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Abstract

Is the evaporation of a black hole described by a unitary theory? In order to shed light
on this question —especially aspects of this question such as a black hole’s negative specific
heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics,
which can be interpreted as a black hole (black zero-brane) via holography. We point out that
the chaotic nature of the system combined with the flat directions of its potential naturally
leads to the emission of D0-branes from the black brane, which is suppressed in the large N
limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole,
has negative specific heat, in the sense that the temperature goes up when it evaporates by
emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation,
the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties
of matrix models and gauge theory. Based on these results, we give a possible geometric
interpretation of the eigenvalue distribution of matrices in terms of gravity.

Applying the same argument in the M-theory parameter region, we provide a scenario to
derive the Hawking radiation of massless particles from the Schwarzschild black hole. Finally,
we suggest that by adding a fraction of the quantum effects to the classical theory, we can
obtain a matrix model whose classical time evolution mimics the entire life of the black brane,
from its formation to the evaporation.
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1 Introduction

Whether one can describe the formation and evaporation of a black hole from a unitary theory

is the key question to answer in order to resolve Hawking’s information paradox [1]. This puzzle is

attracting renewed interest after the proposal of the firewall paradox [2, 3]. Gauge/gravity duality

[4, 5] provides us with a stage on which to build a concrete setup: if the conjecture is correct, then

we can translate the problem of black hole formation and evaporation into the real-time evolution

of the dual gauge theory.

Traditionally there have been three popular resolutions to to the paradox: remnants, informa-

tion loss, and evaporation via unitary evolution. Gauge/gravity duality favors the final option.

Indeed in, [6], it was proposed that the Schwarzschild black hole in AdS5×S5 can be described by

4D SYM. Furthermore in [7], it was clarified where in the parameter region black hole evaporation

can actually occur and it was also argued that the initial and final states are connected by unitary

evolution. Further arguments along these lines are given in [8, 9]. For more details, see a review

[10].

In these works, although it is clear that information is not lost, the concrete dynamics of the

intermediate processes are missing. It is important to understand the intermediate dynamics in

order to see how information is encoded in the Hawking radiation, and also to develop a bulk

picture the gravity side.

In this paper, we consider the matrix model of M-theory, known as the BFSS matrix model

[11, 12]. Various objects, including a black hole, are regarded as bound states of D0-branes and

open strings. A black hole is described by states where all the D0-branes and strings form a single

bound state, described by generic non-commuting matrices and that all eigenvalues are clumped

in the neighborhood of a point in space. In the ’t Hooft large N limit, where the matrix size N is

sent to infinity while the ’t hooft coupling g2YMN is held fixed, at strong ’t Hooft coupling, these

states are conjectured [5] to be dual to a black zero-brane. The deviation from strong coupling and

large N is conjectured to describe stringy corrections to the black hole. Previous thermodynamic

simulations strongly suggested that the duality is valid not only at the supergravity level (large

N and strong coupling [13, 14, 15, 16, 17, 18]) but also at the stringy level (finite-coupling [19]

and finite-N [20]). We will henceforth call this single bound state a “black hole configuration” or

a “black zero-brane configuration”.

This model has flat directions in its potential4 both classically and quantum mechanically [21].

If we consider black hole configurations, this instability due to the flat directions is suppressed

at large N [13]. This is consistent with the dual gravity expectation that the black zero-brane

becomes stable when the string coupling gs is set to zero. The instability can be understood as the

Hawking radiation of D0-branes. Following the philosophy of the M-theory interpretation of this

model [11], the instability should translate to the emission of massless particles in the M-theory

limit. (A similar process in the M-theory region has been studied in [22, 23, 24], in order to

explain the Schwarzschild black hole in eleven-dimensional supergravity.)

Most previous studies considered the BFSS model in imaginary time (Euclidean signature).

In this paper, we interpret this phenomenon in real time (Minkowski signature). With currently

available techniques, a full quantum real-time calculation of the matrix model is very difficult

even numerically. However, since we are interested in the quantum nature of the gravity side we

4Flat directions corresponds to configurations where
∑

M,M′ Tr[XM , XM′ ]2 = 0.
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can exploit gauge/gravity duality to make use of the classical limit on the gauge theory side. The

classical limit on the gauge theory side corresponds to a large α′ correction on the gravity side

as well as the 1/N correction which exists in the gauge theory’s classical limit. This correction

controls the quantum correction on the gravity side. Thus, the classical dynamics of the matrix

model can already tell us important lessons about the quantum gravity dynamics, although our

argument is not restricted to the classical regime of the matrix model.

It has been widely believed, following the philosophy of the matrix theory proposal [11], that

the evaporation of the black hole is described by the emission of D0-branes. In this paper we

make an argument which quantitatively establishes this idea. We first give a simple argument

that the qualitative nature of the emission of a D0-brane from the black hole can naturally be

described by the classical limit5; this is due to the existence of the flat direction in the matrix

model and the chaotic nature of the system. When a D0-brane is emitted, the number of degrees

of freedom in the system decreases dynamically, because open strings (off-diagonal elements of

the matrices) decouple. Because of this, as D0-branes are emitted the temperature of the black

hole goes up. We then show that the same argument holds for the strong coupling region where

type IIA supergravity description is valid. We speculate that essentially the same mechanism also

works in the M-theory region.

This paper is organized as follows. In Sec. 2, we briefly review known results on black holes in

the Matrix Model of M-theory. In Sec. 3, we review the formation of a black hole in the matrix

model, putting an emphasis on a generic property of the matrix model important for understanding

the evaporation process. Sec. 4 is the main part of this paper, where the evaporation is studied.

Up to here, we restrict ourselves to the parameter region near the ’t Hooft large N limit. In

Sec. 5, we argue that the same argument in the M-theory parameter region might explain the

properties of the Schwarzschild black hole. In Sec. 6, we give a phenomenological model of the

black zero-brane, whose classical dynamics can capture the qualitative features of the formation

and evaporation of the black zero-brane. Finally in Sec. 7 we discuss our conclusions and refer to

future work.

2 The Matrix model and black holes

We consider maximally supersymmetric matrix quantum mechanics, which is the dimensional

reduction of 4d N = 4 supersymmetric Yang-Mills theory to 0 + 1 dimensions. Historically, this

system was proposed as a non-perturbative formulation of a supermembrane (M2-brane) in eleven

dimensional spacetime [12]. The connection to string/M-theory was first thought of as the low-

energy effective action of D0-branes and open strings [25] but was later understood as a formulation

of M-theory in the infinite-momentum frame [11]. In Ref. [5], this model was interpreted as the

dual of a black hole (a black zero-brane in type IIA string theory or a Schwarzschild black hole

in M-theory, depending on the parameter region) in the standard gauge/gravity dictionary. Clear

reviews of matrix theory can be found in [26, 27, 28, 29, 30, 31].

5Strictly speaking, a part of the quantum effects must be taken into account in order for the D0-brane to escape

to infinity. This point will be made clear in the following sections.
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The Lagrangian is given by

L =
1

2g2YM
Tr

{
(DtXM )2 + [XM , XM ′ ]2 + iψ̄αDtψ

β + ψ̄αγMαβ[XM , ψ
β]

}
, (1)

where XM (M = 1, 2, · · · , 9) are N×N Hermitian matrices and (DtXM ) is the covariant derivative

given by (DtXM ) = ∂tXM − i[At, XM ] and At is the U(N) gauge field. γMαβ (M = 1, 2, · · · , 9) are

16× 16 matrices, which are the left-handed part of the gamma matrices in (9+1)-dimensions. ψα
(α = 1, 2, · · · , 16) are N ×N real fermionic matrices.

This model has flat directions (directions where
∑

M,M ′ Tr[XM , XM ′ ]2 = 0) both classically

and quantum mechanically. These flat directions have been identified with an instability of the

supermembrane [21]. Although this “instability” is problematic when one tries to interpret the

model as the first quantization of the membrane [12, 21], it makes the interpretation as the second-

quantized M-theory possible [11], because various block-diagonal matrix configurations, which are

allowed due to the flat direction, can be interpreted as multi-object states [11].

In this paper, we follow the interpretation of this model proposed in Ref. [5]. There, the trivial

vacuum (i.e. all eigenvalues of XM clump up near the origin) is considered from the viewpoint

of gauge/gravity duality. In thermodynamics, the weakly-coupled type IIA superstring picture

is valid at N−10/21 � λ−1/3T � 1, while the M-theory picture becomes valid at much lower

temperatures. The validity of the duality in the type IIA parameter region has been confirmed

by numerical study of the matrix model [13, 19, 20, 14, 15, 16]. (Reviews including the numerical

methods can be found in [32, 33, 34].) In the high-temperature region λ−1/3T � 1, a weakly

coupled dual gravity description does not exist. Yet, since this region is expected to be smoothly

connected to the low-temperature region without a phase transition (see Refs. [13, 19, 20] for

numerical results which support the absence of the transition), it can capture qualitative features

of the black zero-brane solution of weakly coupled gravity. For this reason, in the following, we call

the trivial vacuum (the bunch of eigenvalues) a “black hole configuration” or a “black zero-brane

configuration”; even when a weakly-coupled dual gravity description does not exist. We also refer

to eigenvalues as “D0-branes” when there is no risk of confusion.

If we consider black hole configurations, the instability due to the flat directions is suppressed

at large N [13]. This is consistent with the dual gravity expectation that the black zero-brane

becomes stable when the string coupling gs is set to zero. The instability can be understood as

Hawking radiation of D0-branes. Because the D0-brane is very heavy (its mass is of order N), it

seems to have nothing to do with the usual Hawking radiation of massless particles at first sight.

However, following the philosophy of the M-theory interpretation of this model – ‘everything is

made from D0-branes’– [11], the emission of D0-branes via the instability should translate to the

emission of massless particles in the M-theory limit. Is it possible to see any resemblance of these

features in type IIA and M-theory regions? This is the theme of this paper.

3 Black hole formation in the matrix model

In this section we review the previously known results on the formation of a black hole in the

matrix model, putting an emphasis on a generic property of the matrix model which turns out to

be important in order to understand the evaporation process.
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Let us start with looking only at the classical dynamics of the model, which is justified at high

temperature.6 The dynamics of fermions are negligible in this regime. So, we can consider only

the bosonic part of the Lagrangian of the matrix model, which is given by

L =
1

2g2YM
Tr

∑
M

(DtXM )2 +
1

2

∑
M 6=M ′

[XM , XM ′ ]2

 . (2)

Near the ’t Hooft large N limit, this matrix model describes a system of N D0-branes [25].

When the Xi are close to diagonal, the diagonal components (Xaa
1 , · · · , Xaa

9 ) are regarded as the

coordinates of a-th D0-brane in R9 and off-diagonal components represent the excitation of open

strings connecting the D0-branes. A bound state of D0-branes, whose dual gravity description

is a black hole (black 0-brane), is described by a set of highly non-commutative matrices. If the

matrices are close to block-diagonal, it describes a multi-black hole state; each block describing a

black hole.

In the At = 0 gauge, the classical dynamics are described by the equations of motion

d2XM

dt2
−
∑
M ′

[XM ′ , [XM , XM ′ ]] = 0 (3)

along with the constraint ∑
M

[
XM ,

dXM

dt

]
= 0. (4)

The classical time evolution of the matrix model is chaotic [36]. If we introduce a proper cutoff

for matrix eigenvalues (i.e. putting the D0-branes in a box) so that the phase space becomes

bounded, ergodicity should hold for generic initial conditions. Therefore, with the exception of

very special initial conditions, almost all of phase space should be covered as the system evolves

with time.

What are the dominant (generic) configurations in the micro-canonical ensemble? A single

black hole is entropically dominant; this can be seen from the following argument. The entropy

of a sparse gas of N D0-branes, which is described by a set of almost commuting matrices, scales

only as O(N) because it can be characterized by the positions of the D0-branes (diagonal elements

of the matrices). Open strings (off-diagonal components) are long, heavy, and hence negligible

compared to the diagonal components of the matrices. On the other hand, a black hole, which is a

single bunch of the D0-branes (which is described by matrices where off-diagonal elements are not

negligible), has an entropy of order O(N2). This is because open strings (off-diagonal elements)

are excited. Multi-black hole states7 can also be considered. For example, two-black hole states

X2BH have a block-diagonal structure

X2BH =

(
X ′ 0

0 X ′′

)
, (5)

6The classical description is valid when open strings are much lighter than the temperature. In black hole

configurations the typical length of open strings scale as (λT )1/4 (see e.g. Ref. [35]). Therefore the mass of the

string, which is proportional to its length, becomes parametrically smaller than the temperature; hence the classical

description is valid. When a D0-brane is emitted, however, open strings between the emitted D0 and the black hole

becomes long and heavy; hence the classical approximation breaks down. This point will be revisited in Sec. 4.1.
7Configurations with block diagonal matrices.
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where X ′ and X ′′ are N1×N1 and N2×N2 are fully noncommutative matrices, with N1+N2 = N .

Because the number of degrees of freedom increases when off-diagonal blocks are excited, such

block-diagonal configurations are less favorable compared to the single-block configurations. The

spherical symmetry of the eigenvalue distribution can also be understood by an entropy argument.8

The story is slightly different in our setup, in which the cutoff is not introduced. Because the

phase space is not bounded, ergodicity does not make sense in the strictest sense. For example, if

we consider D0-branes without any open string excitation (i.e. all matrices are diagonal), there is

no interaction and D0-branes just travel freely. Still, for generic configurations, all the D0-branes

merge into a single bunch, and then, if the entropy of the black hole is large enough (i.e. N is

large enough), it is unlikely to see a large deviation from the black hole within a finite time, unless

the initial configuration is fine-tuned. This has been confirmed in previous numerical studies

[37, 38, 39] and an analytic estimate has been given in Ref. [40]. We comment on this behavior

further in Appendix B.

To summarize: a black hole is formed because the number of degrees of freedom increases

dynamically when D0-branes clump up to form one bunch9, and hence it is entropically favored.

The same mechanism works at low-temperature region, both in the type IIA and M-theory regions.

When the eigenvalues (D0-branes) come closer, off-diagonal elements (open strings) become lighter

and the number of degrees of freedom increases dynamically; such configurations are favored

entropically. Previous imaginary-time simulations in type IIA region, which studied the canonical

ensemble, confirmed that the single-bunch configuration becomes more stable at larger N .

In Sec. 4, we show that the dynamical change of the number of degrees of freedom explains

key features of black hole evaporation very naturally.

4 Black hole evaporation in the matrix model

4.1 Chaos + flat directions → evaporation

Because the classical matrix model is a chaotic theory with flat directions, even if a black hole

is formed, it is possible that one of the D0-branes runs to infinity. This is Hawking radiation.

Interestingly, although the emission rate is entropically suppressed, the emission after a long time is

entropically favored. This rather counter-intuitive statement is explained as follows: The entropy

of the black hole (BH) is N2. Separating a D0 brane from the black hole leaves the entropy

of BH+D0 to scale as (N − 1)2, because open strings stretched between BH and D0 decouple

dynamically. The suppression factor is then ∼ e−N . Hence, evaporation is suppressed at large N .

However, once D0-brane goes sufficiently far from the BH, then it can move freely, which adds

log V , where V is the volume of the space, to the entropy. Unless we introduce a cutoff artificially,

V is infinite. Therefore, the radiation comes out after long time. Note that the time scale for

the evaporation, e+N , is smaller than the recurrence time e+N
2

of the black hole and hence it is

physically meaningful.

8In the case of nonzero angular momentum, this symmetry is reduced to a rotational symmetry.
9This can be thought of as un-Higgsing since the gauge symmetry is enhanced from U(N1)×U(N2)→ U(N1+N2).
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In fact this scenario must be made a little bit more precise, because the flat direction is very

narrow in the classical matrix model. Indeed, as we show in Appendix B, the distribution of

the largest eigenvalue r of R ≡
√∑

M X2
M , which can be regarded as the radial coordinate of

the emitted D0-brane, behaves as ρ(r) ∼ (λT )−1/4 · [r/(λT )1/4]−8(2N−3). Therefore, no mater

how large of a value it rolls to it always comes back, unless the initial condition is infinitely fine-

tuned. (This suppression is the quantitative version of the suppression factor ∼ e−N mentioned

above). This behavior is tied to the breakdown of the classical treatment of the matrix model

at large r. The classical treatment is only valid at sufficiently high energy, or equivalently, at

high temperature. Here ‘high temperature’ means that the temperature T times the Boltzmann

constant is higher than the energy quanta, typically characterized by the mass of the open strings

between D0-branes, so that a lot of open strings are excited. When the eigenvalues are separated,

however, the open strings become heavier and this condition breaks down, so that quantum

effects become important. When the distance is long enough, the one-loop calculation becomes

valid and then one can show that the attractive and repulsive forces between separated D0-branes

cancel. The cancellation comes from bosonic and fermionic degrees of freedom of the matrix

model; this includes the zero-point energy contributions. This cancellation is not captured by the

purely classical model which explains the return of the eigenvalue. Hence, it would make sense

to adopt a crude approximation: once one of the D0-branes travels far enough away from the

others the interaction is turned off. This crude approximation is already good enough to realize

the evaporation.

The same entropy argument applies to type IIA region as well, with a similar emission rate

∼ e−N , because the N -dependence is the same. (The dependence on the temperature and coupling

can change.)

4.2 A black hole heats up as it evaporates

In this section we show that the black hole described in the matrix model has negative specific

heat, in the sense that the temperature of the black hole goes up when a D0-brane is emitted.

For this purpose, we consider the matrix configurations corresponding to one black hole XBH

and ‘black hole + D0’ XBH+D0. The former is fully noncommutative, while the latter has a

block-diagonal structure

XBH+D0 =

(
X ′ 0

0 xD0

)
, (6)

where X ′ is an (N − 1)× (N − 1) fully noncommutative matrix. This is a special case of the ‘two-

black hole configuration’ in (5). We can consider various processes: a merger of two black holes to

a single black hole, X2BH → XBH; growth of a black hole by absorption of a D0-brane, XBH+D0 →
XBH; and the time-reversed process, emission of a D0-brane from a black hole, XBH → XBH+D0.

This process of emission can be thought of as Higgsing the gauge symmetry, as the gauge group

goes from U(N) → U(N − 1) × U(1). In the matrix model, the energy of the entire system is

7



conserved, and hence10

EXBH
= EX′ + ED0. (7)

4.2.1 High-temperature region

Let us consider the high temperature region, where the classical approximation is valid. There,

by equipartition, the energy of the noncommutative block is the temperature times the number

of degrees of freedom. Hence energy conservation (7) leads to 11

cN2T = c(N − 1)2T ′ + ED0, (8)

where c = 6 is a numerical factor obtained by counting the number of degrees of freedom and

using the virial theorem (see e.g. Eq. 6 in Ref. [40])12. In the limit we are considering, T , T ′ and

ED0 are O(N0).13,14 Then,

T =

(
1− 1

N

)2

T ′ +
ED0

cN2
= T ′ − 2

N
T ′ +

T ′ + c−1ED0

N2
, (9)

and hence

T < T ′ '
(

1 +
2

N

)
T. (10)

The details of the energy spectrum of the emitted D0 does not affect the temperature of the

black hole; the energy per degree of freedom increases because the number of degrees of freedom

decreases dynamically.

4.2.2 Low-temperature region

Next let us consider the low-temperature region, where the dual type IIA calculation [5] is

justified. For a single-black hole configuration, the energy is given by15

EXBH
= c′λ−3/5T 14/5N2, (11)

where c′ ' 7.4 is a numerical factor calculable by using the dual gravity prescription.

10Here we assume eigenvalues of X ′ and xD0 are sufficiently separated in R9, so that the contribution from the

off-diagonal blocks is negligible including the quantum correction.
11Here we ignored the motion of the center of mass of the black hole. This treatment is parametrically good when

N is large, because it gives only a negligible correction to EX′ when ED0 is of order N0. Note that we assume the

center of mass of entire system is at rest.
12c = 6 is the large N value. At finite N there is a correction of O(1/N2) which gives c = 6− 33

N2 . This is further

explained in Appendix A. This correction does not change our argument in the large N limit.
13Here we did not count the rest-mass energy, because the gauge theory describes the excitation above zero

temperature.
14Note that ED0 can become as large as O(N) or O(N2) in principle, but such extreme configurations should be

suppressed entropically, because the entropy of the black hole becomes smaller as the energy carried away by the

emitted D0-brane becomes larger. We thank Y. Hyakutake for a discussion concerning this point.
15Strictly speaking, this relation, which is derived for the canonical ensemble, is applicable to the current case

only at large N . Here we assume N is sufficiently large.
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When one D0-brane is emitted, the remaining black hole is described by U(N−1) gauge group.

Then the ’t Hooft coupling should be modified to

λ′ = g2YM (N − 1) =
N − 1

N
λ. (12)

Because D0-branes went infinitely far from the black hole by assumption, we can relate the energy

and temperature of the black hole by using the formula for a single black hole as16

EX′ = c′λ′−3/5T ′14/5(N − 1)2. (13)

Therefore from the energy conservation (7) we obtain

T 14/5 = T ′14/5
(

1− 1

N

)7/5

+
λ3/5ED0

c′N2
, (14)

and hence

T < T ′ '
(

1 +
1

2N

)
T, (15)

regardless of the exact value of the energy of the emitted D0-brane. Again in this case, the black

hole heats up.

4.3 Lyapunov exponent and Kolmogorov-Sinai entropy

Because the time scale for the D0-brane emission ∼ e+N is much larger than the scrambling

time ∼ logN (see e.g. Refs. [40, 41, 42, 43, 44]), the Lyapunov exponent can make sense despite

the instability. The largest Lyapunov exponent of a black hole state is proportional to T in the

IIA-string region [42, 43, 44] and T 1/4 at high-temperature [40], up to corrections of order 1/N2.

Therefore it increases as the D0-brane is emitted and the temperature goes up.

The Kolmogorov-Sinai (KS) entropy, which is given by the sum of all positive Lyapunov

exponents17, is a better quantity to characterize the strength of the chaos. At high temperature,

the KS entropy of the N × N matrix configurations is proportional to N2T 1/4 [40]. After the

emission of a D0-brane, it becomes (N −1)2(T +∆T )1/4. Here ∆T ' 2T
N , and hence (N −1)2(T +

∆T )1/4 '
(
N2 − 3N

2

)
T 1/4 < N2T 1/4. Hence the KS entropy decreases. The point here is that

the growth of each Lyapunov exponent cannot overcome the decrease of the number of degrees

of freedom. Note that perturbation of the off-diagonal elements does not lead to chaos, because

off-diagonal elements behave as harmonic oscillators when the separation is large.

At low temperature, although the full Lyapunov spectrum has not been calculated, it is reason-

able to assume that the spectrum is degenerate in the supergravity limit (T → 0), because other-

wise a nontrivial correction should appear in the out-of-time-order correlation function [42, 43, 44].

Then the KS entropy is proportional to N2T . After emitting a D0, it changes to (N−1)2(T+∆T ),

where ∆T ' T
2N , and hence (N − 1)2(T + ∆T ) '

(
N2 − 3N

2

)
T < N2T . Again, the KS entropy

decreases.
16Again, we ignored the motion of the center of mass of the black hole. This treatment is parametrically good

when N is large.
17Precise mathematical definition of the KS entropy in quantum theory is a subtle issue. Here we assume that

the equality which holds at classical region is valid in quantum region as well.
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We can repeat essentially the same calculation for a merger of black holes, such as X2BH →
XBH . There, the KS entropy after the merger is larger than the sum of the KS entropies of two

black holes before the merger. Therefore, if we use the KS entropy as a measure of the speed of

the scrambling, a bigger black hole is a faster scrambler.

4.4 A possible geometric interpretation of the eigenvalue distribution

It is important to understand how the geometry of the gravitational theory is encoded in the

matrices. In the previous sections, we showed that the D0-branes can be emitted from the black

zero-brane, once they reach the point where the flat direction opens up. On the gravity side, it

seems that particles escape at this distance. It reminds us of the tunneling picture of the Hawking

radiation [45]. Hence it would be reasonable to identify this point (where the flat direction opens

up) with the horizon18 (Fig. 1). In this interpretation, the bunch of D0-branes and open strings

are sitting behind the horizon, and there the notion of the ‘coordinate’ of the D0-brane is obscure.

It may then be possible to interpret the central bunch as the singularity resolved by the stringy

effects.

Figure 1: A possible geometric interpretation of the eigenvalue distribution.

5 M-theory region and massless Hawking radiation

So far we have considered the parameter region near the ’t Hooft large N limit, where g2YM ∼
1/N , in the microcanonical ensemble. There, the mass of D0-branes are 1/gs ∼ 1/g2YM ∼ N . Due

to this the emission of massless particles cannot be described by the dynamics of eigenvalues, and

the emission of D0-branes are suppressed exponentially, e−1/g
2
Y M ∼ e−N . At sufficiently large N ,

the single black hole configuration is rather stable and it makes sense to restrict the path integral

18This distance might be anywhere in the near horizon zone.
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there; or in other words, the canonical ensemble can reasonably be restricted to single black hole

states. Then the specific heat in the canonical ensemble, for single black hole configurations, is

positive. This is consistent with the dual gravity prediction—the black zero-brane has a positive

specific heat in the canonical ensemble, when the emission of D0-brane is ignored. If we measure

the mass of the meta-stable bound state in the Monte Carlo simulation of the imaginary time

theory, single black hole states should give the dominant contribution—consistent with previous

simulation results [13, 14, 15, 16, 19].

In this section, we consider the M-theory limit: g2YM & O(N0) and T fixed. The Schwarzschild

black hole in M-theory behaves rather differently from the black zero-brane. It emits massless

particles, the radiation rate is suppressed only by a power of the black hole mass, and the specific

heat in the canonical ensemble is negative. Still, these properties might be described by the matrix

model as follows.

Firstly, because g2YM & O(N0), the mass of a D0-brane ∼ 1/g2YM does not increase with

N any more, and hence the emission of massless particles can be described by the dynamics of

eigenvalues. The suppression factor e−1/g
2
Y M becomes of order one, which means the emission is not

suppressed much. This is consistent with the fact that the radiation rate from the Schwarzschild

BH is suppressed only by a negative power of the mass.

Furthermore, because the instability is rather large, it would not make sense to distinguish

single black hole configurations with others very sharply – if an eigenvalue can easily fluctuate to

large distance from the bunch of other eigenvalues, how can we demarcate the border between

‘inside’ and ‘outside’ the bunch? So, when we try to pick single black hole configurations in

the canonical ensemble (for example by putting it in a box or selecting meta-stable single-bunch

configurations in the Monte Carlo simulation), other states (e.g. something between “a single

black hole” and “a single black hole plus radiation”) can mix into the ensemble. Those other

states typically have lower energy than “a single black hole”, because they have fewer degrees of

freedom,19 and hence lower the energy expectation value of the whole ensemble.

In a previous Monte-Carlo study of the imaginary time theory [20], it has been observed that

the instability is severe at a N -dependent interval (TN,L, TN,H), where TN,L increases with N

and TN,H decreases with N .20 This suggests that if we increase the temperature in the M-theory

region (at very low temperature, below TN,L) the instability increases. Then “other” states can

contribute more, and the energy would go down as temperature increases. It would be possible

to explain the negative specific heat of the Schwarzschild black hole in the canonical ensemble in

this manner.

6 A phenomenological model for a real-time numerical simulation

As we have seen, the BFSS matrix model describes the evaporation of a black hole to some

extent already at the level of the classical equations of motion. In order for the ‘evaporation’

to take place, the chaos and the flat direction are the keys, and other details do not matter. In

principle, the flat direction can be correctly treated by taking into account the quantum correction

19As an extreme example, the sparse gas of D0-branes has only O(N) degrees of freedom, and hence the energy

of the gas state should be suppressed when compared to a single-BH state by a factor of N .
20That smaller N is less stable should be justified by the entropy argument. The stability at lower T is related

to the attraction coming from the diagonal element of fermionic zero modes [46].
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order by order. Here, as a phenomenological treatment, let us turn-off the interaction between an

emitted D0-brane and the black hole (bunch of other D0-branes) once the emitted D0 goes beyond

a threshold (Fig. 2).

Figure 2: A phenomenological model of the black zero-brane / Black Hole.

One way to achieve this is to take the basis in which R ≡
√
X2
M is diagonal, URU−1 =

diag(r1, r2, · · · , rN ), where r1 ≤ r2 ≤ · · · ≤ rN , and set to zero the off-diagonal elements of the N -

th row and column of UXMU
−1 when rN exceeds a cutoff value. This can be done in a covariant

manner as follows. Let f(x) be a function, which is close to 1 at x . 1 and goes to zero at x & 1,

for example f(x) = e−x
k

with a large enough integer k. (Note that it becomes a step function

when k →∞.) Then, by replacing matrices as

XM → X̃M ≡ f(R/L) ·XM · f(R/L) + (1N − f(R/L)) ·XM · (1N − f(R/L)) (16)

and

DtXM → D̃tXM ≡ f(R/L) · (DtXM ) · f(R/L) (17)

+ (1N − f(R/L)) · (DtXM ) · (1N − f(R/L))

(18)

we can turn-off the off-diagonal elements when rN > L. One may also add a very small mass

term,

m2TrX̃2
M , (19)

in order to prevent the random walk of the black hole’s center of mass. As long as m2L2 � 1, this

deformation does not prevent D0 emission. Note that this model is crude; there is an ambiguity

for a choice of the cutoff procedure, including the choice of f , and the temperature dependence of

cutoff value L is ignored here. Although this model does not necessarily capture the quantitative

12



features of the full theory, for example the details of the spectrum of the emitted particles, we can

expect that it can mimic the life of a black hole to some extent: the formation and thermalization

can take place at the classical region as in the previous studies [37, 38, 39], and then at the

later time D0-branes are emitted one by one. We hope to report the simulation results on this

phenomenological model, as well as results on more systematic approximations of the BFSS matrix

model, in future publications.

7 Conclusion and discussion

In this paper we illustrated how the evaporation of a black hole can be described by the matrix

model of M-theory. We considered a property in the ’t Hooft large N limit, which is dual to type

IIA superstring theory, and pointed out that the combination of chaos and flat directions can

lead to the evaporation of the black zero-brane. A generic property of the matrix models—the

dynamical change of the number of degrees of freedom—causes the black zero-brane to become

hotter as it evaporates by emitting D0-branes. We have also seen that the largest Lyapunov

exponent increases during the evaporation, while the Kolmogorov-Sinai entropy decreases. Based

on these results, we gave a few speculations in Sec. 5 and Sec. 6.

Rather surprisingly, the classical dynamics already contains all the essence of black hole evap-

oration, modulo the subtlety that the flat direction is not sufficiently wide. This problem can be

cured by including a one-loop quantum correction. Therefore, it should be possible to gain useful

insight into the Hawking radiation by starting with the classical theory and adding the quantum

effects order by order in the coupling constant. The first and very important step would be the

numerical confirmation of the thermal spectrum.
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A Number of dynamical degrees of freedom in classical matrix

model

In this appendix we explain how to obtain the number of degrees of freedom in the classical

theory explicitly.

Consider a matrix model with d matrices X1, X2, · · · , Xd, each containing N2 real degrees of

freedom. Firstly let us assume N2 is greater than d. We should subtract the number of constraints

from these dN2 matrix elements in order to determine the number of degrees of freedom. Taking

into account the Gauss law constraint and the residual gauge symmetry, we should subtract N2−1.

Also we should take into account the conservation of momentum TrVM and angular momentum

Tr(XMVM ′ − XM ′VM ), which further subtracts d and d(d−1)
2 respectfully, from the number of

elements. Then the number of degrees of freedom is (d− 1)
(
N2 − 1− d

2

)
.

When d ≥ N2, the situation becomes a little bit more complicated. The model describes mo-

tion of N D0-branes and N(N −1) open strings in d-dimensional space, by using d “coordinates.”

Therefore, when d ≥ N2, there must arise constraints to preserve the fact the d “coordinates” are

still describing a theory of N2 − 1 matrices.

B D0-brane distribution in classical matrix model

We consider a classical d-matrix model described by the Lagrangian

L =
1

2g2YM
Tr

∑
i

(DtXi)
2 +

1

2

∑
i 6=j

[Xi, Xj ]
2

 , (20)

where X1, · · · , Xd are N ×N traceless Hermitian matrices. In Ref. [40], a theoretical prediction

on the distribution of the largest eigenvalue r of R ≡
√∑

M X2
M in the A = 0 gauge, for generic

values of d and N , is given. Here we review the argument in Ref. [40] and confirm the prediction

by numerical calculation.

Suppose R ' diag(0, 0, · · · , r). Then, by using SO(d), we can take

XM = diag(0, 0, · · · , 0) + small fluctuation (M = 1, 2, · · · , d− 1),

Xd = diag(0, 0, · · · , 0, r) + small fluctuation. (21)

When r is sufficiently large, the potential energy coming from open strings (i.e. N -th row and

column) can be approximated by N
λ

∑d−1
M=1

∑N−1
i=1 r2|XM

Ni|2. Because this must be smaller than

the total energy, we have

d−1∑
M=1

N−1∑
i=1

|XM
Ni|2 <

λE

Nr2
∼ λNT

r2
. (22)

This is actually a very loose bound, though it is sufficient to show the absence of a flat direction.

Equation (22) can actually be replaced by

d−1∑
M=1

N−1∑
i=1

|XM
Ni|2 <

(λE/N)

Nr2
∼ λT

r2
, (23)
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because typically O(N) d.o.f. can carry only O(N) energy. More precisely speaking, configurations

with larger energy are entropically suppressed.

Because of this, phase space volume at [r, r + dr] has a suppression factor

dr · rd−1
(

1

r2

)(d−1)(N−1)
, (24)

where rd−1 comes from the SO(d) angular degrees of freedom. Except for d = 2, N = 2, the

integral with respect to r converges, and hence the large r region is suppressed; the possibility

that r becomes larger than R is suppressed by R−(d−1)(2N−3)+1. The temperature dependence

appears only through the combination λT , and can be determined by dimensional analysis to be

ρ(r) ∼ (λT )−1/4 ·
(

r

(λT )1/4

)−(d−1)(2N−3)
. (25)

Because of this suppression, the phase space has a finite volume except for d = 2, N = 2.21

Two remarks are in order here. Firstly, the remaining bunch of N − 1 D0-branes considered

above is more stable at larger N . When N is too small, the bunch can become unstable and more

D0-branes will escape from the bunch, and then the above estimate may change. We can expect

the estimate becomes parametrically good at large N . (N = 2 is the exception, because the

remaining “bunch” is already one D0-brane, which does not have further instability.) Secondly,

when d ≥ N2, XM with M ≥ N2 are not independent, and hence the counting changes, as we

have seen in Appendix A.

In order to test this analytic estimate, we have performed a numerical analysis, using the

discretization method employed in Refs. [39, 40]. The tail of the distribution of r can be fit by a

power law r−cN,d . In Fig. 3, the ratios cN,d/(2N −3) are plotted for various N and d which satisfy

d < N2. The values agree well with d− 1, except for N = 3. As we have explained above, a large

deviation at N = 3 is not surprising. In Fig. 4, ρ(r) is plotted for N = 2, d = 3, 4, 6, 9. They are

all consistent with c2,d = c2,3 = 2. This should be related to the fact that N = 2, d > 3 theories

are equivalent to a three-matrix model. We also found c3,8 = 17.2±0.5 and c3,9 = 17.2±0.2 to be

compatible. However, that value does not agree with (2 · 3− 3)(8− 1) = 21, presumably because

of a possible 1/N -correction explained above.

21A similar argument has been applied to the zero-dimensional matrix model, in order to show the finiteness of

the partition function [47].
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Figure 3: The observed numerical value of cN,d/(2N − 3) as a function of N , for several values

of N and d. Thin black lines indicate where cN,d = (d − 1)(2N − 3) as in (25). We fit a line

to every span of points to the right of the maximum of the corresponding numerical distribution

and constructed a weighted histogram according to goodness of fit. The best values correspond

to the maximum of that histogram, while the error bars were determined by finding where that

histogram fell by a factor of e to either side.

Figure 4: The observed numerical distribution as a function of r for N = 2, d = 3, 4, 6, 9. The

powers c2,d take the same values within error. We divide by d simply to visually offset the different

distributions from one another.
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