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We consider an asymptotically free vectorial gauge theory, with gauge group G and Nf fermions in
a representation R of G, having an infrared (IR) zero in the beta function at αIR. We present general
formulas for scheme-independent series expansions of quantities, evaluated at αIR, as powers of an
Nf -dependent expansion parameter, ∆f . First, we apply these to calculate the derivative dβ/dα
evaluated at αIR, denoted β′

IR, which is equal to the anomalous dimension of the Tr(FµνF
µν)

operator, to order ∆4
f for general G and R, and to order ∆5

f for G = SU(3) and fermions in
the fundamental representation. Second, we calculate the scheme-independent expansions of the
anomalous dimension of the flavor-nonsinglet and flavor-singlet bilinear fermion antisymmetric Dirac
tensor operators up to order ∆3

f . The results are compared with rigorous upper bounds on anomalous
dimensions of operators in conformally invariant theories. Our other results include an analysis of
the limit Nc → ∞, Nf → ∞ with Nf/Nc fixed, calculation and analysis of Padé approximants, and
comparison with conventional higher-loop calculations of β′

IR and anomalous dimensions as power
series in α.

I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from the ultraviolet (UV) to the infrared is of fundamen-
tal importance. The evolution of the running gauge cou-
pling g = g(µ), as a function of the Euclidean momentum
scale, µ, is described by the renormalization-group (RG)
beta function [1], βg = dg/dt or equivalently,

β =
dα

dt
=

g

2π
βg , (1.1)

where α(µ) = g(µ)2/(4π) and dt = d lnµ (the argument
µ will often be suppressed in the notation). Here we
consider an asymptotically free (AF) vectorial gauge the-
ory with non-Abelian, Yang-Mills gauge group G and Nf
copies (flavors) of fermions ψj , j = 1, ..., Nf transform-
ing according to the representation R of G. We take the
fermions to be massless, since a massive fermion with
mass m0 would be integrated out of the effective field
theory at scales µ < m0 [2] and hence would not affect
the infrared limit µ→ 0 that we study here.
In an asymptotically free theory with sufficiently large

fermion content, the beta function has an infrared zero
at αIR that controls the UV to IR evolution. Here we
consider vectorial theories of this type. As the scale µ
decreases from large values in the UV to small values
in the IR, α(µ) approaches αIR as µ → 0. The prop-
erties of the theory at this IR zero of the beta function
are of considerable interest. If this IR zero of the beta
function occurs at sufficiently weak coupling so that the
gauge interaction does not produce any spontaneous chi-
ral symmetry breaking (SχSB), then it is an exact IR
fixed point (IRFP) of the renormalization group. The
theory thus exhibits scale invariance with anomalous di-
mensions for various (gauge-invariant) operators. In this
infrared limit, the theory is in a chirally symmetric, de-

confined, non-Abelian Coulomb phase (NACP). If, on the
other hand, as µ decreases and α(µ) increases toward
αIR, there is a scale µ = Λ at which α(µ) exceeds a crit-
ical value, denoted αcr, then the gauge interaction pro-
duces a nonzero chiral condensate, with associated spon-
taneous chiral symmetry breaking and dynamical mass
generation for the fermions. These fermions are thus in-
tegrated out of the low-energy effective field theory that is
operative for µ < Λ. In this case, αIR is only an approxi-
mate IRFP. We define Nf,cr to be the critical value of Nf
such that if Nf > Nf,cr, then the (asymptotically free)
theory does not undergo spontaneous chiral symmetry
breaking. At the two-loop (2ℓ) level, αIR,2ℓ = −4πb1/b2,
where bℓ denotes the ℓ-loop coefficient in the beta func-
tion (see Eqs. (2.1) and (2.5) below), and since b1 [3] and
b2 [4] are independent of the scheme used for regulariza-
tion and renormalization of the theory [5], it follows that
αIR,2ℓ is also scheme-independent.

Physical quantities evaluated at an infrared fixed point
of the renormalization group at α = αIR are of basic in-
terest. Since these are physical, their exact values must
be scheme-independent. In conventional computations
of these quantities, first, one expresses them as series
expansions in powers of α, calculated to n-loop order;
second, one computes the IR zero of the beta function,
denoted αIR,n, to the same n-loop order; and third, one
sets α = αIR,n in the series expansion for the given quan-
tity to obtain its value at the IR zero of the beta func-
tion to this n-loop order. However, these conventional
series expansions in powers of α, calculated to a finite
order, are scheme-dependent beyond the leading one or
two terms. Specifically, the terms in the beta function are
scheme-dependent at loop order ℓ ≥ 3 and the terms in
an anomalous dimension are scheme-dependent at loop
order ℓ ≥ 2. Indeed, as is well-known, the presence of
scheme-dependence in higher-order perturbative calcula-
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tions is a general property in quantum field theory.
Clearly, it would be very valuable to have a calcula-

tional framework in which these physical quantities eval-
uated at α = αIR are expressed as a series expansion
such that at every order in this expansion the result is
scheme-independent. A key point that was noted early
on [3, 4, 6] is that αIR becomes small as the number Nf
of fermions increases toward the value Nf,b1z (given be-
low in Eq. (2.4)) at which the one-loop term in the beta
function, b1, passes through zero. At the two-loop level,
αIR ∝ ∆f , where

∆f = Nf,b1z −Nf . (1.2)

Indeed, in a theory with G = SU(Nc) and fermions in the
fundamental representation, in the limit Nc → ∞ and
Nf → ∞ with Nf/Nc fixed, αIR can be made arbitrar-
ily small. Hence, one can envision reliable perturbative
calculations of series expansions for physical quantities
at this IRFP [4, 6] and, in particular, series expansions
of these quantities in powers of ∆f for reasonably small
∆f [7]. Because ∆f is obviously scheme-independent, it
follows that this perturbative series expansion in pow-
ers of ∆f is scheme-independent. Some early work on
this was reported in [7, 8]. Recently, in [9], a procedure
for calculating the coefficients of this scheme-independent
expansion was given for the anomalous dimension of the
(gauge-invariant) fermion bilinear at the IR zero of the
beta function, and the coefficients in this expansion were
calculated up to order ∆3

f in a vectorial asymptotically
free gauge theory with gauge group G andNf fermions in
a representation R. This work also presented an analo-
gous calculation for a theory with N = 1 supersymmetry
to order ∆2

f . The results were then evaluated in the case

of SU(Nc) with fermions in the fundamental (F ) repre-
sentation, R = F , with Young tableau . In [10], for
G = SU(3) and R = F , we calculated the n-loop value
of the squared coupling, αIR,nℓ and the resultant value
of γψ̄ψ to five-loop order, and in [11] we calculated the
scheme-independent expansion of γψ̄ψ for the represen-

tations R is theory to order ∆4
f , using five-loop inputs,

and performed an extrapolation to infinite order in ∆f to
estimate the exact value of γψ̄ψ as a function of Nf . The
improvement in the knowledge of the anomalous dimen-
sion γψ̄ψ obtained from the scheme-independent series
expansions in [9, 11] is valuable not only for general field-
theoretic purposes, but also because theories with large
anomalous dimensions of fermion bilinears may be rele-
vant for ultraviolet completions of the Standard Model.
Indeed, there has been considerable interest in theories
that might produce large γψ̄ψ ∼ O(1) associated with
an IR zero of the beta function and resultant quasi-
conformal behavior [12]. In [11] we also compared our
results with recent lattice measurements of γψ̄ψ.
In this paper we report a number of new results on

scheme-independent series expansions in powers of ∆f .
As noted, we consider an asymptotically free vectorial
gauge theory with gauge group G and Nf fermions in
the representation R. First, we present general formu-

las for coefficients in the scheme-independent expansion
in powers of ∆f of an arbitrary (gauge-invariant) physi-
cal quantity evaluated at αIR. We calculate the scheme-
independent expansion of the derivative of the beta func-
tion, β′ = dβ/dα, evaluated at αIR, denoted β′

IR, to
order ∆4

f . As a consequence of the trace anomaly rela-

tion, in a theory with massless fermions, β′

IR is equal to
γ
F2,IR

, the anomalous dimension, evaluated at αIR, of

the operator Tr(FµνF
µν), where F aµν is the non-Abelian

Yang Mills field-strength tensor. For the special case
where the gauge group is SU(3) and the fermions are
in the fundamental (triplet) representation, we compute
this expansion to order ∆5

f . This SU(3) theory corre-

sponds to quantum chromodynamics (QCD) with Nf
massless quarks. For general G and R, we calculate
the scheme-independent expansion coefficients to order
∆3
f for the anomalous dimension, evaluated at αIR, of

the flavor-nonsinglet and flavor-singlet fermion bilinear
Dirac tensor operators. Since the ∆f expansion starts
at the upper end of the non-Abelian Coulomb phase
(NACP) at ∆f = 0, i.e., Nf = Nf,b1z, and extends
downward in Nf with increasing ∆f , we focus mainly
on the infrared behavior in the NACP. We show that
our scheme-independent calculations of the anomalous
dimensions of Tr(FµνF

µν) and fermion bilinear opera-
tors in the non-Abelian Coulomb phase obey respective
rigorous upper bounds for conformally invariant theories.
As part of our analysis, we compare results for various
quantities calculated via the scheme-independent expan-
sion with results calculated via a conventional higher-
loop scheme-dependent expansion. Further, for the case
with G = SU(Nc) and fermions in the fundamental rep-
resentation, we discuss the limit Nc → ∞ and Nf → ∞
with Nf/Nc fixed and finite. From ratios of scheme-
independent expansion coefficients for β′

IR, γψ̄ψ,IR and
the anomalous dimension of the fermion bilinear anti-
symmetric Dirac tensor operator, we show, in agreement
with, and extending [9], that the scheme-independent
∆f expansion should be reasonably accurate in the non-
Abelian Coulomb phase. As with our earlier work, the
present study is motivated by the value of the new results
for a basic understanding of the renormalization-group
evolution of asymptotically free gauge theories, and also
may be relevant to ultraviolet completions of the Stan-
dard Model.

The paper is organized as follows. Some relevant back-
ground and methods are discussed in Section II. In
Section III we present explicit formulas for the calcu-
lations of certain coefficients (an and kn in Eqs. (3.1)
and (3.3)) that are needed for the rest of our work. Gen-
eral scheme-independent expansion formulas for anoma-
lous dimensions of operators are given in Section IV. In
this section we also discuss rigorous upper bounds on
anomalous dimensions in a conformally invariant the-
ory and their application here. We give our new re-
sults on scheme-independent calculations of β′

IR in Sec-
tion V. In Section VI we extend the analysis of the
scheme-independent expansion of the anomalous dimen-
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sion for the m = 0 fermion bilinear previously studied in
[9] and [11] with several new results. These include calcu-
lations for the limit Nc → ∞, Nf → ∞ with Nf/Nc fixed
and analyses of Padé approximants, with comparison to
scheme-dependent higher-loop conventional calculations.
Section VII presents scheme-independent calculations of
the anomalous dimension for the fermion bilinear (flavor-
nonsinglet and flavor-singlet) antisymmetric rank-2 Dirac
tensor operator. Our conclusions are given in Section
VIII and some auxiliary formulas are listed in Appendix
A.

II. BACKGROUND AND METHODS

The beta function of this theory has the series expan-
sion

β = −2α
∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ , (2.1)

where

a =
g2

16π2
=

α

4π
, (2.2)

bℓ is the ℓ-loop coefficient, b̄ℓ = bℓ/(4π)
ℓ, and we extract

a minus sign for convenience, so b1 > 0 for asymptotic
freedom. For analysis of an IR zero of β, it is convenient
to extract the α2 factor that gives rise to the UV zero at
α = 0 and define a reduced (r) beta function

βr =
β

(

− α2b1
2π

) = 1 +
1

b1

∞
∑

ℓ=2

bℓ a
ℓ−1 . (2.3)

The n-loop (nℓ) beta function, denoted βnℓ and reduced
beta function, denoted βr,nℓ are obtained from the re-
spective Eqs. (2.1) and (2.3) by changing the upper limit
on the ℓ-loop summation from ∞ to n. As noted above,
b1 and b2 are scheme-independent (SI), while the bℓ with
ℓ ≥ 3 are scheme-dependent (SD) [5]. For a general gauge
group G and fermion representation R, the coefficients b1
and b2 were calculated in [3] and [4], and b3 and b4 were
calculated in [13] and [14] (and checked in [15]) in the
commonly used mass-independent MS scheme [16]. Re-
cently, for G = SU(3) and R = F , b5 was calculated
in [17]. For reference and to show our normalizations
explicitly, b1 and b2 are listed in Appendix A. As Nf in-
creases, b1 decreases through positive values and vanishes
with sign reversal at Nf = Nf,b1z , where

Nf,b1z =
11CA
4Tf

(2.4)

(the subscript b1z means “b1 zero”), where CA and Tf
are group-theoretic invariants [18, 19]. The asymptotic
freedom condition therefore implies the upper bound
Nf < Nf,b1z . We denote the interval 0 ≤ Nf < Nf,b1z as
IAF .

For Nf close to, but less than, Nf,b1z, b2 < 0, so the
two-loop beta function has an IR zero, at the value

αIR,2ℓ = − b̄1
b̄2

= −4πb1
b2

. (2.5)

In general, the n-loop beta function has a double UV zero
at α = 0 and n − 1 zeros away from the origin. Among
the latter, the smallest (real, positive) zero, if such a zero
occurs, is the physical IR zero, denoted αIR,nℓ. As Nf
decreases from Nf,b1z, b2 passes through zero to positive
values as Nf passes through the value

Nf,b2z =
17C2

A

2Tf(5CA + 3Cf )
. (2.6)

Hence, with Nf formally extended from nonnegative in-
tegers to nonnegative real numbers [19], β2ℓ has an IR
zero (IRZ) for Nf in the interval

IIRZ : Nf,b2z < Nf < Nf,b1z . (2.7)

We denote this interval as IIRZ .
As Nf decreases in this interval, αIR,2ℓ increases to-

ward strong coupling. Hence, to study the IR zero for
Nf toward the middle and lower part of IIRZ with rea-
sonable accuracy, one requires higher-loop calculations.
These were performed in [20]-[27] for αIR,nℓ and for the
anomalous dimension of the fermion bilinear operator.
Clearly, a perturbative calculation of the IR zero of βnℓ
is only reliable if the resultant αIR,nℓ is not excessively
large. Moreover, since the bℓ with ℓ ≥ 3 are scheme-
dependent, it is also incumbent upon one to ascertain
the degree of sensitivity of the value obtained for αIR,nℓ
for n ≥ 3 to the scheme used for the calculation. This
task was carried out in [28]-[31]. One way to do this is
to perform the calculation of αIR,nℓ in one scheme, say

MS, apply a scheme transformation to obtain the value
of αIR,nℓ in another scheme, and compare how close the
two values are. As we discussed in [28]-[29], an accept-
able scheme transformation function must satisfy a set of
conditions, and although these are automatically satisfied
in the local vicinity of the origin, α = 0 (as in optimized
schemes for perturbative QCD calculations), they are not
automatically satisfied, and indeed, are quite restrictive
conditions, when one applies the scheme transformation
at an IR zero away from the origin. Anomalous dimen-
sions of composite fermion operators for G = SU(3) have
been calculated in [32].
The one-loop coefficient b1 is a polynomial of degree 1

in Nf and the higher-loop coefficients bℓ with ℓ ≥ 2 are
polynomials of degree ℓ− 1 in Nf . Let us define

b
(0)
ℓ = bℓ

∣

∣

∣

Nf=Nf,b1z
(2.8)

and, for r ≥ 1,

b
(r)
ℓ =

drbℓ
(dNf )r

∣

∣

∣

Nf=Nf,b1z
= (−1)r

drbℓ
(d∆f )r

∣

∣

∣

∆f=0
(2.9)
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Then one has the scheme-independent results

b
(0)
1 = 0 (2.10)

(which is equivalent to the definition of Nf,b1z),

b
(1)
1 =

4Tf
3

, (2.11)

b
(0)
2 = −CA(7CA + 11Cf) ≡ −CAD , (2.12)

where

D = 7CA + 11Cf , (2.13)

and

b
(1)
2 = −4

3
(5CA + 3Cf )Tf . (2.14)

It is convenient to introduce the definition (2.13), since
powers of D occur in the denominators of the scheme-
independent expansion coefficients of anomalous dimen-
sions of bilinear fermion Dirac tensor operators and of
dβ/dα evaluated at the IR zero of the beta function.
Thus, one has the finite Taylor series expansions

b1 = b
(1)
1 (Nf −Nf,b1z) = −b(1)1 ∆f (2.15)

and, for ℓ ≥ 2,

bℓ =

ℓ−1
∑

r=0

1

r!
b
(r)
ℓ (Nf −Nf,b1z)

r =

ℓ−1
∑

r=0

(−1)r

r!
b
(r)
ℓ ∆r

f .

(2.16)

We write Eqs. (2.15) and (2.16) in a unified manner as

bℓ =

rmax(ℓ)
∑

r=0

(−1)r

r!
b
(r)
ℓ ∆r

f , (2.17)

where rmax(1) = 1 and rmax(ℓ) = ℓ− 1 if ℓ ≥ 2.
It will also be useful to recall some basic properties of

the theory regarding global flavor symmetries. Because
the Nf fermions are massless, the Lagrangian is invari-
ant under the classical global chiral flavor (fl) symmetry
Gfl,cl = U(Nf )L ⊗U(Nf )R, or equivalently,

Gfl,cl = SU(Nf )L ⊗ SU(Nf )R ⊗U(1)V ⊗U(1)A

(2.18)

(where V and A denote vector and axial-vector). The
U(1)V represents fermion number, which is conserved by
the bilinear operators that we consider. The U(1)A sym-
metry is broken by instantons, so the actual nonanoma-
lous global flavor symmetry is

Gfl = SU(Nf )L ⊗ SU(Nf )R ⊗U(1)V . (2.19)

This Gfl symmetry is respected in the (deconfined) non-
Abelian Coulomb phase, since there is no spontaneous
chiral symmetry in this phase. As noted before, we focus
on this phase in the present work, since the (scheme-
independent) ∆f expansion starts from the upper end
of the interval IIRZ in this phase where αIR → 0 as
∆f → 0. In contrast, in the phase with confinement
and spontaneous chiral symmetry breaking, the gauge in-
teraction produces a bilinear fermion condensate, which

can be written as
∑Nf

j=1 ψ̄jψj , and this breaks Gfl to

SU(Nf )V ⊗U(1)V .

III. CALCULATION OF THE SERIES

EXPANSION COEFFICIENTS kn AND an

We know that the exact αIR (and also the n-loop ap-
proximation to this exact αIR) vanishes (linearly) as a
function of ∆f and that it is analytic at ∆f = 0, so
we can expand it, or equivalently, aIR = αIR/(4π), as a
series expansion in this variable, ∆f . We write

aIR =
∞
∑

j=1

aj∆
j
f . (3.1)

(Note that aj as defined here is equal to aj/2 in terms of
the aj in Eq. (8) of [9].)
One calculates the coefficients aj in two steps. First,

one evaluates βr in Eq. (2.3) at α = αIR, where it van-
ishes. Since the prefactor −8πa2IR in Eq. (2.1) is nonzero
in general (although it does vanish at ∆f = 0), it follows
that

∞
∑

ℓ=1

bℓ (aIR)
ℓ−1 = 0 . (3.2)

One then substitutes the finite Taylor series expansions
for bℓ, and aIR, Eqs. (2.15), (2.17), and (3.1), in Eq.
(3.2) and thereby obtains the equation

βr|α=αIR = 0 =

∞
∑

ℓ=1

[( rmax(ℓ)
∑

r=0

b
(r)
ℓ ∆r

f

)( ∞
∑

j=1

aj∆
j
f

)ℓ ]

=

∞
∑

n=1

kn∆
n
f . (3.3)

The results for the first three kn were given in [9] and
are:

k1 = a1b
(0)
2 − b

(1)
1 , (3.4)

k2 = a2b
(0)
2 + a21b

(0)
3 − a1b

(1)
2 , (3.5)

and

k3 = a3b
(0)
2 + 2a1a2b

(0)
3 + a31b

(0)
4 − a2b

(1)
2 − a21b

(1)
3 .
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(3.6)

From Eq. (3.3), it follows that the coefficient an occurs

linearly in the expression for kn, in the single term anb
(0)
2

[9]. To further show the structural forms of the kn, we
give k4 and k5 here:

k4 = a4b
(0)
2 + (a22 + 2a1a3)b

(0)
3 + 3a21a2b

(0)
4 + a41b

(0)
5 − a3b

(1)
2 − 2a1a2b

(1)
3 − a31b

(1)
4 +

1

2
a21b

(2)
3 (3.7)

k5 = a5b
(0)
2 + 2(a1a4 + a2a3)b

(0)
3 + 3a1(a

2
2 + a1a3)b

(0)
4 + 4a31a2b

(0)
5 + a51b

(0)
6

− a4b
(1)
2 − (a22 + 2a1a3)b

(1)
3 − 3a21a2b

(1)
4 − a41b

(1)
5 + a1a2b

(2)
3 +

1

2
a31b

(2)
4 . (3.8)

In addition to the property that kn contains a term

anb
(0)
2 , we remark on two other general properties of the

kn: (i) kn contains a term an1 b
(0)
n+1 (which coincides with

the term anb
(0)
2 if n = 1) and (ii) if n ≥ 2, then kn

contains a term −an−1b
(1)
2 .

Next, one observes that in Eq. (3.3), since ∆f is vari-
able, this implies that the coefficients kn of each power
∆n
f must vanish individually. One can solve the equations

kn = 0 for the an. The solutions are unique because of
the property that an occurs linearly in kn. The solutions
for the an with with 1 ≤ n ≤ 3 were given in [9]. Thus,
the equation k1 = 0 yields

a1 =
b
(1)
1

b
(0)
2

. (3.9)

One then substitutes this into the equation k2 = 0 and
solves for a2, obtaining

a2 =
b
(1)
1

(b
(0)
2 )3

(b
(0)
2 b

(1)
2 − b

(1)
1 b

(0)
3 ) . (3.10)

One then proceeds iteratively in the manner, substituting

the solutions for the ak with 1 ≤ k ≤ n−1 in the equation
kn = 0 and solving for an. For a3, this yields

a3 =
b
(1)
1

(b
(0)
2 )5

[

(b
(0)
2 b

(1)
2 )2 − 3b

(1)
1 b

(0)
2 b

(1)
2 b

(0)
3 + 2(b

(1)
1 b

(0)
3 )2

+ b
(1)
1 (b

(0)
2 )2 b

(1)
3 − (b

(1)
1 )2 b

(0)
2 b

(0)
4

]

. (3.11)

In general, an depends on the bℓ coefficients for 1 ≤ ℓ ≤
n+ 1. The an with 1 ≤ n ≤ 3 were all the coefficients of
this type that were needed in [9] since the bℓ have only
been computed for a general gauge group G and fermion
representation R up to ℓ = 4 loop order. These an have
a factorized structure with a prefactor

an ∝ b
(1)
1

(b
(0)
2 )2n−1

. (3.12)

In [11] we also calculated and presented the result for a4
for the specific case G = SU(3) and fermion representa-
tion R = F , since we were using the recent calculation of
the five-loop coefficient b5 for this case in [17]. Here we
give the general result for a4 for arbitrary gauge group
G and fermion representation R:

a4 =
b
(1)
1

(b
(0)
2 )7

[

(b
(0)
2 b

(1)
2 )3 − 1

2
b
(1)
1 (b

(0)
2 )4b

(2)
3 + (b

(1)
1 )2(b

(0)
2 )3b

(1)
4 − 4(b

(1)
1 b

(0)
2 )2

(

b
(1)
2 b

(0)
4 + b

(0)
3 b

(1)
3

)

+ 3b
(1)
1 (b

(0)
2 )2b

(1)
2

(

b
(0)
2 b

(1)
3 − 2b

(1)
2 b

(0)
3

)

+ 10(b
(1)
1 )2b

(0)
2 b

(1)
2 (b

(0)
3 )2 + 5(b

(1)
1 )3b

(0)
3

(

b
(0)
2 b

(0)
4 − (b

(0)
3 )2

)

− (b
(1)
1 )3(b

(0)
2 )2b

(0)
5

]

. (3.13)

In the same manner, we have calculated a5 by substitut-
ing our solutions for the ak with 1 ≤ k ≤ 4 in Eq. (3.8),

and so forth for higher ak.
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IV. SCHEME-INDEPENDENT SERIES

EXPANSION FOR ANOMALOUS DIMENSIONS

AT αIR

Let us consider a (gauge-invariant) operator O. Be-
cause of the interactions, the full scaling dimension of this
operator, denoted DO, differs from its free-field value,
DO,free:

DO = DO,free − γO , (4.1)

where γO is the anomalous dimension of the operator
[33]. Since γO arises from the gauge interaction, it can
be expressed as a power series about a = 0:

γO =

∞
∑

ℓ=1

cO,ℓ a
ℓ , (4.2)

where cO,ℓ is the ℓ-loop coefficient.
The exact anomalous dimension γO evaluated at a zero

of the exact beta function, denoted γO,IR, is a phys-
ical quantity and hence is scheme-independent. This
was shown formally for the fermion bilinear operator
O = ψ̄ψ in [5], and the proof given there can be straight-
forwardly extended to other (gauge-invariant) operators
O. However, this scheme-independence is not preserved
in a finite-order perturbative calculation, owing to the
scheme-dependence of the bℓ for ℓ ≥ 3 and of the cO,ℓ for
ℓ ≥ 2.
As mentioned above, a method for calculating γψ̄ψ,IR

as a perturbative series expansion in powers of ∆f was
presented in [9], with the important property that at
each order of the expansion the resulting approxima-
tion to γψ̄ψ,IR is scheme-independent. We can calcu-
late a scheme-independent series expansion in powers of
∆f for the anomalous dimension γO of a general (gauge-
invariant) operator O, evaluated at αIR by taking the
series (4.2) and inserting the expansions of cO,ℓ and aIR
as functions of ∆f . An advantage of this type of series
expansion is that since ∆f is scheme-independent, so is
the expansion for γO, in contrast to the expression of γO
as a series in powers of αIR,nℓ.
We proceed to give a generalization of the results of

[9] for the anomalous dimension of an arbitrary (gauge-
invariant) operator O in an asymptotically free gauge
theory with gauge group G and Nf fermions in the rep-
resentation R, evaluated at αIR. We denote this anoma-
lous dimension as γO,IR. Specifically, we present a gen-
eral method for calculating a series expansion of γO,IR
in powers of ∆f .
We begin with the series expansion (4.2) and substitute

the series expansions for the cO,ℓ and for aIR. Let

c
(0)
O,ℓ = cO,ℓ

∣

∣

∣

Nf=Nf,b1z
(4.3)

and, for r ≥ 1,

c
(r)
O,ℓ =

drcO,ℓ
(dNf )r

∣

∣

∣

Nf=Nf,b1z
= (−1)r

drcO,ℓ
(d∆f )r

∣

∣

∣

∆f=0
(4.4)

Then

γO,IR =

∞
∑

ℓ=1

[(

∑

r

c
(r)
O,ℓ∆

r
f

)( ∞
∑

j=1

aj∆
j
f

)ℓ ]

=

∞
∑

n=1

κO,n∆
n
f . (4.5)

We denote the value of γO,IR obtained from this series
calculated to order O(∆p

f ), i.e., from the last line of Eq.

(5.7) with the upper limit of the summand changed from
∞ to p, as γO,IR,∆p

f
.

We calculate

κO,1 = a1c
(0)
O,1 , (4.6)

κO,2 = a2c
(0)
O,1 + a21c

(0)
O,2 , (4.7)

κO,3 = a3c
(0)
O,1 + 2a1a2c

(0)
O,2 + a31c

(0)
O,3 + a21c

(1)
O,2 , (4.8)

κO,4 = a4c
(0)
O,1 + (2a1a3 + a22)c

(0)
O,2 + 3a21a2c

(0)
O,3

+ a41c
(0)
O,4 + 2a1a2c

(1)
O,2 + a31c

(1)
O,3 , (4.9)

etc. for κO,n with n ≥ 5. To calculate κO,n, one needs to
know the aj and cj for 1 ≤ j ≤ n. These κO,n have the
following general properties: (i) κO,n contains the term

anc
(0)
O,1 and (ii) κO,n contains the term an1 c

(0)
O,n (which

coincides with (i) if n = 1).
A relevant question concerns the range of applicability

of the scheme-independent series expansion (4.5). We ad-
dress this question here. As noted above, our analysis in
this paper is focused on the non-Abelian Coulomb phase,
since there is no spontaneous symmetry breaking in this
phase, and hence a zero of the beta function is an exact
IR fixed point of the renormalization group. This means
that the theory at this fixed point is scale-invariant. A
number of studies have concluded that in this case of
an exact IRFP in this asymptotically free gauge theory,
scale invariance implies the larger symmetry of conformal
invariance [34, 35].
We will use several methods to assess the range of va-

lidity of the (scheme-independent) small-∆f expansion.
A general comment is that the properties of the the-
ory change qualitatively as Nf decreases through the
value Nf,cr and spontaneous chiral symmetry breaking
occurs and the fermions gain dynamical masses. In the
(chirally symmetric) non-Abelian Coulomb phase with
Nf,cr < Nf < Nf,b1z is clearly qualitatively different
from the confined phase with spontaneous chiral symme-
try breaking at smaller Nf below Nf,cr. Therefore, one
does not, in general, expect the small-∆f series expansion
to hold below Nf,cr. Estimating the range of applicabil-
ity of this expansion is thus connected with estimating
the value of Nf,cr.
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For this purpose, as in our previous work [9, 22, 24], we
can apply a rigorous upper bound on the anomalous di-
mension of an operator from the unitarity of a conformal
field theory. If the approximate calculation of the anoma-
lous dimension of a given quantity at a fixed value of ∆f ,
computed up to order ∆p

f , yields a value that exceeds
this upper bound, then we can infer that the calculation
is not applicable at this value of ∆f or equivalently, Nf .
In particular, this can give information on the extent of
the non-Abelian Coulomb phase and the value of Nf,cr.
This bound is applicable whether or not the coefficients
κO,n are all of the same sign, but it is most useful if these
coefficients do have the same sign, since in this case for a
fixed ∆f the anomalous dimension is a monotonic func-
tion of the order to which the small-∆f series expansion
is calculated.
A second method that we shall use to estimate the

range of applicability of the series expansions in powers
of ∆f is the ratio test. If a function f(z) has a Taylor
series f(z) =

∑∞

n=1 snz
n, then the ratio test states that

the series is (absolutely) convergent if |z| < z0, where

z0 = lim
n→∞

|sn|
|sn+1|

. (4.10)

Our application of the ratio test here is only intended to
give a rough estimate of this range of applicability of the
∆f series expansion since (i) we do not assume that the
∆f expansion is a Taylor series expansion, and (ii) with
only a few terms in the series for a given quantity, we can
compute only a few ratios of adjacent coefficients.
Finally, a third method that we shall use is to calculate

[p, q] Padé approximants to the ∆f series expansions. As
rational functions of ∆f , the approximants with q ≥ 1
have poles, and the nearest poles to the origin give one
estimate of the range of validity of the expansions.

A. Upper Bound on Anomalous Dimensions

We now state and apply the upper bound on the
anomalous dimension of an operator in a theory with
scale invariance or conformal invariance. Recall that a
(finite-dimensional) representation of the Lorentz group
is specified by the set (j1, j2), where j1 and j2 take
on nonnegative integral or half-integral values [36]. A
Lorentz scalar operator thus transforms as (0, 0), a
Lorentz vector as (1/2, 1/2), an antisymmetric tensor
like the field-strength tensor F aµν as (1, 0) ⊕ (0, 1), etc.
Then the requirement of unitarity in a scale-invariant
theory (in four spacetime dimensions) requires that the
full dimension DO of an operator (other than the iden-
tity) must satisfy the lower bound [35]

DO ≥ j1 + j2 + 1 . (4.11)

With the definition (4.1), this is equivalent to the upper
bound on the anomalous dimension

γO ≤ DO,free − (j1 + j2 + 1) . (4.12)

The case (j1, j2) = (0, 0) includes the Lorentz scalar
operators F aµνF

a µν , and the flavor-nonsinglet and flavor-

singlet fermion bilinear operators ψ̄Tbψ and ψ̄ψ, where
here Tb is an element of the Lie algebra of the global flavor
symmetry group SU(Nf ). Hence, first, since DF 2,free =
4, it follows from (4.12) that the anomalous dimension of
the F aµνF

a µν , evaluated at αIR, must satisfy

γ
F2,IR

≤ 3 . (4.13)

Second, (4.12) implies that the (equal) anomalous dimen-
sions of the flavor-nonsinglet and flavor-singlet fermion
bilinear operators ψ̄Tbψ and ψ̄ψ evaluated at αIR, de-
noted γψ̄ψ,IR, must satisfy

γψ̄ψ,IR ≤ 2 . (4.14)

The flavor-nonsinglet and flavor-singlet fermion bilin-
ear antisymmetric rank-2 Dirac tensor operators propor-
tional to ψ̄Tbσµνψ and ψ̄σµνψ to be analyzed below cor-
repond to the case (j1, j2) = (1, 0) ⊕ (0, 1) (as is clear
from the fact that they can couple to the non-Abelian
field-strength tensor to form a Lorentz scalar). Hence,
with j1 + j2 = 1 for (j1, j2) = (1, 0) or (0,1), the bound
(4.12) implies that the (equal) anomalous dimensions of
these operators evaluated at αIR, denoted γ

T,IR
, must

satisfy

γ
T,IR

≤ 1 . (4.15)

We have applied the upper bound (4.14) in our pre-
vious calculations of γψ̄ψ,IR,nℓ at the n-loop level, up to
n = 4 loops [9–11, 22, 26, 27]. We have also applied a cor-
responding upper bound in [9, 24, 27] on the anomalous
dimension of the (gauge-invariant) bilinear chiral super-

field operator ΦΦ̃ in a vectorial asymptotically free gauge
theory with gauge group G, N = 1 supersymmetry, and
Nf pairs of chiral superfields Φj and Φ̃j , 1 ≤ j ≤ Nf ,
transforming according to the representations R and R̄
of G [24, 27]. A theory of particular interest is the case
R = F ; here, Nf,b1z = 3Nc and the lower end of the con-
formal phase is known, namely Nf,cr = (3/2)Nc [49, 50]
(which is integral and hence physical if Nc is even). This
theory corresponds to supersymmetric QCD with mass-
less matter fields, and is often denoted SQCD. In this
case, the upper bound is γψ̄ψ ≤ 1, and this is saturated
at the lower end of the non-Abelian Coulomb phase. The
scheme-independent expansion in [9] exhibited excellent
agreement with this exact result.

V. SCHEME-INDEPENDENT CALCULATION

OF β′

IR

A. Calculation to Order ∆4
f for General G and R

An important property of an asymptotically free the-
ory at an IR zero of the beta function (IRFP of the renor-
malization group) is is the derivative of this beta function
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evaluated at α = αIR,

β′

IR =
dβ

dα

∣

∣

∣

α=αIR
. (5.1)

This is scheme-independent, as was proved in [5] [37]. In
a theory with massless fermions, as considered here, the
trace of the energy-momentum tensor, T µµ , satisfies the
relation [38]

T µµ =
β

4α
F aµνF

aµν , (5.2)

where F aµν = ∂µA
a
ν − ∂νA

a
µ + gcabcAbµA

c
ν is the gluon

field strength tensor [39]. Since the energy-momentum
tensor is conserved, its anomalous dimension is zero, and
its full dimension is equal to its free-field dimension, 4.
Consequently, the full scaling dimension of the operator
F aµνF

aµν , denoted DF 2 , satisfies

DF 2 = 4− β′ +
2β

α
, (5.3)

where we use the shorthand notation F 2 ≡ F aµνF
aµν

[40, 41]. We denote the anomalous dimension of the oper-
ator F aµνF

aµν as γ
F2

and its evaluation at αIR as γ
F2,IR

.

From Eq. (5.3), it follows that at a zero of the beta func-
tion away from the origin, in particular, the IR zero of
an asymptotically free gauge theory of interest here at
α = αIR, the derivative β′

IR is equal to the anomalous
dimension of the operator F aµνF

a µν :

β′

IR = γ
F2,IR

. (5.4)

From Eq. (2.1), one obtains the conventional series
expansion for β′

IR in powers of α, or equivalently, a:

β′

IR = −2

∞
∑

ℓ=1

(ℓ+ 1) bℓ a
ℓ
IR . (5.5)

We denote β′

IR,nℓ as the n-loop truncation of this infinite

series. The two-loop value is scheme-independent [26]:

β′

IR,2ℓ = −2b21
b2

=
(11CA − 4TfNf )

2

3[2(5CA + 3Cf )TfNf − 17C2
A]

, (5.6)

which is positive for Nf ∈ IIRZ . However, at the level
of n ≥ 3 loops, the quantity β′

IR,nℓ is scheme-dependent.

This quantity was calculated up to the four-loop level in
[26, 27], using b3 and b4 computed in the MS scheme from
[13, 14] (for SU(3), see also the four-loop study [42]).
Here we calculate a scheme-independent expansion of

β′

IR in powers of ∆f to order ∆4
f for general G and R

and to the five-loop level, i.e., order ∆5
f , for SU(3). For

general G and R, we substitute the expansions of bℓ and
aIR, as series in ∆f , in Eq. (5.5) to obtain

β′

IR = −2

∞
∑

ℓ=1

(ℓ + 1)

[( rmax(ℓ)
∑

r=0

b
(r)
ℓ ∆r

f

)( ∞
∑

j=1

aj∆
j
f

)ℓ ]

=

∞
∑

n=1

dn∆
n
f . (5.7)

We denote the value of β′

IR obtained from this series
calculated to order ∆p

f as β′

IR,∆p
f

. The calculation of

dn contains explicit dependence on the bℓ for 1 ≤ ℓ ≤
n and on the aj for 1 ≤ j ≤ n − 1; since aj depends
on bℓ for 1 ≤ ℓ ≤ j + 1, it follows that the calculation
of dn requires knowledge of bℓ for 1 ≤ ℓ ≤ n. Since
the bℓ have been calculated for general gauge group G
and fermion representation R up to four-loop level, we
can thus calculate explicit expressions for the dn up to
n = 4. For our calculation, in addition to the scheme-
independent results for b1 and b2 [3, 4], we have used the
expressions for b3 and b4 calculated in the MS scheme in
[13, 14]. However, we stress that it does not matter which
scheme we use for b3 and b4, because the resulting series
expansion for β′

IR in powers of ∆f is scheme-independent.

Substituting the b
(r)
ℓ and aj into these equations, we

find the following results. First,

d1 = 0 , (5.8)

so that β′

IR vanishes quadratically with ∆f as ∆f → 0,
i.e., as Nf → Nf,b1z. For n ≥ 2, with the denominator
factor D = 7CA + 11Cf as defined in Eq. (2.13), we
calculate

d2 =
25T 2

f

32CAD
, (5.9)

d3 =
27T 3

f (5CA + 3Cf )

33C2
AD

2
, (5.10)

and

d4 = −
23T 2

f

36C4
AD

5

[

C5
AT

2
f (−412335+ 1241856ζ3) + C4

AT
2
fCf (−310800+ 2661120ζ3)

+ C3
AT

2
fC

2
f (−217848− 836352ζ3) + C3

A

dabcdR dabcdR

dA
(−2385152+ 5203968ζ3) + C2

AT
2
fC

3
f (−2855424− 3066624ζ3)



9

+ C2
ATf

dabcdR dabcdA

dA
(630784− 6150144ζ3) + C2

ACf
dabcdR dabcdR

dA
(−3748096+ 8177664ζ3)

+ 191664CAT
2
fC

4
f + CAT

2
f

dabcdA dabcdA

dA
(−35840 + 946176ζ3) + CATfCf

dabcdR dabcdA

dA
(991232− 9664512ζ3)

+ T 2
fCf

dabcdA dabcdA

dA
(−56320 + 1486848ζ3)

]

. (5.11)

Here,

ζs =

∞
∑

n=1

1

ns
(5.12)

is the Riemann zeta function, the quantities CA,
Cf , Tf are group invariants, and the contractions
dabcdA dabcdA , dabcdR dabcdA , dabcdR dabcdR are additional group-
theoretic quantities given in [14], and dA is the dimension
of the adjoint representation of G. These calculations
thus determine the quantity β′

IR to order ∆4
f for an arbi-

trary gauge group G and fermion representation R. We
have also calculated d5, but the expression is sufficiently
lengthy that we do not include it here; however, we shall
use it below.
We note a general result on the signs of the first two

nonzero coefficients in the scheme-independent expansion
for β′

IR:

dn > 0 for n = 2, 3 and arbitrary G, R . (5.13)

These positivity results are clear from Eqs. (5.9) and
(5.10). In contrast, there are terms of both signs in the
large square bracket in the expression for d4, Eq. (5.11);
for example, in the large square bracket in Eq. (5.11), the
coefficients of the C5

AT
2
f and C4

AT
2
fCf terms are positive

while the coefficient of the C3
AT

2
fC

2
f term is negative, etc.

Indeed, we will show below in Eqs. (5.16) and (5.61) that
for G = SU(Nc), d4 is negative if R = F and positive
if R = adj. A summary of the sign results for these
coefficients and others is given in Table I for the case
where G = SU(Nc).

In Table II we list the (scheme-independent) values
that we calculate for β′

IR,∆p
f

with 2 ≤ p ≤ 4 for the

illustrative gauge groups G = SU(2), SU(3), and SU(4),
as functions of Nf in the respective intervals IIRZ given
in Eq. (2.7). For comparison, we list the n-loop values
of β′

IR,nℓ with the 2 ≤ n ≤ 4, where β′

IR,3ℓ and β′

IR,4ℓ

are computed in the MS scheme. Values that exceed the
upper bound (4.13) are marked as such. In the case of
SU(3), we also include our calculation of β′

IR,∆5

f

.

B. Evaluation for G = SU(Nc) and R = F

We proceed to evaluate our general formulas for the
dn coefficients for a case of particular interest, namely
that in which the gauge group is G = SU(Nc) with Nf
fermions in the fundamental representation, R = F . In
addition to Eq. (5.8), our general results (5.9)-(5.11)
yield

d2,SU(Nc),F =
24

32(25N2
c − 11)

, (5.14)

d3,SU(Nc),F =
25(13N2

c − 3)

33Nc(25N2
c − 11)2

, (5.15)

and

d4,SU(Nc),F = − 24

35N2
c (25N

2
c − 11)5

[

N8
c

(

− 366782+ 660000ζ3

)

+N6
c

(

865400− 765600ζ3

)

+ N4
c

(

− 1599316+ 2241888ζ3

)

+N2
c

(

571516− 894432ζ3

)

+ 3993

]

. (5.16)

As is evident, the coefficients d2,SU(Nc),F and d3,SU(Nc),F

are positive-definite for all physical values of Nc. We find
that d4,SU(Nc),F is negative-definite for all physical values
of Nc ≥ 2.

C. Calculation to O(∆5
f ) for G = SU(3) and R = F

For the special case where the gauge group is G =
SU(3) and the Nf fermions are in the fundamental rep-
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resentation, R = F , we can make use of the recent cal-
culation of b5 in the MS scheme in [17] to carry out
the scheme-independent calculation of β′

IR to one order
higher than for general G and R, namely to order ∆5

f .

We first give the special cases of our results in Eqs. (5.8)-
(5.11) for this theory. In addition to d1,SU(3),F = 0, we
find

d2,SU(3),F =
8

32 · 107 = 0.830737× 10−2 , (5.17)

d3,SU(3),F =
304

33 · (107)2 = 0.983427× 10−3 ,

(5.18)

and

d4,SU(3),F =
633325687

2 · 36 · (107)5 − 682880

34 · (107)4 ζ3

= −(0.463417× 10−4) . (5.19)

For d5,SU(3),F we calculate

d5,SU(3),F = −66670528901419

2 · 39 · (107)7 − 122882810048

38 · (107)6 ζ3 +
196275200

36 · (107)5 ζ5

= −(0.564349× 10−5) . (5.20)

In these equations we have indicated the simple factorizations of the denominators that were already evident in the
general analytic expressions (5.8)-(5.11). The numerators do not, in general, have such simple systematic factoriza-
tions; for example, in d4,SU(3),F , the number 633325687 = 227 · 311 · 8971, etc. We will also use this factorization
format, indicating the factorizations of the denominators, in later equations. Substituting these coefficients into Eq.
(5.7), we have, to O(∆5

f ),

β′

IR = ∆2
f

[

(0.830737× 10−2) + (0.983427× 10−3)∆f − (0.463417× 10−4)∆2
f − (0.564349× 10−5)∆3

f

]

,(5.21)

to the indicated floating-point accuracy.

In Fig. 1 we plot the values of β′

IR, calculated to order
∆p
f with 2 ≤ p ≤ 5. In the general calculations of γψ̄ψ,IR

as a series in powers of ∆f to maximal power p = 3
(i.e., order ∆3

f ) in [9] and, for G = SU(3) and R = F , to

maximal power p = 4 in [11], it was found that, for a fixed
value of Nf , or equivalently, ∆f , in the interval IIRZ ,
these anomalous dimensions increased monotonically as
a function of p. This feature motivated our extrapolation
to p = ∞ in [9] to obtain estimates for the exact γψ̄ψ,IR.
In contrast, here we find that, for a fixed value of Nf , or
equivalently, ∆f , in IIRZ , as a consequence of the fact
that different coefficients dn do not all have the same sign,
β′

IR,∆p
f

is not a monotonic function of p. Because of this

non-monotonicity, we do not attempt to extrapolate our
series to p = ∞. Lattice measurements of γ

F2,IR
= β′

IR

would be useful here (see also [42]). In particular, forG =
SU(3) and fermions in the fundamental representation,
the lattice measurements of γ

F2,IR
could be compared

with our scheme-independent calculation of β′

IR = γ
F2,IR

to order ∆5
f , similar to the comparison of our scheme-

independent calculation of γψ̄ψ,IR to order ∆4
f (which

also used five-loop inputs [43]) with lattice results that
we carried out in [11].

To get a rough estimate of the range of accuracy and
applicability of the series expansion for β′

IR, we can com-
pute ratios of coefficients, as discussed in connection with
Eq. (4.10). Thus, we have

d2,SU(3),F

d3,SU(3),F
= 8.447 (5.22)

d3,SU(3),F

|d4,SU(3),F |
= 21.221, (5.23)

and

|d4,SU(3),F |
|d5,SU(3),F |

= 8.2115 (5.24)

Since Nf,b1z = 16.5 and Nf,b2z = 153/19 = 8.053 in this
SU(3) theory, the maximal value of ∆f in the interval
IIRZ is

(∆f )max =
321

38
= 8.447 for SU(3), Nf ∈ IIRZ .

(5.25)
Therefore, these ratios suggest that the small-∆f expan-
sion may be reasonably reliable in most of this interval,
IIRZ and the associated non-Abelian Coulomb phase.
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FIG. 1: Plot of β′

IR,∆
p
f

for 2 ≤ p ≤ 5 as a function of Nf

for the SU(3) theory with Nf fermions in the fundamental
representation. From bottom to top, the curves (with colors
online) refer to β′

IR,∆2

f
(red), β′

IR,∆5

f
(black) β′

IR,∆4

f
(blue),

β′

IR,∆3

f
(green).

D. Calculation in the LNN Limit and Comparison

with Conventional Calculation

For theories having gauge the group G = SU(Nc) with
Nf fermions in the fundamental representation of this
group, i.e., R = F , it is of interest to consider the limit

Nc → ∞ , Nf → ∞

with r ≡ Nf
Nc

fixed and finite

and ξ(µ) ≡ α(µ)Nc is a finite function of µ .

(5.26)

We will use the symbol limLNN for this limit, where
“LNN” stands for “large Nc and Nf” (with the con-
straints in Eq. (5.26) imposed). In this LNN (’t Hooft-
Veneziano) limit we define the quantities

x = lim
LNN

g2Nc
16π2

=
ξ

4π
, (5.27)

rb1z = lim
LNN

Nf,b1z
Nc

, (5.28)

and

rb2z = lim
LNN

Nf,b2z
Nc

, (5.29)

with values

rb1z =
11

2
= 5.5 (5.30)

and

rb2z =
34

13
= 2.615 . (5.31)

(to the indicated floating-point accuracy). With IIRZ
being Nf,b2z < Nf < Nf,b1z , the corresponding interval
in the ratio r is

IIRZ,r :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.5 (5.32)

We define the scaled scheme-independent expansion pa-
rameter for the LNN limit

∆r ≡
∆f

Nc
= rb1z − r =

11

2
− r . (5.33)

and

rc = lim
LNN

Nf,cr
Nc

. (5.34)

After these preliminaries, we now proceed to calculate
the scheme-independent expansion of β′

IR = γF 2,IR in
this LNN limit (5.26), and compare with the conventional
calculation of this quantity. The beta function that is
finite in this LNN limit is

βξ =
dξ

dt
= lim

LNN
βNc , (5.35)

where ξ = limLNN αNc was defined in Eq. (5.26). This
has the series expansion

βξ ≡
dξ

dt
= −8πx

∞
∑

ℓ=1

b̂ℓx
ℓ , (5.36)

where

b̂ℓ = lim
LNN

bℓ
N ℓ
c

. (5.37)

The b̂ℓ are listed for reference in Appendix A.
Since the derivative dβξ/dξ satisfies the relation

dβξ
dξ

=
dβ

dα
≡ β′ , (5.38)

it follows that β′ is finite in the LNN limit (5.26). In
terms of the variable x defined in Eq. (5.27), we have

β′ = −2

∞
∑

ℓ=1

(ℓ+ 1)b̂ℓ x
ℓ . (5.39)

Because β′

IR is scheme-invariant and is finite in the
LNN limit, one is motivated to calculate the LNN limit
of the scheme-independent expansion (5.7). For this pur-
pose, in addition to the rescaled quantities ∆r defined in
Eq. (5.33), we define the rescaled coefficient

d̂n = Nn
c dn , (5.40)
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which is finite in the LNN limit. Then each term

lim
LNN

dn∆
n
f = (Nn

c dn)
(∆f

Nc

)n

= d̂n∆
n
r (5.41)

is finite in this limit. Thus, writing limLNN β
′

IR as
β′

IR,LNN , we have

β′

IR,LNN = γF 2,IR,LNN =
∞
∑

n=1

dn∆
n
f =

∞
∑

n=1

d̂n∆
n
r .

(5.42)

We denote the value of β′

IR,LNN = γF 2,IR,LNN ob-

tained from this series calculated to order O(∆p
f ) as

β′

IR,LNN,∆p
f

= γF 2,IR,∆p
f
.

From Eqs. (5.8)-(5.11), we find that the approach to

the LNN limits for d̂n involves correction terms that van-
ish like 1/N2

c . This is the same property that was found
in [26, 27] and, in the same way, it means that the ap-
proach to the LNN limit for finite Nc and Nf with fixed
r = Nf/Nc is rather rapid, as discussed in [27]. We cal-

culate d̂1 = 0 and

d̂2 = 24

32·52

= 0.0711111 , (5.43)

d̂3 =
416

33 · 54
= 2.465185× 10−2 , (5.44)

and

d̂4 =
5868512

35 · 510 − 5632

34 · 56 ζ3

= −(2.876137× 10−3) . (5.45)

Thus, numerically

β′

IR,LNN = γF 2,IR = ∆2
r

[

0.07111+ (2.4652× 10−2)∆r

− (2.8761× 10−3)∆2
r

]

. (5.46)

We may again calculate ratios of successive magnitudes
of these coefficients to get a rough estimate of the range
over which the small-∆r expansion is reliable in this LNN
limit. We find

d̂2

d̂3
= 2.885 (5.47)

and

d̂3

|d̂4|
= 8.571 (5.48)

For r ∈ IIRZ,r , the maximal value of ∆r is

(∆r)max =
75

26
= 2.885 for r ∈ IIRZ,r . (5.49)

Therefore, these LNN ratios suggest, in agreement with
our analysis for SU(3) and R = F , that the small-∆r

expansion may be reasonably reliable over much of the
interval IIRZ,r .

It is useful to compare these scheme-independent cal-
culations of β′

IR,LNN = γF 2,IR,LNN with the results of

conventional n-loop calculations, denoted β′

IR,nℓ,LNN =
γF 2,IR,nℓ,LNN . These derivatives are computed from the
n-loop truncation of the series in Eq. (5.39). As a spe-
cial case of our remark below Eq. (5.5), we note that in
calculating the n-loop truncation of the series (5.39) at
the IR zero of the beta function, for n ≥ 3, one uses the
property that

n
∑

ℓ=1

b̂ℓ x
ℓ−1
IR,nℓ = 0 , (5.50)

to eliminate the highest-loop term b̂nx
n−1
IR , expressing it

as b̂nx
n−1
IR = −∑n−2

ℓ=1 b̂ℓ x
ℓ−1
IR,nℓ. The two-loop result for

xir is

xIR,2ℓ =
11− 2r

13r − 34
for r ∈ IIRZ,r . (5.51)

The resultant two-loop for β′

IR is

β′

IR,2ℓ =
2(11− 2r)2

3(13r − 34)
. (5.52)

Both xIR,2ℓ and β′

IR,2ℓ are scheme-independent. How-
ever, the higher-loop expressions for these quantities at
loop level n ≥ 3 do not preserve the scheme-independence
of the exact β′

IR. Let us define the polynomials (see Eqs.
(3.9) and (2.26) in [27])

C3ℓ = −52450 + 41070r− 7779r2 + 448r3 (5.53)

and

D3ℓ = −2857 + 1709r − 112r2 , (5.54)

both of which are positive for r ∈ IIRZ,r . The three-loop
value of the IR zero of the beta function in the LNN limit,
computed in the MS scheme, is [27]

xIR,3ℓ =
3[−3(13r− 34) +

√
C3ℓ ]

D3ℓ
. (5.55)

We calculate the three-loop result for β′

IR, or equiva-
lently the anomalous dimension of Tr(FµνF

µν), in the

LNN limit, again in the MS scheme, to be
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β′

IR,3ℓ =
2
[

− 3(13r − 34) +
√
C3ℓ

]

D2
3ℓ

[

− 52450 + 41070r− 7779r2 + 448r3 − 3(13r − 34)
√

C3ℓ

]

. (5.56)

We compute the four-loop result β′

IR,4ℓ in this scheme in a
similar manner. In Table III we list the numerical values
of these conventional n-loop calculations in comparison
with our scheme-independent results calculated to O(∆p

f )
for 2 ≤ n ≤ 4 and 1 ≤ p ≤ 3. We see that, especially for r
values in the upper part of the interval IIRZ,r , the results
are rather close, and, furthermore, that, as expected, for
a given r, the higher the loop level n and the trunca-
tion order p in the respective calculations of β′

IR,nℓ in

the MS scheme and the scheme-independent β′

IR,∆p
f

, the

better the agreement between these two results. Below,
we will derive an upper bound that is applicable for an
exact IRFP in the non-Abelian Coulomb phase, namely
γ
F2,IR

< 3 (see (4.13). All of the entries shown in Ta-

ble III satisfy this upper bound except for the two-loop
values β′

IR,2ℓ = γ
F2,IR,2ℓ

for r = 3.0 and r = 2.8 which

are 3.333 and 8.100, respectively. These values are thus
omitted from the table.

E. Calculation of the dn to O(∆4
f ) for G = SU(Nc)

and R = adj

It is worthwhile to compare our results obtained for
G = SU(Nc) with Nf fermions in the fundamental rep-
resentation to the case in which the fermions are in the
adjoint representation, denoted as adj for short. In this
case, the general expressions for Nf,b1z and Nf,b2z are

Nf,b1z =
11

4
= 2.75 for R = adj (5.57)

and

Nf,b2z =
17

16
= 1.0625 for R = adj , (5.58)

so the interval IIRZ only contains the single integer value
Nf = 2.
For this theory, our general expressions (5.9) and (5.10)

reduce to pure numbers, independent of Nc:

d2,SU(Nc),adj =
24

34
= 0.19753 , (5.59)

d3,SU(Nc),adj =
28

37
= 0.11706 , (5.60)

For d4 we calculate

d4,SU(Nc),adj =
46871N2

c + 85248

22 · 312N2
c

. (5.61)

This coefficient d4,SU(Nc),adj is manifestly positive and
has the large-Nc limit

lim
Nc→∞

d4,SU(Nc),adj =
46871

22 · 312 = 0.022049

(5.62)

In contrast to our results for the dn,SU(Nc),F , here all of
the coefficients dn,SU(Nc),adj that we have calculated, for
1 ≤ n ≤ 4, are positive. These signs are recorded in
Table I.
With these coefficients, one can again compute ratios

to obtain a crude idea of the region over which the small-
∆f series expansion is reliable. We have

d2,SU(Nc),adj

d3,SU(Nc),adj
= 1.687 (5.63)

and, taking the large-Nc limit for simplicity,

lim
Nc→∞

d3,SU(Nc),adj

d4,SU(Nc),adj
= 5.309 (5.64)

These ratios are consistent with the inference that the
small-∆f expansion may again be reasonably accurate in
the interval IIRZ and for the corresponding value Nf = 2
in this theory.

VI. ANALYSIS OF SCHEME-INDEPENDENT

EXPANSION COEFFICIENTS FOR γψ̄ψ,IR

A. Review of Calculation to O(∆3
f ) for General G

and R

We consider the (gauge-invariant) flavor-nonsinglet
(fns) and flavor-singlet (fs) bilinear fermion operators

J0,fns =

Nf
∑

j,k=1

ψ̄j(Tb)jkψk , (6.1)

where here Tb with b = 1, ..., N2
f − 1 is an generator of

the global flavor group SU(Nf ), and

J0,fs =

Nf
∑

j=1

ψ̄jψj . (6.2)

We will often suppress the flavor indices and write these
simply as ψ̄Tbψ and ψ̄ψ. These have the same anoma-
lous dimension (e.g., [44]), which we denote as γψ̄ψ.
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(Thus, one may simply consider the operator ψ̄jψj with
no sum on j, but here we shall refer to J0,fns and
J0,fs.) The operator J0,fns has the chiral decomposition
ψ̄Tbψ = ψ̄LTbψR + ψ̄RTbψL. Hence, in the non-Abelian
Coulomb phase where the flavor symmetry is (2.19), one
may regard the Tb in the term ψ̄LTbψR acting to the right
as an element of SU(Nf )R and acting to the left as an
element of SU(Nf )L.
The usual series expansion of γψ̄ψ in powers of α, or

equivalently, a, is

γψ̄ψ =

∞
∑

ℓ=1

cℓ a
ℓ , (6.3)

where cℓ is the ℓ-loop coefficient. For generalG and R the
coefficients cℓ have been calculated up to ℓ = 4 loop level
[45] (earlier work includes [46]) and for the special case
G = SU(3) and R = F , c5 has been calculated [47]. The
scheme-independent expansion of γψ̄ψ can be written as

γψ̄ψ,IR =

∞
∑

n=1

κn∆
n
f . (6.4)

We denote the truncation of this sum to maximal power
n = p as γψ̄ψ,IR,∆p

f
. For a general asymptotically

free vectorial gauge theory with gauge group G and Nf
fermions in an arbitrary representation R, the coefficients
κn were given in [9] up to order n = 3, yielding the ex-
pansion of γψ̄ψ,IR to order ∆3

f . For reference, we display

the κn coefficients from Ref. [9] (with the denominator
factor D given in Eq. (2.13)):

κ1 =
8TfCf
CAD

, (6.5)

κ2 =
4T 2

fCf (5CA + 88Cf)(7CA + 4Cf )

3C2
AD

3
, (6.6)

and

κ3 =
4TfCf
34C4

AD
5

[

− 55419T 2
fC

5
A + 432012T 2

fC
4
ACf + 5632T 2

fCf
dabcdA dabcdA

dA
(−5 + 132ζ3)

+ 16C3
A

(

122043T 2
fC

2
f + 6776

dabcdR dabcdR

dA
(−11 + 24ζ3)

)

+ 704C2
A

(

1521T 2
fC

3
f + 112Tf

dabcdR dabcdA

dA
(4− 39ζ3) + 242Cf

dabcdR dabcdR

dA
(−11 + 24ζ3)

)

+ 32TfCA

(

53361TfC
4
f − 3872Cf

dabcdR dabcdA

dA
(−4 + 39ζ3) + 112Tf

dabcdA dabcdA

dA
(−5 + 132ζ3)

)]

. (6.7)

B. Evaluation of κn for G = SU(Nc) and R = F

For the case where the Nf fermions are in the repre-
sentation R = F , these results (6.5)-(6.7) from [9] take
the following forms:

κ1,SU(Nc),F =
4(N2

c − 1)

Nc(25N2
c − 11)

, (6.8)

κ2,SU(Nc),F =
4(N2

c − 1)(9N2
c − 2)(49N2

c − 44)

3N2
c (25N

2
c − 11)3

, (6.9)

and

κ3,SU(Nc),F =
8(N2

c − 1)

33N3
c (25N

2
c − 11)5

[

274243N8
c − 455426N6

c − 114080N4
c + 47344N2

c + 35574

− 4224N2
c (4N

2
c − 11)(25N2

c − 11)ζ3

]

. (6.10)

We find that these coefficients κn,SU(Nc),F with 1 ≤ n ≤ 3
are positive-definite for all physical Nc ≥ 2. This is obvi-

ous for n = 1, 2, and an examination of the polynomial in
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square brackets in Eq. (6.10), of degree 8 in Nf , proves
the result for n = 3.

C. Calculation of κn Coefficients to O(∆4
f ) for

G = SU(3) and R = F

For comparison with the κn with other values of Nc,
we recall our calculation of the κn to order n = 4, i.e., to
order O(∆4

f ) in [11]. We found

κSU(3),F,1 =
16

3 · 107 = 4.9844× 10−2 , (6.11)

κSU(3),F,2 =
125452

(3 · 107)3 = 3.7928× 10−3 , (6.12)

κSU(3),F,3 =
972349306

(3 · 107)5 − 140800

33 · (107)4 ζ3 = 2.3747×10−4 ,

(6.13)

κSU(3),F,4 =
33906710751871

22(3 · 107)7 − 1684980608

35 · (107)6 ζ3

+
59840000

(3 · 107)5 ζ5

= 3.6789× 10−5 . (6.14)

In Ref. [9] the ratio test was applied to the first
three coefficients, κSU(3),F,n, n = 1, 2, 3 and the excel-
lent convergence was noted. Here, using our calcula-
tion of κSU(3),F,4 in [11], we calculate the next ratio,
κSU(3),F,3/κSU(3),F,4. We have

κSU(3),F,1

κSU(3),F,2
= 13.142 (6.15)

κSU(3),F,2

κSU(3),F,3
= 15.972 (6.16)

and

κSU(3),F,3

κSU(3),F,4
= 6.455 (6.17)

Since the maximal value of ∆f in the interval IIRZ is
8.447 (see Eq. (5.25)), these ratios suggest, as noted in
[9] and in agreement with our earlier calculation of coef-
ficient ratios for β′

IR, that the small-∆f expansion may
be reasonably reliable over much of the interval IIRZ .
The positivity of the κSU(3),F,n for 1 ≤ n ≤ 3 is in

agreement with our more general positivity results given
above, and, as we noted in [11], we also found that
κSU(3),F,4 is positive. These signs are recorded in Table I.
The positivity of all of these coefficients played an impor-
tant role in our analysis in [11] because it meant that for
a given value of Nf , or equivalently, ∆f , the value of γψ̄ψ
calculated to O(∆n

f ), denoted γψ̄ψ,∆nf , is a monotonically

increasing function of n over the full range 1 ≤ n ≤ 4 that
we calculated. We then conjectured that this positivity
would be true for all n, i.e., we conjectured that κn > 0
for all n ≥ 1. Assuming the validity of this conjecture, we
then computed the extrapolation to n→ ∞ for an exact
γψ̄ψ,IR in the SU(3) theory with R = F . A generaliza-
tion of our conjecture in [11] that is motivated by our
present results is that, in the notation of Eqs. (6.11)-
(6.14), κn,SU(Nc),F > 0 for all n ≥ 1 and all Nc ≥ 2.
Importantly, in [11] we noted that, if this monotonicity
property holds, then, combining it with the upper bound
γψ̄ψ,IR < 2, one would infer that if γIR saturates its up-
per bound (4.14) as Nf decreases and passes through the
value Nf,cr at the lower end of the non-Abelian Coulomb
phase, it would follow from our extrapolated values of
γψ̄ψ,IR that 8 < Nf,cr < 9. Here one must mention the
caveat that it is not known if, in fact, γIR saturates its
upper bound in this way as Nf ց Nf,cr. Indeed, the na-
ture of the transition as Nf decreases through Nf,cr has
not been definitely established. Analyses via Schwinger-
Dyson equations suggested that, as Nf ր Nf,cr from
within the phase with confinement and chiral symme-
try breaking, the fermion condensate 〈ψ̄ψ〉 could vanish
with an essential zero [48]. Some insight into this may
be derived from the known results in SQCD. In SQCD,
as noted above, the upper bound is γψ̄ψ,IR < 1 and is
saturated at the lower end of the non-Abelian Coulomb
phase [49, 50] .

In the case G = SU(3) and R = F , one of the ma-
jor values of the five-loop calculation of γψ̄ψ,IR in [10]
and the scheme-independent calculations of γψ̄ψ,IR to

order ∆3
f in [9] and to order ∆4

f in [11], with the ad-
ditional analysis here, is the comparison of these results
with fully nonperturbative lattice measurements of this
anomalous dimension [51]. (Since our discussion here is
on the operator ψ̄ψ and the gauge group SU(3), when
there is no danger of confusion, we omit these subscripts
in the ψ̄ψ anomalous dimension.) A number of lattice
groups have obtained data and carried out analyses of
these data for the SU(3) theory with Nf = 12 fermions
with R = F . These groups have reported the follow-
ing values: γIR = 0.414 ± 0.016 [52], γIR ∼ 0.35 [54],
γIR ≃ 0.4 [55], γIR = 0.27(3) [61], γIR ≃ 0.25 [62],

γIR = 0.235(46) [56], and 0.2 <∼ γ <∼ 0.4 [57]. (For com-
parative discussions of these different results and esti-
mates of overall uncertainties, the reader is advised to
consult the reviews in [51] and the original papers [52]-
[57].) As we noted in [11], our value γIR,∆4 = 0.338
and our extrapolated γIR = 0.40 are consistent with this
range of lattice measurements, taking into account the
different methods of lattice data analysis used and are
somewhat higher than the five-loop value γIR,5ℓ = 0.255
from the conventional α series that we obtained in [10].
The γIR,5ℓ = 0.255 value in [10] is in very good agreement
with the measured values of γIR reported in [61]-[56].

There have also been lattice studies of the SU(3) theory
with Nf = 10 [58] and Nf = 8 [51, 59, 60]. For the SU(3)
theory with Nf = 10 fermions, our scheme-independent
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calculation presented in [11] and discussed further here
gives γψ̄ψ,IR,∆4

f
= 0.615 and our extrapolation to infinite

order in the ∆f expansion yields γψ̄ψ,IR = 0.95(6), con-
sistent with estimates that γψ̄ψ,IR ∼ 1 from lattice stud-
ies [51, 58]. In the SU(3) theory (with Nf fermions in the
representation R = F ), the lower end of IIRZ occurs at
Nf,b2z = 8.047, but one may still formally consider the
results of the small-∆f expansion evaluated at Nf = 8.
In this case we obtain γIR,∆p

f
= 0.424, 0.698, 0.844, 1.04

for 1 ≤ p ≤ 4. These are again consistent with the rough
estimates γψ̄ψ,IR ∼ 1 from lattice studies [51, 59, 60].
There is not yet a consensus on the value of Nf,cr from
lattice studies [51]. In this context, one should keep in
mind that for Nf < Nf,cr, there is spontaneous chiral
symmetry breaking, so the IR zero of the beta function is
only approximate, since the theory flows away from this
value as the fermions gain dynamical mass and are in-
tegrated out, leaving a pure gluonic low-energy effective
field theory. For such a theory, the quantity extracted
from either continuum or lattice analyses as γψ̄ψ,IR is
only an effective anomalous dimension that describes the
renormalization-group behavior as the theory is flowing
near to the approximate zero of the beta function.

D. Evaluation of κn,SU(Nc),R to O(∆3
f ) for R = adj

In the case R = adj, the general results in [9] reduce
as follows:

κ1,SU(Nc),adj =
4

32
= 0.4444 , (6.18)

κ2,SU(Nc),adj =
341

2 · 36 = 0.23388 , (6.19)

κ3,SU(Nc),adj =
61873N2

c − 42624

23 · 310N2
c

. (6.20)

This is positive for all physical Nc and has the large-Nc
limit

lim
Nc→∞

κ3,SU(Nc),adj =
61873

23 · 310 = 0.130978 (6.21)

The positive signs of these κn,SU(Nc),adj coefficients are
recorded in Table I.

E. Comparison of Scheme-Independent Calculation

of γψ̄ψ,IR with Conventional Calculations

It is of considerable interest to compare the results
obtained in [9] for the scheme-independent expansion of
γψ̄ψ,IR to order O(∆3

f ) (using calculations of the bn to

n = 4 loop order and cn to n = 3 loop order) with results
obtained previously with the conventional calculation of
the n-loop γψ̄ψ,IR,nℓ in powers of the n-loop αIR,nℓ in

[22] (using calculations of the bn and cn up to n = 4
loop order). Here and below, for specific calculations we
take the gauge group to be SU(Nc) with various values of
Nc. For notational brevity, in this section we will often
leave the subscript ψ̄ψ implicit on these and other quan-
tities and thus write γIR ≡ γψ̄ψ,IR, γIR,nℓ ≡ γψ̄ψ,IR,nℓ,
κn ≡ κψ̄ψ,n, etc. in this and the next section. Since
γIR,nℓ is scheme-dependent beyond the lowest order, one
must choose a scheme for this comparison. Here we
choose the widely used MS scheme, for which b3 and
b4 and cn for 2 ≤ n ≤ 4 were calculated for a gen-
eral gauge group G and fermion representation R [13–
15] [45]. In the special case of G = SU(3) and R = F ,
using the recent calculations of the five-loop coefficients
b5 and c5 in the MS scheme, we computed γIR,nℓ up to

n = 5 loop level [10] in this MS scheme and performed a
scheme-independent calculation up to order ∆4

f [11]. For
this special case we compared the results obtained via
these two different approaches. Here we carry out a sim-
ilar comparison for other SU(Nc) theories. The scheme-
independent expansion of γIR has the form (6.4). We
denote the value of γIR obtained from this series calcu-
lated to order O(∆p

f ) as γIR,∆pf

As discussed above, our discussion is restricted to the
interval IIRZ of values ofNf , given in Eq. (2.7), for which
the (scheme-independent) two-loop beta function has an
IR zero. Using the results for the lower and upper ends
of this interval, Nf,b2z and Nf,b1z from Eqs. (2.4) and
(2.6), one has, for (Nf,b1z , Nf,b2z), the respective values
(5.55, 11), (8.05, 16.5), and (10.61, 22) for Nc = 2, 3, 4
[19], and hence the physical intervals IIRZ with integral
Nf : 6 ≤ Nf ≤ 10 for SU(2), 9 ≤ Nf ≤ 16 for SU(3),
and 11 ≤ Nf ≤ 21 for SU(4). Our results for these three
illustrative values of Nc are listed in Table IV. For the
special case Nc = 3, we have carried these calculations
one order higher, namely to five-loop level and to order
∆4
f in [10, 11].

Since the calculation of κn and the resultant γIR,∆n
f

uses information from the (n+1)-loop beta function from
(2.1) and the n-loop expansion of γ in (4.2), it is natural
to compare the (SI) γIR,∆n

f
with the (SD) γIR,n′ℓ for

n′ = n and n′ = n + 1. Since γIR,∆n
f
includes n-loop

information about γIR,nℓ, one would expect the closest
agreement between γIR,∆n

f
and γIR,nℓ, and our results

confirm this expectation. In the upper and middle part
of the interval IIRZ for a given Nc, we find that γIR,∆n

f
is

slightly larger than γIR,3ℓ, with the difference increasing
as Nf decreases below Nf,b1z , i.e., as ∆f increases.

We recall the upper bound (4.14) that applies at an
IRFP in the non-Abelian Coulomb phase, based on the
scale invariance and inferred conformal invariance in this
phase. The bound (4.14) also applies, for a different
reason, in the phase with confinement and spontaneous
chiral symmetry breaking; in that phase it is a conse-
quence of the physical requirement that the momentum-
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dependent dynamically generated effective fermion mass

m(k) ∼ Λ
(Λ

k

)2−γIR
(6.22)

must satisfy the constraint limk→∞m(k) = 0, where k
is the Euclidean momentum. In the upper and middle
parts of the interval IIRZ in the NACP, the values of
γIR,nℓ calculated in the conventional series expansion in
powers of αIR,nℓ obey this upper bound. However, for a
given Nc, toward the lower end of the respective inter-
vals IIRZ , the IR coupling αIR,nℓ become too large for
the perturbative calculations to be applicable, and some
resultant values of the anomalous dimensions exceed the
bound (4.14). This occurs for the scheme-independent
two-loop values γIR, 2ℓ for Nf = 6, 7 if Nc = 2; for
Nf = 9, 10 if Nc = 3, and for 11 ≤ Nf ≤ 14 if Nf = 4.
In these cases, since it is not clear that the higher-order
values γIR,nℓ are reliable, we leave them unlisted (u), as
we did in [22].
From these calculations and the entries in Table IV,

one of the important advances achieved by the scheme-
independent ∆f expansion is evident, namely that the
values of γIR,∆p

f
with 1 ≤ p ≤ 3 (and, for SU(3) also

p = 4 in [11]) that we calculate via this method obey the
upper bound (4.14) throughout all of the interval IIRZ
and associated non-Abelian Coulomb phase, in contrast
with some of the values calculated via the conventional
loop expansion toward the lower end of IIRZ . In gen-
eral, for all of the Nc values considered, our results for
γIR,∆p

f
here satisfy the upper bound (4.14) and hence

are consistent with the conclusion that the ∆f expansion
is reasonably reliable throughout the interval IIRZ and
non-Abelian Coulomb phase. We regard this, together
with the scheme-independence itself, as being a major
advantage of the ∆f expansion.

F. LNN Limit for γψ̄ψ,IR

Here we consider theories with G = SU(Nc) and Nf
copies of fermions in the representation R = F in the
LNN limit (5.26). We recall that in this LNN limit, the
interval IIRZ is given by Eq. (5.32) and the scaled ∆r is
defined by Eq. (5.33). We define rescaled coefficients κ̂n

κ̂n ≡ lim
Nc→∞

Nn
c κn (6.23)

that are finite in this LNN limit. The anomalous dimen-
sion γψ̄ψ,IR is also finite in this limit and is given by

lim
LNN

γψ̄ψ,IR =
∞
∑

n=1

κn∆
n
f =

∞
∑

n=1

κ̂n∆
n
r . (6.24)

From (5.32), it follows that as r decreases from rb1z to
rb2z , ∆r increases from 0 to the its maximal value

(∆r)max =
75

26
= 2.8846 for r ∈ IIRZ,r . (6.25)
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FIG. 2: Plot of γψ̄ψ,IR,∆pr for 1 ≤ p ≤ 3 as a function of
r ∈ IIRZ,r in the LNN limit (5.26). From bottom to top, the
curves (with colors online) refer to γψ̄ψ,IR,∆r (red), γψ̄ψ,IR,∆2

r

(green) γψ̄ψ,IR,∆3
r
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From the results for κn, n = 1, 2, 3 in [9] or the special
cases given above for G = SU(Nc) and R = F in Eqs.
(6.8)-(6.10), we find

κ̂1 =
4

25
= 0.1600 , (6.26)

κ̂2 =
588

56
= 0.037632 , (6.27)

and

κ̂3 =
2193944

33 · 510 = 0.83207× 10−2 , (6.28)

where, as above, we indicate the factorization of the de-
nominators. Numerically, to order O(∆3

r),

lim
LNN

γψ̄ψ,IR = ∆r

[

0.160000+ 0.037632∆r

+ 0.0083207∆2
r +O(∆3

f )
]

. (6.29)

We plot the value of γψ̄ψ,IR calculated to order ∆p
r ,

denoted γψ̄ψ,IR,∆pr , for 1 ≤ p ≤ 3, as a function of
r ∈ IIRZ,r in Fig. 2. As a consequence of the positivity
of the κ̂p in Eqs. (6.26)-(6.28), for a fixed r, γψ̄ψ,IR,∆pr is
a monotonically increasing function of the order of calcu-
lation, p. Interestingly, as r decreases toward the lower
end of the interval IIRZ,r at r = rb2z = 34/13 = 2.6154,
the value of γψ̄ψ,IR calculated to the highest order in this

LNN limit, namely O(∆3
r) is slightly less than 1. This is

similar to the behavior that was found for the specific
cases of SU(2) and SU(3) gauge groups and R = F in [9]
and for SU(3) with γψ̄ψ,IR calculated to the next order,

O(∆4
r) in [11].

As discussed above, our calculations of γψ̄ψ,IR via the
∆f expansion, both for specific values of Nc and in
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the LNN limit, have yielded results satisfying the up-
per bound (4.14) throughout the interval IIRZ . These
results support the conclusion that the small-∆f series
expansion is reliable throughout this interval IIRZ and
associated non-Abelian Coulomb phase. It is also worth-
while to obtain an estimate of the range of applicability
of the small-∆f series expansion via a different method,
the aforementioned ratio test. From the coefficients κ̂n
that we have calculated with 1 ≤ n ≤ 3, we compute the
ratios

κ̂1
κ̂2

= 4.252 (6.30)

and

κ̂2
κ̂3

= 4.523 (6.31)

Recalling that the maximal value of ∆r in the interval
IIRZ,r is 2.885 (Eq. (5.49), these ratios are again consis-
tent with the inference that the small-∆r series expansion
may be reasonably accurate in this interval IIRZ . Since
r has a maximal value of 5.5 in this LNN limit, the above
ratios also suggest that one could not reliably apply the
small ∆r expansion down to small r (see also [63]). This
is in agreement with the fact that the properties of the-
ory change qualitatively as r decreases below rc in Eq.
(5.34); in particular, there is spontaneous chiral symme-
try breaking at small r

G. Analysis with Padé Approximants

To get further insight into the behavior of γψ̄ψ,IR,
we shall calculate and analyze Padé approximants (PAs)
[64]. For this purpose, we shall use the a reduced function
normalized to unity at ∆f = 0, namely

γ̄ψ̄ψ,IR =
γψ̄ψ,IR
κ1∆r

= 1 +
1

κ1

∞
∑

n=2

κn∆
n−1
r . (6.32)

The calculation of γψ̄ψ,IR to order ∆3
r yields γ̄ψ̄ψ,IR to

order ∆2
r. In turn, from this we can compute three PAs:

[2, 0]γ̄ψ̄ψ,IR , [1, 1]γ̄ψ̄ψ,IR , and [0, 2]γ̄ψ̄ψ,IR . Since the [2,0]

PA is just γ̄ψ̄ψ,IR itself, to order ∆2
r, we focus on the

[1,1] and [0,2] PAs. We calculate

[1, 1]γ̄ψ̄ψ,IR =
1+ 34957

2480625∆r

1− 548486
2480625∆r

(6.33)

and

[0, 2]γ̄ψ̄ψ,IR =
1

1− 147
625∆r +

34957
10546875∆

2
r

. (6.34)

The [1,1] PA has no physical zero and a pole at

(∆r)pole,[1,1]γ̄
ψ̄ψ,IR

=
2480625

548486
= 4.523 (6.35)

Since this value is well beyond the maximum value of ∆r

for r ∈ IIRZ,r , namely 2.885, it follows that the [1,1] PA
is finite for all r ∈ IIRZ,r .
The [0,2] PA obviously has no zero, and has two poles,

at

(∆r)poles,[0,2]γ̄
ψ̄ψ,IR

=
1875

69914
(1323± 17

√
4605 )

= 4.5425, 66.420 (6.36)

The first of these, at ∆r = 4.5425, is well beyond
(∆r)max = 2.885 so that the [0,2] PA is finite for all
r ∈ IIRZ,r , and the second is also irrelevant, since it cor-
responds to the value, r = 72, far beyond the AF interval,
r ∈ [0, 34/13]. The irrelevance of these poles in the Padé
approximants is in agreement with the conclusion that we
have reached from our other methods that the small-∆f

expansion is reasonably reliable throughout the interval
IIRZ and related non-Abelian Coulomb phase. In Table
V we list our results for γψ̄ψ,IR,∆3

r
, [1, 1]γψ̄ψ,IR,∆3

r

, and

[0, 2]γψ̄ψ,IR,∆3
r

, together with γψ̄ψ,IR,nℓ with n = 2, 3, 4

from [27] for comparison.
We find that if r is in the upper part of the inter-

val IIRZ,r, then there is excellent agreement between our
higher-loop calculations of γψ̄ψ,IR,3ℓ,MS and γψ̄ψ,IR,4ℓ,MS

from [22] and the present calculations of γψ̄ψ,IR,∆3
r
,

[1, 1]γψ̄ψ,IR,∆3
r

, and [0, 2]γψ̄ψ,IR,∆3
r

. As r decreases in this

interval IIRZ,r , the values of the anomalous dimension
calculated in the various different ways begin to exhibit
small deviations from each other, and, as expected, these
deviations become larger as r descends toward the lower
end of the interval IIRZ,r .

VII. SCHEME-INDEPENDENT CALCULATION

OF ANOMALOUS DIMENSION γT,IR TO O(∆3
f )

A. Calculation for General G and R

In this section we present a scheme-independent cal-
culation of the anomalous dimension of the (gauge-
invariant) bilinear fermion antisymmetric rank-2 Dirac
tensor operators evaluated at αIR. The flavor-nonsinglet
and flavor-singlet tensor operators of this type are

J2,fns = ψ̄Tb σµνψ (7.1)

and

J2,fs = ψ̄σµνψ , (7.2)

where, as defined before, Tb, b = 1, ..., N2
f − 1, is a gener-

ator of algebra of SU(Nf ), and

σµν =
i

2
[γµ, γν ] (7.3)

is the usual antisymmetric rank-2 Dirac tensor. As was
true of the operators J0,fns and J0,fs, the anomalous
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dimensions of J2,fns and J2,fs are equal (e.g., [44]), so
we will denote both with the single symbol γT (T for
tensor) and the evaluation at αIR as γT,IR. The usual
power series expansion for γT in powers of a is

γT =
∑

ℓ=1

cT,ℓ a
ℓ . (7.4)

The cT,ℓ have been calculated up to ℓ = 3 loop order in
[44, 65]. We write the scheme-independent expansion of
this anomalous dimension as

γT,IR =

∞
∑

n=1

κT,n∆
n
f (7.5)

and denote the truncation of this series at maximal power
n = p as γT,IR,∆p

f
.

For general gauge group G and fermion representation
R, using the three-loop results from [44, 65] together with
the four-loop beta function coefficients bℓ with 1 ≤ ℓ ≤ 4
[3, 4, 13, 14], we calculate the following coefficients in the
scheme-independent expansion of γT,IR

κT,1 = −8CfTf
3CAD

, (7.6)

κT,2 = −
4CfT

2
f (259C

2
A + 428CACf − 528C2

f)

9C2
AD

3
, (7.7)

κT,3 =
4CfTf
35C4

AD
5

[

3CAT
2
f

{

C4
A(−11319 + 188160ζ3) + C3

ACf (−337204+ 64512ζ3) + C2
AC

2
f (83616− 890112ζ3)

+ CAC
3
f (1385472− 354816ζ3) + C4

f (−212960+ 743424ζ3)

}

− 512T 2
fD(−5 + 132ζ3)

dabcdA dabcdA

dA

− 15488C2
AD(−11 + 24ζ3)

dabcdR dabcdR

dA
+ 11264CATfD(−4 + 39ζ3)

dabcdR dabcdA

dA

]

. (7.8)

We note that

κT,1 = −1

3
κ1 . (7.9)

B. Evalulation for G = SU(Nc) and R = F

As we did with the κn coefficients, we exhibit the re-
duction of these general formulas for the gauge group
G = SU(Nc) with Nf fermions in the representation
R = F . In accordance with Eq. (7.9), we obtain

κT,1,SU(Nc),F = − 4(N2
c − 1)

3Nc(25N2
c − 11)

. (7.10)

Further,

κT,2,SU(Nc),F = −4(N2
c − 1)(341N4

c + 50N2
c − 132)

32N2
c (25N

2
c − 11)3

(7.11)
and

κT,3,SU(Nc),F =
8(N2

c − 1)

34N3
c (25N

2
c − 11)5

[

23057N8
c − 557686N6

c + 1084692N4
c − 354200N2

c − 13310

+ 192(25N2
c − 11)(163N4

c − 225N2
c − 22)ζ3

]

. (7.12)

The coefficient κT,1,SU(Nc),F is manifestly negative for all
Nc ≥ 2, and this is also true of κT,2,SU(Nc),F , while we
find that κT,3,SU(Nc),F is positive for all Nc ≥ 2.

C. LNN Limit for γT,IR

Here we evaluate the κT,n and γT,IR in the LNN limit.
The rescaled quantities that are finite in this limit are
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FIG. 3: Plot of γT,IR,∆pr for 1 ≤ p ≤ 3 as a function of
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the analogues of those that we defined and studied for
γψ̄ψ,IR in section VIF. We calculate

κ̂T,n = lim
Nc→∞

Nn
c κT,n (7.13)

have the values

κ̂T,1 = − 4

3 · 52 = −0.053333 , (7.14)

κ̂T,2 = − 1364

32 · 56 = −(0.969956× 10−2) , (7.15)

and

κ̂T,3 =
184456

34 · 510 = 2.3319× 10−4 . (7.16)

Hence, to third order in the rescaled quantity ∆r defined
in Eq. (5.33, we have the following scheme-independent
expansion for γT,IR in the LNN limit:

lim
LNN

γT,IR = ∆r

[

− 0.053333− (0.96996× 10−2)∆r

+ (2.3319× 10−4)∆2
r +O(∆3

f )
]

. (7.17)

In Fig. 3 we plot γT,IR,∆pr for 1 ≤ p ≤ 3 as a function
of r in the interval IIRZ,r . As a consequence of the fact
that both κ̂T,1 and κ̂T,2 are negative, for a fixed value
of r, γT,IR,∆2

p
is negative and larger in magnitude than

γT,IR,∆2
p
. Although κ̂T,3 is positive, it is sufficiently small

that for a given r, the value of r, γT,IR,∆3
p
is close to the

value of r, γT,IR,∆2
p
.

D. Calculation of γT,IR to O(∆3
f ) for G = SU(3) and

R = F

As another interesting comparison, we evaluate our
general expressions for the κT,n in the special case where

the gauge group is G = SU(3) and the fermion represen-
tation is R = F . We find

κT,SU(3),F,1 = − 16

32 · 107 = −(1.6615× 10−2) , (7.18)

κT,SU(3),F,2 = − 37252

(3 · 107)3 = −(1.12625× 10−3) , (7.19)

and

κT,SU(3),F,3 = −341234350

37 · (107)5 +
2855936

36 · (107)4 ζ3

= 2.480155× 10−5 . (7.20)

Thus, the leading two terms in the ∆f expansion for J2
are negative, with the coefficient of ∆3

f being positive but
smaller in magnitude. These results may be contrasted
to those obtained in [9] for κn ≡ κψ̄ψ,n with 1 ≤ n ≤ 3
and in [11] for n = 4 for this SU(3) theory with R = F ,
which are listed above in (6.11)-(6.14). We have com-
puted ratios of the magnitudes of successive coefficients
as before and again infer that the small-∆f expansion
can be reliable in the interval IIRZ .

E. Evaluation for R = adj

For G = SU(Nc) and R = adj, our general results
above reduce to

κT,1,SU(Nc),adj = − 4

33
= −0.05333 , (7.21)

κT,2,SU(Nc),adj = − 53

2 · 37 = −(1.2117× 10−2) , (7.22)

and

κT,3,SU(Nc),adj =
N2
c (34799− 9216ζ3) + 42624

23 · 311N2
c

(7.23)

This is positive for all physical Nc and has the large-Nc
limit

lim
Nc→∞

κT,3,SU(Nc),adj =
34799− 9216ζ3

23 · 311
= 0.0167381 (7.24)

Thus, the signs of the first three coefficients
κT,n,SU(Nc),adj are the same as those of the coeffi-
cients κT,n,SU(Nc),F . These are summarized in Table
I.

VIII. CONCLUSIONS

In conclusion, in this paper we have presented a num-
ber of new results on scheme-independent calculations



21

of various quantities in an asymptotically free vectorial
gauge theory having an IR zero of the beta function.
We consider a theory with a (non-Abelian) gauge group
G and Nf fermions in a representation R of G. First,
we have calculated the derivative β′

IR = γ
F2,IR

to order

∆4
f for general G and R, and have given explicit results

for G = SU(Nf ) and fermions in the fundamental and
adjoint representations. For the case G = SU(3) and
fermions in the fundamental representation, we have also
calculated β′

IR to the next higher order, ∆5
f . It would

be useful to have lattice measurements of γ
F2,IR

, which,

in the case of SU(3), could be compared with our cal-
culation of this anomalous dimension. Second, we have
given more details on the scheme-independent analysis
of γψ̄ψ,IR studied earlier in [9] and [11], including ex-
plicit analytic results for G = SU(Nc) with fermions in
the fundamental and adjoint representations. In the for-
mer case, we have also investigated the LNN limit (5.26),
calculated Padé approximants, and compared with re-
sults from the conventional higher-loop calculation of this
anomalous dimension. Our results are useful for compar-
isons with lattice measurements of γψ̄ψ,IR and for the
fundamental question of the value of Nf,cr and whether
γψ̄ψ,IR saturates its upper bound at the lower end of the
conformal non-Abelian Coulomb phase. Moreover, the
type of theory considered here may be relevant for ul-
traviolet extensions of the Standard Model. Third, we
have presented a scheme-independent calculation to or-
der ∆3

f of the anomalous dimension γT,IR of the (flavor-

nonsinglet and flavor-singlet) bilinear fermion antisym-
metric rank-2 Dirac tensor operators. We have shown
that our scheme-independent calculations of the anoma-
lous dimensions of Tr(FµνF

µν) and various fermion bilin-
ear operators in the non-Abelian Coulomb phase obey re-
spective rigorous upper bounds for conformally invariant
theories. This, together with other inputs including Padé
approximants indicates that the series expansions in pow-
ers of ∆f should be reasonably accurate throughout the
non-Abelian Coulomb phase. We believe that the results
presented here show the value of scheme-independent ex-
pansions of quantities evaluated at an infrared zero of the
beta function in gauge theories.
This research was supported in part by the Danish

National Research Foundation grant DNRF90 to CP3-
Origins at SDU (T.A.R.) and by the U.S. NSF Grant
NSF-PHY-16-1620628 (R.S.)

Appendix A: Series Coefficients for βξ and γψ̄ψ in

the LNN Limit

For reference, we list here the rescaled series coeffi-
cients for βξ and γψ̄ψ in the LNN limit (5.26). First, we

recall that [3]

b1 =
1

3
(11CA − 4TfNf ) (A1)

and [4]

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf )TfNf

]

, (A2)

where CA, Cf , and Tf are group invariants [18]. It follows

that in the LNN limit the b̂ℓ with ℓ = 1, 2 are

b̂1 =
1

3
(11− 2r) (A3)

and

b̂2 =
1

3
(34− 13r) . (A4)

The coefficients b3 and b4 have been calculated in the MS
scheme [13, 14]. With these inputs, one obtains [27]

b̂3 =
1

54
(2857− 1709r+ 112r2) (A5)

and

b̂4 =
150473

486
−
(485513

1944

)

r +
(8654

243

)

r2

+
(130

243

)

r3 +
4

9
(11− 5r + 21r2) ζ3 . (A6)

For the coefficients ĉℓ in Eq. (6.24), one has ([45] and
references therein)

ĉ1 = 3 , (A7)

ĉ2 =
203

12
− 5

3
r , (A8)

ĉ3 =
11413

108
−
(

1177

54
+ 12ζ3

)

r − 35

27
r2 , (A9)

and

ĉ4 =
460151

576
− 23816

81
r +

899

162
r2 − 83

81
r3

+

(

1157

9
− 889

3
r + 20r2 +

16

9
r3
)

ζ3

+ r
(

66− 12r
)

ζ4 +
(

− 220 + 160r
)

ζ5 . (A10)
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TABLE I: Signs of expansion coefficients discussed in the text
for gauge group G = SU(Nc) and fermion representation R = F

(fundamental) and R = adj (adjoint). Several results on signs
actually apply more generally for arbitrary G and R; see text for
details. For G = SU(3), we have also calculated d5,F in Eq. (5.20)
and find that it is negative. The entry for κ4,F applies for G =
SU(3) (see Eq. (6.14)), as calculated in [11], and this is indicated
by the (∗). The entry NA means “not available”, i.e. the coefficient
has not yet been calculated.

n dn,F dn,adj κn,F κn,adj κT,n,F κ
T,n,adj

1 0 0 + + − −

2 + + + + − −

3 + + + + + +

4 − + +(*) NA NA NA
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TABLE II: Scheme-independent values of β′

IR,∆
p
f

with 2 ≤ p ≤

4 for G = SU(2), SU(3), and SU(4), as functions of Nf in the
respective intervals IIRZ given in Eq. (2.7) with (2.4) and (2.6).
For comparison, we list the n-loop values of β′

IR,nℓ with 2 ≤ n ≤ 4,

where β′

IR,3ℓ and β′

IR,4ℓ are computed in the MS scheme. Values

that exceed the upper bound (4.13) are marked as such. In the case
of SU(3), we also include our calculation of β′

IR,∆5

f

. The notation

ae-n means a × 10−n. The notation − means that the entry has
not been calculated.

Nc Nf β′

IR,2ℓ β′

IR,3ℓ,MS
β′

IR,4ℓ,MS
β′

IR,∆2
f

β′

IR,∆3
f

β′

IR,∆4
f

β′

IR,∆5
f

2 6 > 3 1.620 0.975 0.499 0.957 0.734 −

2 7 1.202 0.728 0.677 0.320 0.554 0.463 −

2 8 0.400 0.318 0.300 0.180 0.279 0.250 −

2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 −

2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 −

3 9 > 3 1.475 1.464 0.467 0.882 0.7355 0.602

3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473

3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344

3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228

3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134

3 14 0.0737 0.0699 0.678 0.0519 0.0673 0.0655 0.0649

3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217

3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3

4 11 > 3 2.189 2.189 0.553 1.087 0.898 −

4 12 > 3 1.430 1.429 0.457 0.858 0.729 −

4 13 1.767 0.965 0.955 0.370 0.663 0.578 −

4 14 0.984 0.655 0.639 0.292 0.498 0.445 −

4 15 0.581 0.440 0.424 0.224 0.362 0.331 −

4 16 0.348 0.288 0.276 0.1645 0.251 0.234 −

4 17 0.204 0.180 0.1725 0.114 0.164 0.156 −

4 18 0.113 0.105 0.101 0.0731 0.0988 0.0955 −

4 19 0.0558 0.0536 0.0522 0.0411 0.0520 0.0509 −

4 20 0.0222 0.0218 0.0215 0.0183 0.0215 0.0213 −

4 21 5.01e-3 4.99e-3 4.96e-3 4.57e-3 4.97e-3 4.96e-3 −
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TABLE III: Scheme-independent values of β′

IR,∆
p
r
for 2 ≤ p ≤ 4

in the LNN limit (5.26) as functions of r = 5.5−∆r. For compar-
ison, we also list the n-loop values β′

IR,nℓ with 2 ≤ n ≤ 4, where

β′

IR,3ℓ and β
′

IR,4ℓ are computed in the MS scheme (and values that

exceed the upper bound (4.13) are marked as such). The notation
ae-n means a× 10−n.

r β′

IR,2ℓ β′

IR,3ℓ,MS
β′

IR,4ℓ,MS
β′

IR,∆2
r

β′

IR,∆3
r

β′

IR,∆4
r

2.8 > 3 1.918 1.949 0.518 1.004 0.851

3.0 > 3 1.376 1.523 0.444 0.830 0.717

3.2 1.856 1.006 1.100 0.376 0.676 0.596

3.4 1.153 0.7395 0.72985 0.314 0.542 0.486

3.6 0.752 0.542 0.528 0.257 0.426 0.388

3.8 0.500 0.393 0.378 0.2055 0.327 0.303

4.0 0.333 0.279 0.267 0.160 0.243 0.229

4.2 0.219 0.193 0.185 0.120 0.174 0.166

4.4 0.139 0.128 0.122 0.0860 0.119 0.115

4.6 0.0837 0.0792 0.0766 0.0576 0.0756 0.0737

4.8 0.0460 0.0445 0.0435 0.0348 0.0433 0.0426

5.0 0.0215 0.0212 0.0208 0.0178 0.0209 0.0207

5.2 0.714e-2 0.710e-2 0.706e-2 0.640e-2 0.707e-2 0.704e-2

5.4 0.737e-3 0.736e-3 0.7356e-3 0.7111e-3 0.7358e-3 0.7355-3
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TABLE IV: Values of the anomalous dimension γψ̄ψ,IR,∆p
f

cal-

culated to order p = 1, 2, 3, for G = SU(Nc) and R = F , as
functions of Nc and Nf . To save space, we omit the subscript ψ̄ψ,
writing γψ̄ψ,IR,∆p

f
≡ γIR,∆p

f
. For comparison, we also include the

(scheme-independent) γIR,2ℓ and γ
IR,nℓ,MS, n = 3, 4. γ

IR,4ℓ,MS.

Values that exceed the bound γψ̄ψ,IR < 2 in Eq. (4.14)) are marked
as such; in these cases, the γIR,nℓ,MS are unlisted (u).

Nc Nf γIR,2ℓ γIR,3ℓ,MS γIR,4ℓ,MS γIR,∆f γIR,∆2
f

γIR,∆3
f

2 6 > 2 u u 0.337 0.520 0.596

2 7 > 2 u u 0.270 0.387 0.426

2 8 0.752 0.272 0.204 0.202 0.268 0.285

2 9 0.275 0.161 0.157 0.135 0.164 0.169

2 10 0.0910 0.0738 0.0748 0.0674 0.07475 0.07535

3 9 > 2 u u 0.374 0.587 0.687

3 10 > 2 u u 0.324 0.484 0.549

3 11 1.61 0.439 0.250 0.274 0.389 0.428

3 12 0.773 0.312 0.253 0.224 0.301 0.323

3 13 0.404 0.220 0.210 0.174 0.221 0.231

3 14 0.212 0.146 0.147 0.125 0.148 0.152

3 15 0.0997 0.0826 0.0836 0.0748 0.0833 0.0841

3 16 0.0272 0.0258 0.0259 0.0249 0.0259 0.0259

4 11 > 2 u u 0.424 0.694 0.844

4 12 > 2 u u 0.386 0.609 0.721

4 13 > 2 u u 0.347 0.528 0.610

4 14 > 2 u u 0.308 0.451 0.509

4 15 1.32 0.420 0.281 0.270 0.379 0.418

4 16 0.778 0.325 0.269 0.231 0.312 0.336

4 17 0.481 0.251 0.234 0.193 0.249 0.263

4 18 0.301 0.189 0.187 0.154 0.190 0.197

4 19 0.183 0.134 0.136 0.116 0.136 0.139

4 20 0.102 0.0854 0.0865 0.0771 0.0860 0.086

4 21 0.0440 0.0407 0.0409 0.0386 0.0408 0.0409
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TABLE V: Values of γψ̄ψ,IR,∆3
r
, [1, 1]γ

ψ̄ψ,IR,∆3
r
, and

[1, 1]γ
ψ̄ψ,IR,∆3

r
, together with γψ̄ψ,IR,nℓ with n = 2, 3, 4

from Table V of [27] for comparison, as a function of r for
r ∈ IIRZ,r and satisfying γIR < 2. Here, ∆r = 5.5 − r, as in Eq.
(5.33). To save space, we omit the subscript ψ̄ψ below. Values
that exceed the bound γψ̄ψ,IR < 2 from conformal invariance (see
Eq. (4.14)) are marked as such.

r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

γIR,∆3
r

[1, 1]γ
IR,∆3

r
[0, 2]γ

IR,∆3
r

2.8 > 2 1.708 0.1902 0.8701 1.1127 1.1102

3.0 > 2 1.165 0.2254 0.7652 0.9259 0.9244

3.2 > 2 0.8540 0.2637 0.6683 0.7731 0.7722

3.4 > 2 0.6563 0.2933 0.5790 0.6458 0.6453

3.6 1.853 0.5201 0.3083 0.4969 0.5383 0.5380

3.8 1.178 0.4197 0.3061 0.4216 0.4463 0.4461

4.0 0.7847 0.3414 0.2877 0.3528 0.3667 0.3666

4.2 0.5366 0.2771 0.2566 0.2899 0.2973 0.2972

4.4 0.3707 0.2221 0.2173 0.2326 0.2362 0.23615

4.6 0.2543 0.1735 0.1745 0.1805 0.18205 0.18205

4.8 0.1696 0.1294 0.1313 0.1333 0.1338 0.1338

5.0 0.1057 0.08886 0.08999 0.09045 0.09058 0.09058

5.2 0.05620 0.05123 0.05156 0.05161 0.05163 0.05163

5.4 0.01682 0.01637 0.01638 0.01638 0.01638 0.01638


