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The dissipative dynamics of an expanding massless gas with constant cross section in a spatially
flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe is studied. The mathematical prob-
lem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of
nonlinear ordinary differential equations for the moments of the one-particle distribution function.
Momentum-space resolution is determined by the number of non-hydrodynamic modes included in
the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the non-
hydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results
in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to
the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial
momentum dependence. The evolution of this tail is not correctly captured by the relaxation time
approximation nor by the linearized Boltzmann equation. However, the latter probes additional
high-momentum details unresolved by the relaxation time approximation. While the expansion of
the FLRW spacetime is slow enough for the system to move towards (and not away from) local
thermal equilibrium, it is not sufficiently slow for the system to actually ever reach complete local
equilibrium. Equilibration is fastest in the relaxation time approximation, followed, in turn, by
kinetic evolution with a linearized and a fully nonlinear Boltzmann collision term.
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I. INTRODUCTION

The Boltzmann equation is the main theoretical frame-
work for studying the dissipative out-of-equilibrium dy-
namics of dilute gases. Within this approach, the trans-
port and thermodynamic properties of matter are un-
derstood in terms of the one-particle distribution func-
tion whose phase-space evolution is determined by the
Boltzmann equation. The physics and the mathemat-
ics involved in the non-relativistic Boltzmann equation
have been thoroughly studied [1, 2] and, in certain limits,
analytical solutions of this nonlinear integro-differential
equation are known.

For instance, Bobylev [3], Krook, and Wu (BKW) [4, 5]
derived an exact solution of the Boltzmann equation that
describes the nonlinear relaxation of a non-expanding,
non-relativistic homogeneous gas with elastic cross sec-
tion inversely proportional to the relative speed. For this
case it was shown that a generic solution to the Boltz-
mann equation can be obtained in terms of the moments
of the distribution function whose temporal evolution is
dictated by a coupled set of nonlinear ordinary differen-
tial equations. A remarkable feature of the BKW solu-
tion is the formation of transient high energy tails due
to the nonlinear mode-by-mode coupling among different
moments of the distribution function. These high energy
tails show how high energy moments of the distribution
are populated over time, a process that directly affects
the relaxation of the distribution function towards global
equilibrium.

The relativistic generalization of the Boltzmann equa-
tion is an active topic of research that has applications in
different areas of physics, ranging from thermal field the-
ory [6–12] to high-energy nuclear collisions [13–24], cos-
mology [25–30] and astrophysics [31–34]. A major topic
of interest in relativistic kinetic theory is to quantify the
role of nonlinear effects in rapidly expanding plasmas,
which requires a careful analysis of the type of interac-
tions between the constituent particles of the system that
defines the collision kernel. In practice, this kinetic equa-
tion is solved numerically, although it is possible to find
exact solutions of the relativistic Boltzmann equation for
highly symmetric systems using the relaxation time ap-
proximation as a model for the collision term [27, 35–
40] that describes the relaxation of the system to its
equilibrium state with a single microscopic time scale.
These exact solutions have been extremely useful to un-
derstand certain features of the thermalization process in
relativistic gases while also providing nontrivial ways to
test the accuracy and precision of numerical algorithms
for solving the Boltzmann equation and macroscopic hy-
drodynamic approximations to the microscopic kinetic
evolution[36, 37, 40–43].

However, a complete understanding of the dissipative
dynamics of an expanding gas can only be achieved by
solving the full nonlinear Boltzmann equation which nec-
essarily embodies an entire hierarchy of microscopic re-
laxation time scales and includes mode-by-mode coupling
effects. For instance, it has been shown that nonlinear
effects play an important role in the hydrodynamiza-
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tion process of the quark gluon plasma at weak cou-
pling [24, 44–55] and in the reheating process of infla-
tionary cosmology [56–64]. While these effects have been
studied only numerically, it would be extremely useful to
also investigate the nonlinear out-of-equilibrium dynam-
ics of rapidly expanding systems analytically where this
is possible.

The first step towards this goal was taken in [65] by
recasting the general relativistic Boltzmann equation,
in a spatially homogeneous and isotropically expand-
ing Friedmann-Lemâıtre-Robertson-Walker (FLRW) uni-
verse, in terms of ordinary nonlinear differential equa-
tions for the energy moments of the distribution func-
tion. There these moment equations were solved analyt-
ically for a very specific far-from-equilibrium initial con-
dition, and the corresponding distribution function was
found. This led to a new class of analytical solutions of
the relativistic Boltzmann equation. Moreover, as ob-
served in [65], the symmetries of the FLRW spacetime
restrict the energy momentum tensor to ideal fluid form,
whether or not the system is in local thermal equilibrium.
The macroscopic hydrodynamic quantities (energy den-
sity, temperature, and hydrodynamic flow) thus evolve
according to the laws of ideal fluid dynamics while the
system, if initialized in a non-equilibrium state, produces
entropy. This provides an explicit counter example to the
folklore that a system must be in local thermal equilib-
rium for the hydrodynamic currents to exhibit ideal fluid
behavior.

In this paper we obtain semi-analytical (numerical) so-
lutions to the moment equations in FLRW spacetime for
various initial conditions, to arbitrary accuracy. These
new solutions are used to investigate the domain of ap-
plicability of two widely used approximation schemes for
the Boltzmann equation: the linearized Boltzmann colli-
sion term and the relaxation time approximation. Such
a study not only gives insight into the physical features
neglected in these two approximations but it also illus-
trates how mode-by-mode nonlinear coupling dynamics
manifests itself within the relativistic Boltzmann equa-
tion.

This article is organized as follows: In Sec. II A we
briefly review some of the basic properties of the FLRW
metric and introduce our notation. In the rest of Sec. II
we provide a detailed derivation of the general method
that allows one to find exact solutions to the nonlinear
Boltzmann equation in the FLRW spacetime. We refer to
our previous result [65] in Sec. III where we re-derive an
exact solution to the Boltzmann equation valid for a spe-
cific far-from-equilibrium initial condition. We discuss
the entropy production of this system in Sec. IV. Results
from numerical studies involving the different evolution
schemes for the distribution function and the mode-by-
mode coupling effects are shown in Sec. V. A summary of
our findings and some general conclusions are presented
in Sec. VI. Some technical details of the calculations can
be found in the appendices.

II. EXACT SOLUTION OF THE BOLTZMANN
EQUATION IN AN FLRW SPACETIME

The existence and uniqueness of a solution to the rel-
ativistic Boltzmann equation in the spatially flat FLRW
spacetime has been demonstrated in Refs. [66, 67]. How-
ever, until Ref.[65], no explicit analytical solution was
known. Building on the work performed in Ref.[65], we
here continue to study nonlinear effects in the Boltzmann
equation for an expanding gas of massless particles. Our
starting point is the Boltzmann equation for a relativis-
tic massless gas that expands isotropically and homoge-
neously in a FLRW spacetime. We replace the Boltz-
mann equation by an infinite hierarchy of equations for
its moments – a set of coupled ordinary differential equa-
tions for moments of the distribution function. This hier-
archy can then be solved, for any initial condition and to
an arbitrary precision, by truncation at an appropriate
order. Finally, the distribution function may be recon-
structed from the moments.

A. Notation and some properties of FLRW
spacetime

The FLRW metric is a solution to Einstein’s equations
describing a spatially homogeneous and isotropically ex-
panding universe [25, 26, 28, 68]. For a spatially flat
universe the FLRW metric reads

ds2 = dt2 − a2(t) γij dx
i dxj (1)

where i, j ∈ {1, 2, 3}, γij is the spatial metric of the 3-
dimensional space, and a(t) is a dimensionless scale fac-
tor accounting for the expansion that is determined by
solving Einstein’s equations. The general form of γij de-
pends on the choice of coordinates; in this work, we use
spatial Cartesian coordinates, γij = δij .

1 The determi-
nant of this metric is g ≡ det(gµν) = −a6(t) such that√
−g= a3(t).
The FLRW metric (1) is invariant under the following

transformation:

xi → xi/λ , a(t)→ λ a(t) (2)

and, due to this scaling symmetry, one can set a(t0) = 1
at the initial time t0 (which we choose as t0 = 0). This
will be our boundary condition for the scaling factor.

We denote the scalar product between 4-vectors,
aµ, bµ, as a · b ≡ aµb

µ. For massless particles

1 The FLRW metric (1) is not the most general metric for a max-
imally symmetric space. For instance, in a spatially curved 3-
space with constant Gaussian curvature K the line element of
FLRW spacetime is given in polar coordinates by

ds2 = dt2 − a2(t)

[
dr2

1−K r2
+ r2 dΩ2

]
.
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with 4-momentum kµ, the on-shell condition, k · k= 0,
yields k0 = a(t)

√
(k1)2+(k2)2+(k3)2 where (k1, k2, k3) ≡

(kx, ky, kz) is the usual 3-momentum, given by the spatial
contravariant components of the 4-vector kµ. Following
[69, 70] we find it convenient to express this instead in
terms of the magnitude k of a 3-vector k ≡ (k1, k2, k3)
constructed from the covariant spatial components ki of
the 4-momentum, k=

√
k21+k22+k23. In terms of k the

on-shell condition for massless particles reads

k0 = k/a(t). (3)

This way of expressing k0 is rather convenient since, as
we shall see in the following section, the factor a(t) in
Eq. (3) will cancel in the exponent of the equilibrium
Boltzmann distribution function.

Furthermore, the Lorentz-invariant momentum space
integration measure in curved spacetime is [69, 70]

√
−g d4k ≡

√
−g dk0dk1dk2dk3 =

dk0dk1dk2dk3√
−g

, (4)

while the Lorentz-covariant 3-momentum integration
measure over on-shell distributions can be written as∫

k

≡
√
−g

(2π)3

∫
2θ(k0) δ(k·k−m2) dk0dk1dk2dk3

=

∫
dk1dk2dk3

(2π)3k0
√
−g
≡ 1(

2πa(t)
)3 ∫ d3k

k0
, (5)

where the last equality defines our notation d3k ≡
dk1dk2dk3 in terms of the covariant spatial components
of the momentum four-vector. Using spherical coordi-
nates, this reduces for massless particles to∫

k

=
1

(2π)3

∫ ∞
0

k dk

a2(t)

∫
dΩk, (6)

with k as defined above.

B. The relativistic Boltzmann equation in FLRW
spacetime

The general relativistic Boltzmann equation for an on-
shell single-particle distribution function f(x, k) is given
by [27, 29, 69, 70]

kµ
(
uµD+∇µ

)
f(x, k) + kλk

µΓλµi
∂f(x, k)

∂ki
= C[f ], (7)

where C[f ] is the nonlinear collision term for binary col-
lisions, and Γλµν = 1

2g
λγ (∂µgγν+∂νgγµ−∂γgµν) are the

Christoffel symbols. In (7) we have decomposed the
space-time derivative ∂µ into its temporal and spatial
components in the comoving frame, ∂µ =uµD+∇µ, with
D≡uν∂ν , ∇µ≡∆µν∂

ν . Here, uµ = (1, 0, 0, 0) is the 4-
velocity of the comoving frame and ∆µν ≡ gµν − uµuν

the projection operator onto the spatial components in
this frame.2

The symmetries of the system restrict the number of
independent variables upon which the distribution func-
tion can depend [35–39]. In our case, the homogeneity
of the FLRW spacetime (1) implies that, in the comov-
ing frame, the distribution function f(x, k) → f(t, k)
is independent of the spatial coordinates and is spher-
ically symmetric in momentum space [28, 71]. For a
general collision kernel, we define the shorthand nota-
tion fk(t) ≡ f(t, k) for the distribution function and the
Boltzmann equation in FLRW spacetime thus reads3

(u · k)Dfk = C[f ] , (8)

where, in the comoving frame, u · k = k0 = k/a(t).
For a single particle species with classical Boltzmann

statistics, the collision term C[f ] takes the form [29]

C[f ] =
1

2

∫
k′pp′

Wkk′→pp′ (fpfp′ − fkfk′) , (9)

where Wkk′→pp′ is the transition rate and
∫
p

is defined

as in Eq. (5) in terms of the covariant spatial components
of the momentum p in the comoving frame. The transi-
tion rate can be written in terms of the differential cross
section σ(s,Θ) as follows [29, 69, 70]:

Wkk′→pp′ = s σ(s,Θs) (2π)6
√
−g δ4(k+k′−p−p′). (10)

Here the total energy s and the scattering angle Θs are
given by

s = (k+k′) · (k+k′), cos Θs =
(k−k′) · (p−p′)
(k−k′) · (k−k′)

. (11)

The transition rate Wkk′→pp′ in (10) is a Lorentz scalar
and obeys the detailed balance and crossing symmetries
Wkk′→pp′ = Wpp′→kk′ =Wkk′→p′p [29, 72].

For simplicity we here assume isotropic scattering, i.e.,
the differential cross section depends only on s. Then we
can express the transition rate through the total cross
section σT (s)≡π

∫
dΘs sin Θs σ(s,Θs),

4 and the Boltz-
mann equation in the FLRW spacetime (8) can be writ-
ten as

(u · k)Dfk = Cgain − Closs, (12)

2 Note that even though a fluid filling a FLRW universe homoge-
neously is locally static, the expanding FLRW geometry induces
a nonzero fluid expansion rate θ(t) ≡ ∂µ(

√
−g uµ)/

√
−g = 3H(t)

where g = −a6(t) is the determinant of the FLRW metric and
H(t) = ȧ(t)/a(t) is the Hubble parameter.

3 In the comoving frame the only non-zero Christoffel symbols are
Γ0
ij = a(t)ȧ(t) δij and Γi0j = δij H(t). For the FLRW spacetime,

the term in (7) involving the Christoffel symbols thus cancels
exactly:

kλk
µΓλµi

∂fk

∂ki
=
(

Γ0
ji + gljΓ

l
0i

)
k0 kj

∂fk

∂ki
= 0 .

4 Note that, due to the indistinguishability of the two particles, we
integrate here only over half the solid angle, i.e. over 2π.
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with the gain and loss terms

Cgain =
(2π)5

2

∫
k′pp′
s σT (s)

√
−g δ4(k+k′−p−p′) fpfp′ , (13a)

Closs =
(2π)5

2

∫
k′pp′
s σT (s)

√
−g δ4(k+k′−p−p′) fkfk′ . (13b)

In the following subsections we replace all of the physi-
cal information contained in the Boltzmann equation (a
nonlinear integro-differential equation for the distribu-
tion function fk) by a set of equations for the energy
moments of the distribution function.

C. Normalized energy moments and their
evolution equations

We define the energy moments ρn of the distribution
function as follows5

ρn(t) =

∫
k

(u · k)n+1 fk =
1

2π2

∫ ∞
0

dk kn+2

an+3(t)
fk. (14)

The positivity of the distribution function implies that
ρn(t) ≥ 0. The number and energy densities are given
by ρ0(t) and ρ1(t), respectively. The higher-order mo-
ments ρn≥2(t) do not have an intuitive macroscopic in-
terpretation but are needed to resolve additional micro-
scopic details of the system. Moments of lower order
n correspond to softer momentum modes (longer wave-
lengths) while moments of higher-order probe the short
wavelength structure of the local distribution function.

The collision kernel in (9) conserves particle number,
energy, and momentum. In an FLRW spacetime the cor-
responding moments ρ0(t) and ρ1(t) evolve by the follow-
ing equations [68]:

Dρ0(t) + 3ρ0(t)H(t) = 0 , (15a)

Dρ1(t) + 4ρ1(t)H(t) = 0 . (15b)

Equations (15) follow from Einstein’s equations for a ho-
mogeneous and isotropic fluid in an FLRW metric. They
correspond to the equations of motion of an ideal fluid,
dµj

µ
µ = dµT

µν = 0 (where dµ denotes the covariant deriva-
tive), with particle current jµ(t) =n(t)uµ and energy-
momentum tensor Tµν(t) = e(t)

(
4
3u

µuν− 1
3g
µν
)
. Equa-

tions (15) are solved by

ρ0(t) =
n0
a3(t)

=
1

a3(t)

λ0T
3
0

π2
, (16a)

ρ1(t) =
e0
a4(t)

=
1

a4(t)

3λ0T
4
0

π2
, (16b)

5 In kinetic theory, it is usually assumed that the distribution func-
tion fk belongs to the Hilbert space L2(0,∞), i.e., the space of
square-integrable functions defined in the interval k ∈ (0,∞)
[3, 29, 73]. In this case, it is then guaranteed that the moments
ρn (14) are finite.

where n0 ≡ ρ0(0) and e0 ≡ ρ1(0) are the initial parti-
cle and energy densities, and T0 and λ0 are the initial
temperature and fugacity assigned to the system. The
temperature and fugacity of our nonequilibrium system
are obtained from the matching conditions

ρ0(t) = neq(t) =
λ(t)T 3(t)

π2
, (17a)

ρ1(t) = eeq(t) =
3λ(t)T 4(t)

π2
. (17b)

By comparing Eqs. (16) and (17) we find λ= constant
and T (t) =T0/a(t), such that the local equilibrium dis-
tribution function has the following form (remember that
u · k = k/a(t) in the comoving frame)

f eqk = λ(t) e−u·k/T (t) = λ e−k/T0 . (18)

One sees that, when f eqk is expressed in terms of the mag-
nitude k of the covariant spatial components of the mo-
mentum four-vector, its dependence on a(t) completely
cancels (hence f eqk is time independent).6 For later con-
venience we also introduce the energy moments of the
equilibrium distribution function:

ρeqn (t) ≡
∫
k

(u · k)n+1 f eqk (t) =
(n+2)!

2π2
λTn+3(t) . (19)

We now use the Boltzmann equation to derive the set
of equations of motion satisfied by the energy moments
ρn(t). To this end we apply the comoving time derivative
D to the definition of ρn and substitute the resulting time
derivative of the distribution function Dfk from Eq. (12).
This results in the following evolution equation for the
moments ρn:

Dρn(t) + (3 + n)H(t)ρn(t) = C(n)gain(t)− C(n)loss(t) , (20)

where the nth moments of the loss and gain terms, C(n)loss

and C(n)gain, respectively, are given by the following expres-
sions:

C(n)loss =
(2π)5

2

∫
kk′pp′

s σT (s) (u · k)n

×
√
−g δ4(k+k′−p−p′) fkfk′ , (21a)

C(n)gain =
(2π)5

2

∫
kk′pp′

s σT (s) (u · p)n

×
√
−g δ4(k+k′−p−p′) fkfk′ . (21b)

6 The physics of this is the following [26, 68]: A comoving observer
defines the physical 3-momentum of a massless particle via the
energy-momentum relation k0 = Ephys = |kphys|. The discus-
sion in Sec. II A shows that this physical 3-momentum kphys is
related to the covariant spatial components of the momentum
4-vector by kphys = k/a(t), and its magnitude kphys is related
to the magnitude k of the covariant components of the momen-
tum four-vector by kphys = k/a(t). Hence k/T0 = kphys/T (t) =
Ephys/T (t) where T (t) = T0/a(t) is the cosmologically redshifted
temperature of the expanding FLRW universe as seen by the co-
moving observer.
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For an energy independent total cross section σT (s) =
const (“hard sphere approximation”) the integrals in
Eq. (21) can be done analytically (see Appendix A), with
the result

C(n)loss(t) = σT ρn(t)ρ0(t) , (22a)

C(n)gain(t) = 2σT

n∑
m=0

(n+2)n!

(m+2)!(n−m+2)!
ρn−m(t)ρm(t) .

(22b)

Substituting these results in Eq. (20) one obtains the
following set of coupled evolution equations for the mo-
ments ρn, which is equivalent to the Boltzmann equation:

Dρn(t) + (3+n)H(t)ρn(t) + σT ρ0(t)ρn(t)

= 2σT

n∑
m=0

(n+2)n!

(m+2)!(n−m+2)!
ρn−m(t)ρm(t) .

(23)

The conservation laws (15) are recovered by setting n= 0
and n= 1, respectively.

Defining the normalized moments

Mn(t) =
ρn(t)

ρeqn (t)
, (24)

and substituting them into Eq. (23) one obtains a similar
infinite nonlinear hierarchy of coupled ordinary differen-
tial equations for the Mn moments:

a3(t̂ ) ∂t̂Mn(t̂ ) +Mn(t̂ ) =
1

n+1

n∑
m=0

Mm(t̂ )Mn−m(t̂ ).

(25)
Here we defined the dimensionless time variable t̂ = t/`0
where `0 = 1/(σTn0) is the mean free path at t= 0.

The solution of this infinite set of nonlinear coupled
differential equations (25) contains the same physical in-
formation as the original Boltzmann equation. At the
level of moments, the nonlinear dependence of the col-
lision kernel on the distribution function is encoded in
the mode-by-mode coupling between moments of differ-
ent order, as seen on the r.h.s. of Eq. (25). The conser-
vation laws (15) together with the matching conditions
imply that the only non-evolving moments are M0(t̂) and
M1(t̂):

M0(t̂) = M1(t̂) = 1 for all t̂. (26)

It is convenient to further express the time dependence
of the moments in terms of the variable

τ
(
t̂
)

=

∫ t̂

t̂0

dt̂′

a3(t̂′)
(27)

since it absorbs all the information about the expansion
of the universe (i.e., the scale parameter a(t̂)). In this
case, the hierarchy of moment evolution equations (25)
becomes

∂τMn(τ ) +Mn(τ ) =
1

n+1

n∑
m=0

Mm(τ )Mn−m(τ ). (28)

Interestingly enough, this equation exactly coincides with
the moment equation originally derived by Bobylev [3],
Krook, and Wu [4, 5] for a non-relativistic, spatially ho-
mogeneous and isotropic, non-expanding gas (see Eq.
(35) in Ref. [5]). The fact that the non-equilibrium
dynamics of both physical systems is governed by the
same moment equations is intriguing since the underly-
ing symmetries of the two problems are quite different.
BKW’s derivation is based on Galilean invariance while
ours is embedded into general relativity. One should
note, however, that the relation between the moments
Mn and the distribution function fk differs in the two
cases: equations (14) and (24) here are replaced in the
non-relativistic case by Eqs. (18) and (21) in Ref. [5].

Let us mention some important properties of the mo-
ment equations (28). First, the equation of motion (28)
implies that if Mn(0) > 0 for all n (which is true for any
positive definite initial distribution function fk(0)) then
Mn(τ) will remain positive for τ ≥ 0. Equation (28)
shows that the nth moment couples only to moments of
the same or lower order. Therefore, for a given set of
initial values for the moments Mn(0) (or a given initial
distribution function fk(0)) we can express the solution
Mn(τ) by a recursive procedure in terms of the solutions
Mm(τ) of lower order moments m < n. This can be
seen explicitly by writing the general solution of Eq. (28)
formally as

Mn(τ) = Mn(0)e−ωnτ (29)

+
1

n+1

n−1∑
m=1

∫ τ

0

dτ ′ eωn(τ
′−τ)Mm(τ ′)Mn−m(τ ′) ,

where

ωn = 1− 2

n+ 1
=
n− 1

n+ 1
. (30)

If rotational symmetry is broken, the evolution equation
for Mn includes additional couplings to moments of order
m > n, rendering a recursive solution impossible [29, 46,
74–76].

At sufficiently large times τ all moments Mn(τ) ap-
proach unity, independently of their initial condition.
This can be seen explicitly by finding the fixed points
of the set of equations (28), i.e., by studying the con-
dition ∂τMn(τ)

∣∣
τ=τmax

= 0, where τmax = limt̂→∞ τ
(
t̂
)
.

When imposing this condition on Eq. (28) we obtain the
following recursion relation:

Mn(τmax) =
1

n− 1

n−1∑
m=1

Mm(τmax)Mn−m(τmax) . (31)

This algebraic equation can be solved recursively as fol-
lows: the matching conditions that define temperature
and fugacity impose that M0(τmax) = M1(τmax) = 1.
This gives immediately M2(τmax) = 1 for n= 2. Induc-
tion shows that if Mm(τmax) = 1 for m < n then also
Mn(τmax) = 1 and, consequently, the stationary point of
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(28) is given uniquely by Mn(τmax) = 1, for all values of
n. In an FLRW universe, the Boltzmann equilibrium dis-
tribution is therefore the only fixed point of the Boltz-
mann equation. This analysis does not tell us whether
or not the fixed point is an attractor; however, the valid-
ity of the H-theorem in FLRW spacetime [28] necessarily
guarantees that the equilibrium is stable. The numeri-
cal simulations reported below show that the equilibrium
distribution is a stable (attractive) fixed point of Eq. (12).

D. Reconstructing the distribution function from
Laguerre moments

So far, the solution of the Boltzmann equation, fk(τ),
has been viewed as a function of the normalized energy
moments Mn(τ). In practice it is, however, easier to
reconstruct the distribution function from its moments
if one uses a different set of moments, defined through
a basis of orthogonal polynomials [74]. In this paper we
use the Laguerre basis [46] (see Appendix B) in which
the distribution function can be written as

fk(τ) = f eqk

∞∑
n=0

cn(τ)L(2)
n

(
u · k
T (τ)

)
, (32)

where the Laguerre moments cn(τ) are given by

cn(τ) =
2

(n+1)(n+2)

1

ρ0(τ)

∫
k

(u · k)L(2)
n

(
u · k
T (τ)

)
fk

=

n∑
r=0

(−1)r
(
n

r

)
Mr(τ) . (33)

The second equality in this equation makes use of the
closed form (B1) of the Laguerre polynomials. For the
Laguerre moments the particle number and energy con-
servation laws imply that

c0(τ) = 1, c1(τ) = 0 for all τ (34)

(see Eq. (26)). The relation between cn and Mn can be
inverted with the help of the binomial inverse transfor-
mation identity [77]:

Mn(τ) =

n∑
r=0

(−1)r
(
n

r

)
cr(τ) . (35)

In Appendix C we show that the Laguerre moments
cn obey exactly the same hierarchy of coupled ordinary
differential equations as the normalized moments Mn:

∂τ cn(τ ) + cn(τ ) =
1

n+1

n∑
m=0

cm(τ )cn−m(τ ) . (36)

Only the initial conditions look different when expressed
in terms of Mn or cn.

The structure of these equations has an interesting
feature: since the right-hand side couples only to mo-
ments of lower order, one cannot generate low-order mo-
ments dynamically from higher-order ones. If initially

all Laguerre moments up to order nmin vanish such that
cnmin

is the lowest nonvanishing moment at τ = 0, it
will remain the lowest nonvanishing moment at all times.
This is useful when reconstructing the distribution func-
tion. Additionally, we note that the approach to thermal
equilibrium fk → f eqk is characterized by Mn(τ)→ 1 for
all n and, consequently, cn(τ)→ δn0. Also, using that
c0(τ) = 1 and c1(τ) = 0 one finds that (36) can be rewrit-
ten as

∂τ cn(τ ) + ωncn(τ ) =
1

n+1

n−2∑
m=2

cm(τ )cn−m(τ ) , (37)

which will be useful in the next section when we discuss
the linearized approximation for the collision kernel.

Similar to the generic solution for the normalized en-
ergy moments Mn (29), for n ≥ 2 Eq. (37) admits a
solution which for generic initial conditions reads as

cn(τ) = cn(0)e−ωnτ (38)

+
1

n+1

n−2∑
m=2

∫ τ

0

dτ ′ eωn(τ
′−τ) cm(τ ′) cn−m(τ ′) ,

The first term on the RHS corresponds to the linear con-
tribution from the collision term (cf. Eq. (45) in the fol-
lowing subsection) and decays exponentially with a rate
ωn that increases with n according to Eq. (30). The non-
linear second term describes the mode-by-mode coupling
of cn with moments of lower order. For small devia-
tions from equilibrium (cn � 1 for all n 6= 0, 1) the lin-
ear, exponentially decaying terms dominate the dynam-
ical evolution of the distribution function. For initially
large deviations from equilibrium, however, no general
statement can be made as to which of the two terms (lin-
ear or nonlinear) controls the evolution at early times.
Bounds on the nonlinear contribution to the generic so-
lution of the Laguerre moments have been discussed for
non relativistic systems [78]. As we will see further be-
low, at late times all cn eventually become small, and
the remaining evolution is then controlled by the lin-
ear first term in Eq. (38), i.e. if τl is large enough the
moments cn relax for τ > τl exponentially with rate ωn,
cn(τ > τl) ≈ cn(τl) e

−ωn(τ−τl).
In addition to the particle number and energy conser-

vation laws c0(τ) = 1 and c1(τ) = 0, Eq. (38) yields the
following exact solutions for the lowest order Laguerre
moments (shown here up to n= 5):

c2(τ) = c2(0)e−ω2τ , c3(τ) = c3(0)e−ω3τ ,

c4(τ) = c4(0)e−ω4τ + 3 c22(τ)
[
e−(ω4−2ω2)τ−1

]
, (39)

c5(τ) = c5(0)e−ω5τ + 2 c2(τ)c3(τ)
[
e−(ω5−ω2−ω3)τ−1

]
.

One can see that mode-by-mode coupling among the La-
guerre moments may start already at n = 4, while for
n < 4 the moments are either linear or completely deter-
mined by conservation laws. Another interesting feature
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of (36) is related to parity: if initially all the moments of
fk with odd Laguerre polynomials vanish, c2n+1(0) = 0,
the recursive nature of (36) implies that this remains true
at all times: c2n+1(τ) = 0 ∀ t. The same does not hold
for initial conditions that have nonzero moments only
with odd Laguerre polynomials. In this case, even La-
guerre moments will in general be generated dynamically
by mode-coupling between odd Laguerre moments, e.g.
c6(τ) = 1

2c
2
3(τ)

(
e2τ/7−1

)
. This requires the full nonlin-

ear collision term and hence does not happen when the
latter is linearized as in the following subsection.

Finally, one sees from Eq. (32) that the distribution
function at zero momentum f(τ, 0) is finite at all times as
long as the sum of the Laguerre moments remains finite.
We will see later that at large times all Laguerre moments
approach zero exponentially, rendering mode-coupling
terms negligible for τ� 1. However, mode-coupling ef-
fects may be important if initial conditions are such that
nonlinear terms, such as c2(τ)2e−(ω4−2ω2)τ in (39), be-
come of the same order as the linear contributions, in
this case ∼ c4(0)e−ω4τ . So while the moments decay
exponentially at long times, their amplitudes in general
still contain information about the nonlinear mode cou-
pling at early times that cannot be obtained in linearized
approaches such as the ones discussed in the next two
subsections.

E. Moment evolution for a linearized Boltzmann
collision term

Systems not too far from local thermal equilibrium can
be described macroscopically using viscous hydrodynam-
ics. To derive such hydrodynamic equations from the
underlying Boltzmann equation one expands the distri-
bution around the local equilibrium one, fk = f eqk +δfk,
and linearizes the Boltzmann equation in δfk. When rep-
resenting the Boltzmann equation in terms of moments,
this procedure corresponds to a linearization of the mo-
ment equations around the equilibrium values of the mo-
ments Mn = 1 and cn = δn0, respectively:

Mn ≈ M lin
n = 1 + δMn , (40)

cn ≈ clinn = δn0 + δcn , (41)

with δM0 = δM1 = δc0 = δc1 = 0 due to particle and en-
ergy conservation. The corresponding linearized moment
evolution equations, obtained from (28) and (37), read

∂τδMn(τ) + ωnδMn(τ) =
2

n+1

n−1∑
m=2

δMm(τ) , (42)

∂τδcn + ωnδcn = 0 , (43)

with ωn given by Eq. (30). It is easy to check that these
linearized equations respect the relations (33) and (35),
to linear order.

The general solution of Eq. (42) is

δMn(τ) = δMn(0)e−ωnτ

+
2

n+1

n−1∑
m=2

∫ τ

0

dτ ′eωn(τ
′−τ) δMm(τ ′) ,

(44)

while Eq. (43) is simply solved by

δcn(τ) = e−ωnτ cn(0). (45)

These equations apply to moments with n≥ 2. One sees
that, in contrast to the linearized energy moments, the
equations of motion for the linearized Laguerre moments
decouple, i.e., the moments δcn are eigenfunctions of
the linearized collision operator with eigenvalues (decay
rates) ωn. The mode with the longest lifetime is the first
non-hydrodynamic7 mode, n= 2, with τ2 = 1/ω2 = 3. As
already noted, the decay rates increase with n, approach-
ing unity for n→∞.

We can combine Eq. (45) with Eq. (35) to obtain the
following alternate solution of the linearized energy mo-
ments (44):

δMn(τ) =

n∑
r=2

(−1)r
(
n

r

)
cr(0) e−ωrτ . (46)

This form shows that, at asymptotically long times, the
exponential decay of all Mn moments is controlled by
cnmin

, i.e. by the lowest initially non-vanishing Laguerre
moment which has the smallest damping rate ωnmin

.
With the solution (45) of the linearized moment equa-

tions one finds the solution of the linearized Boltzmann
equation8 for the distribution function as follows (see
Eq. (32)) :

f link (τ) = f eqk

[
1 +

∞∑
m=2

cm(0) e−ωmτL(2)
m

( k
T0

)]
(47)

F. Moment evolution in the relaxation time
approximation

Due to its simplicity, one of the most widely employed
models for the collision term is the Relaxation Time Ap-
proximation (RTA) [79]. For our relativistic system it
reads [80]

C[f ] = − u · k
τrel(t)

[
fk(t)− f eqk

]
, (48)

7 A non-hydrodynamic mode relaxes within a timescale that re-
mains finite in homogeneous systems, in contrast to hydrody-
namic modes such as sound waves.

8 In practice, in numerical calculations one truncates the infinite
sums by defining a maximum number of terms nmax.
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where τrel is the scale at which the distribution function
relaxes to its local equilibrium state. For the FLRW uni-
verse, the RTA Boltzmann equation is [27, 28]

∂tfk(t) = −
fk(t)− f eqk
τrel(t)

, (49)

where according to Eq. (18), f eqk is time independent.
In general, the expression for the relaxation time τrel

varies according with the physical process one wants to
investigate. For instance, the typical timescale for energy
and momentum transport in the shear and bulk channels
of relativistic fluids are in general different (this is the
case in weak coupling QCD [81]). A physical prescription
must be given in order to meaningfully compare results
compared within RTA and other evolution schemes. In
this paper we choose to define τrel in such a way that the
shear viscosity to entropy density ratio of the gas, η/s,
computed within RTA agrees with the result found using
the full Boltzmann equation for massless particles with
constant cross section [46]. This condition fixes

τrel(t̂) = αa3(t̂)`0 (50)

with α = 1.58375.9 In this case, RTA Boltzmann equa-
tion becomes

α∂τfk(τ) = f eqk − fk(τ) , (52)

which is easily solved analytically:

fRTAk (τ) = f eqk + e−τ/α
(
fk(0)− f eqk

)
(53)

where fk(0) is the distribution function at τ = 0. Substi-
tuting this solution into the expression for the energy and
Laguerre moments of the distribution function, we obtain
the following analytic expressions for these quantities:

cRTAn (τ) = cn(0)e−τ/α , (54)

MRTA
n (τ) = 1 + e−τ/α

(
Mn(0)− 1

)
. (55)

As before, we have MRTA
0 =MRTA

1 = cRTA0 (0) = 1 and
cRTA1 = 0 for all τ , due to the conservation laws.

Whereas for the linearized collision term studied in
the preceding subsection each moment cn relaxes with
its own decay rate ωn = (n−1)/(n+1), we see that the
RTA collision term causes all of them to relax at the
same decay rate 1/α. Since in the RTA the collision
term is characterized by the single time scale τrel, this is

9 The relaxation time was calculated from the Boltzmann equation
for massless particles interacting with constant isotropic cross
section in Ref. [46, 82]:

τrel =
5

4

η

ρeq0 (t)T (t)
. (51)

Here η= 1.267T/σT is the shear viscosity. Eq. (50) is obtained
by using this value of η together with ρeq0 (t) = n0/a3(t) in (51).

perhaps not unexpected. On the other hand, linearizing
the full Boltzmann collision term still leaves us with an
infinite hierarchy of collision time scales, causing each of
the Laguerre moments δcn (45) to decay at its own rate
ωn. One sees that by requiring η/s computed in RTA
to match the result from the full Boltzmann equation,
the decay rate in RTA 1/α ∼ 0.631413 comes to lie in
between ω4 and ω5.

We will show numerical comparisons between the so-
lutions of the full nonlinear Boltzmann equation, its lin-
earized form, and the RTA later in Sect. V. In the follow-
ing section, however, we first use the methods developed
in this section to rederive the exact analytical solution of
the nonlinear Boltzmann equation presented in a previ-
ous publication [65].

III. AN EXACT ANALYTIC SOLUTION OF
THE BOLTZMANN EQUATION WITH

NONLINEAR COLLISION KERNEL

A. τ-evolution of the distribution function and its
moments

One can see by inspection that Eq. (28) admits the
following analytic solution of BKW type, valid for all
n ≥ 0 and τ ≥ 0 [65]:

Mn(τ) = nKn−1(τ)− (n−1)Kn(τ), (56)

K(τ) = 1 − 1

4
e−τ/6 . (57)

Inserting the moments above into Eq. (33) gives the cor-
responding analytic solution of Eq. (36) for the Laguerre
moments,10

cn(τ) = (1−n)
(
1−K(τ)

)n
= cn(0)e−nτ/6, (59)

where the initial values for the Laguerre moments are

cn(0) =
1− n

4n
, (60)

which can be obtained from the initial condition for the
energy moments in (56):

Mn(0) =

(
3

4

)n (
1 +

n

3

)
. (61)

In Ref. [65] we noted that the Fourier transform of the
distribution function can be expressed in terms of the
normalized energy moments and used this to construct

10 This makes use of the combinatorial identity

n∑
r=0

(−1)r
(n
r

) [
rxr−1 − (r−1)xr

]
= (1−n) (1−x)n . (58)
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the corresponding exact analytic solution for the distri-
bution function from Mn as given in (56). This method
is generalizable to any solution of the Boltzmann equa-
tion whose Fourier transform exists. Here we rederive the
same analytic solution for fk from the Laguerre moments,
using the orthogonality and completeness of the Laguerre
polynomials. Inserting the analytic solution (59) for the
Laguerre moments into the decomposition (32) and us-
ing the relations (B3) and (B4) listed in Appendix B we
obtain

fk(τ) = f eqk

∞∑
n=0

(1−n) (1−K(τ))
n L(2)

n (k/T0) (62)

=
λ e−k/(K(τ)T0)

K4(τ)

[
4K(τ)− 3 +

k

K(τ)T0

(
1−K(τ)

)]
.

This agrees with Eq. (22) in [65]. This analytic solu-
tion of the nonlinear Boltzmann equation is obtained for
the following far-from-equilibrium initial conditions for
the distribution function (with energy and Laguerre mo-
ments given in (60,61)):

fk(0) = λ
256

243

(
k

T0

)
exp

(
−4

3

k

T0

)
, (63)

The out-of-equilibrium initial condition in (63) gives the
opportunity to study how different approximations for
the collision kernel affect the behavior of the Laguerre
moments in an analytical manner. While all the evolu-
tion schemes correctly give exponentially decaying cn’s,
for the RTA solution in (55) all the moments decay with
the same scale 1/α (given by the choice for the relax-
ation time). In the solution for the Laguerre moments
obtained by linearizing the collision kernel in (45) each
moment decays exponentially at a distinct rate given by
the eigenvalues of the collision operator, which should
be in general a much better approximation to the multi
timescale solution of the full nonlinear case in Eq. (59).
We note, however, that for the exact solution studied
in this section, the linearized collision kernel approach
considerably underestimates the decay rates of the mo-
ments in which n is large. This occurs because for the
linearized moments (45) one finds limn→∞ cn(τ)/cn(0) =
e−τ while taking the same large n limit in (59) gives
limn→∞ cn(τ)/cn(0) = limn→∞ e−nτ/6 → 0.11

In Fig. 1 we show the evolution of the the normalized
moments Mn (56) (left panel) and the Laguerre moments

11 Note that Eq. (59) implies that for this exact analytical solution
all modes with n> 6 decay faster than any of the eigenmodes ωn
of the linearized collision operator, even at late times when all de-
viations from equilibrium cn (n≥ 2) are small. This exemplifies
to the extreme the consequences of non-linear mode-coupling ef-
fects in the full Boltzmann collision operator. By linearizing the
collision operator one loses essential information that is needed
to describe correctly the dynamical evolution of the Laguerre
moments for the exact solution (59,60).

cn (59) (right panel) as a function of the dimensionless
variable τ . At τ = 0 the normalized moments Mn de-
crease monotonically with increasing n. This means that
the softest modes of the system are initially more strongly
populated than the harder ones, albeit not thermally
equilibrated (i.e. they are < 1). The initial values for
the Laguerre moments cn (59) are negative and increase
(i.e. their magnitude decreases) with increasing n. Both
Mn and cn are seen to increase monotonically with time
τ (i.e. the magnitudes of cn decrease monotonically), ap-
proaching their equilibrium values 1 and 0, respectively,
at τ →∞.

This is more clearly seen in Fig. 2 where we plot
the ratio F (τ, k/T0) = fk(τ)/f eqk between the out-of-
equilibrium solution (62) and its equilibrium value as
a function of k/T0 for different values of τ . This ratio
measures the deviation of the system from local equilib-
rium. At τ = 0 moderately soft modes with momenta
1.5 . k/T0 . 5 are overpopulated while the longest and
shortest wavelength modes k/T0 < 1.5 and k/T0 > 5 are
underpopulated.

As time proceeds the distribution function approaches
equilibrium: the initial overpopulation at intermediate
momenta quickly decreases, filling in first the “hole” at
small momenta and only later the strong initial depletion
at large momenta. At τ = 12 the distribution function is
seen to be essentially thermalized up to k& 5T0, with
a residual depletion of the high-momentum tail that in-
creases with k.

Thermalization of the high-momentum modes appears
to require transporting energy from low to high momenta,
similar to the “bottom-up” scenario in QCD [83] where
interactions between the hard modes and the thermal
bath created by the soft modes allows the system to
eventually reach global thermal equilibrium asymptot-
ically. The main difference between the QCD case and
the one at hand is that in the former the high-momentum
modes are initially over-occupied whereas here the ini-
tial conditions of the analytic solution imply an ini-
tial under-population at high momenta. We will see in
Sec. V that the relatively slow thermalization of the high-
momentum part of the distribution function arises from
mode-by-mode-coupling effects characteristic of the non-
linear Boltzmann collision term with its broad spectrum
of microscopic relaxation time scales. This feature is not
shared by the relaxation time approximation where colli-
sions are controlled by a single, common, relaxation time.

B. A finite τ-horizon caused by cosmic expansion

In the previous sections it was convenient to use the di-
mensionless variable τ (defined in Eq. (27)) as a time-like
parameter in the evolution equations for the moments
Mn and cn. This was a key ingredient in demonstrating
the relation between our approach and the BKW solu-
tion. In this subsection we translate the results obtained
so far back into the original coordinate system, using the
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FIG. 1: (Color online) Evolution of the normalized moments Mn (56) (panel (a)) and the Laguerre moments cn (59) (panel
(b)) as a function of the dimensionless time variable τ .

time variable t.

The dynamics of the cosmic expansion is encoded in
the scale factor a(t) of the FLRW metric (1). Its func-
tional form is determined from Friedmann’s equation and
depends on the equation of state [25, 26, 28]. For a
conformal equation of state consistent with our study of
massless particles, the exact solution for the scale factor
a(t) defined in Eq. (1) reads [25, 26]:

a(t̂) =

√
1 + br t̂ , br = 2H0

√
Ωr, (64)

where H0 is the Hubble parameter evaluated at the initial
time t̂0 = 0 and Ωr is the dimensionless density parame-
ter associated with radiation. Equation (27) then relates
τ with t as follows:

τ =
2

br

(
1− (br t̂+ 1)−

1
2

)
. (65)

This implies that the infinite t interval 0 ≤ t̂ < ∞ is

τ = 0
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,k
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)

FIG. 2: (Color online) Ratio between the out-of-equilibrium
solution (62) and the equilibrium distribution as a function
of k/T0.

mapped on a finite τ interval 0 ≤ τ ≤ τmax where

τmax = lim
t̂→∞

τ(t̂) =
2

br
. (66)

Consequently, the limit of perfect local thermalization
of the distribution function at τ → ∞ is never reached:
while (in contrast to the Gubser expansion studied in the
context of relativistic heavy-ion collisions [36, 37, 84]) a
massless gas in equilibrium in FLRW spacetime would
remain so despite the expansion of the universe, its cos-
mic expansion is not slow enough to allow the system to
ever reach complete local thermal equilibrium if it is ini-
tially out of equilibrium, fk(0) 6= f eqk . Instead, the sys-
tem approaches a quasi-stationary off-equilibrium state
characterized by the distribution

lim
t̂→∞

fk(t̂) = fk(τmax) (67)

=
λ e−k/Tlim

K4
max

[
4Kmax − 3 +

k

Tlim

(
1−Kmax

)]
.

Here we defined the “limiting temperature” Tlim =
KmaxT0, with Kmax = 1 − 1

4 exp [−τmax/6].12 Figure 2
shows that this spectrum is suppressed at high mo-
menta relative to the asymptotic thermal distribution
λ exp(−k/T0). The large-k tail of the distribution is es-
sentially exponential, with inverse slope parameter start-
ing at 3

4T0 at time t̂= 0 and increasing with time until it

reaches Tlim = KmaxT0 at time t̂→∞. Kmax approaches
1 as the initial Hubble constant (initial cosmic expansion
rate) H0 approaches zero.

12 Recall that in terms of the physical momentum kphys seen by
a comoving observer we have k = a(t)kphys such that k/Tlim =
kphys/Tlim(t) where Tlim(t) ≡ Tlim/a(t) is the time-dependent
(cosmologically redshifted) “limiting temperature” seen by that
observer. Since the temperature seen by the comoving ob-
server keeps redshifting we characterize the state (67) as quasi-
stationary.
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IV. ENTROPY PRODUCTION BY
NON-HYDRODYNAMIC MODES

The entropy density current Sµ defined in terms of the
single particle distribution function in FLRW

Sµ ≡ −
∫
k

kµ fk (ln fk−1) (68)

obeys Boltzmann’s H-theorem [28], i.e. dµS
µ ≥ 0, with

the equality only being satisfied in equilibrium. Because
of the symmetries of FLRW, one can write Sµ = s uµ

with

s = −
∫
k

(u · k) fk (ln fk−1) (69)

being the entropy density. Defining S = a3s and noticing
that a6 dµS

µ = ∂τS, we find (using the decomposition
(32))

∂τS = −n0
2

∞∑
n=2

hn(τ)∂τ cn(τ) (70)

where

hn(τ) =

∫ ∞
0

dxx2e−xL(2)
n (x) ln

(
1+

∞∑
m=2

cm(τ)L(2)
m (x)

)
.(71)

Equation (70) shows that entropy production only
ceases when the Laguerre moments become time inde-
pendent, i.e., when equilibrium is reached. The low-
est order moments c0 and c1, associated with hydrody-
namic modes, do not participate in the entropy produc-
tion which is entirely given by the non-hydrodynamic
degrees of freedom cn≥2. In FLRW spacetime, local
equilibrium is an attractor of the Boltzmann equation,
i.e., a system initially prepared in local equilibrium will
remain in local equilibrium (in spite of the cosmologi-
cal expansion) while an initially non-equilibrated system
will evolve towards local equilibrium, producing entropy
along the way. What is different from other situations
is that the evolution of the macroscopic hydrodynamic
observables such as the energy and particle number den-
sities follows the laws of ideal fluid dynamics even if the
system is out of equilibrium. This happens because, in
the present situation which has an exceptional degree of
symmetry, the non-hydrodynamic modes completely de-
couple from the energy momentum tensor, thereby pre-
serving its ideal fluid form. Similar systems were studied
before in [38, 39].

In dissipative fluid dynamics entropy production is ex-
pressed in terms of the non-equilibrium corrections to
the energy-momentum tensor and particle 4-current. For
example, in the widely used Israel-Stewart formulation
of dissipative fluid dynamics [75], entropy production
is expressed in terms of the shear stress tensor πµν as
dµS

µ = πµνπµν/(2ηT ), where η is the shear viscosity.
The shear stress tensor reflects the excitation of non-
hydrodynamic modes of the Boltzmann equation [46, 82],

and such a formulation is expected to work if the sys-
tem is sufficiently close to thermodynamic equilibrium.
However, the entropy production derived in (70) can ob-
viously never be expressed in a hydrodynamic form even
if the system is close to equilibrium. Therefore, the type
of system discussed here gives an example in which the
symmetries of the system always forbid the description
of dissipative processes (such as entropy production) in
terms of the laws of fluid dynamics.

Based on the discussion above, one can use (37) to find
another expression for the entropy production

∂τS =
n0
2

[ ∞∑
n=2

ωn hncn −
∞∑
n=2

hn
n+1

n−2∑
m=2

cn−mcm

]
. (72)

This expression shows that, at late times when the La-
guerre moments cn are small, entropy production in the
full nonlinear case (in which the moments follow (37))
should be very well approximated by the corresponding
expression computed in the linearized Boltzmann colli-
sion approximation. In fact, one can expand the loga-
rithm in (71) to linear order to find

hn(τ) = (n+1)(n+2) cn(τ) +O(c2n) (73)

and, thus,

∂τS =
n0
2

∞∑
n=2

(n+1)(n+2)ωnc
2
n(τ) +O(c3n). (74)

In this limit the fact that entropy increases with time
is manifest, and each moment is seen to contribute to
entropy production an amount proportional to its de-
cay rate. If the higher order corrections in Eq. (74) are
small (as they are for the initial conditions studied in this
work), one expects that the linearized Boltzmann colli-
sion approximation should give an accurate description
of the entropy produced in the full nonlinear problem.
This is confirmed in the numerical studies performed in
Section V C. Also, using (73) one finds that

S(τ) = Seq −
n0
4

∞∑
n=2

(n+1)(n+2) c2n(τ) + . . . (75)

where Seq is the corresponding equilibrium expression.
This shows explicitly that the maximum entropy value is
achieved in equilibrium.

Equation (72) expresses the entropy production in
terms of the time evolution of the Laguerre moments of
the distribution function. In Sec. II we studied their evo-
lution for the full nonlinear Boltzmann collision terms as
well as for a linearized version and for the relaxation time
approximated collision term. In the next section we will
show numerical results for these different types of micro-
scopic evolution. Following the production of entropy in
each of these three cases will yield valuable insights into
the dynamics that underlies the thermalization processes
in the Boltzmann equation.
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V. NUMERICAL RESULTS

In this section we compare the solutions to the full
nonlinear Boltzmann equation (32), its linearized ver-
sion (47) and the RTA (49). For simplicity we assume
that the fugacity is λ = 1. We consider the following
initial conditions of the distribution function fk(0), the
Laguerre moments cn(0), and the normalized moments
Mn(0):

• The exact solution initial condition (ES-IC) already
given in Eqs. (59)-(61):

fk(0) = λ
256

243

(
k

T0

)
e−

4
3

k
T0 , (76a)

cn(0) =
1− n

4n
, (76b)

Mn(0) =

(
3

4

)n (
1 +

n

3

)
. (76c)

• The one mode initial condition (1M-IC):

fk(0) = λ e−
k
T0

[
1 +

3

10
L(2)
2

(
k

T0

)]
, (77a)

cn(0) = δn0 +
3

10
δn2 (77b)

Mn(0) = 1 +
3

10

(
n

2

)
. (77c)

• The two-mode initial condition (2M-IC):

fk(0) = λ e−
k
T0

[
1− 1

10
L(2)
3

(
k

T0

)
(78a)

+
1

20
L(2)
4

(
k

T0

)]
, (78b)

cn(0) = δn0 −
1

10
δn3 +

1

20
δn4 , (78c)

Mn(0) = 1 +
1

10

(
n

3

)
+

1

20

(
n

4

)
. (78d)

All of these initial conditions satisfy the requirement
Mn(0) ≥ 0 for all n, which ensures positivity of the dis-
tribution function fk. Notice also that for 1M-IC (77)
and 2M-IC (78) the normalized moments Mn(0) diverge
when n→∞, which should be contrasted with the ES-IC
case(63) where Mn(0) vanishes in this limit.

In this section we will compare for each of these initial
conditions the evolution of the moments of the distribu-
tion function, the phase-space evolution of the distribu-
tion function reconstructed from the Laguerre moments,
and the amount of entropy produced in the evolution, for
the evolution schemes defined by the full nonlinear Boltz-
mann collision kernel, its linearized version, and also the
relaxation time approximation.

A. Evolution of the moments

The infinite set of differential equations (28) for the
normalized moments Mn is truncated at a finite nmax

and then solved numerically. The evolution of the lin-
earized moments M lin

n = 1 + δMn is obtained by solving
the differential equations (42) for δMn, with initial con-
ditions fixed by δMn(0) = Mn(0) − 1. Within the RTA
the evolution of the moments MRTA

n is determined by
Eq. (55).

Figure 3 shows the numerical solutions for the mo-
ments M10 (left column) and M20 (right column) as func-
tions of the dimensionless variable τ for the three initial
conditions listed above. We observe that the difference
between the values of the moments Mn, M lin

n , and MRTA
n

gets larger as one increases the order n of the moment.
Since higher-order moments are more strongly weighted
at higher momenta, these differences indicate that the
RTA and the linear approximation of the Boltzmann col-
lision term provide descriptions of the microscopic dy-
namics that degrade at short distance scales.

At large times, all Mn moments relax exponentially to
their equilibrium value of 1. In the insets in Fig. 3 we
plot the difference between Mn(τ) and their asymptotic
value on a logarithmic scale, in order to visualize the rate
of approach to equilibrium of each moment. We see that
in RTA the moments MRTA

n relax much faster to their
asymptotic value than for both the full and linearized
Boltzmann collision terms. In RTA all modes relax ex-
ponentially at the same rate ω = 1/α (defined by our
choice for the relaxation time) while for both the full and
linearized Boltzmann collision term the energy moments
Mn mix Laguerre moments of different orders that decay
with different rates ωn < 1. At large times τ , their decay
is dominated by the moment with the smallest decay rate,
namely the first non-vanishing non-hydrodynamic mode
nmin. For ES-IC and 1M-IC, the lowest non-vanishing
non-hydrodynamic mode is c2, and correspondingly for
both the full and linearized Boltzmann collision terms
the Mn modes decay asymptotically with ω2 = 1/3. For
2M-IC the lowest non-vanishing non-hydrodynamic mode
is c3, and correspondingly for both the full and linearized
Boltzmann collision terms the Mn modes decay asymp-
totically somewhat faster, with ω3 = 1/2. We also note
that at large times the deviations of the moments from
their asymptotic values become small, and the time evo-
lutions of the linearized and full moments converge.

At early times the faster relaxation of the MRTA
n mo-

ments to their equilibrium values compared to their re-
laxation for the full and linearized collision term is most
evident. However, Fig. 3 also shows that for some of
the initial conditions the early-time evolution of the Mn

moments exhibits dramatic differences even between the
full and linearized collision terms. These differences arise
from mode coupling effects which are generically large
as long as the moments Mn deviate strongly from their
equilibrium values.

We point out that for the initial condition ES-IC the
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FIG. 3: (Color online) Evolution of the moments M10 (left column) and M20 (right column) as a function of the dimensionless
time τ according to the nonlinear evolution equation (28), its linearized version (42), and within the RTA (55) for the ES-IC (76)
(panels (a)-(b)), 1M-IC (77) (panels (c)-(d)), and 2M-IC (78) (panels (e)-(f)). See text for further details.

moment M lin
20 becomes negative at early times, specifi-

cally in the interval 0 . τ . 7 (see panel (b) in Fig. 3).13

From their definition it is clear that this cannot hap-
pen for a distribution function that is positive definite.
This dynamical behavior resulting from the linearization
of the moments around their thermal equilibrium values
is thus unphysical. We will see later that, for the initial
conditions of the exact solution discussed in Sec. III, this
unphysical dynamics causes the distribution function to
turn negative at large momenta as time proceeds, some-
what reminiscent of a similar phenomenon observed for
the exact solution of the RTA Boltzmann equation in a
system undergoing Gubser expansion [36, 85].

13 We have checked numerically that for 20≤n≤ 100 all the mo-
ments M lin

n turn negative somewhere in the interval τ ∈ (0, 7).

In Fig. 4 we present the logarithm of the magnitude
of the Laguerre moments |cn| as a function of n for a set
of fixed τ values, τ = {0.5, 4, 8} for the left, middle and
right column, respectively, and for the initial conditions
mentioned above. As shown in Eqs. (39), the solutions
for the moments with n ≤ 3 are the same in the nonlin-
ear case as in the linearized Boltzmann approximation,
and this is observed in Fig. 4. For the ES-IC at early
times there is basically no distinction among the differ-
ent evolution schemes (since the initial cn are already
all nonzero while nonlinear mode-coupling effects have
not yet had a chance to manifest themselves). As time
evolves the cn’s with large n quickly distinguish nonlin-
ear evolution (red circles) from linear evolution schemes
(denoted by the blue triangles and green squares); how-
ever, only at late times can clearly distinguish (especially
at large n) between the results from the RTA and the lin-
earized Boltzmann approach.
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FIG. 4: (Color online) Evolution of the Laguerre moments as a function of n according to the nonlinear Boltzmann equation
(red circle), linear approximation (blue triangle) and RTA (green square) for fixed values of τ = {0.5, 4, 8} (left, middle and right
column respectively). For the initial conditions of the distribution function we use the ES-IC (76) (panels (a,b,c)), 1M-IC (77)
(panels (d,e,f)), and 2M-IC (78) (panels (g,h,i)).
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FIG. 5: (Color online) Snapshots of the full nonlinear distribution function as a function of k/T0 at different values of τ =
{0, 2, 4, 8} (with fugacity λ = 1). For the initial conditions of the distribution function we use the ES-IC (76) (panel a),
1M-IC (77) (panel b), and 2M-IC (78) (panel c).

For the 1M-IC only c0 and c2 are initially nonzero (par-
ity even), and one can see that c2n+1(τ) = 0 for all τ ,
as explained in Sec. II D. Also, this case clearly shows
the effect of mode-by-mode coupling responsible for ex-
citing for τ > 0 modes with n > 2 even though they were
initially zero,. This should be contrasted with the linear
evolution schemes that give cn>2(τ) = 0 for all τ . The
difference in the decay rate for c2 between the RTA and

the nonlinear (and linearized) case is evident in panel f
of Fig. 4.

Since c2(0) = 0 for 2M-IC, Eq. (39) implies that c4(τ)
obtained in the nonlinear evolution is identical to the re-
sult computed within the linearized Boltzmann approx-
imation, i.e. c4(τ) = c4(0)e−ω4τ . This can be seen in
Fig. 4g,h,i. Once again mode-by-mode coupling in the
full nonlinear evolution is responsible for exciting for 2M-
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IC moments with n > 4 which become nonzero already
after a short time τ = 0.5. The higher moments can only
be excited by nonlinear coupling with lower modes which
is an effect not included in either the RTA or the linear
Boltzmann approximation.

The Laguerre moments {cn} contain all the infor-
mation about the solutions of the Boltzmann equa-
tion. However, the way {cn} encodes this information
is not at all trivial. For instance, in the deep infrared
f(τ, k→ 0) = f eqk

∑∞
n=0 cn(τ). Also, the complicated

time evolution of the analytical solution in Eq. (62) is
translated into a simple exponential decay of the La-
guerre modes described by (59).

B. Evolution of the distribution function

The recursive structure of the evolution equations (36),
(45) and (55) for the Laguerre moments of the distribu-
tion function makes it easy to systematically improve the
description of the distribution function by increasing the
truncation order nmax (the total number of moments)
until convergence is achieved.14

1. Evolution of non-thermal energy tails

In Sec. III we saw for the exact analytical solution (62)
of the full Boltzmann equation that, while it approaches
equilibrium at large τ , hard momenta are being occupied
very slowly and large deviations from equilibrium persist
for high values of k/T0 at very large τ . Here we study nu-
merically how fk(τ) evolves towards equilibrium with the
full nonlinear Boltzmann collision term for the two other
initial conditions listed at the beginning of this section
and compare it with the evolution of the ES-IC initial
condition for which we have an exact analytic result.

Figure 5 shows that the other initial conditions cor-
respond to initial distribution functions which deviate
from equilibrium even more strongly than the one cor-
responding to the exact solution, albeit in different mo-
mentum regions. In these initial conditions hard modes
are separated from soft modes by a “kink” (located, e.g.,
near k/T0 = 9 for 2M-IC) that is more distinct in the
2M-IC case than in the 1M-IC (where it also occurs at
a lower value of k/T0). Taking all three panels of the
figure together one observes that the low-momentum re-
gion k/T0 . 5 relaxes to equilibrium very quickly, reduc-
ing deviations from equilibrium occupancy to below 20%

14 For the initial conditions studied in this work we were able to en-
sure convergence of the series (32) at all times with a small num-
ber nmax of associated Laguerre polynomials. However, for other
(still well-behaved) initial conditions (e.g. a Gaussian bump

added to a thermal distribution) the polynomials L(2)n are not
well-adapted to describe the high-momentum tail of the distri-
bution function, and we found it necessary to include a very large
number nmax of these polynomials to ensure convergence of the
series for fk(τ).

already at τ ∼ 2 while at k/T0> 20 deviations from equi-
librium by up to a factor 5 persist up to τ ∼ 10. The
Boltzmann collision terms thus thermalizes the system
differentially: first the system reaches approximate equi-
librium at thermal length scales whereas thermalization
at sub-thermal length scales takes much longer.

2. Comparing the evolution of the distribution function for
different approximations of the collision kernel

In Figs. 6 and 7 we compare numerical results for the
phase-space evolution of the distribution function for the
full nonlinear solution to the Boltzmann equation (32),
its linear approximation (47), and the RTA (53) for all
three sets of initial conditions. In Fig. 6 we plot the
logarithm of the ratio F (τ, k/T0)≡ fk(τ)/f eqk (τ) of the
non-equilibrium distribution function to its equilibrium
value as a function of k/T0, for a set of fixed τ values,
τ = {1, 8, 15} (left, middle, and right column). In the
first row, we plot the magnitude |F | of this ratio be-
cause, for the linearized collision term, the distribution
function evolves to negative values at large momenta as
time proceeds. This behavior was already anticipated in
Sec. V A where we saw that some of the energy moments
Mn became unphysically negative when evolved with the
linearized evolution equations. Fig. 6a, b, c shows that
the pathological region of negative distribution functions
appears to move to larger momenta as time proceeds.
This is consistent with the observation that at large τ
the deviations from equilibrium get smaller and the lin-
ear approximation to the full Boltzmann collision term
(which does not cause the distribution function to be-
come negative) thus can be expected to work better. We
note once again that with our choice for the relaxation
time the RTA evolved distribution function reaches equi-
librium much more quickly than both the nonlinear case
and the linearized Boltzmann collision approximation;
the slowest approach to equilibrium is observed when the
system is evolved with the full nonlinear collision term.
The three lower rows of panels further show that the
momentum range in which the dynamically evolved dis-
tribution function closely approaches equilibrium grows
wider, extending to larger momenta as time proceeds.

Figure 7 shows the time evolution of the same ratio F
plotted in 6 at two different momenta (k/T0 = 10 and 20,
respectively). Similar to what we saw for the evolution
of its energy moments, one observes a rapid approach to
thermal equilibrium in the RTA evolution, compared to
the much slower thermalization found using the nonlin-
ear collision term. At the lower of the two selected k/T0
values, differences between the time evolution for the full
and the linearized Boltzmann collision term are hardly
noticeable. For the larger k/T0 = 20, the early-time evo-
lution differs significantly between the full nonlinear and
the linearized collision terms for ES-IC and 1M-IC; in
particular, for the exact analytic solution the linearized
time evolution leads to unphysical negative values of the
distribution function at early times.
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FIG. 6: (Color online) Snapshots of the ratio F (τ, k/T0)≡ fk(τ)/feq
k (τ) as a function of k/T0 for τ = {1, 8, 15} (left, middle

and right column) according to the nonlinear Boltzmann equation (red line), linear approximation (blue dashed line) and RTA
(green dotten line). For the initial conditions of the distribution function we use the ES-IC (76) (panels (a,b,c)), 1M-IC (77)
(panels (d,e,f)), and 2M-IC (78) (panels (g,h,i)).

At late times, the difference between the value at a
given momentum of the evolving non-equilibrium distri-
bution function and its thermal limit decreases exponen-
tially. The rate of approach to equilibrium is ω= 1/α in
RTA, as is expected because all its Laguerre moments
decay exponentially with this rate. For the full Boltz-
mann collision term, the thermalization rate converges
at late times to ω2 = 1/3 for ES-IC and 1M-IC and to
ω3 = 1/2 for 2M-IC, i.e. at large times thermalization
is controlled by the lowest (and slowest) non-vanishing
non-hydrodynamic moment (which is n= 2 for ES-IC and
1M-IC and n= 3 for 2M-IC). This asymptotic late-time
behavior is universal in the sense that it applies at all
momenta.

C. Entropy production

We quantify the total entropy produced during the
thermalization process by the fractional increase

∆S(τ) =
S(τ)− S(0)

S(0)
. (79)

The time evolution of ∆S is studied in Fig. 8 for the three
initial conditions for the distribution function listed at
the beginning of this section.15 All cases have the same
initial energy and particle density which evolve according
to ideal fluid dynamics to the same final equilibrium state
at τ → ∞. What is different in each case is the initial
entropy of the system. The different initial conditions
correspond to non-equilibrium configurations and, thus,
their initial entropy is lower than the equilibrium value.
Since equilibrium is a global attractor of the dynamics,
the relative difference

∆Seq ≡
Seq − S(0)

Seq
(80)

gives the amount of entropy produced over all time for
each initial condition. We find ∆Seq = 0.51% for ES-IC,

15 We do not show the entropy production for the linearized evolu-
tion of the initial conditions ES-IC, Fig (8)a, since this leads to
negative distribution functions in part of momentum space for
which the entropy integral is not defined.
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FIG. 7: (Color online) (Color online) Evolution of the ratio F (τ, k/T0)≡ fk(τ)/feq
k (τ) as a function of τ , for fixed values of

momentum k/T0 = 10 (left column) and k/T0 = 20 (right column), for the full nonlinear (red line), linear (dotted blue line)
and RTA collision term (green dotten line). For the initial conditions we use the ES-IC (76) (panels (a,b)), 1M-IC (77) (panels
(c,d)), 2M-IC (78) (panels (e,f)).
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∆Seq = 4.7% for 1M-IC, and ∆Seq = 0.74% for 2M-
IC. Thus, we see that 1M-IC is the initial condition that

is the farthest from equilibrium and, consequently, pro-
duces the largest amount of entropy during the evolution.
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As should be expected from the thermalization studies
of the distribution function and its moments in the pre-
ceding subsections, the initial rate of entropy production
and the approach of the total entropy towards its final
equilibrated value is fastest in the relaxation time approx-
imation. When the kinetic evolution is controlled by the
full or linearized Boltzmann collision term, the rate of en-
tropy production slows down to an asymptotic exponen-
tial approach at the rate ωnmin = (nmin−1)/(nmin+1),
where nmin is the order of the lowest initially non-zero
Laguerre moment of fk. In Fig. 7 one can clearly distin-
guish between the different rates towards thermal equilib-
rium between panel (b) where initially the lowest nonzero
non-hydrodynamic moment is c2 which relaxes to equi-
librium with the rate ω2 = 1/3, and panels (c,d) where
initially the lowest nonzero non-hydrodynamic moment
is c3, which in turn relaxes to equilibrium at a faster rate
ω3 = 1/2.

As expected from the discussion in Section IV, there
are no noteworthy differences in the entropy production
rate for the full and the linearized Boltzmann collision
term. High momentum particles are too rare to signif-
icantly contribute to the total entropy of the system,
which means that long before the high-momentum tails
of the distribution function become thermal the overall
entropy production has already essentially ceased. In
other words, the total entropy is dominated by particles
with thermal momenta, and entropy production essen-
tially stops when those thermal particles have reached
an equilibrium state.

VI. CONCLUSIONS

In this work we solved the full nonlinear Boltzmann
equation for an expanding massless gas with constant
cross section in FLRW spacetime. The problem of solv-
ing the nonlinear Boltzmann equation is mapped onto
solving recursively a set of coupled ordinary differential
equations of moments of the distribution function. The
precision of the solution can be improved systematically
to any desired value by increasing the number of moments
(which results in better resolution of the high-momentum
tail of the distribution function). The same method can
be applied to the Boltzmann equation with a linearized
collision term or using the relaxation time approxima-
tion (RTA), which allowed us to investigate the impor-
tance for the thermalization process of non-linear mode-
by-mode couplings inherent in the Boltzmann collision
term.

The cosmological expansion in FLRW spacetime was
found to be slow enough to allow the distribution function
to move towards local equilibrium for any initial condi-
tion. Local equilibrium is reached in the asymptotic limit
τ → ∞ when expressed in the dimensionless time vari-
able τ defined in Eq. (27). This asymptotic limit can,
however, only be reached for FLRW universes with in-
finitesimally small initial values of the Hubble constant.
For finite initial expansion rates, the limit t → ∞ in

physical time is reached after a finite interval in τ , which
leaves the distribution function in a non-equilibrium fi-
nal state that becomes approximately stationary at late
physical times.

Our work exhibited a characteristic difference between
the rates at which the system approaches thermal equi-
librium in RTA and for the full or linearized Boltzmann
collision term. For both the full and linearized collision
terms, the asymptotic thermalization rate for the distri-
bution function is ωnmin = nmin−1

nmin+1 , which is the damping
rate of the slowest initially occupied non-hydrodynamic
eigenmode nmin of the Boltzmann equation. In RTA,
on the other hand, if the relaxation time is calculated
with standard methods using the same (constant) cross
section as in the Boltzmann collision term, the distribu-
tion function approaches equilibrium at the larger rate
ω= 1/α which falls between ω4 and ω5.

The approach to equilibrium is fastest for typical ther-
mal momenta whereas the high-momentum tail of the
distribution function takes much longer to thermalize.
As time proceeds the window in which the distribution
is well approximated by the asymptotic equilibrium dis-
tribution widens towards larger momenta. The late ther-
malization of the high energy tails is caused by non-linear
mode-by-mode couplings that couple higher moments to
lower ones and transport energy from low to high mo-
menta. It is consistent with the simple intuitive picture
that high-momentum particles require multiple collisions
to thermalize whereas soft particles thermalize already
after a few collisions [5].

Although the dynamics generated by the full collision
term exhibits non-linear mode-coupling effects, we found
only very small differences in the evolution towards equi-
librium between the full and linearized Boltzmann colli-
sion terms as long as we restricted our attention to the
dominant thermal momentum region; significant differ-
ences between the linear and nonlinear thermalization
dynamics were, however, observed at large momenta or
short length scales. Since high-momentum particles con-
tribute very little to the total entropy of the system, the
rate of entropy production during the thermalization pro-
cess was found to be almost indistinguishable between the
nonlinear and linearized dynamics. In RTA, however, en-
tropy was was found to be produced at much higher rate,
leading to faster thermalization.

An interesting aspect of this model is that it com-
bines ideal fluid dynamical evolution with dissipation and
entropy production. This means that the rate of en-
tropy production cannot be expressed in the standard
way through dissipative flows (such as the shear stress
tensor), which vanish in our model exactly by symme-
try. Dissipative effects, while definitely present, do not
manifest themselves hydrodynamically, i.e., they do not
affect the (relatively slow) evolution of the hydrodynamic
modes whose dynamics is controlled by the conservation
laws. For a given initial particle and energy density, the
amount of entropy produced depends exclusively on the
how far the initial phase-space distribution is away from
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thermal equilibrium; all initial configurations with the
same particle and energy density eventually evolve to the
same equilibrium state at τ →∞.

The dramatically different thermalization time scales
for the RTA and full nonlinear Boltzmann collision terms
raise the question whether one could not simply bring
the Boltzmann equation in RTA in congruence with the
full nonlinear Boltzmann equation by appropriate “renor-
malization” of the relaxation time τrel used in the RTA.
However, this does not work: as our analysis shows, for
the full Boltzmann collision term the relaxation time to-
wards thermal equilibrium is not universal, but depends
on which of the non-hydrodynamic modes are initially
occupied. Thermalization happens asymptotically at the
rate ωnmin

where nmin is the order of the slowest initially
non-zero non-hydrodynamic mode. Using in RTA a re-
laxation time that depends on the initial condition for the
distribution function (i.e. on which non-hydrodynamic
Laguerre moments are initially non-zero) does not make
sense.

It will be interesting to try to extend the techniques de-
veloped in this work to physically interesting anisotropi-
cally expanding systems. Finding an exact solution of the
full nonlinear Boltzmann equation for (0+1)-dimensional
Bjorken [86] and/or the (1+1)dimensional Gubser [84]
flows in Minkowski space would be of particular practical
and conceptual interest for relativistic heavy-ion physics,
and in the cosmological context one would like to be able
to solve the Boltzmann equation in anisotropic space-
times such as the Bianchi universes [87]. We leave these
issues for future studies.
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Appendix A: Moments of the collision kernel

In this Appendix we describe the procedure to perform
the integrals (21) for the case of a constant cross sec-
tion. We start by calculating the term C(n)loss (21a). We
recall from Sec. II A that we formulate all momentum
integrals in terms of the covariant components of the
four-momenta. For massless particles in FLRW space-
time we have s = (k+k′) · (k+k′) = 2 (1− cos θ) k k′2

and u · k = k0 = k/a(t).

The term C(n)loss (21a) is calculated as follows

C(n)loss =
(2π)5

2
σT

∫
kk′pp′

s (u·k)n

×
√
−g δ4(k+k′−p−p′) fkfk′ ,

=
σT
an+2

∫
kk′

kn+1 k′ (1− cos θ) fkfk′ (A1)

= σT

[
1

2π2

1

an+3

∫ ∞
0

dk kn+2 fk

]
×
[

1

4π2

1

a3

∫ ∞
0

dk′ k′2 fk′

∫ 1

−1
d(cos θ)(1− cos θ)

]
= σT ρn ρ0 .

In the second line we used the identity∫
pp′

√
−g δ4(k+k′−p−p′) =

1

(2π)5
, (A2)

and in the last equality we recalled the definition (14) of
the energy moments. This completes the computational

details of the loss term C(n)loss (21a).

The calculation of C(n)gain (22a) is harder. Let us start

by rewriting Eq. (22a) as follows

C(n)gain =
(2π)5

2
σT

∫
kk′

s fkfk′ Pn , (A3)

where we define the scalar quantity

Pn =

∫
p p′

(u·p)n
√
−g δ4(k+k′−p−p′) . (A4)

We calculate Pn in the center of mass frame where
k+k′= 0, where k = (k1, k2, k3) is constructed from the
covariant spatial components of the 4-vector kµ. (The
same applies to all 3-vectors below, see discussion in
Sec. II A.) In this frame the total energy of the system
is
√
s = k0 + k′0. In this reference frame the fluid ve-

locity is not static, i.e. uµ = (u0, ui) has nonzero spatial
components. Pn is then calculated as follows:
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Pn =
1

(2π)6

∫
d3p√
−g p0

(u·p)n
∫

d3p′√
−g p′0

δ

(√
s− 1

a(t)
(p+ p′)

)
δ3(p + p′) ,

=
1

2 (2π)5
1

an+1(t)

∫ ∞
0

dp pnδ

(√
s− 2

p

a(t)

) ∫ π

0

dθ sin θ

(
u0 −

|u|
a(t)

cos θ

)n
,

=
1

2n+1 (2π)5
a(t)

(n+ 1)
√
s |u|

[(
u0
√
s+
|u|
√
s

a(t)

)n+1

−
(
u0
√
s− |u|

√
s

a(t)

)n+1
]
.

(A5)

The last expression can be written covariantly by introducing the total 4-momentum of the system Pµ = kµ + k′µ

such that

u0
√
s = u·P , P ·P ≡ P 2 = s ,

√
s|u| =

√
su20 − s =

√
(u·P )2 − P 2 . (A6)

Thus the covariant version of Eq. (A5) is

Pn =
1

2n+1 (2π)5
a(t)

(n+ 1)
√

(u·P )2−P 2

(u·P +

√
(u·P )2 − P 2

a(t)

)n+1

−

(
u·P −

√
(u·P )2 − P 2

a(t)

)n+1
 , (A7)

Next we use the identity

(x+y)n+1 − (x−y)n+1

y
= 2

n+1∑
r=1
rodd

(
n+ 1

r

)
xn+1−r yr−1 (A8)

to write Eq. (A7) as

Pn =
1

(n+ 1) (2π)5 2n

n+1∑
r=1
r∈ odd

(
n+ 1

r

)
(u·P )n+1−r a(t)1−r

[
(u·P )2 − P 2

](r−1)/2
. (A9)

In the fluid rest frame one has u·P = P 0 = (k + k′)/a(t) and (u·P )2 − P 2 = P ·P = (k + k′)2. Thus, the scalar Pn
finally reads

Pn =
1

(n+ 1) (2π)5 2n
1

an(t)

n+1∑
r=1
r∈ odd

(
n+ 1

r

)
(k + k′)n+1−r |k + k′|r−1 . (A10)

Substituting the last expression back into Eq. (A3) we obtain

C(n)gain =
σT

(2π)6
1

a6+n(t)

∫
d3k d3k′ (1− cos θ) fkfk′

1

(n+ 1) 2n+1

n+1∑
r=1
r∈ odd

(
n+ 1

r

)
(k + k′)n+1−r|k + k′|r−1 ,

=
σT

(2π)6
1

a6+n(t)

∫
d3k d3k′ (1− cos θ) fkfk′

× 1

(n+ 1) 2n+1

n+1∑
r=0

(
n+ 1

r

)
(k + k′)n+1−r(k2 + k′2 + 2k k′ cos θ)(r−1)/2

[
1 + (−1)r+1

]
.

(A11)

To perform the integration over the angular variable θ we need the following integral:∫ 1

−1
dx (1− x) (a + b x)

r−1
2 = 4

(a+ b)(r+3)/2 − (a− b)(r+1)/2 (a+ b(2 + r))

b2 (r + 1) (r + 3)
, (A12)
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valid as long as a ≥ b and b ≥ 0. Eq. (A11) then reads

C(n)gain =
σT

a6+n(t)

1

2n+2

n+1∑
r=0

(
n

r

)[
1 + (−1)r+1

]
(r + 1)(r + 3)

∫ ∞
0

dk

2π2

∫ ∞
0

dk′

2π2
fkfk′

×
{

(k + k′)n+4 − |k − k′|r+1(k + k′)n+1−r [k2 + k′2 + 2k k′(2 + r)
]}

,

=
2σT

a6+n(t)

1

(n+ 1)(n+ 3)(n+ 4)

∫ ∞
0

dk

2π2

∫ ∞
0

dk′

2π2
fkfk′

×
{

(k + k′)n+4 − kn+4 − kn+3k′(n+ 4)− k′n+4 − k′n+3k(n+ 4)
}

(A13)

where we used the following identities:

1

2n+2

n+1∑
r=0

(
n

r

)[
1 + (−1)r+1

]
(r + 1)(r + 3)

=
2n+3 − n− 5

2n+2(n+ 1)(n+ 3)(n+ 4)
, (A14a)

1

2n+2

n+1∑
r=0

(
n

r

)[
1 + (−1)r+1

]
(r + 1)(r + 3)

|k − k′|r+1(k + k′)n+1−r [k2 + k′2 + 2k k′(2 + r)
]

=
1

2n+2(n+ 1)(n+ 3)(n+ 4)

{
2n+3

[
kn+3(k + k′(n+ 4)) + k′n+3(k(n+ 4) + k′)

]
− (n+ 5)(k + k′)n+4

}
. (A14b)

With the help of the binomial expansion it is now straightforward to show that

(k + k′)n+4 − kn+4 − kn+3k′(n+ 4)− k′n+4 − k′n+3k(n+ 4) = k2k′2
n∑

m=0

(
n+ 4

m+ 2

)
kn−mk′m . (A15)

We finally obtain

C(n)gain(t) =
2σT

a6+n(t)

1

(n+1)(n+3)(n+4)

∫ ∞
0

dk

2π2

∫ ∞
0

dk′

2π2
fkfk′ k

2k′2
n∑

m=0

(
n+4

m+2

)
kn−mk′m

= 2σT

n∑
m=0

(n+2)n!

(m+2)!(n−m+2)!
ρn−m(t) ρm(t) .

(A16)

This expression determines the term C(n)gain(t) (22a) in terms of the moments of the distribution function.

Appendix B: Some properties of the associated Laguerre polynomials

In this appendix we collect some useful properties of the associated Laguerre polynomials that were used in the
main text. A broader discussion of the Laguerre polynomials can be found in Ref. [88].

The closed form of the associated Laguerre polynomial of degree n is

L(β)
n (x) =

n∑
i=0

(−1)i
(
n+ β

n− i

)
xi

i!
. (B1)

These polynomials satisfy the following orthogonality property∫ ∞
0

dx e−x xβ L(β)
n (x)L(β)

m (x) =
(n+ β)!

n!
δnm . (B2)

The generating function of the Laguerre polynomials can be written as

G(z, x, β) ≡
∞∑
n=0

zn L(β)
n (x) =

e−xz/(1−z)

(1− z)β+1
, (B3)

which is valid for |z| < 1. From the previous expression it is straightforward to show the following identity

G(z, x, β)− z ∂G(z, x, β)

∂z
=

∞∑
n=0

(1− n) zn L(β)
n (x) =

e−xz/(1−z)

(1− z)β+3
[1 + z (x+ (2 + β)z − 3− β) ] . (B4)
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Appendix C: Derivation of Eq. (36)

In this appendix we present the details of the derivation of the Laguerre moments cn (36). From their definition (33)
we can find their evolution by taking the derivative respect to τ

n∑
r=0

(−1)r
(
n

r

)
∂τMr =

n∑
r=0

(−1)r
(
n

r

)[
−Mr +

1

r+1

r∑
m=0

Mm(τ )Mr−m

]
, (C1)

where we used explicitly the equation for the normalized moments (28). The last expression can be rewritten as

∂τ cn + cn =

n∑
r=0

(−1)r
(
n

r

) [
1

r+1

r∑
m=0

MmMr−m

]
. (C2)

Now all that remains to be proven is that the RHS of the previous expression corresponds exactly to the RHS
of the Laguerre moment equation (36). In order to see the equivalence we substitute the definition of the Laguerre
moments (33) on the RHS of Eq. (36):

1

n+ 1

n∑
r=0

cr cn−r =
1

n+ 1

n∑
r=0

[
r∑
s=0

(−1)s
(
r

s

)
Ms

] [
n−r∑
t=0

(−1)t
(
n−r
t

)
Mt

]
,

=
1

n+ 1

n∑
s=0

n∑
t=0

(−1)t+sMsMt

[
n∑
r=0

(
r

s

)(
n−r
t

)]
,

=

n∑
s=0

n∑
t=0

(−1)t+s
n!

(s+t+1)! (n−s−t)!
MsMt =

n∑
q=0

(−1)q
(
n

q

) [
1

q + 1

q∑
s=0

MsMq−s

]
.

(C3)

This shows that the RHS of Eqs. (C2) and (C3) agree, and thus that the equation for the Laguerre moments (36)
holds for any value of n ≥ 2. In Eq. (C3) we used the fact that

(
n
k

)
= 0 if k > n and the combinatorial identity

n∑
r=0

(
r

s

)(
n− r
t

)
=

(
n+ 1

s+ t+ 1

)
(C4)

which is valid if s, t ≥ 0 and s+ t ≤ n.
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