like to thank Glenn Barnich for drawing our attention to
this issue.

and angular momentum of the black hole. By contrast,
there is no gauge-invariant observable in Chern-Simons
theory that measures the gravitational hair away from
the boundary of AdS or near the horizon of the black
hole. In particular, there is no observable in the interior
of AdS in Chern-Simons theory that would allow one to
detect the gravitational hair, suggesting that the hair has
nothing to do with the degrees of freedom making up the
black hole9.

The above considerations are meant to illustrate that
while the stress tensor alone may provide some indication
of thermalization, it is not a sufficiently sensitive diag-
nostic. This can be further motivated by observing that
in theories with holographic duals the stress tensor only
captures the behavior of the metric near the boundary
of AdS. The analysis of physics deep inside the bulk, in-
cluding whether or not a black hole is present, in general
requires a knowledge of the expectation values of other
operators in the theory as well.

More generally, in arbitrary CFTs the expectation
values of all the higher conserved charges can be ren-
dered constant by acting with more complicated Virasoro
symmetries (beyond diffeomorphisms). However, these
higher conserved charges do not appear to play an im-
portant role in AdS/CFT, which we shall see for the case
of 2+1 dimensions in Sec. V.

Finally, we note that the holographic bulk geometries
obtained via (II.3) are dual to conformal transformations
of the CFT on the full plane. In order to apply this ap-
proach to find the holographic dual of arbitrary bounded
subsets of this CFT, i.e. BCFTs, it is necessary to equip
this description with an appropriately-chosen extension
of the boundary of the CFT to the bulk - a bulk brane
that bounds the spacetime region dual to this BCFT in
the spirit of the AdS/BCFT correspondence of [34, 35].
Applying (II.3) to such setups in order to describe holo-
graphically a large class of holographic duals to BCFTs
is an interesting direction that we leave to future work.
Importantly, however, the presence of such a bulk brane
is not expected to affect the local bulk physics in the deep
interior (far away from the brane) of this spacetime, so
that the above statements regarding local thermalization
should carry over in the BCFT regime as well so long
as the subsystem considered is sufficiently far from the
boundary endpoints of the CFT.

III. NON-EQUILIBRIUM BEHAVIOR FROM
CFT BOUNDARY STATES

The setup underlying the CFT non-equilibrium dy-
namics approaches of [9–16] – and which lends a physical
interpretation to the strip and rectangle states – is that of

9 We would like to thank the participants of the Workshop on
Topics in Three Dimensional Gravity (ICTP, Trieste) for useful
discussions of these points.
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the Calabrese and Cardy (CC) boundary state model for
non-equilibrium evolution in CFTs [9, 10]. This bound-
ary state setup relies on the existence of a well-defined
analytic continuation from Lorentzian to Euclidean time
in the system. This allows an initial state of the system
|ψ0〉 to be described as a Euclidean boundary state |B〉.
The system is taken to have a Hamiltonian H, and the
initial state |ψ0〉 is assumed to be an eigenstate of a dif-
ferent Hamiltonian H0. Conformal boundary states are
in fact non-normalizable, and in practice the quench is
taken to be from a gapped Hamiltonian, so that the ac-
tual Euclidean boundary state is given by a state that
is irrelevantly perturbed from the conformal boundary
state |B〉; by convention it is taken to be

|ψ0〉E ∝ e
−τ0H |B〉 , (III.1)

where τ0 is on the order of the correlation length of the
gapped Hamiltonian H0. We note that H ∝

∫
Tttdx,

where Ttt ∝ T (z) + T̄ (z̄), and in general additional ir-
relevant operators are expected to contribute. More gen-
eral forms of boundary states where additional conserved
charges or boundary operators are introduced in the ex-
ponential and act on the conformal boundary state were
considered in [19–21]. The restriction to Ttt in (III.1) was
motivated in [13] by noting that Ttt is often the leading ir-
relevant operator acting on the boundary state, and here
we restrict our analysis to this form.

At t = 0 the system is put in the state |ψ0〉, and it
is thereafter allowed to evolve unitarily as e−iHt |ψ0〉.
Correlation functions of observables O(t, x) are therefore
given by

〈O(t, x)〉 =
〈
ψ0

∣∣eiHtO(x)e−iHt
∣∣ψ0

〉
.

and upon analytic continuation to Euclidean time can be
computed via a path integral over a strip, of width 2τ0,
with the operator O inserted at τ = τ0 and analytically
continued as τ → τ0 + it.

In a 2D CFT, where the strip of width 2τ0 can be con-
formally mapped to the upper-half plane (UHP) as w →
z(w) = e

π
2τ0

w, correlation functions in this setup can sim-
ply be computed by conformal transformations from the
correlation functions of a boundary CFT (BCFT) on the
UHP. This setup was used by CC to show that one-point
functions decay exponentially for t� τ0 and to compute
the time evolution of correlations between two primary
operators (via the two-point function).

Since the restriction of the CFT to the UHP reduces
the symmetry group of the CFT, boundary conditions
must be enforced at the interface such that the confor-
mal symmetry group is retained under conformal maps
from the UHP. These are given by the condition that
there should be no energy or momentum flow across the
boundary, Txy|y=0 = 0, or

T (z) = T̄ (z̄)
∣∣
z=z̄

. (III.2)

In the presence of additional symmetries in the CFT,
boundary conditions that retain these symmetries may

be imposed; however, the specification of the BCFT alone
does not require the boundary to respect these additional
symmetries.

The implication of this conformal boundary
condition is that the holomorphic and anti-
holomorphic sectors of the CFT are no longer in-
dependent. In particular, n-point bulk correlators〈
φh1,h̄1

(z1, z̄1)φh2,h̄2
(z2, z̄2) ...φhn,h̄n (zn, z̄n)

〉
on the

upper-half plane obey the same Ward identities as the
formal 2n-point correlators of holomorphic fields on the
full plane [36],〈
φh1

(z1)φh̄1
(z∗1)φh2

(z2)φh̄2
(z∗2) ...φhn (zn)φh̄n (z∗n)

〉
.

The presence of the boundary thus implies that, e.g.,
one-point functions of primary operators no longer van-
ish in general on the UHP and are determined by con-
formal invariance up to a constant to have the form〈
φh,h̄(z, z̄)

〉
∼ (z − z̄)−2h for h = h̄.

The infinite conformal symmetry of 2D CFTs allows
a boundary state defined on the upper-half plane to be
mapped to an effectively unlimited range of bounded do-
mains, with the strip only one particular example; as
noted earlier, such mappings do not affect the thermal
behavior of the system, and whether or not the system
reaches a global thermal state is invariant under these
transformations. Consequently, the out-of-equilibrium
behavior of a system from a particular boundary state
can be investigated in any of the conformally-equivalent
boundary states. In the absence of additional operator
insertions, these states are simple conformal mappings of
the ground-state on the UHP and do not exhibit global
thermalization. As noted earlier, any of these boundary
states can be mapped to the strip geometry, where the ex-
pectation value of the stress tensor is a constant Casimir
value due to the vanishing of 〈T (z)〉 on the ground-state
on the UHP. The simplest modifications of the bound-
ary states that potentially exhibit global thermalization
are those obtained by local operator insertions. As we
show below, to diagnose thermalization of such systems,
it is necessary to consider more refined observables. If
additional operators are inserted on the boundary of the
domain, conformal mappings do not affect the nature of
these fields as boundary fields, since the boundary of a
given system (e.g. the x-axis on the UHP) is mapped to
the boundary of the conformally transformed system.

A. Revivals in finite-length systems

The finite-length equivalent of the CC setup is a
boundary state defined on a strip with spatial bound-
aries. Such bounded domains, with a vast array
of differently-shaped boundaries, can be obtained by
Schwarz-Christoffel maps [37] from the UHP to bounded
polygonal geometries. These transformations map a set
of designated prevertices on the real line of the complex
plane to the vertices of a new polygonal domain, with
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the real line mapped to the boundary of the domain. In particular, we can consider the map to a rectangle.

τ

x-1/k -1 1

w(1/k)

w(1)

w(-1/k)

L/2

H
z w(z)

1/k
w(-1)

-L/2
σ

η

FIG. 1: The Schwarz-Christoffel conformal transformation
that maps the UHP with designated prevertices to a

rectangle.

For prevertices at x = ±1,± 1
k , the general form of the

map z → f(z) = w to the rectangle is given by the
integral expression

w(z) = A

∫ z

0

dζ

(ζ − 1)
1
2 (ζ + 1)

1
2
(
ζ − 1

k

) 1
2
(
ζ + 1

k

) 1
2

where A is a constant that can be freely chosen. With a
choice of A = − L

2kK1(k2) , where K1

(
k2
)
is the complete

elliptic integral of the first kind and k ∈ [0, 1], w(z) is
given as an elliptic integral of the first kind

z → w(z) =
L

2K1 (k2)
F
(
arcsin z, k2

)
(III.3)

and maps the UHP to a rectangle with vertices at
(
±L2 , 0

)
and

(
±L2 , H

)
, where H =

K1(1−k2)
2K1(k2) is the height of the

rectangle (Fig. 1). The geometry of the rectangle is fully
determined by the ratio L/H. The limit of k → 1 cor-
responds to the zero-height rectangle, and in this limit
the system appears infinite in length. The limit of k → 0
corresponds to the semi-infinite strip with width L.

The inverse map from the rectangle to the UHP is given
by the elliptic Jacobi function

w → z(w) = sn

(
2K1

(
k2
)

L
w, k2

)
, (III.4)

which is periodic in its argument as

sn

(
2K1

(
k2
)

L
(w +mL+ 2inHL) , k2

)

= (−1)
m sn

(
2K1

(
k2
)

L
w, k2

)
.

We will denote the complex coordinate on the rectangle
by w = x+ iτ , with τ the Euclidean time direction along
the height of the rectangle and x the direction along its
width. Observables in this geometry are inserted on the
rectangle and analytically continued to Lorentzian times
as τ → H

2 + it, where t denotes the Lorentzian time
coordinate. As a result, (III.4) is periodic in Lorentzian
time with period equal to 2L. Since correlation functions
on the rectangle are calculated from their counterparts
on the UHP, every argument z of a Lorentzian operator
assumes an inherent periodicity; e.g. one-point functions
of primary operators of conformal dimension h in the
conformal mapping of the UHP ground-state are given
by

〈O(t, x)〉 ∼
(
dz(w)

dw

dz̄(w̄)

dw̄

)h
(z(w)− z̄(w̄))

−2h
,

(III.5)
where the complex coordinates are continued as w →
x− t+ iH/2 and w̄ → x+ t− iH/2, and the stress tensor
is given by

〈T (t, x)〉 =
c

12
{z(w), w}, (III.6)

where c is the central charge and {z(w), w} = z(3)(w)
z′(w) −

3
2

(
z(2)(w)
z′(w)

)2

is the Schwarzian derivative. The periodic-
ity of (III.5) and (III.6) in Lorentzian time is therefore
evident (Fig. 2). The periodicity of these observables
as resulting from the nature of the conformal mapping
and the implication that the rectangle state features non-
thermal behavior was also pointed out in [14].

As we reviewed, conformal transformations of the vac-
uum state on the upper-half plane do not thermalize, but
one might expect that perturbations of this boundary
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(a) Profile of the expectation value of the holomorphic stress
tensor T (t, x) across the rectangle.
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(b) One-point functions 〈O(t, x)〉 at sample points
x = 0.1 (top) and x = 0.4 (bottom).

FIG. 2: Periodicity in observables in the rectangle ground
state. Plot parameters are k = 0.5 and L = 1.

state should eliminate the non-thermal behavior. Rect-
angle states perturbed by operator insertions in c = 1
CFT were considered in [15] in a somewhat different con-
text. Below we investigate how the time evolution of
similar states is affected by the spectrum of the CFT
(rational vs. non-rational), and whether a given sys-
tem may exhibit periodic revivals at asymptotically late
times. Recall that, as was pointed out in Sec. II, the ex-
pectation value of the stress tensor itself is in general an
insufficient diagnostic of thermalization. In particular, in
a state perturbed by Euclidean-time operator insertions
Oi with conformal dimensions hi, the time dependence in
the expectation value of the stress tensor is determined
purely by conformal invariance:

〈
T (z)

∏
i

Oi(ζi)

〉
=
∑
i

[
hi

(zi − ζi)2 +
∂ζi

zi − ζi

]〈∏
i

Oi(ζi)

〉
,

since only the stress tensor coordinate z is continued to
Lorentzian time. As a result, the time evolution of this
expectation value is qualitatively identical regardless of
the spectrum of the CFT and cannot be used to resolve
any potential differences for CFTs with c < ccrit versus
those with c > ccrit. In the next section we therefore

probe perturbations of boundary states using one-point
functions of generic operators that do not correspond to
conserved currents, focusing on the different behaviors of
rational vs. non-rational CFTs.
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IV. OPERATOR SPECTRUM DEPENDENCE
OF THERMALIZATION

In this section we consider expectation values of pri-
mary operators in perturbed states. The simplest per-
turbed states are those produced by a path integral over
a suitable Euclidean domain with a single operator in-
sertion on the boundary of the domain. The expectation
value of a single operator in such a state will then be
given by the analytic continuation of a three-point func-
tion with two operators on the boundary (one for the
in-state and one for the out-state) and one operator in
the interior. Conformal invariance fixes the form of these
three-point functions up to a single unknown function of
a suitable cross-ratio. Even without knowing the explicit
form of this function (which would involve knowledge
of the structure constants and conformal blocks of the
theory) one can already see a qualitative change in the
behavior of the part of the three-point function that is
determined by conformal invariance (and that we hence-
forth refer to as the “universal” part of the correlation
function) as one moves from rational to non-rational the-
ories. In particular, exact periodicity of the expectation
value appears to be lost10, in agreement with the picture
that rational theories should not display global thermal-
ization and irrational theories should. However, without
more detailed knowledge of the exact correlation func-
tion, it is not possible to see the destructive interference
which leads to exponential decay to the thermal value of
one-point functions, and, while suggestive, our analysis
is by no means to be taken as a proof of thermalization
in irrational CFTs.

A. General setup

It is in principle possible to consider very general
classes of states created by a path integral over arbi-
trary bounded domains with a particular boundary state
on the boundary and arbitrary insertions of operators in
the interior of the domain and on its boundary. Even
in the absence of operator insertions, correlation func-
tions computed in states of this type are in general time
dependent. As we discussed in section II, the time depen-
dence in the expectation value of the energy momentum

tensor can in general be removed by applying a suitable
diffeomorphism, and we will therefore focus on the ge-
ometries with a time-independent expectation value for
the energy-momentum tensor, which are infinite strip ge-
ometries.

We consider an infinite Euclidean strip of the form w =
x + iτ with (x, τ) ∈ [0, 2L] × [−∞,∞], which can be
mapped to the upper half plane via the map z(w) = e

πiw
2L ,

with z the coordinate on the upper half plane. Such an
infinite strip can be interpreted in two different ways,
either as providing an in- and an out-state on the theory
on a finite interval of length 2L, but also as providing
an in- and an out-state on an infinite spatial interval.
In the latter case, the roles of space and time should
be exchanged11, so that Euclidean time runs from 0 to
2L and space from −∞ to +∞. Moreover, the relevant
analytic continuation to Lorentzian time is w = x− t in
the first case, and w = L + it + iτ in the second case.
We will take the point of view of the finite strip in what
follows12.

We insert n1 boundary operatorsOB on the left bound-
ary of the strip at wa = iτa, and n2 bulk operators O at
positions wp = xp+ iτp. For simplicity, we will not insert
any operators on the right boundary of the strip, but this
is a straightforward generalization. In order to be able
to interpret the boundary insertions as corresponding to
an in- and an out- state, the boundary operators should
be distributed symmetrically around τ = 0. However,
if we are interested in studying linear superpositions of
states, we should also consider asymmetric distributions
of operators.

B. Periodicity in correlation functions

The general form of the correlation function can be
obtained by mapping it to the upper-half plane and using
SL(2,R) Ward identities. To write the result we denote

(ξ1, . . . , ξN ) = ({za(wa)}, {zp(wp)}, {z̄p(w̄p)}),
N = n1 + 2n2, (IV.1)

in term of which the correlator is, up to an overall con-
stant factor,

〈∏
a

OB,a(wa)
∏
j

Op(wp)

〉
=

N∏
i

ξhii F

(
ξijξkl
ξikξjl

)∏
i<j

ξ
2

N−2 (hΣ/(N−1)−hi−hj)
ij (IV.2)

10 To see this, as we discuss below, we in fact need to consider linear
superpositions of states obtained by operator insertions.

11 This is the strip state of CC [9, 10].
12 Note that our results are only valid when the relevant length

scales are larger than any length scale in the actual system (oth-
erwise the CFT interpretation would not be valid). We would
like to emphasize that we would not usually expect problems with
analytic continuation in time to arise when the interpretation is
that of a system on an infinite line.
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where hΣ =
∑
hi and ξij = ξi − ξj , and F a function

of cross ratios. Note that the conformal dimensions hi
refer to both those of the bulk operator, h, h̄ as well
as those of the boundary operators, hB . The prefactor∏
ξhii is due to the map from the strip to the upper-half

plane and includes contributions from the coordinates of
all operators13. It can be absorbed in a nice way in the

rest of the expression by defining

ξ̃ij =
ξi − ξj√
ξiξj

= 2i sin
[ π

4L
(wi − wj)

]
, (IV.3)

in terms of which the general correlator is of the form

〈∏
a

OB,a(wa)
∏
p

Op(wp)

〉
= F

(
ξ̃ij ξ̃kl

ξ̃ik ξ̃jl

)∏
i<j

ξ̃
2

N−2 (hΣ/(N−1)−hi−hj)
ij . (IV.4)

Note that because of the exponential map that we employ
here has an explicit dependence on i in it,

(w1, . . . , wN ) = ({wa}, {wp}, {−w̄p}). (IV.5)

Upon analytic continuation of a particular bulk opera-
tor to Lorentzian time, w → x− t, it is clear from (IV.3)
that the correlation function will contain contributions of
the form f(t) = (sin( π

4L (t− c)))s, with complex c, which
might appear to be periodic with period of at most 8L,
except that s is in general not an integer and f(t) has to
be defined through analytic continuation. For complex
c, the function z(t) = sin( π

4L (t − c)) follows a contour
around the origin in the complex plane that we can write
as z(t) = r(t)eiφ(t), with both r(t) and φ(t) periodic with
period 8L. The analytic continuation of z(t)s is clearly
r(t)seisφ(t), which is now no longer periodic unless s is ra-
tional. This is an indication that the time-dependence of
correlation functions in rational theories will have special
properties and tend to be periodic.

We will consider pure states of the form
∑
i |ψi〉 where

each |ψi〉 is obtained through a path integral on the half-
strip with suitable operator insertions. Expectation val-
ues of bulk operators in such states require us to compute
matrix elements 〈ψi|

∏
kOk|ψj〉.

We first focus on the diagonal matrix elements. For
those, it turns out that the universal part of the corre-
lation function will always be periodic. To see this, we
observe that the correlation function will contain a prod-
uct of terms of the form[

sin
( π

4L
(t− x+ iτ0)

)
sin
( π

4L
(t− x− iτ0)

)]s
,

(IV.6)
which can be rewritten as the purely real expression

2−s
[
cosh

( π
2L
τ0

)
− cos

( π
2L

(t− x)
)]s

, (IV.7)

which is well-defined with period 4L.

13 This prefactor is given by
∏
i

(
dwi(zi)
dzi

)−hi
, which on the strip

becomes
∏
i (zi(wi))

hi up to a constant factor.

Any possible breakdown of periodicity in diagonal ma-
trix elements therefore has to originate from the function
F of the cross-ratios that appears in the correlation func-
tion as well. Unfortunately, it is much more difficult to
analyze this function in general. If we take the simplest
example with two boundary insertions at ±iτ0 and one
bulk operator, the cross-ratio (after analytic continua-
tion) takes the form

y =
ξ̃w,w̄ ξ̃w1,w2

ξ̃w,w1
ξ̃w̄,w2

=
sin
[
π

2Lx
]

sin
[
πi
2Lτ0

]
sin
[
π

4L (t− x− iτ0)
]

sin
[
π

4L (t+ x+ iτ0)
] . (IV.8)

We see that y does not go around one of the singularities
at y = 0, 1,∞ and that therefore the unknown function
of the cross ratio will remain periodic14 with period 4L.
Finally, for boundary operators inserted at ±∞ (τ0 →
∞), the cross ratio becomes time independent:

y = e
πix
L − 1, (IV.9)

so that no decay in time can be seen for such operator
placement. There may be an argument as to why diag-
onal matrix elements always remain periodic based on
the symmetry τ ↔ −τ , but we have not explored this in
detail.

Off-diagonal matrix elements, on the other hand, ap-
pear to lose their periodicity in general. This is already
clear at the level of the universal part of the correlation
function, where factors of the form [sin π

4L (t − c))]s, c =
x+iτ0, are no longer paired with factors [sin π

4L (t−c∗)]s as
in (IV.6), resulting in an expression consisting of powers
of periodic functions that are complex in the time argu-
ment. If s is rational, these factors will remain periodic

14 We can also see this by observing that the
denominator of (IV.8) can be expanded as
1
2

((
a2 + b2

)
cos
(
πx
2L

)
− 2iab sin

(
πx
2L

)
− cos

(
πt
2L

))
where

a = cosh
(πτ0

4L

)
and b = sinh

(πτ0
4L

)
, so that it is given by

the sum of a real time-periodic and a complex time-independent
function.
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but with a longer period, but if s is irrational periodic-
ity is lost altogether. Of course, for a complete analysis
it is necessary to also consider the in general unknown
functions of the cross-ratios15. The analytic properties
of correlation functions, and more generally the analytic
properties of conformal blocks, are typically closely re-
lated to the braiding and fusion properties of the the-
ory. For rational theories the space of conformal blocks
form finite dimensional representations under fusion and
braiding, which in turn is closely related to the periodic-
ity of correlation functions16. One would therefore expect
to see periodicity in the case of rational theories, and a
breakdown of periodicity in irrational theories. As we
have explained, we already see signs of this breakdown
in simple correlation functions, and it would be interest-
ing to explore this further.

V. THE HOLOGRAPHIC DUAL OF THE
GENERALIZED GIBBS ENSEMBLE

As mentioned in the introduction, conformal field the-
ories have a large number of conserved currents. For ex-
ample, any polynomial made out of the stress tensor T (z)
and its derivatives is a conserved current. Similarly, if
there are additional higher spin currents, any polynomial
involving those leads to conserved currents as well. Given
such large sets of conserved currents, one can ask what
the maximal set of conserved and commuting charges is.
For the case of the Virasoro algebra, there exists a con-
served current, unique up to total derivatives, whose zero
modes all commute. In the semi-classical case, where
we replace OPEs by Poisson brackets, the construction
of these conserved currents and corresponding conserved
charges is captured by the KdV hierarchy. The KdV
hierarchy does in fact also describe the flows generated
by the complete set of commuting conserved charges. A
conformal field theory contains a quantum deformation
of the KdV hierarchy, the quantum KdV hierarchy, see
[18].

Since the stress tensor is a single trace operator, adding
polynomials of the stress tensor and its derivatives with
chemical potentials to the action (in order to describe
a generalized Gibbs ensemble) corresponds to multitrace

15 One can easily check in examples of c = 1 theories where corre-
lation functions of primaries can be explicitly written down that
these conclusions indeed hold for the full correlation functions:
for rational c = 1 theories periodicity is maintained, while for
irrational c = 1 theories periodicity is lost. (Note that period-
icity is maintained if we take as our operators to be ∂φ or ∂̄φ,
but since these operators correspond to conserved currents they
should not be considered for diagnosing whether the system expe-
riences revivals as previously explained.) Because c = 1 theories
are exactly solvable we do expect these theories to be described
by a suitable Generalized Gibbs Ensemble at late times under
generic perturbation, see [20, 21].

16 which we already knew to be periodic in time anyway in view of
the straightforward argument in the introduction.

deformations in the CFT. Multitrace deformations both
in pure gravity as well as in its higher spin extensions
can be conveniently studied in the Chern-Simons formu-
lation, and a detailed discussion will appear elsewhere
[38]. Here we simply summarize a few key ingredients
using the notation from [39].

In general, if we add a multitrace deformation of the
form

∫
Ω ≡

∑
i νiFi(Ws), with the νi chemical potentials

which we will take to be constant, and F (Ws) polynomi-
als in the higher spin fields and their derivatives, all we
need in Chern-Simons theory is a boundary term of the
form

I
(E)
B = −kcs

2π

∫
∂M

d2zTr [(az + az̄)az̄ − 2Ω] (V.1)

plus a similar result for the right movers. Moreover,
whereas az̄ usually contains the sources µs for the higher
spin fields Ws, we now need to replace these sources µs
by ∂Ω/∂Ws. We therefore in general have a non-linear
relation between the normalizable and non-normalizable
modes, which is typical for multitrace deformations
[40, 41]. The variation of the on-shell action consisting of
standard Chern-Simons theory plus the boundary term
can be written as

δ(I
(E)
CS + I

(E)
B ) =

kcs
π

∫
∂M

d2zTr
∑
i

δνiFi(Ws), (V.2)

which indeed has the right structure.
Although we could continue our discussion in the lan-

guage of Chern-Simons theory, from the above it should
be clear that the bulk field equations are not modified,
and that once we restrict to translationally invariant so-
lutions, in the bulk the solution looks just like the BTZ
black hole and its higher spin generalizations. This is
also immediately the main point of this section: classi-
cally there are no hairy black holes corresponding to the
generalized Gibbs ensemble, the bulk geometry is still the
BTZ geometry. The free energy or partition function is
however different from that of the usual BTZ black hole,
because of the additional boundary terms that one needs.
In fact, looking carefully at the Chern-Simons formula-
tion, one finds that the contribution of the left-movers
to the partition function for the pure gravity case with a
deformation ∫

dσ
∑
i

µiFi(T )

is equal to

Z = Tr(e−
∫
dσ

∑
i µiFi(T )) = e2π

√
c
6L0−

∑
i 2πµiFi(L0) |saddle .

(V.3)
Here, saddle means that we have to extremize the right
hand side with respect to L0, and the answer therefore
looks like a generalized Legendre transform of the expres-
sion of the black hole entropy. Here, because we restrict
to translationally invariant solutions, all terms contain-
ing derivatives of T drop out of Fi(T ), and these func-
tionals become ordinary functions of the zero mode L0.
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Thus, using the bulk gravitational description simplifies
the GGE dramatically, the zero modes of the higher spin
conserved currents are polynomials in terms of L0 and
no longer take on independent values.

It is straightforward to see that

∂ logZ

∂µi
= −2πFi(L0)|saddle.

If we identify the Fi(T ) with the conserved charges of the

KdV hierarchy, then the partition function is precisely a
tau-function for the KdV hierarchy17.

Though this is perhaps a somewhat trivial example
of a tau-function, we can extend it to the case where
T is no longer constant. For this we need to use the
gauge invariant generalization of the entropy given by
the appropriate Wilson line operator. The result is

Z = Tr(e−
∫
dσ

∑
i µiFi(T )) = exp

{
c

6
cosh−1 1

2
TrP exp

∮ (
0 1

6T
c 0

)
−
∫
dσ
∑
i

µiFi(T )

}
|saddle (V.4)

where now saddle means that we should find the saddle
point of the expression on the right hand side for the
functional T (σ). This provides a more interesting class
of tau-functions for the KdV hierarchy if the Fi(T ) are
the corresponding charges, but at this level the Fi(T )
can in principle still be arbitrary, which is probably an
artifact of the large c (or large k) limit. We expect that
once we start quantizing Chern-Simons theory with mat-
ter we should see a more interesting structure emerge,
and, in particular, we expect gravitational solutions that
depend non-trivially on the chemical potentials µi. It
would be interesting to explore the construction of such
“black holes with quantum hair” in more detail.

Finally, we note that while it is tempting to assume
a connection between the conserved charges considered
here and the conserved charges that appear in studies
of integrability in AdS/CFT, the latter are generically
non-local and are supposed to already be relevant at the
semi-classical level. Therefore, an obvious connection is
lacking, but it would also be interesting to explore this
in more detail, as would be the role that the various con-
served charges can possibly play in studying geon solu-
tions and instabilities of AdS.

VI. DISCUSSION

In this paper we studied some properties of the non-
equilibrium behavior of 2D CFTs as well as the distinc-
tion between local and global thermalization. We pro-
vided arguments that there are no revivals in generic
states in irrational theories, which one could take as
an indication that the system thermalizes. To actually
see thermalization probably requires one to choose very
complicated initial states for which explicit computations
rapidly become intractable. One-point functions of light

17 See, e.g. [42, 43] for the tau-function and [44] for the KdV hier-
archy.

probes in very complicated, heavy states can presumably
be well-approximated by the light-light-heavy-heavy con-
formal block derived in [45], although these computations
have to our knowledge not been extended to a situation
with boundaries. Ultimately this is just another illustra-
tion of the usual problem than we can either do explicit,
weakly coupled computations where unitarity is manifest
but thermalization difficult to see, or we can do strongly
coupled (e.g. gravitational) computations where ther-
mality is easy to see but manifest unitarity is lost.

We note that there has been much research in recent
years, starting with [46–49], into the possibility of time-
periodic solutions in AdS that avoid collapse into a black
hole; however, exact solutions involving stable oscillat-
ing matter known to exceed the BTZ black hole mass
threshold (in AdS3) and yet exhibiting revivals to t→∞
(undamped oscillations) have so far not been found. If
such solutions do exist, they appear likely to occupy a
very small phase space and/or involve considerable sim-
plifications of the physical setup. In [50, 51] quenches
were studied in AdS/CFT using infalling shells of mass-
less matter. For sufficiently low energy, approximate re-
vivals were found, with a revival time which increased
with energy. In AdS3, revivals persisted all the way up
to energies slightly above the threshold for black hole
formation. To explain this behavior quantitatively is be-
yond the scope of our paper, but we can make the fol-
lowing observation. The CFT in AdS/CFT is irrational,
but its low-lying spectrum consists of multiparticle states
of gravitons and other bulk modes, whose interaction
strength is set by the string coupling and the AdS radius
in string units. If the bulk fields have suitable masses,
one can in particular engineer a situation where the low-
lying spectrum is approximately rational, and this may
explain the approximate revivals seen at low energy, and
perhaps also why the revival time increases with energy
and why the revivals broaden more at higher energy. It
would be interesting to study this in more detail.

In a similar spirit, we have shown that the holographic
dual of the generalized Gibbs ensemble is still a BTZ
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black hole. The GGE has been central to the discus-
sion of 1+1-dimensional integrable systems away from a
conformal fixed point. Such integrable field theories can
be obtained as massive deformations of a CFT, and – at
least in principle – the analysis that was carried out here
could be applied to them via conformal perturbation the-
ory, where transformations to a frame of constant stress
tensor can still be applied at every order.

We note several additional avenues that are of inter-
est in light of our findings. The holographic picture of
Sec. II for diffeomorphisms of the CFT ground state can
be used to generalize the AdS/BCFT setup of [34, 35]
to arbitrary forms of boundary states by finding the ap-
propriate bulk brane corresponding to the extension into
the bulk of the dual BCFT’s boundary. In particular, the
holographic dual of the rectangle state can thus be found,
and Lorentzian-time correlators from the corresponding
initial state can be computed via a formalism such as
[52, 53]. The holographic implementation of such a setup
would likely be a useful tool in evaluating general non-
equilibrium behavior in systems with boundaries, not
only in classical AdS geometries, but also to 1/N cor-

rections. Finally, we note that while in classical SL(2,R)
Chern-Simons theory expectation values of Wilson lines
in different representations are related to each other in a
simple way, this is no longer the case in quantum Chern-
Simons theory. It would be interesting to explore these
quantum expectation values in more detail and establish
their relationship to the quantum KdV hierarchy and the
GGE at finite values of the central charge.
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