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We consider stationary, axially symmetric toroids rotating around spinless black holes, assuming
the general-relativistic Keplerian rotation law, in the first post-Newtonian approximation. Numeri-
cal investigation shows that the angular momentum accumulates almost exclusively within toroids.
It appears that various types of dragging (anti-dragging) effects are positively correlated with the
ratio MD/m (MD is the mass of a toroid and m is the mass of the black hole) — moreover, their
maxima are proportional to MD/m. The horizontal sizes of investigated toroids range from c. 50
to c. 450 of Schwarzschild radii RS of the central black hole; their mass MD ∈ (10−4m, 40m) and
the radial size of the system is c. 500 RS. We found that the relative strength of various dragging
(anti-dragging) effects does not change with the mass ratio, but it depends on the size of toroids.

Several isoperimetric inequalities involving angular momentum are shown to hold true.

I. INTRODUCTION

There are three principal aims of this paper.
We have found recently two new weak field effects that

affect angular velocities of gaseous disks rotating around
spinless black holes [1, 2]. They appear in the first post-
Newtonian approximation (1PN hereafter), in addition
to the well known geometric dragging of frames. One of
them — we call it anti-dragging, since it works against
the dragging of frames — is proportional to the speed
of sound of gas. The other depends on a combination
of gravitational and centrifugal potentials, that strictly
vanishes for weightless disks. All 1PN corrections strictly
vanish for uniformly rotating disks, but they are nonzero
for the important case of the Keplerian rotation.

We shall address in this paper the following ques-
tion: what are the principal physical properties of a
(Keplerian) rotating toroidal-black-hole system, that are
responsible for the strength of various dragging (anti-
dragging) effects? One can expect — by appealing to
the behaviour of test particles in the Kerr geometry —
that robust dragging phenomena should be associated
with compact systems that possess a lot of angular mo-
mentum. Our investigation shows that this intuition is
incorrect, and that the relevant characteristic is the mass
ratio MD/m, where MD is the mass of a toroid and m is
the mass of the black hole. We find an interesting univer-
sality: the maxima of the combined, normalized in a suit-
able sense, (1PN) corrections, as well of its constituents
— the geometric dragging, the anti-dragging, and the
centrifugal one [2] — are simply proportional to MD/m,
for a fixed extension of a toroid. We have studied poly-
tropic disks for two classes of polytropes; the universality
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appears in all examples, but some numerical coefficients
depend (albeit rather weakly) on the equation of state of
the fluid.

An interesting question is the influence of a rotating
environment onto the central black hole. There are re-
ports — for a rigid rotation [3, 4] and the constant spe-
cific angular momentum [5] — that the black hole can
carry substantial amount of the angular momentum. We
assume a general-relativistic version of the Keplerian ro-
tation law [2]. It comes as a surprise, that one can have
compact systems with a large amount of angular momen-
tum, where central black holes practically do not partici-
pate in rotation — their spin parameters are smaller than
10−4, and they carry less than one-millionth of the total
angular momentum.

Finally, there exist several inequalities that must be
obeyed by quasilocal characteristics of apparent horizons.
S. Dain extended these by formulating local estimates
onto local angular momentum of rotating bodies, and
proved them, under somewhat stringent conditions [6, 7].
We show that they are in fact satisfied.

The order of the rest of this paper is as follows. In
the next section we formulate axial perturbations of the
conformal Schwarzschild geometry, that describe toroids
rotating around a spinless black hole. The basic idea is
to build systems such that the gravity of toroids is negli-
gible — compared to the gravity of the central black hole
— close to the event horizon, and the gravitational po-
tential is small within the bulk of rotating matter. The
rotation is ruled by the general-relativistic Keplerian law.
Section III shows the first post-Newtonian approxima-
tion to equations of motion. Section IV is dedicated to
the quasilocal description of the system, in particular to
defining the concept of the apparent horizon, its mass and
its angular momentum. We briefly describe the essence of
the numerical method in Sec. V. Section VI brings main
numerical results concerning various 1PN corrections to
the angular velocity; we emphasise again the unexpected
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universality of these effects. Section VII addresses the is-
sue of distribution of the angular momentum. It appears
that the black hole spin parameter aS ≡ cjS/m

2 is very
small; the central black hole is almost Schwarzschildean.
Only a tiny fraction of the total angular momentum can
be attributed to the black hole; this is commented and
explained therein. In Sec. VIII we review Dain’s results
on estimations of the angular momentum. Tables I and
II allow one to find out that the angular momentum can
be bounded, as postulated in [6]. The last section sum-
marizes obtained results.

We assume throughout the paper the gravitational
constant G = 1. There is a scaling freedom that allows
us to treat the speed of light c as a free parameter. We
adjust the speed of light c and the coordinate extension
of the disk, in Secs. VI–VIII, so that the whole system
has an (approximate) areal size of 500RS, and the in-
ner edges of the investigated disks are located between
50RS – 475RS (again approximately). The total asymp-
totic mass MD +m ranges between m and 40m. We take
care to construct numerical solutions that are in the 1PN
regime within the stationary toroids.

II. AXIAL PERTURBATIONS OF THE
CONFORMAL SCHWARZSCHILD GEOMETRY

Einstein equations, with the signature of the metric
(−,+,+,+), read

Rµν − gµν
R

2
=

8π

c4
Tµν , (1)

where Tµν is the stress-momentum tensor. The metric is
given by

ds2 = −e
2ν
c2 (dx0)2 + r2e

2β

c2

(
dφ− Aφ

r2c3
dx0

)2

+ e
2α
c2
(
dr2 + dz2

)
. (2)

Here x0 = ct is the rescaled time coordinate, and r, φ, z
are cylindrical coordinates. We assume axial and equato-
rial symmetry, and stationarity — thus metric functions
ν, α, β and Aφ depend only or r and z — and employ the
stress-momentum tensor of the perfect fluid

Tαβ = ρ(c2 + h)uαuβ + pgαβ , (3)

where ρ is the baryonic rest-mass density, h is the specific
enthalpy, and p is the pressure. The Greek indices range
from 0 to 3, and the Latin indices change from 1 to 3. The
4-velocity uα = dxα

cdτ along the world line of fluid particles

(here τ is their proper time) is normalized: gαβu
αuβ =

−1. We introduce ut ≡ u0/c. The coordinate (angular)
velocity of the fluid reads ~v = Ω∂φ, where Ω = uφ/ut.

We assume the polytropic equation of state p(ρ, s) =
K(s)ργ , where s is the specific entropy of fluid and γ is

a constant. Then one has h(ρ, s) = K(s) γ
γ−1ρ

γ−1. The

entropy is assumed to be constant.
We shall study small stationary, cylindrically symmet-

ric, perturbations of the Schwarzschild spacetime, with
the angular momentum being carried by a rotating disk
of fluid. We consider the following geometry in the con-
formal (cylindrical) coordinates,

ds2 = −(dx0)2

(
f+

f−

)2

+ (f−)
4 (
dr2 + dz2 + r2dφ2

)
−2

Aφ
c3

(r, z) dφdx0, (4)

where the two functions f+ and f− are defined as

f+ = 1 +
U

2c2
,

f− = 1− U

2c2
. (5)

Here the gravitational potential U is a superposition of
the central term (−mR ) and UD, induced by the disk:

U = −m
R

+ UD. (6)

Henceforth R =
√
r2 + z2.

Let us point out that in the metric (4) the lapse func-

tion N ≡ f+
f−

and the shift vector Xi = (0, 0,−Aφ/c3) are

φ-independent.
We shall say that perturbations are small, if |UD|/c2 �

1. In addition, we require that within the volume V
of a rotating disk m/(Rc2) � 1; the two facts imply
|U |/c2 � 1 inside a disk. Then it is legitimate to per-
form the approximation procedure — the expansion in
powers of 1/c2. It appears that the line element (4) leads
to stationary equations that coincide, in the 1PN ap-
proximation, with stationary equations corresponding to
the 1PN approximation of the metric (2). Thus the two
approaches are equivalent up to the 1PN order.

The case, when the disk’s potential UD and the metric
function Aφ do vanish, yields strictly the Schwarzschild
line element. In this case the parameter m is just the
asymptotic mass, the event and apparent horizons coin-
cide and they are located at Rh = m/(2c2). We should
point that the metric (4) is more convenient than (2), be-
cause it is easier to describe horizons of black holes in the
class of conformal deformations of the Schwarzschild met-
ric, than in the general metric (2). This description can
be regarded as a version of the effective field approxima-
tion. Another application of the conformal factorization
of the metric can be found in [8], where post-Newtonian
equilibria of co-rotating neutron star binaries are inves-
tigated.

It is well known that equations of the stationary Ein-
stein hydrodynamics are not closed; this is similar to
the stationary Newtonian hydrodynamics. One needs to
impose an additional closure assumption — a general-
relativistic version of the “rotation curve” known in the
Newtonian hydrodynamics — in order to complete the
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system. In the Newtonian case one defines directly the
rotation curve — the angular velocity Ω — as a pre-
scribed function of the distance from the rotation axis.
If the z-axis is the symmetry axis, then Ω = Ω(r).

Rotation curves — angular velocities as functions of
coordinates — emerge in the context of general relativity
as solutions of the following three-step procedure. We
define ω ≡ r−2Aφ. First, notice that

j ≡ c2uφut =
v2(

Ω− ω
c2

) (
1− v2

c2

) , (7)

where

v2 ≡ r2
(

Ω− ω

c2

)2

e−4U/c2 , (8)

can be interpreted as the angular momentum per unit
inertial mass [9]. The resulting system is integrable if j
depends only on the angular velocity Ω, j ≡ j(Ω) [10–13].
In the second step one needs to specify j(Ω), in order to
close the description of a stationary system. There are
few options in the existing literature, from the simple
linear function j(Ω) = A(Ω − B), where A and B are
constants [10, 13], to recent nonlinear proposals of [2, 14,
15]. We adopt, following [2], the rotation law

j(Ω) ≡ w
4
3 Ω−

1
3

1 + 3
c2w

4
3 Ω

2
3 + 4Ψ

c2

. (9)

Here w and Ψ are parameters that shall be determined at
each step of the post-Newtonian expansion. This choice
yields the Keplerian rotation law in the Newtonian limit
[2]; therefore we sometimes refer to (9) as the “general-
relativistic Keplerian rotation law”.

The rotation curves Ω (r, z) can now be recovered —
in the final step — from the equation

w
4
3 Ω−

1
3

1 + 3
c2w

4
3 Ω

2
3 + 4Ψ

c2

=
v2(

Ω− ω
c2

) (
1− v2

c2

) . (10)

We would like to note that the rotation law (9) leads
to a new prediction, that was absent in [1], namely to
the centrifugal correction − 3

2c2 Ω0

(
−mr̃ + U0D + Ω2

0r̃
2
)

to the angular velocity — see Eq. (23) in the next section,
and explanations therein. It is interesting also that the
weightless disk of dust rotating according to (10) satisfies
exactly the Einstein equations within the Schwarzschild
spacetime [2].

III. 1PN EQUATIONS WITHIN A ROTATING
DISK

The 1PN equations for rotating fluids have been de-
rived in [1] and [2], on the basis of an earlier work [16].
In this section we present a brief description of the rea-
soning.

The metric becomes, assuming |U | � c2,

ds2 = −
(

1 +
2U

c2
+

2U2

c4

)
(dx0)2 − 2c−3Aφdx

0dφ

+

(
1− 2U

c2

)(
dr2 + dz2 + r2dφ2

)
; (11)

its spatial part is conformally flat.
The 1PN approximation can be valid if |U | � c2.
We split different quantities (ρ, p, h, U and vi) into

their Newtonian (denoted by subscript 0) and 1PN (de-
noted by subscript 1) parts. This splitting reads, for the
specific enthalpy h, the density ρ, the angular velocity Ω,
the quantity Ψ and the potential U :

h = h0 + c−2h1, (12a)

ρ = ρ0 + c−2ρ1, (12b)

Ω = Ω0 + c−2vφ1 , (12c)

Ψ = Ψ0 + c−2Ψ1, (12d)

U = −m
R

+ U0D + c−2U1. (12e)

The angular velocity becomes Keplerian,

Ω0 =
w

r3/2
, (13)

in the Newtonian limit. Let M0D =
∫
V
dV ρ0, where dV

is the geometric volume element, denote the Newtonian
mass of the disk. It appears from numerical analysis that
the parameter w is close to

√
m, if M0D � m. We expect

(basing on numerics and partial analytical results) that
in general

√
m ≤ w ≤

√
m+M0D [17].

Notice that, up to the 1PN order,

1

ρ
∂ip = ∂ih0 + c−2∂ih1+O(c−4), (14)

where the 1PN correction h1 to the specific enthalpy can
be written as h1 = dh0

dρ0
ρ1. For the polytropic equation of

state this gives h1 = (γ − 1)h0ρ1/ρ0.
One can obtain the Bernoulli equations at the 0PN and

1PN orders, using the foregoing splitting into Newtonian
(0PN) and 1PN parts.

The 0PN Bernoulli equation reads

h0 −
m

R
+ U0D + Ω2

0r
2 = Ψ0, (15)

where Ψ0 is a constant that can be interpreted as the
binding energy per unit mass. At the Newtonian level
this is supplemented by the Poisson equation for the grav-
itational potential

∆U0D = 4πρ0, (16)

where ∆ denotes the flat Laplacian.
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The component Aφ of the shift vector satisfies the fol-
lowing equation

∆Aφ − 2
∂rAφ
r

= −16πr2ρ0Ω0. (17)

The 1PN correction U1 to the potential is obtained by
solving the equation

∆U1 = 4π
[
ρ1 + 2p0 + ρ0(h0 − 2U0 + 2r2Ω2

0)
]
. (18)

The mass of a disk, including the 1PN correction, is given
by the volume integral

MD =

∫
V

dV
1

c2
[
ρ1 + 2p0 + ρ0(h0 − 2U0 + 2r2Ω2

0)
]

+M0D. (19)

Finally, we have the Bernoulli equation of the 1PN
order,

Ψ1 = −h1 − U1 − Ω0Aφ + 2r2Ω2
0h0 −

3

2
h2

0

−4h0U0 − 2U2
0 − 4r4Ω4

0, (20)

where Ψ1 is a constant.
In vacuum we are left with a pair of homogeneous el-

liptic equations

∆U = 0,

∆Aφ − 2
∂rAφ
r

= 0. (21)

The system of equations (12–20) fully describes disk
configurations up to the 1PN order of approximation. It
follows from the metric (2) or (4); as we stressed before,
both approaches give the same set of equations. Notice
that these are integro-differential equations with a free
boundary; the shape of a disk comes as a part of the
solution. It will be explained in the numerical section,
how to deal with such a boundary problem. The second
of the equations (21) can cause difficulties for systems
with matter located on the z axis; we deal, however, with
disks and Eq. (21) is harmless.

The first post-Newtonian correction vφ1 to the angular
velocity Ω is obtained from the perturbation expansion
of the rotation law (10) up to terms of the order c−2.
One arrives at [2]

vφ1 = −3

2
Ω3

0r
2 +

3Aφ
4r2
− 3Ω0h0. (22)

This can be written in a more geometric way. The
geometric circumferential radius of the circle r = const,
z = 0 around the rotation axis is given by r̃ = r(1 −
U0/c

2) +O(c−4). Therefore the angular velocity reads

Ω = Ω0 +
vφ1
c2

=
w

r̃3/2
− 3

2c2
Ω0

(
−m
r̃

+ U0D + Ω2
0r̃

2
)

+
3Aφ
4r̃2c2

− 3

c2
Ω0h0, (23)

where the last three terms are 1PN corrections. Let us
point out that the anti-dragging term (− 3

c2 Ω0h0) is of

the opposite sign to the dragging term
3Aφ

4r̃2c2 [1].

IV. CHARACTERISTICS OF THE BLACK
HOLE HORIZON

The event horizon coincides, in the stationary case,
with the apparent horizon S [18], that is a two-surface S
embedded in the 3-hypersurface Σ defined by t = const
such that

∇ini + hijK
ij = 0,

∇ini − hijKij > 0. (24)

Here ni is the unit normal to the surface S, Xi denotes
the shift vector, Kij = 1

2N (∇iXj +∇iXj) is the extrin-
sic curvature of Σ, hij = gij −ninj is the induced metric
on S and ∇i means the covariant derivative on Σ. In
our case the shift vector is given by Xi = (0, 0,−Aφ/c3).
It is easily seen that for the metric (4) the contribution
of extrinsic curvature vanishes (albeit some nondiagonal
components of Kij are nonzero); thus the apparent hori-
zon becomes a minimal surface. The three-dimensional
metric of Σ in spherical coordinates is given by

ds2
3 = (f−)

4 (
dR2 +R2dθ2 +R2 sin2 θdφ2

)
, (25)

and we get from the minimal surface equation within Σ

∇ini = 0. (26)

The two-surface S can be assumed to be φ-independent,
due to the axial symmetry; it is given by the single equa-
tion R = R(θ). Its normal reads

nk =
f2
−√

1 + (∂θR)2

R2

(1,−∂θR, 0). (27)

In explicit terms Eq. (26) reads

1

R2f6
−
∂R

 R2f4
−√

1 + (∂θR)2

R2

+

1

sin θR2f6
−
∂θ

 sin θ(−∂θR)f4
−√

1 + (∂θR)2

R2

 = 0. (28)

Equation (28) is a second-order differential equation
for the radial function R(θ). The boundary conditions
are given by ∂θR|θ=0 = ∂θR|θ=π = 0. Solving of Eq.
(28) would be numerically inexpedient, since the 3-metric
gij is known only numerically. Fortunately, numerical
results show that the impact of the disk onto the ge-
ometry around R = Rh is small. We investigated the
behaviour of UD at Rh for 4 disk configurations with the
outer edge at rout = 1 and with the inner edges located at
rin = 0.1, 0.5, 0.75 and rin = 0.95. Disk masses exceeded
the central mass by a factor of 10. We found that the
modulus of the potential UD depends very weakly on the
angle θ and its maximal values are 24.82 (for rin = 0.1),
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13.45 (for rin = 0.5), 11.49 (for rin = 0.75) and 10.41 (for
rin = 0.95). (See one of later sections for a more detailed
description of assumed data.) These values should be
compared to the modulus of the central potential m/Rh,
which gives 2000 (we assumed m = 1 in these numerical
calculations), that is roughly values larger by 2 orders
of magnitude. Thus the potential UD is relatively small
and it is almost constant at surfaces R = const; moreover
|∂RUD|/(m/R2) ≈ 0, in the vicinity of Rh = m/(2c2).

We believe, basing on the preliminary inspection of Eq.
(28), that the following hypothesis is true.

Conjecture. If the disk potential and its derivatives are
small,

sup
V

(|UD|, |R∂RUD|)�
m

2R
,

sup
V

(
|∂θUD|, |∂2

θUD|
)
� m

R
, (29)

in a vicinity of Rh = m/(2c2), then the position of the
minimal surface is well approximated by Rh.

This Conjecture will be applied later on.

A. The area and mass of minimal surfaces

The metric induced on an axially symmetric two-
surface S, that is defined by R = R(θ), reads

ds2
(2) = f4

−R
2

[(
1 +

(∂θR)2

R2

)
dθ2 + sin2 θdφ2

]
. (30)

The area of the two-surface is given by

AAH = 2π

∫ π

0

dθR2 sin θf4
−

√
1 +

(∂θR)2

R2
. (31)

If the 2-surface is minimal and it is located at R ≈
m/(2c2), then the area is approximated by

AAH =
m2

2c4
π

∫ π

0

dθ sin θ

[
16 +

16UD(R, θ)

c2

]
. (32)

In the case of the Schwarzschild black hole one has the
strict equality AAH = 16πm

2

c4 . The Podurets-Misner-
Hawking-Geroch [19] mass of a black hole is defined

as MAH = c2
√

AAH

16π , which yields MAH = m for the

Schwarzschild black hole. It is accepted in numerical
general relativity as a quasilocal mass measure of hori-
zons in selfgravitating systems [20]. We shall also em-
ploy that mass. We will accept only those numerical
solutions, where the Podurets-Misner-Hawking-Geroch
mass is close to the Newtonian mass m, that is |m −
MAH(S)| � m (see Sec. VI). In such a case the mass
parameter m still can be interpreted as the mass of the
central black hole, and it would be legitimate to use the
above Conjecture.

In the 1PN approximation the asymptotic mass of con-
figurations can be read off from the asymptotic behaviour
of the superposition of potentials −mR +UD. As explained
above, the parameter m approximates the mass of the
central black hole; therefore the asymptotics of UD can
be regarded as defining the mass of a rotating disk.

B. The angular momentum

Cylindrically symmetric stationary systems possess a
(spatial) Killing vector ηµ, i.e. ∇µην + ∇νηµ = 0. The
angular momentum of a fluid rotating around the z-axis
can be defined as follows [9]

L =
1

c

∫
V

tµT
µ
ν η

νdV

=

∫
V

drdφdzρ(c2 + h)
√
−det g4uφu

t. (33)

We use here cylindrical coordinates r, φ and z; tµ is a nor-
mal to the Cauchy hypersurface Σ. The integrand can be
expressed as a total divergence (using relevant Einstein
equations); applying the Gauss theorem, one can write
down the angular momentum as a sum of internal angu-
lar momenta, associated to an internal 2-surface S and
to the asymptotics [10, 21]: L = jS + j∞.

The angular momentum of a surface S, that is defined
by R = R(θ), reads (up to the 1PN approximation)

jS =

∫ π

0

dθ
R4

8
sin3 θ

(
−∂Rω +

∂θR∂θω

R2

)
×

f7
−
|f+|

, (34)

while the asymptotic angular momentum is given by

j∞ = −
∫ π

0

dθ

8
R4 sin3 θ (−∂Rω) . (35)

We shall calculate the angular momentum of a minimal
surface. Assuming that the above conjecture is valid,
that is R ≈ m/(2c2), then (f−)7 ≈ 27(1− 7UD/(4c

2)) =
128(1 − 7UD/(4c

2)) and |f−| ≈ |UD|/(2c2). Thus the
angular momentum becomes

jS = −16

∫ π

0

dθR4 sin3 θ

(
∂Rω −

1

R2
∂θR∂θω

)
×

1− 7UD(r,θ)
4c2

|UD|
c2

. (36)

If the angular dependence of the minimal surface is “mod-
erate”, so that terms with ∂θR can be neglected, then
taking into account that |UD|/c2 � 1, we get

jS = −16

∫ π

0

dθR4 sin3 θ
∂Rω
|UD|
c2

. (37)



6

This can be further simplified, since R ≈ m/(2c2). We
obtain finally

jS = −m
4

c6

∫ π

0

dθ
sin3 θ∂Rω

|UD|
. (38)

The total angular momentum of a rotating fluid is ap-
proximated, up to the 1PN order, by

L =

∫
drdφdzΩ0r

3ρ0 +

1

c2

∫
drdφdzρ0

(
Ω3

0r
5 − 6Ω0r

3U + r3vφ1 − rAφ
)

+
1

c2

∫
drdφdz(ρ1 + p0)r3Ω0. (39)

The asymptotic value of the angular momentum can be
obtained directly or (preferably) from j∞ = L− jS.

V. DESCRIPTION OF THE NUMERICAL
METHOD

The numerical method used in this paper was de-
scribed in [1]. It is a variant of the old fashioned (but
working) Self-Consistent Field (SCF) scheme. The solu-
tion representing the disk is found in three stages. In the
first one, a strictly Newtonian configuration is obtained.
In this stage, each iteration of the SCF method consists
in solving the Poisson equation (16) for the gravitational
potential and, subsequently, the Euler-Bernoulli equation
(15) that yields the specific enthalpy corresponding to a
given gravitational potential. The Newtonian solution
is parametrized by the values rin and rout of the inner
and outer equatorial radii of the disk, respectively — we
fix the coordinate size of the disk. Further data include
the maximum value of the density within the disk, the
value of the central mass m, and the polytropic expo-
nent. These parameters allow one to establish the values
of the constants K, Ψ0, and w in each of the subsequent
iterations.

In the second stage we compute the potential Aφ, solv-
ing Eq. (17). The result depends on previously obtained
ρ0 and Ω0.

The third stage is again an iterative one. In each itera-
tion, a post-Newtonian correction U1 is found by solving
Eq. (18). Given the new value of U1 we obtain the correc-
tion to the specific enthalpy h1 from Eq. (20). There is a
degree of freedom in this step that is connected with the
choice of constant Ψ1 in Eq. (20). At the Newtonian stage
the analogous constant Ψ0 is fixed by the geometrical re-
quirement on the size of the disk (setting the inner and
outer equatorial radii) and the remaining data (the max-
imum value of the density, the value of the central mass
m, and the polytropic exponent). It seems that at the
first post-Newtonian level one can choose the constant
Ψ1 freely. In [1] the value of Ψ1 was fixed by requiring
that the correction to the specific enthalpy h1 vanishes

at the outermost point of the disk, i.e., at the outer equa-
torial radius. We found that this choice yields solutions
that conform with the post-Newtonian assumptions only
in a limited range of parameters. The choice that we em-
ploy here is to require that the post-Newtonian correc-
tion h1 (or, equivalently, ρ1) vanishes at the point where
the Newtonian density ρ0 attains its maximum value. It
seems to be a slight change, but it yields acceptable so-
lutions for a much broader range of parameters. This
fact probably conveys an important message, that in this
kind of general-relativistic free boundary problems, that
we are dealing with, the maximal (baryonic) mass density
should always be a part of given data. Note also that the
apparent freedom of choosing the value of the constant
Ψ1 is yet another manifestation of the non-uniqueness of
the post-Newtonian expansion with respect to stationary
systems [2].

In summary, we adopted following input data: the co-
ordinates of the inner and outer boundaries of the disk,
the maximal mass density, and a functional form of the
rotation law and of the equation of state. That is, we as-
sume p = Kργ , but the specific value of the coefficient K
is a part of a solution. Similarly, the parameters w and
Ψ in the rotation law — see Eq. (10) — are established
after finding the Newtonian (or 1PN) disk configuration.

Technical aspects of our numerical method are quite
standard; they are described in [1]. We work in spheri-
cal coordinates (R, θ, φ). For convenience we also define
µ = cos θ. Equations (16), (17) and (18) are solved using
appropriate Green functions that are expanded in Leg-
endre polynomials.

Equations (16) and (18) have the form of a Poisson
equation ∆Φ = f(R,µ) that has to be solved assuming
that the solution vanishes at infinity. We compute the
solution Φ as

Φ(R,µ) = −1

2

N∑
j=0

Pj(µ)

[
1

Rj+1
Ej(R) +RjFj(R)

]
,

(40)
where

Ej(R) =

∫ R

0

dR′R′
j+2

∫ 1

−1

dµ′Pj(µ
′)f(R′, µ′), (41)

Fj(R) =

∫ ∞
R

dR′
1

R′j−1

∫ 1

−1

dµ′Pj(µ
′)f(R′, µ′). (42)

Equation (17) has the form

∆Aφ −
2∂rAφ
r

= g(R,µ), (43)

which is directly related to the vectorial Poisson equation
(cf. [1]). The solution Aφ that vanishes at infinity can be
found as

Aφ(R,µ) = −1

2

√
1− µ2

N∑
j=1

1

j(j + 1)
P 1
j (µ)
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1

Rj
Cj(R) +Rj+1Dj(R)

]
, (44)

where

Cj(R) =

∫ R

0

dR′R′
j+1

∫ 1

−1

dµ′√
1− µ′2

P 1
j (µ′)g(R′, µ′),

(45)

Dj(R) =

∫ ∞
R

dR′
1

R′j

∫ 1

−1

dµ′√
1− µ′2

P 1
j (µ′)g(R′, µ′).

(46)
Symbols Pj and P 1

j denote Legendre polynomials and as-
sociated Legendre polynomials of the first order, respec-
tively. Assuming equatorial symmetry one can show that
all above integrals with P2j+1 and P 1

2j , j = 0, 1, 2, . . .
vanish.

The above formulae are exact for N →∞. In our ap-
plications we set N ≈ 100. The integrals are computed
on a spherical grid assuming a piecewise linear interpola-
tion of f(R,µ) and g(R,µ). In most cases, the resulting
integrals can be then computed analytically. Otherwise
Simpson’s rule is used.

The last ingredient of the numerical method is directly
related to the fact that we are dealing with the free-
boundary problem. In the first stage — at the Newtonian
level — one ensures that no negative values of h0 appear
in the solution. At all grid points where Eq. (20) yields
a negative value of h0 we set h0 = 0. This defines the
shape of the disk at each iteration step.

A similar procedure has to be implemented at the 1PN
stage. The cutoff is applied to ρ1. Whenever ρ0 + ρ1/c

2

would become negative, we set ρ1 = −c2ρ0. Note that,
in practice, corrections ρ1 and h1 are related by

ρ1 =
1

Kγ
ρ2−γ

0 h1. (47)

Thus ρ0 = 0 implies ρ1 = 0 provided that h1 remains
finite.

We use a numerical grid consisting of 200 zones in the
radial direction and 800 zones in the angular one. It is
important to note that disks which are relatively light in
comparison to the central mass (i.e., MD � m) become
slim. Consequently, it is crucial to provide sufficient an-
gular resolution also in those cases. In a general case, our
grid covers in the angular direction the region 0 ≤ µ ≤ 1.
For thin disks we confine ourselves to 0 ≤ µ ≤ 1/2 or
even 0 ≤ µ ≤ 1/10, keeping the same number of 800
angular zones. For example, for an elongated disk with
rin/rout = 1/10 and MD/m ≈ 10−4 we get the maxi-
mal height of the disk above the symmetry plane z = 0,
hmax ≈ 0.01rout. In our setup this corresponds to ap-
proximately 100 angular zones occupied by the disk. This
procedure was also tested for the purely Newtonian case
in [23], where a disk with a relative thickness of the or-
der of 1/1000 was computed, using up to L = 400 Leg-
endre polynomials and numerical grids spanning up to
5000× 5000 nodes.

To some extent, the correctness of our numerical pro-
cedure can be tested by computing suitable virial identi-
ties. Such identities were derived in [22]. In [22] we also
provided examples of convergence tests of our numerical
method.

VI. NUMERICS: MASS RATIO AND
DRAGGING OF ROTATING SYSTEMS

A. Introductory remarks

We show in this section that maximal values of the to-
tal dragging and its constituents simply scale with the
total mass, up to the 1PN order. We define normalized

post-Newtonian corrections: the total ST ≡ |vφ1 /(c2Ω0)|
(see (22)) correction and its constituent components —

the dragging (geometric) term Sg ≡ | 3Aφ
4r̃2Ω0c2

|, the anti-

dragging term Sad ≡ | 3h0

c2 | and the centrifugal term

Sc ≡ | 3
2c2 (−mR + U0D + Ω2

0r̃
2)|. It will appear that their

maximal values almost linearly depend on the mass func-
tional MD. We take care to ensure that the calcula-
tion is done well within the post-Newtonian regime: the
modulus of the 1PN correction to the metric within tori,
2|U |/c2, is usually smaller (or much smaller) than 0.01
and reaches 0.05 only for heaviest disks.

We assume in the numerical analysis that maximal val-
ues of ST, Sg, Sad and Sc can occur only at the equatorial
plane z = 0. These functions satisfy elliptic equations;
see (17) for the equation for Aφ, take into account that
Sad ∝ h0 and notice that Sc is a linear function of the
enthalpy density h0 (see (15)). The function h0 satisfies
equation

∆h0 = −4πρ0 − Ω2
0r. (48)

We believe that by invoking the maximum (minimum)
principle — specifically, the moving planes method [24]
— one can prove that maximal points exist at z = 0.

Taking that into account, and exploiting the axial sym-
metry, one would need to find the maximal values of
ST, Sg, Sad and Sc in the line interval (rin, rout) within
the equatorial section of the disk. That is a formidable
but feasible numerical task.

We shall investigate disks extending from the in-
nermost equatorial circle corresponding to rin =
0.1, 0.4, 0.5, 0.6, 0.75 and 0.95 to the outermost equato-
rial circle rout = 1. The results are comprised in 10 dia-
grams and 2 tables — each of graphs demanded at least
2 dozens of numerical solutions.

It is useful to translate coordinate distances onto ge-
ometric ones, using RS, the Schwarzschild radius of the
central black hole. It is assumed in all numerical cal-
culations that the central mass is equal to 1 and the
speed of light is such that c2 = 1000. The distance
areal scale is thus defined by its Schwarzschild radius
RS = 2/c2 = 1/500, that corresponds to the isotropic co-
ordinate radius R = 1/2000. We constructed our toroids
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in limits of the 1PN order of approximation, which means
that conformal factors f (see the metric (4)) are close
to unity within the volumes of toroids. Thus the areal
radius of the innermost equatorial circle rin is given by
R(rin) = rinf

2(rin) ≈ rin. Therefore inner areal radii of
investigated toroids change from about 50 times RS (for
rin = 0.1) to 475RS (for rin = 0.95). The coordinate
boundary of the whole system is located at rout = 1 and
that corresponds to the areal size of (approximately) 500
RS.

We observe that the geometric contribution supSg to
the total dragging is essentially independent of the dis-
tance of the disk from the central black hole: supSg =
βMD/m, where the proportionality coefficient β depends
weakly only on the ratio MD/m and β ∈ (0.2, 0.5)×10−3.

The anti-dragging supSad and centrifugal supSc terms
strongly depend on the disk’s distance from the black
hole; they dominate at distances of the order of 50RS and
are dwarved by the geometric dragging effect represented
by supSg at the distance of 300RS.

B. Partial dragging effects

In Figs. 1–3 we plot the dependence of the maximal
value of the normalized dragging, anti-dragging and cen-
trifugal 1PN corrections on the relative mass MD/m.
The equation of state is p = Kρ4/3. There are a few
dozens of solutions corresponding to each of the three
systems with the inner radii rin situated at 0.1, 0.4 and
0.6. Numerical data suggest that the quantities supSg,
supSad and supSc are linear functions of the relative
mass MD/m. We display the results in three diagrams.
In Fig. 1 the ratio MD/m is smaller than 0.001, in Fig. 2
we have MD/m < 1 while in Fig. 3 the disk mass changes
between 0 and 40 of the central mass. In each case there
is an approximately linear behaviour.

We observe that the slope coefficient of the geomet-
ric dragging quantity supSg/MD is only weakly depen-
dent on the position of a disk — it changes slightly with
the change of the inner radius rin. In contrast to that,
the slopes of the anti-dragging and centrifugal objects
supSad/MD and supSc/MD are quite sensitive to the
disk location; they become significantly smaller with the
increasing distance from the central black hole. For the
case rin = 0.1 we have supSad > supSc > supSg; clearly
the anti-dragging effect dominates, for all masses within
the range MD ∈ (10−4m, 40m). With the increase of
the distance the picture reverses; at rin = 0.6 we have
supSg > supSc > supSad. One can notice, choosing two
disks of the same mass but with different inner bound-
aries, that the value of supSad at rin = 0.6 is about one
half of its value at rin = 0.1.

One can read from these diagrams, that for the equa-
tion of state p = Kρ4/3 and MD < 10−3m, the cor-
rection supSg ≈ 4 × 10−3MD/m (see Fig. 1); the same
equation of state corresponds to supSg ≈ (2.8− 3.2) ×
10−3MD/m, where MD ∈ (m, 40m) (see Fig. 3).
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FIG. 1. The normalized 1PN corrections supSg (red lines),
supSad (blue lines) and supSc (green lines), within the sym-
metry plane of the disk, put on the vertical axis — in function
of the mass ratio MD/m ≤ 0.001 (displayed on the abscissa).
The inner disks’s boundaries are located at rin = 0.1 (solid
lines), 0.4 (broken lines) and 0.6 (dotted lines), respectively.

The equation of state p = Kρ4/3.
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FIG. 2. The same as in Fig. 1, but with disk masses in the
interval (0,m).

This analysis yields similar results also for disks with
the polytropic equation of state p = Kρ5/3 (see Figs. 4–
6), with several notable differences. In the mass interval
M ∈ (0, 10−3)m and rin = 0.1 we observe Sg > Sc > Sad,
while the centrifugal term supSc dominates at rin = 0.1
for higher disk masses. The anti-dragging related object
supSad exceeds the geometric part supSg only for MD >
0.4m, again only at rin = 0.1. When rin = 0.4 or 0.6,
then always geometric effects dominate over centrifugal
ones, and those anti-dragging ones are the weakest of all.
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FIG. 3. The same as in Fig. 1, but with disk masses in the
interval (m, 40m).
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FIG. 4. The normalized 1PN corrections supSg (red lines),
supSad (blue lines) and supSc (green lines), within the sym-
metry plane of the disk, put on the ordinate — in function
of the mass ratio MD/m ≤ 0.001 (displayed on the abscissa).
The inner disks’s boundaries located at rin = 0.1 (solid lines),
0.4 (broken lines) and 0.6 (dotted lines), respectively. The

equation of state is p = Kρ5/3.

C. Total dragging: a linear function of relative
mass

In Figs. 7 and 8 we plot the dependence of the maximal

value of the normalized 1PN correction ST =
vφ1

Ω0c2
on the

relative mass MD/m.
We have found several dozens of solutions correspond-

ing to each of the four systems with the inner radii rin

situated at 0.1, 0.5, 0.75 and 0.95. Again it appears that
supST is a strictly linear function of the relative mass.
For the sake of clarity, we show corresponding results
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FIG. 5. The same as in Fig. 4, but with disk masses in the
interval (0,m).
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FIG. 6. The same as in Fig. 4, but with disk masses in the
interval (m, 40m).

in two diagrams. In Fig. 7, for the equation of state
p = Kρ4/3, the mass of the disk is smaller than 5m. The
most interesting feature of these plots is that the steepest
line correspond to the farthest disk; for a fixed mass of
disks the maximal value of the normalized correction ST

increases with the increase of rin.

In Fig. 8, which corresponds to the equation of state
p = Kρ5/3, the disk mass changes between 0 and 20 m.
The steepness of the lines is almost the same as in the
Fig. 7, and again the steepest lines correspond to the
farthest disk.

A closer inspection in the regime of light disks, with
masses significantly smaller than the central mass, re-
veals a more complex picture (see Fig. 9). For light disks
— our rough estimate is MD < 0.2m — the normalized
dragging supST for disks with inner boundaries located
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FIG. 7. The maximum of the normalized 1PN correction
v
φ
1

Ω0c2

within the disk (on the ordinate) in function of the asymp-
totic mass of the disk MD (plotted on the abscissa), for disks
with inner boundaries located at rin = 0.1, 0.5, 0.75 and 0.95,
respectively. The equation of state is p = Kρ4/3.
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FIG. 8. The same as in Fig. 7, but for the equation of state
p = Kρ5/3.

at rin may decrease with the increase of rin, and then
it can start to increase. The value of the critical ra-
dius rcr, where the behaviour changes, depends on the
mass MD, but is probably smaller than half of the cen-
tral mass. In the situation displayed on Fig. 9, we ob-
serve that supST(rin = 0.1) (solid line) intersects with
supST(rin = 0.5) (long broken line), at masses (roughly)
0.01 m and 0.12 m. That means that disks with masses
in the interval (0.01m, 0.12m) are characterized by func-
tions supST that are not monotonic as functions of rin,
in the region 0.1 < rin < 0.5.

This behaviour is due to the rapid growth of the anti-
dragging term supSad with the increase of mass that
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FIG. 9. The values of supST are put on ordinate, while disk
masses are put on the abscissa. The two lines corresponding
to rin = 0.1 (solid line) and rin = 0.5 (broken line) cross

around MD = 0.11m. The equation of state is Kρ4/3.

compensates a moderate growth of the dragging quan-
tity supSg (compare Figs. 1 and 2), for disk masses that
are small enough. That would cause the falloff of the
normalized correction supST in an interval of small radii
rin.

VII. ANGULAR MOMENTUM: LOCAL
VERSUS TOTAL

In this section we address issues concerning the drag-
ging at the black hole horizon and the distribution of
angular momentum in systems with rotating rings. Let
us recall that Nishida and Eriguchi [3] applied the rota-
tion law j(Ω) = A(Ω − B). They found, in particular,
that the angular momentum of the central black hole can
vanish and — more generally — its internal spinning pa-
rameter aS can be both negative and positive. For some
configurations one would have |aS| > 1 and the dragging
function Aφ would vanish at the horizon. Ansorg and
Petroff [4] assumed the constant angular velocity within
the disk and they also obtained central black holes with
|aS| > 1.

Our results are comprised in Table 1. The internal
spinning parameter aS is contained within the range
(10−4, 10−10). That means that the central black hole
can be safely approximated by a Schwarzschild black
hole. We already proved that the metric function Aφ can
have only isolated zeroes [1]; that is, it cannot vanish at
the horizon of the black hole. There is an apparent dis-
crepancy between our results and those of [3–5]. This can
be ascribed mainly to the fact, that our central black hole
is inherently spinless, in contrast to what was assumed
in quoted papers, in which central black holes possessed
their own internal spin. We think, however, that a differ-
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ent choice of the rotation law — the uniform rotation [4],
the constant j adopted by Shibata [5] and the linear law
j(Ω) = A(Ω−B) [3], within the fully general-relativistic
equilibrium — instead of the Keplerian rotation law (9)
in the perturbation equilibrium (up to the 1PN order)
— also played a role. It might happen that for the post-
Newtonian descriptions with Ω = const or j = const the
apparent horizon’s spinning parameter would be much
larger than observed here. We cannot exclude also that
the fully general-relativistic equilibria with the Keplerian
law (9) would have values of aS exceeding 1.

Figure 10 shows the dimensionless spinning parameter
for the whole spacetime, a∞ ≡ cj∞

M2 , where M is the to-
tal mass read off from the asymptotic behaviour of the
total potential −mR + UD. Let us remark that for the
Schwarzschild black hole a∞ = 0, while for the extremal
Kerr black hole a∞ = 1. All nonextremal Kerr black
holes have 0 < a∞ < 1. In our case we have values of
a∞ that are large for disks heavier than the black hole
and that are small in the opposite case, when MD � m.
Our numerical data clearly demonstrate that the spin-
ning parameter in non-Kerr stationary configurations can
be significantly larger than 1.

The most significant observation is that only a tiny
fraction jS of the angular momentum is deposited within
the central black hole. The ratio jS/j∞ varies from 10−6

for the disk closest to the center, with the equatorial inner
edge located at rin = 0.1 (which corresponds to about 50
RS) to 10−12 for systems with the equatorial inner edge
placed at rin = 0.95 (that corresponds to about 475 RS).
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FIG. 10. Asymptotic values of the spin parameter a∞ ≡ cj∞
M2 ,

where M = m+MD is the asymptotic mass.

VIII. ANGULAR MOMENTUM AND
ISOPERIMETRIC INEQUALITIES

We shall start with a compendium on various concepts
of mass and mass densities. In formula (3) appears the

TABLE I. The asymptotic angular momentum (the first col-
umn) and the black hole angular momentum for disks with
rin = 0.1 (the third column). Fourth column gives the
disks’s mass in units of the central mass m. The second col-
umn displays the area of the central black hole in terms of
RS ≡ 2m/c2. The last column is the maximal height of the
disk.

L AAH/16π jS MD hmax

0.6880 0.9972 6.034 ×10−10 1.493 0.3922

1.006 0.9959 1.339 ×10−10 2.156 0.3922

1.351 0.9945 2.459 ×10−9 2.848 0.4269

1.723 0.9931 4.018 ×10−9 3.561 0.4529

2.119 0.9917 6.065 ×10−9 4.290 0.4728

2.539 0.9903 8.644 ×10−9 5.032 0.4883

2.981 0.9888 1.180 ×10−8 5.783 0.5012

3.445 0.9873 1.557 ×10−8 6.544 0.5120

6.071 0.9798 4.543 ×10−8 10.43 0.5211

9.174 0.9722 9.539 ×10−8 14.42 0.5515

12.72 0.9645 1.709 ×10−7 18.50 0.5688

16.70 0.9568 2.755 ×10−7 22.64 0.5799

21.09 0.9490 4.134 ×10−7 26.84 0.5878

25.89 0.9413 5.886 ×10−7 31.11 0.5935

31.08 0.9335 8.051 ×10−7 35.43 0.6014

36.67 0.9258 1.067 ×10−6 39.82 0.6044

baryonic mass density ρ. It plays the role of an inte-
gration factor, ensuring the conservation of the bary-
onic current ρuµ: ∇µ(ρuµ) = 0. The volume integral∫
V
dV ρ is the baryonic mass — a quantity that is con-

served. In the Newtonian limit the baryonic mass co-
incides with asymptotic mass, but within General Rela-
tivity the asymptotic (Bondi-Einstein-Landau-Lifschitz-
Freund-Trautman-Arnowit-Deser-Misner) mass (see [25]
for a discussion) is distinct from the baryonic mass. In
our foregoing considerations we always dealt with the
conserved (ADM) asymptotic mass. One defines also the
rest energy density e ≡ ρ(c2 + h) − p = ρc2 + p

γ−1 , the

total rest energy Er ≡
∫
V
dV e [26] and the related rest

mass Mr(V ) ≡ 1
c2

∫
V
dV e (see, for instance, [26]).

One defines the momentum density Jν ≡ tµT
µ
ν . It is

well known that perfect fluids with the polytropic ex-
ponent γ ≤ 2 satisfy the dominant energy condition

e ≥
√
JkJk ≡ |J | [18], that reduces in our case to the

inequality

e ≥
√
JφJφ. (49)

It was already shown that — assuming the dominant
energy condition, conformal flatness and a kind of con-
vexity — the total rest mass Mr(V ) can be bounded by
2c2l(V ), where l is a geodesic size of the configuration
[27–32]. These are special cases, but they are in a sense
more general than it is needed for our purpose, since their
derivation does not require the assumption of stationar-
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ity, adopted in this paper; it is enough to guarantee that
the configurations are momentarily static. On the other
hand, one needs a regular center and a kind of convexity,
that can be obeyed by rotating stars, but which is not
valid for rotating toroids. Thus application of estimates
of the type

Mr(V ) ≤ 2c2l(V ) (50)

— bounding the rest mass in terms of geodesic radii —
to toroidal systems would require a renewed analysis.

Dain recently investigated two other size measures, re-
lated to the so-called radius RSY of Schoen and Yau [33].
One of them is defined as

R′ ≡
2
√∫

V
|η|dV

πRSY
(51)

while the other is given by

R̂ ≡
2
√∫

V
|η|dV

πROM
; (52)

here ROM is a modification of the RSY measure due to
N. Ó Murchadha [34]. They are formulated in terms of
quantities relating entirely to toroids; they do not assume
convexity and they can be applied to systems investigated
in this paper.

The total angular momentum can be written as L =
c−1

∫
V
Jνη

νdV = c−1
∫
V
JφdV . The application of (49)

to the definition of the angular momentum (33) gives a
string of inequalities

|L| ≤ 1

c

∫
V

|J ||η|dV ≤ 1

c
sup
V
|η|
∫
V

|J |dV

≤ c sup
V
|η|Mr(V ). (53)

In the last inequality, we have used the assumption that
the data satisfy the dominant energy condition. Pro-
vided that Mr(V ) ≤ 2c2l(V ) and that we are in the
perturbative regime (which means that the conformal
factor is close to 1, we get supV |η| ≈ R(V ), where
R(V ) = C/(2π) is the areal size of a toroid; its circumfer-
ence C divided by 2π. This leads to the inequality, that
is valid for rotating toroids, supposing conformal flatness
and the perturbative regime,

|Lz| <∼ 2c3R(V )l(V ). (54)

This derivation of (54) is analogous to that of S. Dain
[6, 7] for axially symmetric systems, without postulating
stationarity, but assuming an isoperimetric inequality as
in (50).

Dain has got another bound onto a local angular mo-
mentum within a finite volume, that does not require
postulating any isoperimetric inequalities but instead as-
sumes constant density bodies, of the form

R̃2 ≥ δ 1

c3
|L| (55)

Here δ = 24
π3 is a coefficient of the order of unity and

R̃ = R̂ or R̃ = R′. We have to note that, unfortu-
nately, rotating disks are not characterized by constant
mass densities.

M. Khuri obtained a similar upper bound, dropping the
assumption of constant density but imposing a stronger
energy condition and a strong un-trapped condition [35].

Tables I and II show results of our numerical calcu-
lations. Columns 1 and 3 show values of angular mo-
mentum of the whole system and of the black hole, re-
spectively; clearly, the angular momentum deposits in
peripheral regions. Column 2 shows values of the control

parameter cp ≡
∫
S
d2S

4πR2
S

; all its entries should be close to

1, since that means that the horizon is indeed located at
the coordinate radius R ≈ m

2c2 , as assumed in the numer-
ical calculation. Column 4 shows the mass of the disk in
terms of the central mass m. The last column presents
the coordinate height of the disk. Let us remind that we
assumed c2 = 1000.

The validity of (54) is expected, since it can be proven
in the 1PN order of approximation, but the fact that
it is satisfied with a huge margin may be interpreted as
suggesting the universality of the isoperimetric inequality
(50).

The geometry inside toroids is approximately Eu-
clidean, hence the Schoen and Yau radius RSY is roughly
equal to one half of the min

(
1
2 (rout − rin), h

)
; it is easy to

check that R2
SY � 1

c3 |L| for all systems that are described

in Table I, while R2
SY � 1

c3 |L| for configurations listed

in Table II. Both measures R′ and R̂ are much greater
than RSY (they are of the order of R(V ), or of the radius
of the great circle of the toroid) and the inequality (55)
holds true for both of them, and for all systems displayed
in the two Tables. That might be regarded as surprising,
since — as we pointed above — stationary selfgravitat-
ing toroids do not satisfy the basic condition of [6], that
the mass density is constant; that probably means that a
better analytic estimate should be available under much
weaker suppositions.

IX. CONCLUDING REMARKS

We have demonstrated, that in Keplerian systems con-
sisting of a rotating toroid and a spinless black hole,
the black hole can be (essentially) Schwarzschildean —
almost all angular momentum is deposited within the
toroid. This is true for a large spectrum of systems, for
disk masses MD ∈ (10−4m, 40m) (m is the black hole
mass). That observation would mean, that there is a
need to do a more careful interpretation of those astro-
physical objects with black holes where the Keplerian
rotation curve is observed. The standard practise is to
assume that the black hole is Kerr-like and that the toroid
is test-like, that is its self-gravity can be neglected. Our
results suggest that an alternative picture is plausible,
with the central black hole being Schwarzschildean and
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TABLE II. The asymptotic angular momentum (the first col-
umn) and the black hole angular momentum for disks with
rin = 0.95 (the third column). Fourth column gives the disks’s
mass in units of the central mass m. The second column de-
picts the area of the central black hole radius in terms of
RS ≡ 2m/c2. The last column is the maximal height of the
disk.

L AAH/16π jS MD hmax

1.530 0.9988 4.176 ×10−11 1.145 0.033391

2.563 0.9983 1.048 ×10−10 1.722 0.033395

3.775 0.9977 2.037 ×10−10 2.302 0.033395

5.061 0.9971 3.435 ×10−10 2.885 0.033395

6.503 0.9965 5.287 ×10−10 3.470 0.033395

8.062 0.9959 7.632 ×10−10 4.059 0.033395

9.733 0.9953 1.051 ×10−9 4.650 0.033395

11.15 0.9947 1.396 ×10−9 5.243 0.033395

13.39 0.9942 1.800 ×10−9 5.839 0.033395

15.37 0.9936 2.269 ×10−9 6.438 0.033395

17.45 0.9930 2.804 ×10−9 7.040 0.033395

19.62 0.9924 3.409 ×10−9 7.645 0.033395

21.88 0.9918 4.086 ×10−9 8.252 0.033395

24.23 0.9912 4.839 ×10−9 8.862 0.033395

26.67 0.9906 5.670 ×10−9 9.474 0.033395

29.20 0.9901 6.583 ×10−9 10.09 0.033395

31.81 0.9895 7.579 ×10−9 10.70 0.033395

34.50 0.9889 8.661 ×10−9 11.33 0.033395

37.28 0.9883 9.832 ×10−9 11.95 0.033395

the disk carrying angular momentum and selfgravitating,
even for light disks, MD/m� 1.

Our numerics suggests that there is a need to in-
clude the all three weak field components of the general-
relativistic effects [2] in gaseous disks circulating around
a spinless black hole. The geometric (frame-dragging)
effect becomes dominating at relatively large distances;
the two other effects can contribute up to 50% even at
distances R ≈ 500RS, and even for light disks, MD � m.

One of the main surprises in this investigation is
the fact, that all weak general-relativistic components
(dragging, anti-dragging and the centrifugal) scale with
MD/m; their maximal values are proportional to MD/m.

The same is true concerning the total 1PN correction to
the angular velocity. We do not know any simple ex-
planation of that fact. Why a fairly complicated nor-
malized post-Newtonian correction ST or its normalized
compounds: dragging Sg, anti-dragging Sad and centrifu-
gal Sc should have maximal values that almost linearly
depend on the mass functional MD? This scaling would
mean that the Dopplerian width of spectral lines, of
general-relativistic origin, emitted by sources corotating
with Keplerian stationary disks scales proportionately to
MD/m. This opens, in principle at least, a new observa-
tional method for estimating masses in such objects.

The mathematical problems related to stationary ro-
tating polytropes are known as free boundary problems.
There are numerical approaches that might inspire the
future mathematics of such systems; we should mention
here the pioneering work of Hachisu [36], Eriguchi and
Nishida [21] and others [37]. They are analysed — with
emphasis on the convergence of the SCF approaches —
in the recent work of Price, Markakis and Friedman [38].
Hachisu [36] pointed out the necessity to include the max-
imal value of the fluid mass density, for rotating new-
tonian polytropes, in the catalogue of assumed data for
the self-consistent field method. Our work brings a new
technical element — that the maximal (baryonic) mass
density should be a part of given data (at least up to the
1PN order), in addition to the rotation law, the equation
of state and information on spatial extendibility. Little
is known about mathematical setting of rotating selfgrav-
itating systems within general relativity.

Finally, we confirmed the validity of estimates formu-
lated by S. Dain [6]. They imply, in particular, that the
angular momentum is located mostly in peripherals of ro-
tating black-hole-toroidal systems; this is consistent with
the numerical results reported above.
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Świerczyński, Acta Phys. Pol. B40, 273(2009).
[27] E. Malec, Acta Phys. Pol. B22, 829 (1991).
[28] E. Malec, Phys. Rev. Lett. 67 949 (1991).
[29] P. Koc and E. Malec, Acta Phys. Pol. B23 123 (1992).
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