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N = 1 SU(N) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the
circle size L. Making L small leads to calculable non-perturbative color confinement, mass gap, and
string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional
effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in
terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string
theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding
of the gauge field holonomy, which takes values in ZN . Furthermore, the low-energy description is
given by a non-trivial gapless theory, with a space-like z = 2 Lifshitz scale invariance and operators
that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave
the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z = 1, and lead
to an emergent Lorentz symmetry at small L. Adding a small number of fundamental fermion fields
leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.

Introduction and summary. In this paper we
explore the large-N dynamics of pure SU(N) N = 1
super-Yang-Mills (SYM) theory, a close cousin of Yang-
Mills theory and QCD. When compactified on R3 × S1
with periodic boundary conditions for fermions, this the-
ory has the beautiful feature that color confinement, the
mass gap, string tensions, and chiral symmetry breaking
can be studied analytically using semi-classical methods
[1–7]. The calculable regime is obtained if η = LNΛ is
small, where Λ is the strong scale. We thus study the
large N limit with η � 1 held fixed.

Usually, if a 4D theory with a mass gap lives on a cir-
cle, and the circle-dependence is smooth, the low-energy
dynamics for small L is described by a 3D effective field
theory (EFT) with a gap. This is certainly the case for
order-one values of N for N = 1 SYM. At large N and
small η, however, we find two surprising features. First,
the long-distance physics is described by a 4D EFT. The
fourth dimension emerges from the non-perturbative dy-
namics, via a mechanism different from e.g. [8]. Its size L̃
is parametrically larger than both the circle size and the
inverse strong scale: L̃ = LN2/η3 = N/(Λη2), and its
emergence resembles T -duality in string theory, at least
superficially. Second, the light glueball masses become
parametrically separated by N2η−3/2 from the scale of
the 3D string tension, and at large N the 4D “infrared
dual” theory becomes a generically non-trivial gapless
theory, with a spatial z = 2 Lifshitz scaling symmetry.

We also study some supersymmetry-breaking deforma-
tions ofN = 1 SYM, such as the addition of a gluino mass
term or extra adjoint and fundamental fermion fields.
The resulting theories are in the universality class of YM
theory and QCD. The surprising phenomena we found in
SYM theory survive these deformations, with some in-
teresting modifications. A gluino mass term changes the
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Lifshitz parameter z of the low-energy theory from z = 2
to z = 1. Adding Nf � N fundamental fermions leads
to fields living on 3D branes in the emergent 4D bulk.

Phase structure and weak coupling. We now re-
view some standard features of SYM theory. Readers
interested in our main results may proceed to Eq. (2).

It is believed that N = 1 SYM compactified on R3×S1
has a smooth dependence on the circle size L so long as
fermions have periodic boundary conditions on S1. In-
deed, at small L the theory becomes weakly coupled, and
one finds[1–3] a Wilson loop tr Σ = trPei

∫
S1 A3 expecta-

tion value 〈Σ〉 ∼ diag(1, ω, . . . , ωN−1), ω ≡ e2πi/N . This
means that 〈tr Σn〉 = 0,∀n < N , signalling the preserva-
tion of the ZN center symmetry and confinement even at
small L, as expected from continuity in L. It can also be
checked that 〈ψψ〉 6= 0 at small L, so that the discrete
chiral symmetry is spontaneously broken, Z2N → Z2,
also as expected from continuity.

Thanks to the small-L form of Σ, we find 〈A3〉 6= 0,
leading to a compact adjoint Higgs mechanism breaking
the gauge group SU(N) → U(1)N−1. So, at low en-
ergies compared to the lightest W -boson mass, mW ≡
2π/(NL), the physics is described by an Abelian theory.
This is the reason why the small-η physics is weakly cou-
pled: all charged matter is at least as heavy as mW , and
the ’t Hooft coupling λ ≡ g2N stops running at the scale
mW � Λ, giving the weak-coupling condition η � 1.

The key point is that staying in the weak-coupling
regime while making N large requires an unusual scaling
for the circle size, L ∼ Λ−1/N . The physical reason such
small values of L are needed is that, for any L ∼ O(N0),
N = 1 SYM theory [9, 10] enjoys large-N volume inde-
pendence [11] and hence is strongly coupled.

Small-L effective field theory. When L is small
and η � 1, the long-distance physics can be described
by fields which carry zero momentum on S1. Further-
more, the fields that do not get a mass from the ad-
joint Higgs mechanism are the Cartan 3D gluons Fµνk
(k = 1, . . . , N − 1, µ, ν = 0, 1, 2), Cartan gluinos ψαk
(α = 1, 2), and Cartan scalars φk, from fluctuations of
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A3 (or Σ). These fields have gauge-invariant representa-
tions such as

Fµνk = 1
N

N−1∑
p=0

ω−kptr (ΣpFµν) , (1)

so that the “Cartan” index k can be interpreted as the
discrete Fourier transform of the winding number for the
holonomy Σ. So even though the fields Fµνk , ψαk , φk carry
no S1 momentum, they do carry information about the
winding modes on S1. The fields Fµνk , ψαk , φk all sit within
a single supermultiplet, and are the fields that appear in
the long-distance `� m−1W EFT.

We will work with the Abelian dual representation of
the gluons F kµν = g2/(2πL)εµνα∂

ασk, and take an N -
component basis for the co-root vectors ~α∗i of the su(N)
algebra satisfying ~α∗i ·~e0 = 0,∀i with ~e0 ≡ (1, 1, 1, . . . , 1).

We package the fields into N -component ~σ, ~φ, ~ψ vectors,
whose e.g. ~σ ·~e0 components are unphysical. For brevity,

we focus on the ~σ-field Lagrangian, omitting the ~φ and ~ψ
fields in Eqs. (2)-(4); the full superspace expressions are
in [6].

In perturbation theory, ~σ has a shift symmetry coming
from the current conservation law due to the absence of
color-magnetic monopoles. Its action can be written as
Sσ =

∫
d3xλmW (∂µ~σ)2.

Non-perturbatively, the R3 × S1-compactified SYM
theory has N types of BPS monopole-instanton con-
figurations [12, 13], with (magnetic, topological) charges
± (~α∗i , 1/N), where i=1,...N , and ~α∗N denotes the affine
(lowest) co-root. Their actions are S0 = SI/N , where
SI = 8π2/g2 is the action of the BPST instanton with
charge ±(0, 1). In the absence of a gaugino mass,
each monopole-instanton carries two fermion zero modes.
Thus, even though monopole-instantons carry magnetic
charge, they cannot directly generate a potential for ~σ;
instead, they generate a superpotential [14]. The super-
potential can be used to deduce the form of the potential
for ~σ[1, 2, 15]. One can also compute the ~σ potential di-
rectly, which reveals that it arises from non-BPS “molec-
ular” events called “magnetic bions” [3], with charges
±(~α∗i − ~α∗i+1(modN), 0) and action 2S0.

Taking all this into account, to leading non-trivial or-
der in the semi-classical expansion, the action for ~σ is

Sσ =

∫
d3x

{
λmW (∂µ~σ)2

+m3
W e
−2S0

N−1∑
i=0

sin2

[
1

2
(~α∗i(modN) − ~α

∗
i+1) · ~σ

]}
. (2)

Equation (2) contains a lot of physics [3]. The fact that
the ~σ potential is non-vanishing implies that at finite N
the theory has a non-perturbative mass gap roughly of
order mW e

−S0 ∼ Λ η2; the latter form follows from the
one-loop relation 8π2/λ(µ) = 3 log(µ/Λ).

Emergent extra dimension. We now discuss the
quadratic actions for σ, φ, λ around one of the N ground

states more carefully, with a focus on the N -dependence.
The 3D EFT has N chiral symmetry breaking vacua

〈~σ〉 = 2πk~ρ
N , where k = 0, 1, . . . , N − 1, ~ρ =

∑N−1
a=1 ~wa

is the Weyl vector, and ~wa are the fundamental weights,
obeying ~α∗a · ~wb = δab. Expanding around any given vac-
uum 〈~σ〉, we find the same quadratic action

Sσ =

∫
d3x

N∑
i=1

{
(∂µσ̃i)

2 +
M2

16
(2σ̃i − σ̃i−1 − σ̃i+1)2

}
,

(3)

where σ̃ represents fluctuations around 〈~σ〉, and we used
the identity (~α∗i − ~α∗i+1) · ~σ = 2σi − σi−1 − σi+1, with
all indices (mod N). So our results below apply to all
N chiral-symmetry-breaking vacua. Omitting factors of
order unity and non-exponential dependence on λ, the
mass scale M is of order

a−1 := M ∼ mW e
−S0 ∼ Λ η2 (4)

where the the “lattice spacing” a = 1/M has been
defined for future use. Parallel results hold for the
quadratic actions for φ and ψ. The quadratic ac-
tion, with all superpartners included, can be diagonal-
ized by a discrete Fourier transform, {Fp, Sp,Ψp} =

N−1/2
∑N
n=1 ω

np{φ̃n, σ̃n, ψ̃n} leading to

SEFT =

∫
d3x

N∑
p=1

{
|∂µΦp|2 +M2 sin4

(πp
N

)
|Φp|2

+ Ψ̄p/∂Ψp +
M

2
sin2

(πp
N

)
(ΨN−pΨp + h.c.)

}
, (5)

where Φp = Fp + iSp. Neglecting the fictitious p = N
modes, the EFT spectrum is

mp = M sin2
(πp
N

)
, p = 1, · · · , N − 1. (6)

This spectrum somewhat resembles the spectrum of some
integrable 2D field theories[16]. A physical interpretation
of the index p is given below in a discussion of T-duality.

The large-N limit of the expressions above contains
surprises. First, the mass gap vanishes at large N , since
the lightest mode has mass m1 ∼ Λη2/N2. Second, the
states in Eq. (6) with p ∼ N0 are quadratically-spaced,
mp ∼ m1p

2. Indeed, we recognize Eq. (3) as the position-
space action for a four-dimensional field theory with one
circular spatial direction, whose coordinate we shall de-
note by ‘y’, discretized on a lattice of spacing a = 1/M ,

and size L̃ = aN . Equation (5) is the momentum-space
action with superpartners restored. (Note in passing that
there is no fermion doubling here.)

Thus, on large distances `� a the low-energy effective
theory turns into a continuum 4D theory for the fields
Φ and Ψ. The emergent dimension is compactified on a
circle of size L̃ = aN , and so looks non-compact on scales
` ∼ O(N0)a. Indeed, L̃ is parametrically large compared
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to both the physical circle size L and the inverse strong
coupling scale Λ−1: L̃/L ∼ N2η−3, L̃Λ = Nη−2.

To write the continuum L̃ � ` � a limit, one might
naively try to scale lengths, times, and fields according to
the canonical 4D scaling dimensions, and replace e.g. dif-
ference operators with derivatives as usual. This gives
continuum 4D fields Φ′ and Ψ′ with kinetic terms of the
form a2|∂2yΦ′|2 and aΨ′∂2yΨ′, which look technically ir-
relevant. However, this isotropic assignment of scaling
dimensions is only natural in Lorentz-invariant 4D the-
ories. But we broke Lorentz invariance by compactify-
ing SYM, and our emergent 4D theory is clearly not 4D
Lorentz-invariant. Instead, the low-energy theory enjoys
an anisotropic “spatial Lifshitz” scale invariance[17]

x0,1,2 → Ω x0,1,2, y → Ω1/z y
Φ→ Ω−(1+1/z)/2 Φ, Ψ→ Ω−(2+1/z)/2 Ψ ,

(7)

with z = 2. With appropriately rescaled coordinates
and fields, the Lifshitz-scale-invariant continuum limit
can thus be written as

S =

∫
d3x dy{|∂µΦ|2+|∂2yΦ|2+Ψ̄/∂Ψ+ 1

2 (Ψ∂2yΨ+h.c.)}. (8)

This is one of our key results. Higher order terms from
the expansion of Eq. (2) are irrelevant under the z = 2
Lifshitz scaling. Thus the long-distance large-N theory
is free to leading order in η � 1. The gapless continuum
theory of Eq. (8) describes the physics on length scales
` ∼ O(N0) satisfying `� a when η � 1.

Symmetries and corrections. Equation (2), which
led to Equation (8), contains only the leading terms in
the η � 1 semi-classical expansion. We now argue that
higher-order corrections cannot produce a large-N mass
gap. The possibility of describing the infrared (IR) fixed
point in terms of a scale-invariant local free-field theory,
as in Eq. (8), turns out to be tied to the symmetries of
the long distance theory, along with the weak coupling
limit η � 1. Our central observations also apply to non-
supersymmetric theories.

First, consider the mass gap. Due to charge quan-
tization, ~σ is a compact variable living in the unit cell
generated by the N − 1 fundamental weights ~wk of
su(N). Thus the effective action must be periodic un-
der ~σ → ~σ + 2π ~wk, ∀k, and the ~σ potential must be a
function of ei~α

∗
i ·~σ, since ~α∗i · ~wj = δij . Further, the action

must be invariant under the ZN center symmetry, acting
[18] as σi → σi+1(mod N), or as ~α∗i · ~σ → ~α∗i+1(mod N) · ~σ.

Finally, the ZN subgroup of the discrete chiral symme-
try acts ei~α

∗
i ·~σ → ei

2π
N ei~α

∗
i ·~σ. These chiral shifts become

continuous at N = ∞, but domain wall tensions stay
large[19] and there is no light η′ mode.

Remarkably, the ~σ-periodicity condition, together with
~α∗i · ~σ = σi − σi+1, implies that corrections to the ~σ
potential can only ever produce terms which look like
discretized derivatives in the y-coordinate. The role of
large N is to allow a continuum limit in which the the-
ory acts as if it lives on a large circle of size L̃ ∼ N .

Thus the lowest emergent KK momentum goes to zero

with N . At the same time, a mass term
∫
d3x

∑N
i=1 σ

2
i ∼∫

d3x dyΦ†Φ, can never be generated either perturba-
tively or non-perturbatively in η, or perturbatively or
non-perturbatively in the 1/N expansion. The micro-
scopic reason for this is that such a mass term is forbidden
by the discrete gauge symmetry which imposes compact-
ness of the ~σ variable. So, in the domain smoothly con-
nected to η → 0, that is, for some range η ∈ (0, ηc > 0),
our results imply that no mass gap can be generated at
largeN . It is important to note that the arguments above
are completely independent of supersymmetry: they hold
so long as center symmetry is preserved.

Next, consider the scale invariance and locality of the
action Eq. (8). In a scale-invariant theory, the availability
of a local Lagrangian description is tied to whether the
theory is free. We now show that the IR fixed point
becomes free as η → 0, but is in general non-trivial.

First, note that no local (in y) Lifshitz-breaking inter-
actions, such as (∂yΦ)2, can be induced either pertur-
batively or nonperturbatively. This is due to massless-
ness of the gauginos and the consequent discrete ZN chi-
ral symmetry, which forbids monopole-instantons from
directly generating a bosonic potential. (The discrete
chiral symmetry, along with Lifshitz scaling, is broken
when a SUSY breaking mass is added, see further dis-
cussion below.) One may worry that the chiral and cen-
ter symmetries would permit nonlocal in y terms like

Re
∑
k e

i~α∗
k·~σe−i~α

∗
k+N/2·~σ, but such terms do not arise at

small η. In SYM, potential terms come from the super-
potential, determined by symmetries and holomorphy to
be

W = Λ2 η ei
2πk
N

N∑
l=1

e~α
∗
l · ~X , (9)

where ~X is a chiral superfield whose lowest component is
~φ + i~σ. (This is the superpotential from [1, 2], but with
~X defined with its expectation value in the kth vacuum

subtracted, so that (∂W/∂ ~X)| ~X=0 = 0.) The superpo-
tential Eq. (9) is not renormalized and, with the canon-

ical Kähler potential K ∼ ~X† · ~X, gives rise to Eq. (2).
Expanding Eq. (9) to quadratic order in the fields allows
us to cast W as an integral over the extra dimension

W ∼ Λ2 η ei
2πk
N

N∑
i=1

(∇+X
i)2 → Λei

2πk
N

η

∫
dy (∂yX)2 , (10)

where ∇+X
i = Xi+1−Xi and we took the same contin-

uum limit that led to Eq. (8).
As usual, none of the symmetries forbid the generation

of a non-trivial Kähler potential, which has the effect of
changing the 3D kinetic terms for ~σ from

∑
i(∂µσi)

2 →∑
i,j G

−1
ij ∂µσ

i∂µσj . The inverse Kähler metric Gij is de-
termined by the moduli space metric of the electric the-
ory after a linear-chiral duality transformation [6]; at the
center symmetric point, it is a function of η and N only.
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The leading-order correction to the flat Kähler metric
comes from threshold corrections due to loops of e.g. mas-
sive W -bosons. The explicit calculation [6] shows that
the large N form of Gij is

Gij = δij
1

c λ
+

1− δij
|i− j|

, (11)

where c = 3/16π2 and λ is the ’t Hooft coupling at the
scale mW = 2π/LN . The continuum-limit two-point
function of the field Φ then becomes∫
d4x eipMx

M

〈Φ†(xM )Φ(0)〉∼ 1

p2cλy

(
p2µ + p

4[1−cλ]
y

) , (12)

where M = 0, 1, 2, y. This amounts to an L-dependent
anomalous dimension for the Φ field, because λ ∼
1/ log(1/η). So N = 1 SYM on R × S1 flows to a four-
dimensional non-trivial scale-invariant fixed point in the
IR at large N within the regime smoothly connected to
η ∼ 0. The IR fixed point develops a local free-field rep-
resentation as η → 0, where the scale symmetry is the
z = 2 Lifshitz invariance of Eq. (8).

String theory versus gauge theory. Confining
gauge theories with adjoint matter are believed to be
weakly-coupled closed string theories with gs ∼ 1/N in
the usual large N limit. In contrast, here we study a
large N limit with small η, where the gauge theory itself
is weakly coupled. Thus any dual string description it
may have is bound to be quite distinct from e.g. the stan-
dard gauge-gravity duality[20]. Nevertheless, our theory
has several tantalizing features that make a string theory
connection worthy of a further look.

String theory on a small circle L is usually equivalent
to another string theory on an ‘emergent’ large circle L̃,
with LL̃ ∼ α′, where α′ is the inverse string tension.
Here, we study a gauge theory on a tiny circle L, where
it continues to confine, and find that at large N it looks
like another QFT on a large circle L̃. Could this be some
shadow of T-duality? If so, at least two features ought
to be present. First, the emergent Kaluza-Klein (KK)
momentum should have an interpretation as a winding
number. Second, it should be the case that LL̃ ∼ α′

where 1/α′ is the confining string tension.
Indeed, the emergent KK momentum p in Eq. (6) is

in one-to-one correspondence to the winding number p of
the holonomy Σ from Eq. (1). To see this, note that the
discrete Fourier transform leading to Eq. (5) is the inverse
of the transform in Eq. (1). The emergent KK momen-
tum is discretized, in contrast to the T-duality story for
fundamental strings. Some insight into why this hap-
pens comes from recalling that fundamental strings have
winding numbers w taking values in Z, while gauge field
holonomy winding numbers take values in ZN . This is
because 〈 1N tr ΣN 〉 = 1 regardless of the phase of the the-
ory, since N quarks can make a colorless state, a baryon,
and widely separated baryons and anti-baryons do not
interact via a color flux tube.

Despite the pleasing resonance with T-duality intu-
ition explained above, we do not know how to under-
stand the fact that the emergent dimension is a Lifshitz
one from this perspective. The issue is that in SYM
we find the scaling (energy ∼ w2), while all the weakly-
coupled string models we are aware of give the scaling
(energy ∼ w). However, as explained in the next section,
once SUSY is broken by e.g. a gaugino mass term, we
find an emergent 4D Lorentz invariance at long distances,
corresponding to the naively expected stringy scaling of
(energy ∼ w).

We now comment on the relation of the size of the
emergent dimension to the string tension. Even at small
η, the string tension in SYM for generic N is only known
from the estimates of [3, 6, 7]. These estimates naively
suggest two different string tensions in SYM on R3 ×
S1. One of them, 1/α′3D ∼ Λ2η, is for strings stretched
along R3, and the other, 1/α′S1 ∼ Λ2η/N , is for strings
winding around the S1. The R3 strings can be made
arbitrarily long compared to their width, so the definition
of their string tension is unambiguous. Amusingly, we
indeed see that LL̃ ∼ α′3D. The proper definition of
the string tension for strings winding S1 is less obvious,
because they cannot be made arbitrarily long. Refs. [3,
6, 7] defined αS1 from the scale of the exponential in the
Polyakov-loop correlator, but how seriously one can take
this definition is not clear. Taking the definition at face
value we get LL̃ ∼ Nα′S1 , which is not what one would
expect from a T-duality picture.

To summarize the story, it is not yet obvious that there
is a sharp connection between the emergent dimension
phenomenon we have uncovered in gauge theory to T-
duality. But there are enough parallels that make the
issue is worthy of further study.

Another property which is interesting to observe is that
when η � 1 there is a large parametric separation√

1/α′3D
m1

∼ N2 η−3/2 (13)

between the light “glueball” masses and the 3D string
tension. Parametric scale separations between glue-
ball and string tensions scales are known to occur for
gauge theories with supergravity duals in AdS/CFT [20],
where the separation is governed by the strong ’t Hooft
coupling[21]. It is intriguing to see the scale separation
in a QCD-like theory, where it is controlled by the weak
’t Hooft coupling — the η−3/2 factor in Eq. (13) — along
with an N -dependent factor absent in holographic con-
structions. As will be clear below, this scale separation
also persists after SUSY-breaking deformations.

SUSY breaking and emergent Lorentz symme-
try. We now discuss the effects of supersymmetry break-

ing. Turning on a gaugino mass term
Nmψ
λ trψψ breaks

SUSY and puts the theory in the universality class of
pure YM theory. As shown in [4], for mψ . m1, see
Eq. (6), the spectra of σ, φ, and ψ become split from
each other due to the breaking of SUSY (for example,
the φ fields become lighter, since increasing mψ at fixed
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η eventually leads to a first-order center-symmetry break-
ing phase transition).

To get a confining regime for a wider range of mψ,
we add an extra periodic adjoint fermion χ, with mass
mχ, to the SYM theory with gaugino mass mψ. This
stabilizes center symmetry at small η even if mχ ∼
mψ ∼ mW [22–24]. The fermion fields and ~φ decouple at
long distances, and the long-distance EFT only contains
σi. The σi potential is now different because monopole-
instantons can directly contribute to it, because there are
no fermion zero modes with massive fermions. This gives
[22] the long distance effective action

Sσ,dYM =

∫
d3x

{
λmW (∂µ~σ)2

+m2
Wmψe

−S0

N−1∑
i=0

sin2

[
1

2
~α∗i · ~σ

]
+ · · ·

}
(14)

where · · · represents higher order semiclassical contribu-
tions. The quadratic action now includes (σi − σi+1)2,
and the spectrum takes the form m2

p ∼M∗2 sin2(πp/N),

where M ∼
√
Mmψ =: a−1∗ .

Thus, on large distances ` satisfying a∗ � ` � L̃∗,
where L̃∗ = Na∗, the EFT is now a single gapless scalar
field S propagating in four dimensions with a kinetic term
of the form (∂yS)2 rather than (a∗)

2(∂2yS)2. The natu-
ral scale invariance is the conventional z = 1 isotropic
4D scaling x0,1,2 → Ωx0,1,2, y → Ωy0,1,2. So, at long
distances, with broken SUSY the large N IR theory
becomes a gapless Lorentz-invariant 4D scalar field for
η � 1. Of course, just as in the SUSY case, we expect
W-boson loops to generate small (when η � 1) non-
Lorentz-invariant anomalous dimensions in the two-point
function of S. In any case, we see that even when SUSY
is broken, at large N the long-distance EFT is still a 4D
scale-invariant QFT.

Fundamental fermions and branes. We now con-
sider addingNf fundamental fermions toN = 1 SYM. To
keep center symmetry at small η after this deformation,
we again need to add an extra periodic massive adjoint
fermion χ with mχ . mW [4, 24]. The φk modes then
get masses mφk ∼ mW and decouple in the IR.

Suppose Nf = 1 and call the fundamental fermion
q, with boundary condition q(x3 + L) = eiαq(x3). In
the center-symmetric background with α = 0, only one
color component of q remains massless, say q1. In-
dex theorems[25, 26] imply that q1 couples to a single
monopole-instanton, so the q-part of the low-energy EFT
is, schematically,

Sq = L

∫
d3x

{
q̄1
(

/D +
iα

L

)
q1 +m−2W e−S0ei~α

∗
1 ·~σψ1ψ2q̄1q1

}
.

(15)

Here Dµ = ∂µ + igA1,µ since the quark has color-electric
charge, and α plays the role of a real mass. This 3D QED
theory coupled to a fermion q remains weakly coupled so
long as λ/N . α . 1/N .

… …

S, !q1 q2

FIG. 1. (Color online.) Emergence of branes from large N
confinement at small L with Nf = 2. At the top, the blue
dots are σi fields, green lines indicate their interactions, and
red arrows indicate fundamental fermion zero mode couplings.
On the bottom, the 4D bulk, where the fields S and Ψ propa-
gate, is in green, while two 3D branes, each carrying a flavor
of the fundamental fermions, are in red.

The main point of Eq. (15) is that fundamental
fermions do not propagate into the emergent fourth di-
mension. From the point of view of the low-energy EFT,
adding Nf fundamental fermions gives rise to matter
localized on Nf three-dimensional branes in the emer-
gent four-dimensional bulk. Flavor-dependent boundary
conditions can be used to separate the branes by di-
alling which monopole-instantons pick up the fundamen-
tal quark zero modes, as explained in [27], and the flavor
branes become coincident when the boundary conditions
are identical. We illustrate the situation in Fig. 1.

Outlook and implications. We have explored the
large N behavior of a systematically calculable regime of
confining gauge theories, defined by η = NLΛ � 1, and
found several surprises concerning N = 1 SYM theory
and some of its non-supersymmetric deformations.

First, the low-energy EFT description of SYM the-
ory on R3 × S1 becomes four-dimensional at large N ,
even though the original QFT is in the small-circle limit.
The fourth dimension is invisible in perturbation the-
ory, and is an emergent large-N consequence of the non-
perturbative confining dynamics. The second surprise
is that the field content of this EFT is gapless at large
N . Indeed, we find that within the domain of validity
of the semiclassical small-η expansion, symmetry con-
siderations imply that at large N , a mass gap for the
lightest fields σi cannot be generated either perturba-
tively or non-perturbatively. So the large N theory is
gapless for η ∈ (0, ηc) with some ηc > 0. In particular,
for small η and large N , we find that the long-distance
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dynamics of N = 1 SYM is described by a non-trivial
four-dimensional scale-invariant field theory with z = 2
Lifshitz scale invariance. This IR fixed point gets a free-
field description as η → 0, but in general the fields have
non-vanishing anomalous dimensions at the fixed point.
The scale-invariant long-distance description is valid for
distances ` which are big compared to η−2Λ−1 and small
compared to the scale Nη−2Λ−1. These surprises moti-
vate further careful lattice studies of SYM theory, along
the lines of e.g. [28].

For comparison, we note that an Abelian large-N limit
of softly-broken Seiberg-Witten (SW) theory similar to
one considered here was studied in [29]. In the infinite-
N limit, [29] also found a gapless spectrum, but with
two major differences compared to our large-N results
for SYM on R3 × S1. First, in SW theory, the spectrum
has no known local extra-dimensional interpretation, due
to the lack of an unbroken zero-form [30] center symme-
try. Second, the string tensions and mass gap vanish
simultaneously in SW theory, while in SYM the string
tensions stay finite at large N .

We now comment on the obvious questions raised by
our results:

Q1. What are the implications and origin of the extra
dimension?

Q2. Why is the long-distance theory is gapless?

Q3. Is ηc finite, for instance ηc ∼ 1, or is it infinite?

Concerning Q1, the emergence of the extra dimen-
sion clearly has consequences for e.g. the thermodynam-
ics and transport properties at large N . In SYM, for
instance, the emergence of non-trivial Lifshitz scaling
means that the thermodynamic and transport properties
will be “anomalous”, serving as an illustration of some
of the ideas in [31] in a simple context. In particular,
the thermodynamics and transport will not be that of a
typical 3D QFT even in the small S1 limit.

The conceptual origin of the extra dimension is not yet
clear. There are some striking, but at present superficial,
parallels between our story and T-duality in string the-
ory. From another perspective, in some ways our extra
dimension seems like a small-η shadow of the complete
large N volume dependence that emerges for η � 1 via a
working version of Eguchi-Kawai reduction [9, 11]. But
in other ways the story appears to be very different.

To appreciate this, first recall that in the absence of
center-symmetry-breaking phase transitions (which are
not expected in e.g. N = 1 SYM theory on a spatial
circle), large N volume independence is expected to set
in smoothly as η becomes large, and does not just emerge
suddenly at η = ∞. This is because, as shown in [32],
planar perturbation theory in a theory compactified on
e.g. S1 of size L in a ZN center-symmetric background
is identical to the planar perturbation theory of a theory
compactified on a circle of size NL. So, as long as the
large LΛ limit is smooth, and the large LΛ and large
N limits commute, which is certainly expected, volume

independence should set in smoothly as η is increased. In
particular, at large N and large η, the confining dynamics
of a theory compactified on R3× S1 conspires to make it
behave like a theory on R4. A modern discussion of such
phenomena in the context of lattice gauge theory on T 4

can be found [33].

But, in a sharp contrast to this 1980s story, in our
small-η situation, the fourth dimension emerges out of
the non-perturbative dynamics, and is invisible to any or-
der in perturbation theory. Volume-independence analo-
gies also give no insight into why the long-distance large
N theory should be gapless. Indeed, this motivates turn-
ing to Q2.

At large N , we have found that the gap is zero. The
symmetries of the microscopic theory forbid a mass term
in the long-distance EFT, so a large N mass gap cannot
arise perturbatively or non-perturbatively. But what is
the conceptual origin of the gaplessness of the IR the-
ory? On general grounds, a non-empty IR fixed point
is natural if either (a) there are no relevant operators
which could trigger a further RG flow or (b) there are
relevant operators, but they are charged under a global
symmetry of the fixed-point theory, so that one can nat-
urally set them to zero. Our theories certainly have rele-
vant operators,

∫
d3x dyΦ†Φ, or

∫
d3x dy S2 in the non-

supersymmetric cases, but they are never generated by
the microscopic dynamics. It is not obvious to us how
to interpret this in terms of the symmetries of the IR
fixed point. Understanding this better is important for
theoretical and phenomenological reasons, since there are
very few known ways to get naturally gapless IR scalars
out of interacting QFTs.

Finding a long-distance theory built from scalar fields
with irrelevant derivative interactions makes it tempting
to wonder if the gaplessness is due to the spontaneous
breaking of some continuous global symmetry. Such a
symmetry would have to emerge only at large N , since
the finite-N gauge theory certainly has a gap. (One can-
didate might have been the ZN → U(1) one-form [30]
electric center symmetry, but it is not spontaneously bro-
ken in our theory.) Whatever this large N symmetry
might be, it must survive even without supersymmetry
given our results on SUSY-breaking deformations. The
possibility that large-N confining theories might have
rich emergent symmetries has recently been emphasized
in [34].

Finally turning to Q3, we note that either a finite or an
infinite ηc would be remarkable. A finite ηc would mean
that mass gap of large N confining theories vanishes at
some circle size. Using the gap as an order parame-
ter would then imply a large-N phase transition in the
circle-size dependence of N = 1 SYM theory. This would
be striking, because then at large N a SUSY-preserving
compactification would not yield a smooth dependence
on the circle size, contrary to expectations.

On the other hand, if ηc is infinite, we see two pos-
sible interpretations, either of which would be striking.
It could be that in fact ηc ∼ N . This would imply a
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non-commutativity of the large LΛ limit with large N
limit for observables like the mass gap, as explained in
our comments on volume independence. We know of no
reason to expect this. If the large LΛ and large N limits
commute, and if ηc is infinite, then then the gapless sec-
tor will survive into the volume-independent large-circle
regime. This would imply that confining gauge theories
with a gap at finite N can develop a gapless sector at
large N , even on R4!

This last option is so surprising that we add a few
comments. The reason that N = 1 SYM is believed
to have a mass gap on R4 is that it has discrete chiral
symmetry breaking and finite domain wall tensions, and
is expected to have a finite confining string tension, for
instance due to existing lattice studies[28]. It is widely
expected, on heuristic grounds, that these features have
to be associated with a theory with a finite mass gap.

Our calculations serve as an explicit counterexample
to this expectation. At large N , the small-η regime of
SYM has discrete chiral symmetry breaking, finite do-
main wall tensions, and finite string tensions, and yet

it has a vanishing mass gap. The full QFT is of course
not scale invariant, and so the theory will also have mas-
sive bound states in its spectrum. There is no obvious
conflict with the existing lattice studies[28]. The fact
that our results survive SUSY breaking raises the tanta-
lizing possibility that these surprising phenomena could
be present in theories like YM theory and QCD at large
N . Clearly, there is still a lot left to understand about
large-N confining dynamics.
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