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We show explicitly that the full structure of IIB string theory is needed to remove the non-localities
that arise in boundary conformal theories that border hyperbolic spaces on AdS5. Specifically, using
the Caffarelli/Silvestri[1], Graham/Zworski[2], and Chang/Gonzalez[3] extension theorems, we prove
that the boundary operator conjugate to bulk p-forms with negative mass in geodesically complete
metrics is inherently a non-local operator, specifically the fractional conformal Laplacian. The non-
locality, which arises even in compact spaces, applies to any degree p-form such as a gauge field.
We show that the boundary theory contains fractional derivatives of the longitudinal components
of the gauge field if the gauge field in the bulk along the holographic direction acquires a mass via
the Higgs mechanism. The non-locality is shown to vanish once the metric becomes incomplete,
for example, either 1) asymptotically by adding N transversely stacked Dd-branes or 2) exactly
by giving the boundary a brane structure and including a single transverse Dd-brane in the bulk.
The original Maldacena conjecture within IIB string theory corresponds to the former. In either of
these proposals, the location of the Dd-branes places an upper bound on the entanglement entropy
because the minimal bulk surface in the AdS reduction is ill-defined at a brane interface. Since the
brane singularities can be circumvented in the full 10-dimensional spacetime, we conjecture that the
true entanglement entropy must be computed from the minimal surface in 10-dimensions, which is
of course not minimal in the AdS5 reduction.
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I. INTRODUCTION

Intrinsic to Maldacena’s conjecture [4] that supergravity (and string theory) on d + 1-dimensional AdS space
(AdSd+1) times a compact manifold, a sphere in the maximally supersymmetric case, is equivalent to the large
N limit of SU(N) conformal field theory in d dimensions is the separation between bulk and boundary physics.
The impetus for such ideas originates from pioneering work of Susskind[5] and ’t Hooft[6], who named the bulk-
boundary correspondence in gravity holography. However, as is well known[7], the boundary of any asymptotically
AdS spacetime lives at infinity. Hence, it does not inherit a well defined metric structure. The structure it does
acquire at the boundary is entirely conformal as can be seen from the Euclidean signature rendition

ds2 =
dy2 +

∑
i dx

2
i

y2
(I.1)

of the AdS metric. The singularity at y = 0 can be removed by considering the conformally equivalent metric y2ds2.
In fact, any metric of the form

ds2 → e2wds2 (I.2)

would do the trick (w a real function) , thereby laying plain the inherent conformal structure of the boundary.
Hence, correlation functions of the conformal operators of the boundary theory should in principle encode the physics

of quantum gravity in a spacetime that is asymptotically AdS. Strictly speaking, however, the conformal field theory
(CFT) only describes the physical excitations near the boundary. Precisely how far into the bulk this description[8]
applies remains an open question. A key aspect of the mapping is that the CFT contains local operators. Consider the
example of a free field propagating in the bulk that obeys the Klein-Gordon equation. The correspondence between
the bulk and the boundary physics stems potentially from the equivalence between the partition functions

〈e
∫
Sd

φ0O〉CFT = ZS(φ0), (I.3)

in the two theories where O is the boundary operator, φ0 is the extension of the bulk field to the boundary and
ZS is the supergravity partition function averaged over all double-pole metrics. This form of the correspondence
relies on an integration of the bulk action by parts and then an evaluation of the corresponding boundary terms[7, 9].
Alternatively, an equivalence can be established by extrapolating the behavior of bulk correlators to the boundary[10].
Near the boundary, the solutions scale asymptotically as

φ(x, y) ≈ y∆−φ0(x) + y∆+O, (I.4)

where y is the holographic coordinate (so that the conformal boundary is at y = 0) and φ0 = limy→0 y
γ− d2 φ(x, y),

where γ is a number such that m2 = d2

4 − γ
2, and ∆± = d

2 ± γ . The AdS/CFT duality[10, 11] in the extrapolation
scheme dictates that we associate with this boundary behavior a corresponding local conformal operator O whose
dimension is ∆. So, setting ∆ = ∆+ = d

2 + γ, the precise prescription[11] for accomplishing this is the limit

O = CO lim
y→0

y−∆φ(x, y). (I.5)

which one should think of as the BDHM[10] formulation of the AdS/CFT correspondence:

〈O(x1) · · · O(xn)〉CFT = CO lim
y→0

y−n∆〈φ(x1, y) · · ·φ(xn, y)〉bulk. (I.6)

In this work, we show that when the bulk action, ZS(φ), is a Gaussian theory, then for some values of the mass
squared of the bulk field φ, the operator O augmenting the boundary theory is an anti-local operator: the fractional
Laplacian. This is true regardless of the formulation that is used to express the bulk-boundary correspondence. We
then argue – following a logic reminiscent of the one adopted by Giddings (cf. [12] and [13])–that since interactions turn
off near the boundary, even in an interacting theory, the operator O must still be an anti-local operator (presumably
having the fractional Laplacian as leading term).

Another way in which the interaction terms tend to vanish is for the SU(N) theory with N large. In the bulk
interactive theory the bulk action can only be calculated by perturbative expansion, e.g. using Witten’s graphs.
Nonetheless, as shown in [14] and [15], when the interacting fields correspond to Kaluza-Klein modes of the compact-
ified supergravity theory, say φi, then, if we write the action as,

Sbulk =

∫
dd+1x

√
−g

∑
i

|∇φi|2 +m2
iφ

2
i +

∑
i,j

λij φ
2
iφj

 , (I.7)
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then the coefficients λij = O( 1
N ). This indicates that, as N → +∞, the operators O in the boundary which are dual

to Kaluza-Klein modes must behave as the fractional Laplacian, for suitable values of the mass squared.
The mathematics behind either the original or the BDHM[10] AdS/CFT correspondence is that of determining

the asymptotic structure of solutions to the equations of motion, when approaching the conformal boundary. Three
mathematical groups[1–3] have developed theorems that solve such boundary extension problems. We first show that
Eq. (I.5) is explicitly of the form needed to apply the Caffarelli/Silvestre extension theorem. Applying the theorem
allows us to show that for a bulk field obeying the Klein-Gordon equation, Eq. (I.5) is explicitly the fractional
Laplacian acting on the boundary field φ0. Unlike the normal Laplacian, the fractional Laplacian is explicitly a non-
local operation in that it requires knowledge of the function everywhere for it to be evaluated. Within the AdS/CFT
conjecture as a whole[4, 7, 9, 10], our work establishes a technical procedure for going between bulk fields defined
by appropriate equations of motion and corresponding operators at the conformal boundary. Although using the
Caffarelli/Silvestre theorem requires that we equate the bulk field, namely the scalar field φ in Hd with g = yγ−d/2φ
in Rd+1, the final result is more than a field redefinition. This procedure results in a closed expression for the operator
at the conformal boundary. The difference with our result and the claim in the original conjecture is that O is
explicitly non-local. The key results are summarized in Table 1. We demonstrate that the non-locality is an intrinsic
property of spacetimes that are geodesically complete. We show explicitly that the Maldacena conjecture that local
theories lie at the boundary of AdS spacetimes is recovered only if some degree of geodesic incompleteness is present
in the bulk metric. For example, stacking N branes transverse to the radial direction in the bulk leads to a local
theory at the boundary in the asymptotic limit of N →∞. As a result, our work implies that the strong form of the
AdS/CFT duality with finite N cannot hold without including non-local operators at the boundary. Implicit in any
form of the conjecture is the fixing of a vacuum in the boundary and the bulk. While in general the two vacua might
not be related, in our work the boundary vacuum emerges from the bulk. This type of emergence is physical and
explicit. In order to connect our formulation of the AdS/CFT correspondence with the more standard strong-weak
formulation one must understand the interconnection between our vacuum and the one of N=4 SYM. This will be
addressed in a later publication. Geodesic incompleteness poses a problem for the geometric interpretation[16] of
the entanglement entropy as the minimal surface cannot cross a Dd-brane singularity. We propose that a higher-
dimensional geometric construction within the full type IIB string theory is necessary to retain the minimal surface
idea. Boundary non-localities appear as well for vector fields where the fractional exponent is governed by the mass
of the bulk gauge field along the holographic direction. This provides an explicit mechanism for producing anomalous
dimensions[17] for boundary gauge fields.

Bulk Operator Boundary Operator: O = CO limz→0 y
−∆φ(x, y)

|∇φ|2 +m2φ2 (−∇)γφ0

FµνF
µν +m2A2

y (−∇)γA⊥

TABLE I. Bulk-Boundary Correspondence on AdSd+1 resulting from applying the Cafferelli/Silvestre extension theorem to
O = CO limy→0 y

−∆Φ(x, y) with Φ(x, y) the bulk field obeying the equation of motion specified in the Table. Here γ =√
d2 + 4m2 − p/2 and A⊥ are the components of the gauge field perpendicular to the holographic coordinate, y. Here p is the

degree of the form, which for a scalar is 0 and for the gauge field is 1.

II. PRELIMINARIES: EVALUATION OF EQ. (I.5)

To put our work in the context of the AdS/CFT correspondence, we review the standard procedure[7] for a massive
scalar field. To this end, we work with the action

Sφ =
1

2

∫
dd+1u

√
g
(
|∇φ|2 +m2φ2

)
. (II.1)

For the purposes of this initial discussion, we assume an AdS background with Euclidean signature (although we can
and will work, mutatis mutandis, with the general case of a black hole endowed with near horizon AdS geometry).
The equations of motion for the field φ are then simply given by,

−∆φ+m2φ = 0, (II.2)

where −∆ = ∇i∇i is the Laplacian. It is a classical fact that this equation admits the existence of a unique solution
on {(y, x1, · · · , xd) : y ≥ 0} with any given boundary value (the boundary is a sphere Sd, as described by copies of
Rd given by y = 0 and the point y =∞).
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As is standard[7], we assume that in the correspondence between AdSd+1 and conformal field theory on the bound-
ary, φ0 should be considered to couple to a conformal field O, via:

∫
Sd
φ0O. Thus, in order to compute the two point

function of O, one must evaluate Sφ for a classical solution with boundary value φ0. The equation of motion can be
rewritten in the form,

−∆φ− s(d− s)φ = 0, (II.3)

where s is such that m2 = −s(d− s) (i.e., s = d
2 + 1

2

√
d2 + 4m2). Thus, as shown in Mazzeo and Melrose[18], such a

solution has the form,

φ = Fyd−s +Gys, F,G ∈ C∞(H), F = φ0 +O(y2), G = g0 +O(y2), (II.4)

unless s(d− s) belongs to the pure point spectrum of −∆. Here φ0 and g0 are functions on the conformal boundary
{y = 0}. A vast generalization of this fact, which we shall use later, can be found in [18]. We refer to φ0 as the
restriction of φ to the boundary of AdSd+1. Operationally, the formal AdS/CFT correspondence can be established
by taking the finite part of the result of integrating Sφ by parts,

pf

∫
y>ε

(
|∂φ|2 − s(d− s)φ2

)
dVg = −d

∫
y=0

φ0 g0 (II.5)

where pf denotes the finite part of the divergent integral and dVg =
√
gdd+1u is the volume form of ds2. Therefore, g0

must be the two-point function of O. We claim at this point that g0 = G |y=0 is indeed the Riesz fractional Laplacian
1 of φ0, (−∆)γφ0, up to a constant factor.

In order to show this, we need to appeal to a construction due to Caffarelli and Silvestre [1], which characterizes
the Riesz fractional Laplacian (−∆)γf of a function f defined on Rd via an extension problem. Explicitly, what they
showed is that given a function f(x) defined on Rd, a solution to

g(x, 0) = f(x) (II.6)

4xg +
a

y
gy + gyy = 0. (II.7)

has the property that

lim
y→0+

ya
∂g

∂y
= Cd,γ (−4)γf (II.8)

for some (explicit) constant Cd,γ only depending on d and γ = 1−a
2 .

Now we observe that if φ solves the massive problem (II.2) (in fact its representation in the form of Eq. (II.3)),
then an easy computation shows that the function

g = yγ−
d
2 φ, γ :=

√
d2 + 4m2

2
(II.9)

solves the Caffarelli-Silvestri extension problem, Eqs. ((II.6)) and ((II.7)). But since a solution, φ, to the massive
problem has the asymptotic expansion (using that s = d

2 + γ),

φ = Fy
d
2−γ +Gy

d
2 +γ , F,G ∈ C∞(H), F = φ0 +O(y2), G = O +O(y2), (II.10)

it then follows that

g = yγ−
d
2 φ = F +Gy2γ , F,G ∈ C∞(H), F = φ0 +O(y2), G = g0 +O(y2). (II.11)

Now we make two observations. On the one hand by the asymptotic expansion of g above, it must be that

lim
y→0

y1−2γ ∂g

∂y
= 2γg0. (II.12)

On the other, by the result of Caffarelli and Silvestri[1] this limit is (−4)sφ0, up to a constant factor, thus showing
that the two point function of the operator O = (−∆)γφ0 is a multiple of |x− x′|−d−2γ .

1 The Riesz fractional Laplacian of a function f defined on Rd is (−∆)γf(x) = Cd,s
∫
Rd

f(x)−f(ξ)

|x−ξ|d+2γ dξ where Cd,s is some normalization

constant.
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To address the BDHM formulation[10], we note that the Cafferelli/Silvestre extension equation, Eq. (II.12), is
precisely of the form of the operator identity in Eq. (I.5). To make this more transparent, we note that powers of z
can be traded for derivatives with respect to z since Eq. (II.12) is based on the asymptotic expansion of the solutions
for the equations of motion, namely Eq. (II.4). Consequently, we rewrite Eq. (I.5) as

O = CO lim
y→0

y1−2γ∂yφ(x, y). (II.13)

With the substitution g = yγ−d/2φ, this equation is precisely of the form of Eq. (II.12) thereby offering another proof
that the fractional Laplacian is the operator dual of the bulk free scalar field. We note that the fractional Laplacian
in flat space is a conformal operator and in fact this is a general feature of operators obtained in this fashion via a
scattering process (see Eq. IV.20). This should be kept in mind as one considers the true boundary of AdS, which is
a sphere in Euclidean signature.

It is remarkable that one attains all non-negative real values of γ =
√
d2+4m2

2 , even in this non-conformal picture, as

m2 ≥ −d
2

4 is allowed by the Breitenlohner-Freedman (BF)[19] bound for stability. However, the theory thus presented
has the unfortunate feature of being non-local however. As we will see such non-locality is unavoidable and present
even in the conformal construction. One should observe that the negative BF bound is of course only possible for
states φ such that

∫
H
dydx
yd

φ2 is not finite (otherwise the mass term would have to be positive). In fact, in complete

generality, J. Lee ([20]) proved that the essential spectrum of any asymptotically Einstein manifold is bounded from

below by −d
2

4 and in the non-compact case, there are no embedded eigenvalues, thus ensuring that there are no
square-normalizable (i.e., renormalizable) eigenfunctions.

III. STABILITY AND PLANCK LENGTH

Of course, the stability condition depends on the AdS radius of curvature, L. To introduce this length, we rescale
the metric,

dτ2 = L2 dy
2 + ηµνdx

µdxν

y2
, (III.1)

accordingly. Using this Lorentzian metric, we write the action for the Klein-Gordon field as

S = − 1

2Ld−1

∫
dyddx

√
g
(
gµν∂µφ∂νφ+m2φ2

)
= −1

2

∫
dyddx

Ld+1

(
y2∂yφ∂yφ+ y2ηµν∂µφ∂νφ+m2L2φ2

)
.

(III.2)

Therefore, the relevant equation to establish the asymptotic structure of Eq. (II.4), is

γ =
1

2

√
d2 +m2L2. (III.3)

Performing the change of variables[21] z = ln y and setting φ = y
d
2ψ, we obtain

S = −1

2

∫
dzddx

(
∂zψ∂zψ + e−2zηµν∂µψ∂νψ + [m2L2 +

d2

4
]ψ2

)
(III.4)

which shows that the Hamiltonian is a sum of squares (up to adding the boundary term −d
2

4

∫
ddxψ2 |z=+∞

z=−∞) provided
that

m2L2 ≥ −d
2

4
(III.5)

which is the BF bound. This of course still makes γ possibly arbitrarily close to 0, but as L grows, this occurs with
a mass terms m2 which are increasingly close to 0,

lim
L→+∞

− d2

4L2
= 0. (III.6)

Therefore, the non local phenomenon present at the boundary theory requires the presence of less strange (tachyonic)
matter in the bulk as the black hole radius increases.
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IV. CONFORMAL HOLOGRAPHY

Away from flat space, the fractional Laplacian is not a conformal operator. To ensure conformality, we must include
a conformal sector in the starting action. Namely, we consider the following action in the bulk

S = Sgr[g] + Smatter(φ), (IV.1)

where the standard Einstein-Hilbert action (with the Gibbons-Hawking boundary term) is given by

Sgr[g] = − 1

2κ2

[∫
M

dd+1x
√
gR+

∫
∂M

ddx
√
h2K

]
, (IV.2)

κ2 ≡ 8πGd+1, h is the induced metric on ∂M and K is the trace of the extrinsic curvature of the boundary. The new
term is something we name conformal matter given by the action

Smatter =

∫
M

dd+1x
√
gLm, (IV.3)

with

Lm := |∂φ|2 +

(
m2 +

d− 1

4d
R(g)

)
φ2. (IV.4)

The new term in Lm, R(g)φ2, contributes to the Euler-Lagrange equations in the form of the conformal Box operator,

2confg φ =
1
√
g
∂µ(
√
ggµν∂νφ)− d− 1

4d
Rgφ = 2gφ−

d− 1

4d
Rgφ. (IV.5)

The advantage of using a conformal action (as part of the total action) is that one incorporates the fact that the
boundary only has a well defined conformal class of metrics (arising from conformally compactifying AdS) into the
theory. The boundary theory operators O naturally correspond to conformal Laplacians. Moreover, in the case of
a conformal Einstein manifold (such as the hyperbolic space), simplifications arise. Recall that on a Riemannian
manifold (M, g) of dimension N = d+ 1, the conformal Laplacian is

Lg ≡ −∆g +
N − 2

4(N − 1)
Rg = −∆g +

d− 1

4d
Rg, (IV.6)

which, after a conformal change of metric, ĝ = ew g, transforms as

Lg(ψ) = (ew)
d+3
2 Lĝ

(
(ew)−

d−1
2 ψ

)
. (IV.7)

For the hyperbolic metric g =
dy2+

∑d
i=1 dx

2
i

y2 , the scalar curvature is RgH = −d(d+ 1), so that

LgH = −∆gH − d2−1
4 (IV.8)

and now, the BF[19] stability bound becomes m2 ≥ − 1
4 . This condition actually is independent of the dimensionality

because we can write m2 − d2−1
4 = −s(d − s) with s = d

2 +
√

4m2+1
2 which is equivalent to γ :=

√
4m2 + 1 ≥ 0. The

conformal dimension of the field O is exactly d+ γ.
In complete generality, one defines an asymptotically d + 1 AdS space-time as a (d + 1)-dimensional space time

(M,dτ2 = g+
µν dx

µ ⊗ dxν) such that M has a topological boundary X characterized as follows:

1. There exists a function ρ > 0 in M such that ρ |X= 0 and ∇ρ 6= 0 (i.e. ρ = 0 is a defining function for the
boundary,

2. ρ2 dτ2 |X is a smooth Lorentzian metric,

3. (The space looks like AdS at infinity) there exists a diffeomorphism Ψ : {0 < ρ < ρ0} → {0 < y < y0}
and real numbers ρ0, y0 > 0 (here y is the coordinate/defining function of the boundary on AdS) such that

dτ2 = Ψ∗
(
dy2+ηµνdx

µ⊗dxν
y2

)
+O(ρ2) for ρ > ρ0, and

4. dτ2 satisfies the Einstein equations: Rµν − 1
2Rgµν + Λgµν = 8πTµν .
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In this context, we still propose an AdS/CFT type correspondence, but with the Lagrangian given by the conformal
matter equation above, namely Eq. ((IV.4)). Now the correspondence requires that we find solutions to the classical
equations of motion,

−∆gφ+
d− 1

4d
Rgφ = m2φ (IV.9)

and then perform the same scattering process we useded earlier in the classical theory. In general, due to the presence
of the potential part d−1

4d Rgφ, this analysis is considerably more complicated than the one performed in the classical
case for AdS, and it tends to be very different even from the classical case of asymptotic AdS gauge/gravity duality
(where one merely studies classical solutions of motion: −∆gφ = m2φ)

Nonetheless, this theory becomes considerably easier in the case that Tµν = 0. In this case, again switching to
Euclidean signature, we can infer from the Einstein equation that the scalar curvature R(g) has to be constant which
we normalize such that,RgH = −d(d+ 1). In this circumstance, the classical equations of motion for conformal matter
(i.e., Eq. (IV.9)) reduce to,

−∆φ+
(
m2 − d2−1

4

)
φ = 0. (IV.10)

We write yet again this equation in the form,

−∆φ− s(d− s)φ = 0, (IV.11)

where s is such that m2− d2−1
4 = −s(d−s) (i.e., s = d

2 + 1
2

√
4m2 + 1). Thus, setting γ := 1

2

√
4m2 + 1, such a solution

has the form,

φ = Fy
d
2−γ +Gy

d
2 +γ , F,G ∈ C∞(H), F = φ0 +O(y2), G = g0 +O(y2). (IV.12)

Here φ0 and g0 are functions on the conformal boundary {y = 0}. Next, as in the case of the classical Laplacian (as
opposed to the conformal one we are analyzing here), if we set

g = yγ−
d
2 φ, γ :=

√
4m2 + 1

2
, (IV.13)

one readily finds that g solves the Caffarelli-Silvestri extension problem, Eqs. (II.6) and (II.7). It is now plain that,

g = yγ−
d
2 φ = F +Gy2γ , F,G ∈ C∞(H), F = φ0 +O(y2), G = g0 +O(y2) (IV.14)

and that by the asymptotic expansion of g above,

lim
y→0

y1−2γ ∂g

∂y
= 2γg0. (IV.15)

In the general case, we consider the asymptotic solutions to Eq. (IV.9) and define the scattering operator as follows.
Solutions to

−∆gu− s(d− s)u = 0, in X (IV.16)

have the form

u = Fρd−s +Wρs, F,W ∈ C∞(X), F |ρ=0 = f, (IV.17)

for all s ∈ C unless s(d− s) belongs to the pure point spectrum of −∆g. The scattering operator on M is defined as
S(s)f = W |M .

Following [3], we define the conformally covariant fractional powers of the Laplacian (on the conformal boundary)
as

Pγ [dτ2, h] := Dγ S

(
d+ 1

2
+ γ

)
, Dγ = 22γ Γ(γ)

Γ(−γ)
. (IV.18)

for s = d
2 + γ, γ ∈

(
0, d2

)
, γ 6∈ N. One readily sees that Pγ ∈ (−∆ĝ)

γ + Ψγ−1, where Ψγ−1 is a pseudo-differential
operator of order γ − 1.

By the property of S proven in [2], one has,

Pγ [dτ2, hv]φ = v−
d+2γ
d−2γ Pγ [dτ2, hv] (vφ) , (IV.19)
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where,

hv = v
4

d−2γ h, v > 0, (IV.20)

Pγf = dγS
(
d
2 + γ

)
= dγ h. (IV.21)

In this context, the operator O is found using,

pf

∫
y>ε

[|∂φ|2 −
(
s(d− s) +

d− 1

4d
R(g)

)
φ2]dVg = −d

∫
∂X

dVhf Pγ [g+, ĝ]f. (IV.22)

Consequently, the corresponding boundary operator is Pγ which persists under any change to the bulk metric as long
as the conformal boundary remains unchanged.

A. A few words on the conformal Laplacian

A choice of a Lorenzian metric 2 on a manifold M of dimension d+ 1 is equivalent to a choice of an orthonormal
frame bundle of T ∗M . Choosing a conformal class is equivalent to a reduction of the structure group. For any real
number α ∈ R, one obtains a 1-dimensional irreducible representation of SO(1, d) given by det(A)

α
d+1 which gives

rise to a line bundle Lα for a fixed conformal structure. Choosing a metric g in the conformal class [g] is tantamount
to choosing a trivialization τg,α : Lα → M × R and changing g by e2w g has the effect of changing the trivialization
to e−αwτg,α. The proper way of formulating the conformal box operator is to think of it as an operator,

2confg : L
d−1
2 → L

d
2 +1, (IV.23)

that connects two vector bundles. Given a vector bundle E endowed with a Hermitian connection ∇E , more generally
one defines the conformal Laplacian as

∆conf
E ≡ ∇∗E∇E +

d− 1

4d
R, (IV.24)

where

∇∗E∇E = − 1

|g| 12
(∇E)µ

(
gµν |g| 12 (∇E)ν

)
(IV.25)

and after suitably trivializing sections of E ⊗ Lw we can think of it as an operator with

∆conf
E : Γ(E ⊗ Lw)→ Γ(E ⊗ Lw+2). (IV.26)

In this paper, we will suppress the line bundles, Lα, by fixing a conformal representative.

V. GAUGE THEORY

In order to follow Witten[7] closely, we again switch to Euclidean signature. Here we consider adding the Lagrangian,

LG :=
1

2

∫
AdS

F ∧ F, (V.1)

where F = dA is the filed strength of the 1-form A. The classical equations of motion are then (equivalent to)
Maxwell’s,

d(?dA) = 0, (V.2)

and in fact, the previous scattering process can be repeated, mutatis mutandis, as follows. Given a 1-from
∑
aidxi

on the conformal boundary, we want to solve for solutions to

d(?dA) = 0 (V.3)

A |y=0=
∑

aidxi. (V.4)

It is a standard consequence of the Weitzenböck formula, which relates the Hodge Laplacian to the standard Laplacian,
that the previous equation is related to

∆Aµ − dAµ = 0 Aµ|y=0 = aµ µ 6= y. (V.5)

2 We could discuss here independently of the signature, but we choose, for definiteness of notation, to use a Lorenzian structure
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A. Higgs Mechanism for Fractional Gauge Fields

In this section we describe how the process of symmetry breaking along the holographic direction gives rise to
fractional Laplacians acting on Gauge fields at the boundary. We describe here for simplicity just the case in which
the gauge group is U(1). We consider the Lagrangian,

L = Dµφ
∗Dµφ−m2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν , (V.6)

where φ is a function only of the radial coordinate, y. This Lagrangian is invariant not only under the U(1) transfor-
mation but also the complexified gauge group C∗[22]. For generality, we consider this larger gauge group here as it
generates negative masses of the gauge field. Hence, we consider a transformation of the form,

φ→ e−iθ(y,x)φ, (V.7)

with Aµ → Aµ − 1
e∂µθ, where θ can be complex. As is standard, we expand around the vacuum expectation,

〈φ〉0 =
v√
2
. (V.8)

In other words, we break the U(1) symmetry in the radial direction by writing,

φ = ei
ξ
v
v + ψ√

2
, (V.9)

where ξ = ξ(y) is merely a function of the holographic direction. Then the standard symmetry breaking,

φ̂ = e−i
ξ
v φ =

v + ψ√
2

Âµ =→ Aµ −
1

e
∂µξ,

(V.10)

produces the Lagrangian

L =
1

2
∂µψ

∗∂µψ −m2φ∗φ− 1

2
ψ2(3λv2 +m2) + λvψ3 − 1

4
λψ4

− 1

4
F̂µν F̂

µν +
1

2
e2v2ÂµÂ

µ +
1

2
e2v2(Âµ)2ψ(2v + ψ).

(V.11)

We can now apply the previous analysis to obtain terms of the kind (−∆)γaµ at the boundary, where γ =√
(ev)2 + d2 − 1.

Observe that Eq. (V.10) shows that the Âµ = Aµ for µ 6= 0 (i.e. in the non-holographic directions). Therefore
we have clearly broken the symmetry merely in the holographic direction, thus leaving the boundary theory free to
have any type of symmetry we please. Consequently, we have provided a mechanism for understanding how boundary
theories proposed recently[17, 23] acquire gauge fields with fractional dimensions. Results for the boundary form of
the operators is summarised in Table 1.

VI. BRANES IN ACTION: MALDACENA’S DUALITY ON INCOMPLETE METRICS

How do we then recover Maldacena’s conjecture that local conformal theories lie at the boundary of AdS spacetimes?
A crucial detail in the Maldacena[4] construction based on type IIB string theory is the N D3 branes which he stacked
transversely in the bulk. We show explicitly here that it is only from these branes in the asymptotic limit that the
gauge-gravity correspondence is free of non-local interactions. That is, only when such branes are retained does the
conformal theory field theory on the boundary have explicitly local operators.

Recall from Horowitz and Strominger[24] that there is a black brane solution of IIB string theory which is spherically
symmetric. Part of the low energy action from string theory is given explicitly[24] by

S =

∫
d10x
√
−g
(
e−2φ(R+ 4|∇φ|2)− 2e2αφ

(D − 2)
F 2

)
, (VI.1)
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where F is a closed D − 2-form. We take D = 7 and the extremal solution (with no event horizon) is given by

ds2
L = H−1/2(r) ηµνdx

µdxν +H1/2(r) δmndx
mdxn

H = 1 +
L4

r4
, L4 = 4πgNα′2, r2 = δmnx

mxn,
(VI.2)

where N here is the number of stacked D3-branes (or flux of the black hole), α′ is the string tension and g the
coupling constant. We now observe that the L appears as a rescaling of the AdS metric and the rescaling property
(Eq. (IV.7)), yields

2
conf
ds2 (φ) +m2φ = L2

(
2
conf
ds2L

+
m2

L2

)
φ (VI.3)

whence we derive that the equations of motion in the ds2
L metric are equivalent to(

2
conf
ds2L

+
m2

L2

)
φ = 0 (VI.4)

with m2 the mass-squared in the L = 1 theory (bounded from below by the BF bound[19]) thus showing that the

boundary fractional Laplacians are of the type (−∆)γ with γ =

√
4m

2

L2 +1

2 . Since limL→+∞ γ = 1
2 , this shows that

strictly as L→ +∞, the non-localities disappear. This proves our assertion that a conformal theory with purely local
operators obtains only in the limit of an infinite number of transversely stacked branes.

Alternatively, consider the string IIB solution whose background metric we write in general form as

ds2 = f−1/2ηµνdx
µdxν + f1/2δmndx

mdxn, (VI.5)

where µ, ν = 0, 1, 2, 3 and m,n = 4, 5, 6, 7, 8, 9. The metric is on R3,1 ×K6 for some Einstein 6-manifold K6. The
equations of motion dictate for f to be a function of the transverse coordinates satisfying

∆f = (2π)4 α′2g ρ, (VI.6)

where ρ = ρ(x4, · · · , x9) is the density of Dd-branes. For instance, the standard solution is obtained by choosing
f = H with r2 = xmx

m as above, so that ρ is a delta function counted with multiplicity determined by L (hence the
description of it as a stacking of N branes positioned at the ”horizon” r = 0). In this application we take f to be a
harmonic function that has a brane singularity at r = ε and another transverse brane somewhere in the bulk at r = r0

(these are strictly speaking walls as they are co-dimension 1). We are interested in the limit in which the D-brane
approaches the boundary as illustrated in Fig. (1); that is, ε→ 0. It is clear from the description of the singularity of
the Laplacian of f that near the singularity, f is an absolute value singularity. It is then easy to construct solutions
of this type that exhibit a full Z2 symmetry in the limiting configuration.

We can make this supergravity argument come to light in a simple example of the Randall-Sandrum[25] type of
metric in which the absolute value singularity is explicitly manifest. Our argument works perfectly well in the IIB
supergravity model, but for the sake of expository clarity we present this simpler model instead. We consider the 5-
dimensional spacetime with ds2 = −e−2|y|/Lgµνdx

µdxν +dy2, which we think of as a fluctuation of the 3+1 directions

of the Randall-Sundrum metric −e−2|y|/Lηµνdx
µdxν + dy2 where L is a length scale depending only on the mass M5

(the analogue of the Planck mass) and the (negative) cosmological constant. The presence of |y| in the exponential
guarantees that the metric is geodesically incomplete. Such incompleteness has no affect on the connectedness of the
boundary as guaranteed by the Witten-Yau theorem[26, 27]. As in Randall-Sundrum[25] we consider the y direction
to take values in the quotient of the circle S1/Z2 (which we think of as the interval [−πR, πR] with the points y and
−y identified). Then, since the coefficients of the metric at y = πR are e−2πR/Lgµν , the effective action of a massive
particle at the brane positioned at y = πR is proportional to∫

d4x
√
−ge−2πR/L

(
e2πR/Lgµν∂µφ∂νφ+m2φ2

)
=

∫
d4x
√
−g
(
gµν∂µφ̂∂ν φ̂+m2e−2πR/Lφ̂2

)
,

(VI.7)

where φ̂ = e−πR/Lφ. This clearly shows that for R/L sufficiently large, the negative (effective) mass terms m2e−2πR/L

again become asymptotically positive, thereby leading to a vanishing of the scalar solutions which give rise to the
non-locality. The largeness of R/L is of course an indication of a wall singularity which causes a ”warping” of the
compact manifold, in the language of [28]. We see explicitly then that incompleteness coupled with a wall singularity
are needed to rid the boundary theory of non-locality.
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B

A

y = y0

y = ✏

y = y0

y = ✏

A

B

A

a.) b.)

c.)

y = y0

FIG. 1. Hyperbolic space with two D3-branes: a.) The two two branes lies outside the minimal surface used to compute the
entanglement entropy between regions A and B, b) the physical impossibility of one of the D3-branes lying within the minimal
surface and c) the limiting case in which ε→ 0. In the latter case, the metric doubles, the boundary vanishes as as a result so
does the entanglement entropy.

This argument can be generalized beyond the Randall-Sundrum metric. In hyperbolic space, the mass of a string
joining the two branes grows quadratically as (ln ε)2. Once | ln ε| > 2π

√
α′, the mass becomes positive[29]. It is this

mass that sets the scale for the masses of bulk scalar fields. The solutions to the scalar field equations of motion we
found earlier which give rise to the non-local boundary interactions are no longer valid should ε be sufficiently small
so that the mass is positive, that is, a violation of the BF bound[19]. Hence, any type of Dd-brane placed transverse
to the holographic direction in a geometry in which the boundary is viewed as a brane singularity is sufficient to kill
the non-local interactions found here. The essence of this argument is that transverse walls break the completeness
of the metric in the holographic direction. Once this completeness is broken, locality of the boundary theory obtains.

VII. ENTANGLEMENT

D-brane bulk singularities also affect the geometric interpretation of the entanglement entropy[16]. Computing
the entanglement entropy of two regions in the boundary separated by a region ΩA simply requires delineating the
bulk minimal surface on AdS5 that has ΩA as its Dirichlet boundary condition. Any such surface cannot remain
minimal if it traverses a singularity in the bulk (see Fig. (1b)), such as a D-brane. In the construction in Fig. (1),



12

if the D3-brane located at y = ε lies outside the minimal surface, the geometric interpretation of the entanglement
entropy remains unaffected. However, as ε approaches the boundary, the minimal surface has to shrink to avoid the
D3-brane, thereby leading to a vanishing of the entanglement entropy in the limit ε→ 0. The singularity that arises
in this limit depends on the type of D3-branes that are in the 5-dimensional theory. If the D-brane arises from a
reduction of a D3-brane in the 10-dimensional theory, then the brane stacking problem of Maldacena[4] arises, which
we treated previously. However, should the D3-brane arise from a D9-brane as in the previous section, then a wall
singularity arises at the boundary resulting in a doubling of the metric. In this case, the metric resembles that of
Randall-Sundrum[25] and, as a result, is incomplete. Interestingly, only in the non-compact limit, R/L → ∞ does
the non-locality vanish. Physically, this corresponds to completely separating the doubled regions of the metric off to
opposing infinities. No entanglement[30] can arise in such a spacetime as the regions have each receded to infinities
but in opposing directions.

Consequently, when the full brane structure of IIB string theory is considered, an alternative to the standard
geometric interpretation of the entanglement entropy must be constructed. In the full 10-dimensional structure, some
singularities can be circumvented. Hence, we conjecture that the entanglement entropy should be constructed from
the drawing the minimal mass (a type of current) in 10-dimensional spacetime. The area of this surface we submit will
be the true entanglement entropy. Note the projection of this surface to AdS5 does not preserve minimality because
of the presence of curvature. We are advocating more than just an extension of the geometric interpretation of the
entropy to AdS5 ×X, where X is a compact Einstein manifold, as has been done recently[31]. What is required here
is a generalization because singularities appear explicitly in the bulk.

VIII. CLOSING REMARKS

We have shown here that the full structure of IIB string theory is needed to remove the non-localities that arise
in boundary conformal theories that border hyperbolic spaces. What this work ultimately tells us is that the gauge-
gravity duality as a statement about strictly hyperbolic spacetimes with complete metrics is not a theory about
local conformal theories. The boundary theories contain fractional conformal Laplacians and hence are non-local.
Consequently, the standard implementation of the gauge-gravity duality, in which mechanisms such D3-branes leading
to metric incompleteness are absent, must yield local CFTs on the boundary. Metrics underlying the Randall-
Sundrum[25] work are candidates for removing the non-localities.

Relatedly, all examples in which the gauge-gravity correspondence has been worked out explicitly (and asymp-
totically explicit is included here), either D3-branes (which we have shown remove the boundary non-locality) are
explicitly included in the bulk[4] or D-3 branes are absent and the boundary theory contains explicitly non-local
operators[32, 33]. On some level, this is not surprising because at the core of gravity are the equivalence principles
which preclude local observables. As a result, any theory with gravity necessarily has less observables than a theory
without it. Consequently, an a priori correspondence between a bulk theory of gravity and a local boundary CFT
must include some added features in the bulk that would ultimately permit a purely local theory to emerge on the
boundary.

Since there is no guarantee that the current-carrying degrees of freedom in strongly correlated electron matter have
a local description, the standard implementation of the gauge-gravity correspondence without the inclusion of D3-
branes ultimately has utility. The non-local interactions that arise in this case can be useful in describing fractional
gauge fields in strongly correlated quantum matter as in the strange metal of the cuprates[17] or yield a method to
obtain unparticle propagators[23, 34]. In fact, the Higgs mechanism we have proposed here provides a general way
of engineering boundary propagators with arbitrary anomalous dimensions. The precise form of the entanglement
entropy in IIB string theory remains purely conjectural as of this writing.

IX. APPENDIX

Here we review some of the basics of the correspondence. For simplicity of notation, we consider the case d = 4.
We fix AdS5 with a given metric gµνdx

µdxν with fixed conformal infinity, which we take to be the conformal class of
the round sphere S4. Of course, if we insist on gµνdx

µdxν being Einstein, this uniquely determines it as the classical
AdS5 (this is still true if the conformal class is sufficiently close to the round one[35]). Let S be an effective action in
the bulk. For instance this could be of the form,

S = S(gµν , Aµ, φ, · · · ). (IX.1)

We let L be the Lagrangian of the boundary CFT. The primary operators at the boundary specify the spectrum of
the said CFT. The correspondence dictates that one associates an operator O at the boundary to a field φ in the
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bulk. The operator is associated with the source φ0 by

LCFT +

∫
d4xφ0O, (IX.2)

which determines the partition function to be

〈e
∫
Sd

φ0O〉CFT = ZS(φ), (IX.3)

where S is the given theory in the bulk evaluated on shell, so φ is an extension of φ0 satisfying the classical equations
of motion. In order to calculate the (connected) n-point functions of the boundary theory, we write

eW (φ) = 〈e
∫
Sd

φ0O〉CFT, (IX.4)

and then calculate

〈O · · ·O〉c =
δnW

δφn0
|φ0=0 . (IX.5)

We now specialize to the case where S =
√
g
(
gµν∂µφ∂νφ+m2φ2

)
, the Klein-Gordon action. Since we are meant to

calculate S(φ) on shell, by integration by parts (eq. (II.5)), we find that the finite part of S(φ) is

pfS(φ) = −d
∫
y=0

φ0 g0, (IX.6)

where we expand the classical solution as φ = Fyd−s + Gys, F,G ∈ C∞(H), F = φ0 + O(y2), G = g0 + O(y2)
wehere g0 = (−∆)γφ0 as we demonstrate in the text. Therefore this determines W and shows that there is no n-point
function for n 6= 2. This computation holds also for any gµν which is conformally compact, thus indicating that we
have exactly determined the dual of the Klein-Gordon theory. To recover the full Maldacena duality one needs to
add the Dd-brane constructions discussed in the text or perhaps other features of Type IIB string theory. As we
demonstrate the non-localities vanish as N → +∞.
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