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Abstract

Electromagnetic field configurations with vanishing Lorentz force density are known as force-
free and appear in terrestrial, space, and astrophysical plasmas. We explore a general method
for finding such configurations based on formulating equations for the field lines rather than the
field itself. The basic object becomes a foliation of spacetime or, in the stationary axisymmetric
case, of the half-plane. We use this approach to find some new stationary and axisymmetric
solutions, one of which could represent a rotating plasma vortex near a magnetic null point.

1 Introduction

A Maxwell field Fµν satisfying FµνJ
ν = 0, where Jµ = ∇νFµν is the four-current, is known as

force-free. Force-free fields are ubiquitous in nature: they can be found in the laboratory [1], in
the solar corona [2], near neutron stars [3, 4], and near black holes [5]. After decades of study by
plasma physicists, solar physicists, and astrophysicists, there has recently been new interest in the
force-free equations from the general relativity and high energy physics communities [6–36]. As a
simple nonlinear system with a nevertheless intricate structure, these equations are of mathematical
interest in their own right.

The force-free equations are written compactly in terms of the Maxwell two-form Fµν as

Fµν∇ρF ρν = 0, ∇[µFνρ] = 0. (1.1)

The first equation is the force-free condition, while the second is the statement that the form is
closed (no magnetic monopoles). (Here, ∇µ is compatible with the spacetime metric gµν .) Vacuum
solutions with Jµ = ∇νFµν = 0 comprise a trivial subset on which the equations become linear.
Provided that Jµ 6= 0, Eqs. (1.1) imply that the two-form Fµν is simple or, equivalently, degenerate,

F[µνFρσ] = 0. (1.2)

Reviews of the rich physics of force-free fields may be found in Refs. [2, 17]. In this paper, we
concentrate on the mathematical problem of finding solutions to the nonlinear system (1.1).
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The technique we pursue is motivated by a beautiful observation due to Carter [37]: degenerate,
closed two-forms define a foliation of spacetime into two-surfaces (see also Refs. [17, 38]). These
surfaces are spanned by the vectors V µ such that FµνV

ν = 0, and are interpreted as worldsheets
of magnetic field lines in the magnetically dominated case FµνF

µν = 2
(
B2 − E2

)
> 0 of physical

interest. Since force-free fields are degenerate, each force-free field determines a foliation. The
converse is not true in general, but if a foliation does determine a force-free field (in the magnetic
case), then that field is unique (see Appendix A). This means that the force-free condition can be
re-expressed as a condition on foliations. Thus, one passes from the field to the field lines as the
fundamental variable.

One can hope that such a reformulation will lead to new insights and results. In this paper,
we perform a version of this reformulation specialized to stationary, axisymmetric, force-free fields.
Such fields are characterized by three scalars defined on the “poloidal (half-)plane” spanned by
the cylindrical radius ρ > 0 and height z: the flux function ψ(ρ, z), polar current I(ψ), and field
angular velocity Ω(ψ). Many of the most interesting exact solutions have been found by guessing
a common functional dependence on some scalar u, i.e., by making the ansatz ψ = ψ(u), I = I(u)
and Ω = Ω(u). One then examines the force-free condition to see if an associated solution exists
or not. Previously, this has been done on a case-by-case basis, but it would be desirable to have
a more systematic method for checking whether a function u is admissible or not, i.e., to pass to
u as the basic variable. Since the level sets of u are the poloidal projections of the magnetic field
lines, this is a version of the foliation strategy outlined above.

We are able to eliminate ψ and I(ψ) in favor of the foliation representative u, but in general,
Ω(u) remains present. We give the equation in coordinate form as well as in terms of geometric
invariants of the foliation, and ultimately work in a general stationary, axisymmetric (circular)
spacetime. The equation is most useful in the case Ω = 0 (or more generally, constant Ω), where it
becomes a single “foliation condition” on u. There is a large gauge redundancy in this description,
since two functions u with parallel gradient have the same level sets and hence correspond to the
same foliation. This makes the foliation equation appear more complicated than the original force-
free equation (at least when written in coordinate form), but it also means that it has many more
solutions, thereby making them easier to guess. We can use the foliation equation as a consistency
condition to check whether or not a force-free solution exists. If the check is successful, then it is
straightforward to reconstruct the solution.

Having this foliation condition enables automation of the guesswork by computer algebra pro-
grams. In Sec. 2, we describe a simple algorithm to generate guesses from a basic set of atoms
and operations. We implemented this algorithm in Mathematica and used it to find new force-free
solutions, one of which could represent a rotating force-free vortex near a magnetic null point. We
anticipate that it will be possible to find many more solutions by improving the algorithm and
its implementation, experimenting with the choice of primitives, and running for a longer time
on faster computers. While finding solutions is one goal of this approach, we also hope that the
reformulation will lead to new insight into the structure of the equations. We therefore take care
to elucidate the mathematical properties of our approach. We follow the conventions of Ref. [17].
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2 Force-free magnetic fields in flat spacetime

Stationary force-free configurations with vanishing electric field in flat spacetime are called force-free
magnetic fields. In vector notation, they obey the following equations:

~B = ~B(~x), ~∇ · ~B = 0, ~∇× ~B = ~J, ~J × ~B = 0. (2.1)

Such fields are also known as “Beltrami flows” and form steady solutions of the incompressible
Euler equations.1 In the following, we will consider axisymmetric force-free magnetic fields,

L ∂tF = L ∂φF = 0, ∂t · F = 0. (2.2)

Under these assumptions, a degenerate, closed two-form may always be written in the form (see
e.g., Ref. [17])

F =
I

2πρ
dz ∧ dρ+ dψ ∧ dφ, (2.3)

where we work in cylindrical coordinates {t, φ, z, ρ}. The scalars I(ρ, z) and 2πψ(ρ, z) are respec-
tively equal to the electric current and magnetic flux in the upward z direction through a loop of
revolution at fixed (ρ, z).2 We will refer to these as the polar current and flux function, respectively.
The magnetic field Bi = (?F )ti is given by

~B =
~∇ψ × φ̂

ρ
+

I

2πρ
φ̂, (2.4)

where φ̂ = ρ−1 ∂φ and we used the standard orientation ερφz = +ρ to define the cross-product. The
first term is the poloidal field and the second term is the toroidal (azimuthal) field. The level sets
of ψ are the projections of field lines onto the poloidal plane, or poloidal field lines. These field
lines provide the plane foliation that will become our fundamental variable in this paper.

Under the assumptions (2.2) [or equivalently, given the form (2.3)], the force-free condition
implies

dI ∧ dψ = 0 [or equivalently, I = I(ψ)] , (2.5)

as well as

∂2
ρψ + ∂2

zψ −
1

ρ
∂ρψ = −I(ψ)I ′(ψ)

4π2
. (2.6)

This last equation is called the stream equation. If I(ψ) is specified as some definite function, then
the stream equation is a second-order elliptic partial differential equation. We may eliminate I
from the equation by acting with ∂zψ ∂ρ − ∂ρψ ∂z on both sides, resulting in

( ∂zψ ∂ρ − ∂ρψ ∂z)
(
∂2
ρψ + ∂2

zψ − ρ−1 ∂ρψ
)

= 0. (2.7)

1By the identity ~u · ~∇~u =
(
~∇× ~u

)
× ~u + ~∇

(
1
2
|~u|2

)
, the field ~u = ~B solves the three-dimensional incompressible

Euler equations ~∇ · ~u = 0 and ~u · ~∇~u = −~∇p with pressure p = − 1
2
| ~B|2. There also exists a different relationship to

two-dimensional Eulerian flows. See e.g., Ref. [39] for further discussion.
2The scalar ψ must be constant on the rotation axis for the field F to be smooth. We use the gauge freedom

ψ → ψ + const to make ψ vanish on the rotation axis, in which case it gains the interpretation of the magnetic flux.
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This replaces the pair of equations (2.5) and (2.6) with a single higher-order equation. Once a
solution is found, the current can be reconstructed by integrating Eq. (2.6),

I = ±

√
−8π2

∫
dψ

(
∂2
ρψ + ∂2

zψ −
1

ρ
∂ρψ

)
. (2.8)

If ψ is not a convenient integration variable, one may substitute dψ = ∂ρψ dρ, dψ = ∂zψ dz, or
some other convenient choice over suitable domains of the integral. The integration constant may
always be chosen so that the quantity in the square root is positive on any particular region of
space where a solution is desired. The choice of ± corresponds to the direction of current flow, and
its presence follows from the underlying time-reversal invariance of the equations.

2.1 Foliation approach

As noted above, the level sets of ψ correspond to the poloidal field lines, which foliate the poloidal
plane. We wish to pass from the field to the foliation as the fundamental variable. We may
describe a foliation as an equivalence class of functions u(ρ, z) whose gradients are parallel and
nonvanishing. That is, two functions u1 and u2 are equivalent if ∂ρu1 = α∂ρu2 and ∂zu1 = α∂zu2

for some nonnegative (or nonpositive) function α(ρ, z), or equivalently, if u1 = f(u2) for an invertible
function f . A good equation on foliations u should always be covariant under this gauge freedom
u→ f(u).

The stream equation is not a good equation on foliations, since it only holds for a particular
representative ψ (namely, the physical magnetic flux). To pass to an equation on foliations, we let
ψ = ψ(u) and eliminate ψ in favor of u. From Eq. (2.5), we then have I = I(u) as well, and hence
Eq. (2.6) becomes

Aψ′(u) +Bψ′′(u) = −I(u)I ′(u)

4π2ψ′(u)
, (2.9)

where A and B are given by

A = uρρ + uzz − ρ−1uρ, B = u2
ρ + u2

z. (2.10)

(Here and henceforth, we use a subscript to denote partial differentiation.) To eliminate ψ, we take
derivatives tangent to the foliation, as done to produce Eq. (2.7). For these purposes, we introduce
the differential operator (or tangent vector field3)

T = uz ∂ρ − uρ ∂z. (2.11)

We will denote the application of T by LT (the Lie derivative). Acting on Eq. (2.9) one and two
times yields, respectively,

ψ′LTA+ ψ′′LTB = 0, ψ′L2
TA+ ψ′′L2

TB = 0, (2.12)

which can be rewritten as the system[
LTA LTB
L2
TA L2

TB

] [
ψ′

ψ′′

]
=

[
0
0

]
. (2.13)

3We adopt the viewpoint/definition that vectors are partial differential operators (see e.g., Ref. [40]). Equivalently,
the vector T is defined by having (ρ, z) components (uz,−uρ).
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The foliation condition for a (nontrivial) solution is simply the vanishing of a determinant,

det

[
LTA LTB
L2
TA L2

TB

]
= 0. (2.14)

We have now obtained an equation for the foliation representative u without reference to the
magnetic flux function ψ. We refer to Eq. (2.14) as the “foliation condition”. As shown explicitly
below, the field ψ can be reconstructed from any solution satisfying LTB 6= 0 or LTA = LTB = 0.

2.2 Field reconstruction

Provided that LTB 6= 0, Eq. (2.12) can be written equivalently as

LTA
LTB

= −ψ
′′

ψ′
. (2.15)

The foliation condition (2.14) is equivalent to

LT
(
LTA
LTB

)
= 0. (2.16)

This condition ensures that the left-hand side of Eq. (2.15) depends only on u, so that we may
integrate to find

ψ′(u) = exp

[
−
∫

du
LTA
LTB

]
. (2.17)

Performing a second integration to obtain ψ(u) is usually not necessary, since only dψ appears in
the field strength (2.3). The current I may be reconstructed via Eq. (2.8), or alternatively, from
Eq. (2.9) by

I = ±

√
−8π2

∫
du
[
A (ψ′)2 +Bψ′′ψ′

]
, (2.18)

where again only ψ′(u) appears. Although A and B are not functions of u alone, the foliation
condition guarantees that the integrands in Eqs. (2.17) and (2.18) will only depend on u.

If LTB = 0, then Eq. (2.12) requires LTA = 0 as well, so that both A and B are functions of
u. Eq. (2.9) then becomes

2A(u)
[
ψ′(u)

]2
+B(u)

d

du

{[
ψ′(u)

]2}
= − 1

4π2

d

du

{
[I(u)]2

}
. (2.19)

This is a linear equation in [ψ′(u)]2. Given any current I(u) along the field lines, we can straight-
forwardly solve for the magnetic flux ψ(u). A class of solutions to this equation corresponding to
the vertical foliation u = ρ2, which obeys LTB = 0, was described in Refs. [41, 42]. The magnetic

field admits an arbitrary toroidal component, Bφ = I(u)
2πρ , no radial component, Bρ = 0, and has a

vertical component Bz = ∂ρψ deduced from (2.19).
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2.3 Regularity

A magnetic field of the form (2.3) [or equivalently, of the form (2.4)] is not regular on the axis unless
ψ and I both vanish there.4 If ψ does not vanish, then field lines originate from the axis, indicating
the presence of a line current of magnetic monopoles. If ψ does vanish but I does not, then an
ordinary electric current flows along the axis. We may always ensure the vanishing of ψ (lack
of magnetic monopoles) by choosing a foliation representative that is constant on the axis. Such
foliations have a field line along the axis. On the other hand, the vanishing of I (lack of line current)
cannot be imposed in all cases, because this demand picks out a unique integration constant in
Eq. (2.18) [or equivalently, in Eq. (2.8)], which may be incompatible with the requirement that the
quantity under the square root be positive.

To summarize, force-free solutions satisfying the conditions (2.2) may be constructed by finding
solutions to Eq. (2.14) satisfying u(z = 0) = 0 as well as LTB 6= 0, and then using Eqs. (2.3),
(2.17), and (2.18) to reconstruct the field strength. Depending on the foliation, a line current may
be required to flow on the axis to support the solution.

2.4 Function builder and solutions

One advantage of the foliation equation over the original stream equation is that it makes it far
simpler to guess solutions. The reason is that for each exact solution ψ of the stream equation,
there exist an infinite number of solutions u(ψ) to the foliation equation. One merely needs to
chance upon a single representative u(ρ, z) in order to find the exact solution ψ(ρ, z).

To search for solutions, we have designed and implemented a simple algorithm to build repre-
sentatives u(ρ, z) from basic elements and operations. We initiate the algorithm at depth 1 with the
four building functions ρ, z, ρ2 + z2, and ρ/z. New functions are built at depth n+ 1 from binary
operations among the functions at depth n − p and p with 1 ≤ p ≤ n. (Unary operations would
only create dependent functions.) The binary operations that we considered are addition, subtrac-
tion, multiplication, division, geometric sum, as well as the operations (x, y) →

√
(x− 1)2 + y2,√

(x+ 1)2 + y2, xey, and x log y. After building the list, we check each function individually, first
for regularity and then (if regular), for satisfaction of the foliation constraint. In practice, we save
computational time by only evaluating the foliation constraint at one particular point, which we
selected to be ρ = 4

5 , z = 6
7 , using exact arithmetic. If the constraint is exactly 0 at that point,

the constraint is tested in the entire plane. The resulting solutions are then checked for mutual
independence and a list of independent regular solutions is produced. We perform this step last
since its complexity is quadratic in the number of functions, as compared with the linearity of the
previous steps.

This algorithm generates approximately 66,000 functions up to depth 4. After imposing regular-
ity and the foliation constraint as well as removing redundancy, we are left with only seven mutually
independent foliation representatives. Of these, six turn out to be vacuum solutions (I = 0, or more
generally, I = const).

4More generally, ψ may take a constant value on the axis, but one may always shift ψ by this constant without
affecting the field strength. Moreover, only the choice ψ = 0 on the axis is consistent with the interpretation of ψ as
the magnetic flux.
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After selecting the simplest representative u, the list of vacuum solutions reads as follows:

vertical field (external dipole): u = ρ2 = r2 cos2 θ, (2.20a)

X-point (external quadrupole): u = ρ2z = r3 cos2 θ sin θ, (2.20b)

radial: u = 1− z/
√
z2 + ρ2 = 1− cos θ, (2.20c)

dipolar: u = ρ2/
(
z2 + ρ2

)3/2
= sin2 θ/r, (2.20d)

parabolic: u =
√
z2 + ρ2 − z = r(1− cos θ), (2.20e)

hyperbolic: u =

√
z2 + (ρ− b)2 −

√
z2 + (ρ+ b)2

2b
. (2.20f)

Here, b is a constant which was found by the algorithm to be 1 but which we subsequently gener-
alized to be arbitrary. Note that we can shift any solution by z → z + c with constant c and still
have a solution. These vacuum solutions are all known. The first four arise as multipolar solutions
when the equation is separated using spherical coordinates, while the latter two are associated with
separation in other coordinate systems. In the first five cases, the flux function is given by ψ = ψ0u,
while in the last case, it is given by ψ/ψ0 = 1−

√
1− u2. The solutions in this list are vacuum, but

all have rotating counterparts that are nonvacuum (see next section), some of which are new.

The algorithm finds a single nonvacuum regular solution family,

bent: u = ρ2e−2kz, ψ = ψ0u, I = ±
√
I2

0 − (4πkψ0u)2, (2.21)

where k, ψ0 and I0 are constants. The field lines are vertical when k = 0 and bend over for nonzero
k (hence the name, “bent”). As far as the authors are aware, this solution is new. In Cartesian
coordinates (x, y, z), the magnetic field has components

~B = 2ψ0e
−2kz (kx, ky, 1)∓

√[
I0

2π (x2 + y2)

]2

− (2kψ0e−2kz)
2

(y,−x, 0) . (2.22)

The foliations corresponding to the seven solutions are illustrated in Fig. 1.

2.5 Gauge covariance

An equation for u(ρ, z) can only be considered as an equation for foliations if it holds for all
representatives f(u) of the foliation. In particular, the equation should transform covariantly (i.e.,
retain its form) under u→ f(u). This is guaranteed by construction in the derivation of the foliation
condition, but it is instructive to check it explicitly. By direct calculation, the transformation laws
for the various quantities are

T → f ′(u)T, (2.23a)

A→ f ′(u)A+ f ′′(u)B, (2.23b)

B →
[
f ′(u)

]2
B, (2.23c)

LTA→ f ′(u)
[
f ′(u)LTA+ f ′′(u)LTB

]
, (2.23d)

LTB →
[
f ′(u)

]3 LTB, (2.23e)

L2
TA→

[
f ′(u)

]2 [
f ′(u)L2

TA+ f ′′(u)L2
TB
]
, (2.23f)

L2
TB →

[
f ′(u)

]4 L2
TB. (2.23g)
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(a) vertical (b) X-point (c) radial

(d) dipolar (e) parabolic (f) hyperbolic

(g) bent

Figure 1: Poloidal field lines of force-free solutions found by the foliation-searching algorithm. The
X-point, dipolar, and bent solutions appear to be new (in the first two cases, when rotation of the
field lines is considered).
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Since the left-hand side of Eq. (2.14) transforms covariantly with an overall factor of [f ′(u)]6, the
invariance of the foliation condition follows.

Note that in the generic case LTB 6= 0, one may always find a gauge where LTA = 0 and
u = ψ, which amounts to returning to the more basic formulation (2.7). To do so, one solves
f ′(u)LTA+f ′′(u)LTB = 0 for f(u). In particular, one can divide by LTBf ′(u) and integrate along
u since LT (LTA/LTB) = 0 by Eq. (2.16).

3 Rotating magnetospheres

Thus far, we have restricted to vanishing electric field. When electric fields are included, the general
form of a stationary, axisymmetric, degenerate two-form becomes5 [compare to Eq. (2.3)]

F =
I

2πρ
dz ∧ dρ+ dψ ∧ (dφ− Ω dt) , (3.1)

for some function Ω = Ω(ψ). The magnetic field sheets discussed in the introduction are gener-
ated by the poloidal field lines ψ = constant rotating with angular velocity Ω(ψ); hence, Ω(ψ) is
interpreted as the rotation frequency of the field line ψ.

The stream equation for rotating magnetospheres reads[
1− ρ2Ω2(ψ)

]
∇2ψ − 2

ρ
∂ρψ − ρ2Ω(ψ)Ω′(ψ) (∇ψ)2 = −I(ψ)I ′(ψ)

4π2
. (3.2)

Upon setting Ω = 0 and after using the three-dimensional Laplacian, we recover Eq. (2.6). In the
special case of constant Ω = Ω0 (“rigid rotation”), the term involving Ω′ does not appear, and one
can straightforwardly follow the steps of the previous section to derive a foliation condition. This
condition is again the determinant (2.14), except with the following new definitions for A and B:

A =
(
1− ρ2Ω2

0

)
(uρρ + uzz)−

1 + ρ2Ω2
0

ρ
uρ, (3.3)

B =
(
1− ρ2Ω2

0

) (
u2
ρ + u2

z

)
. (3.4)

One can search for rigidly rotating magnetospheres by running the algorithm we described in the
previous section with this new choice of A and B.

In the general case Ω = Ω(ψ), it is not possible to eliminate Ω from the equation by the strategy
we have pursued. Instead, applying the same manipulations as above, we again obtain Eq. (2.9),
but this time with

A =
[
1− ρ2Ω2(u)

]
(uρρ + uzz)−

1 + ρ2Ω2(u)

ρ
uρ − ρ2Ω(u)Ω′(u)

(
u2
ρ + u2

z

)
, (3.5)

B =
[
1− ρ2Ω2(u)

] (
u2
ρ + u2

z

)
. (3.6)

Equation (2.14) is now a first-order differential equation for Ω(u) which is consistent only for specific
foliations where all fields are u dependent only. If consistent, it can then be solved for Ω(u), and
the current I(u) can then be reconstructed from Eq. (2.18).

5More precisely, we consider the conditions (2.2) without F · ∂t = 0, but also with F · ∂φ 6= 0 to ensure there is
some poloidal field. An analogous form exists for the case F · ∂φ = 0 [17], and there is an analogous foliation equation
which for simplicity, we do not consider here.
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While it is difficult to directly solve the foliation condition (2.9) with A and B as given in
Eqs. (3.5)–(3.6), it is straightforward to check by hand whether the nonrotating solutions (2.20) have
rotating counterparts. One must simply evaluate Eq. (2.14) assuming one of the seven foliations
found in Sec. 2, and then check consistency. We find that all of the nonrotating solutions found in
Sec. 2 have rotating counterparts.6 Four of them (vertical, radial, parabolic, hyperbolic) are special
in that any Ω(u) gives a solution. These four solutions were all previously known [4,27,43,44], but
we present them again here for the sake of completeness:

vertical: ψ = ψ0u, Ω = Ω(u), I = ±4πψ0uΩ(u), (3.7a)

radial: ψ = ψ0u, Ω = Ω(u), I = ±2πψ0u (2− u) Ω(u), (3.7b)

parabolic: ψ = ψ0

∫
du√

1 + [uΩ(u)]2
, Ω = Ω(u), I = ± 4πψ0uΩ(u)√

1 + [uΩ(u)]2
, (3.7c)

hyperbolic: ψ = ψ0

∫
udu

√
1− u2

√
1− [bΩ(u)u2]2

, Ω = Ω(u), I = ± 2πψ0Ω(u)u2√
1− [bΩ(u)u2]2

. (3.7d)

We have chosen the integration constant I0 to ensure global regularity.

The remaining three solutions require special choices of Ω(u) and appear to be new:

X-point: u = ρ2z, ψ = ψ0u, Ω = Ω0, I = ±4πψ0Ω0

√
I2

0 + u2, (3.8)

dipolar: u =
ρ2

(z2 + ρ2)3/2
, ψ = ψ0u, Ω =

Ω0

u2
, I = ±4πψ0Ω0

√
I2

0 +
1

u2
, (3.9)

bent: u = ρ2e−2kz, ψ = ψ0u, Ω =
Ω0

u
, I = ±4πkψ0

√
I2

0 − u2. (3.10)

In these solutions, we include the integration constant I0. The dipolar and bent solutions have
singularities and hence could only be realized over a finite region. On the other hand, we may
ensure global regularity of the X-point solution by fixing the integration constant to be I0 = 0.
This solution is a rotating quadrupolar field configuration and could represent a “force-free vortex”
near a magnetic null point. We have not checked whether the configuration is stable.

4 Generalization to curved spacetime

We now generalize to an arbitrary stationary, axisymmetric, circular spacetime. For the basic
formulation of the force-free equations, we follow the approach and notation of Ref. [17]. We work
in coordinates {t, φ, xa}, where the timelike and axial Killing fields are ∂t and ∂φ, respectively, and
xa are two arbitrary poloidal coordinates (such as Boyer-Lindquist r and θ for the Kerr metric).
The metric takes the general form

ds2 = −α2 dt2 + ρ2 (dϕ− ΩZ dt)2 + gPab dxa dxb, (4.1)

where all metric components depend only on the poloidal coordinates xa. Here, ρ is the cylindrical
radius, while α and ΩZ respectively denote the redshift factor and angular frequency of observers

6However, superpositions of the vacuum solutions (2.20), which are valid when Ω = 0, do not admit rotating
generalizations.
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orbiting at fixed θ with zero angular momentum. A degenerate, stationary, axisymmetric field with
F · ∂φ 6= 0 may always be written as

F =
I(ψ)

2παρ
εP + dψ ∧ [dφ− Ω(ψ) dt] , (4.2)

where εP is the metric-compatible poloidal volume element, given by
√
gP times the Levi-Civita

symbol. Here, ψ, I and Ω have the same physical interpretation as in flat spacetime. The stream
equation is

αρ∇a
(
αρ |η|2∇aψ

)
+ ρ2Ω′(ψ) [Ω(ψ)− ΩZ ]∇aψ∇aψ = −I(ψ)I ′(ψ)

4π2
, (4.3)

where ∇a is the covariant derivative compatible with the poloidal metric, and we have introduced
the one-form η ≡ dφ− Ω(ψ) dt. In terms of the functions appearing in the metric (4.1), we have

|η|2 =
1

ρ2
− [Ω(ψ)− ΩZ ]2

α2
. (4.4)

We now follow the steps of the previous sections to derive the foliation condition. We consider
an arbitrary foliation representative u on the poloidal plane, and assume without loss of generality
that ψ is a function of u. We define the length of the gradient ` as well as the unit normal and
tangent vectors,

` =
√
∇au∇au, na = ∇au/`, ma = εabP nb. (4.5)

For the tangent vector T a, one may choose any normalization, which we fix as

T a = `
√
gPma. (4.6)

This choice ensures that T = uz ∂ρ−uρ ∂z, in agreement with the simple form (2.11) that the vector
field took in flat spacetime. The foliation condition once again takes the determinant form (2.14)
(or LTA = LTB = 0), but with A and B now given by

A = α2ρ2 |η|2 `
[
κn + Ln log

∣∣∣αρ |η|2 `∣∣∣]+ ρ2`2Ω′(u) [Ω(u)− ΩZ ] , (4.7)

B = α2ρ2 |η|2 `2, (4.8)

where κn = ∇ana is the extrinsic curvature of the foliation. The flux and current can be recon-
structed in the same way as before, using the formulae in Sec. 2.2.

We have used the foliation condition to rederive two known solutions, corresponding to foliations
u = cos θ and u = r in the Kerr metric in Boyer-Lindquist coordinates. Unfortunately, we did not
find any new solutions in the Kerr metric. The perfectly radial foliation u = cos θ was found in
Ref. [45] and satisfies the foliation condition in Kerr provided that we define

Ω(u) =
1

a (1− u2)
. (4.9)

The orthogonal, or dual, perfectly circular foliation u = r was found in Ref. [46]. It satisfies the
foliation condition provided that we define

Ω(u) =
a

u2 + a2
. (4.10)

However, this foliation is not tangent to the z axis and hence, the associated solution is singular.
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5 Geometric formulation

We have emphasized that meaningful equations on foliations must transform covariantly under
u → f(u). The form (2.14) does not make covariance manifest, since none of the building blocks
(2.23) are individually covariant. This is akin to expressing the Einstein field equations in terms
of partial derivatives rather than (spacetime-)covariant derivatives, after which covariance of the
entire equation would be seen only after many miraculous cancellations. It is clearly preferable to
have manifestly covariant expressions, which requires expressing all quantities in terms of geometric
invariants of the foliation.

The fundamental building blocks of this geometric formulation are the extrinsic curvatures of
the foliation of unit normal na and of the orthogonal foliation of unit normal ma,

κn = ∇ana = gab∇anb = mamb∇anb, (5.1)

κm = ∇ama = εab∇anb = −namb∇anb. (5.2)

All nongeometric quantities (such as `) need to be replaced by objects that are invariant under
u→ f(u). In order to describe all quantities of interest, it is convenient to introduce the additional
invariants

∆n = Ln log
∣∣∣αρ |η|2∣∣∣+ κn, ∆m = Lm log

∣∣∣α2ρ2 |η|2
∣∣∣− κm, αm = Lm log

∣∣∣α2 |η|2
∣∣∣ . (5.3)

All factors of α, ρ and |η|2 can be expressed in terms of these invariants. Finally, ΩZ is another
independent invariant. In Appendix B, we reformulate the foliation condition (2.14) in terms of
invariants, leading to

det

[
X +XΩ ∆m − κm(

~Lm + ∆m

)
X +

(
~Lm + κm

)
XΩ Lm (∆m − κm)

]
= 0, (5.4)

where

X =
(
~Lm + κm

)
∆n −

(
~Ln + κn

)
κm = ∇a [∆nm

a − κmna] , (5.5)

XΩ =
`

α2|η|2
Ω′(u) {[Ω(u)− ΩZ ] (∆m − κm − αm)− LmΩZ} . (5.6)

The notation ~Lm emphasizes that the Lie derivative is an operator acting on its argument on the
right. All quantities in Eq. (5.4) are manifestly invariant under reparameterizations of the foliation.

The condition LTB 6= 0 is equivalent to ∆m − κm 6= 0. When Ω′(u) = 0, the condition
LTB = LTA = 0 is equivalent to X = 0 and ∆m−κm = 0. Finally, note that the foliation condition
(5.4) is homogeneous of degree 4 in derivatives along poloidal coordinates. Indeed, the diagonal
entries of the matrix (5.4) are homogeneous of degree 2, the upper right entry is homogeneous of
order 1, and the lower left entry is homogeneous of order 3.
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A The foliation determines the field

Every degenerate, closed two-form Fµν defines a foliation of spacetime into two-dimensional sub-
manifolds spanned by the vectors vµ such that Fµνv

µ = 0 [17, 37, 38]. In particular, a force-free
solution defines a foliation. The converse is not true, but we now show that in the timelike case
(FµνF

µν > 0) of physical interest, if a foliation has an associated force-free solution, then that
solution is unique. The result also holds in the spacelike case, but not for null foliations.

We use the Newman-Penrose formulation [47] and (in this appendix only) work in the signature
(+,−,−,−). The two-form is represented in terms of three complex scalars by

φ0 = Fµν`
µmν , (A.1)

φ1 =
1

2
Fµν (`µnν + m̄µmν) , (A.2)

φ2 = Fµνm̄
µnν , (A.3)

where the null tetrad {`µ, nµ,mµ, m̄µ} satisfies ` · n = 1 and m · m̄ = −1, with all other inner-
products vanishing. (Here, ` and n are real null vectors, while m is a complex null vector.) Given a
timelike foliation, we may erect a Newman-Penrose tetrad by taking ` and n to lie in the foliation.
In particular, F · ` = F · n = 0, so we have

φ0 = φ2 = 0, φ1 =
iB

2
. (A.4)

Here, B =
√
FµνFµν/2 is the magnetic field strength.

With the conditions (A.4), Maxwell’s equations become (see e.g., Ref [48])

(` · ∇ − 2ρ)φ1 = 2πJ`, (A.5)

− (n · ∇+ 2µ)φ1 = 2πJn, (A.6)

(m · ∇ − 2τ)φ1 = 2πJm, (A.7)

− (m̄ · ∇+ 2π)φ1 = 2πJm̄. (A.8)

The scalars ρ, µ, τ, π on the left-hand sides are spin coefficients that characterize derivatives of the
tetrad vectors [47]. (The π’s on the right-hand sides are just the usual number 3.14 . . . ) We also
introduce the projection of J onto the null tetrad, e.g., J` = J · `. The current is reconstructed by
J = J`n+ Jn`− Jmm̄− Jm̄m.

Since ` and n span a surface, we have τ̄ = −π by Proposition (4.14.3) of Ref. [49], making the
last two equations equivalent. The condition F · J = 0 becomes Jm = Jm̄ = 0, and the force-free
equations are

(` · ∇ − 2Re[ρ])B = 0, (A.9a)

(n · ∇+ 2Re[µ])B = 0, (A.9b)

(m · ∇ − 2τ)B = 0. (A.9c)

13



The remaining two equations, 2πJl = Im[ρ]B and 2πJn = −Im[µ]B serve to compute the current
once B is found. Equations (A.9) are four transport equations for the single scalar B, which
uniquely determine the solution if it exists.

For most foliations, no consistent solution of Eqs. (A.9) will exist. Determining the integrability
conditions in terms of geometric properties of the foliation would constitute the general foliation
formulation of force-free electrodynamics. While integrability conditions for Eqs. (A.9) can be
determined by working out the commutators of the relevant differential operators, the result is a
complicated expression that depends on arbitrary choices in erecting the tetrad in addition to the
geometric properties of the foliation. It would be desirable to eliminate (or at least understand)
this gauge-arbitrariness to produce what could be called the foliation formulation of force-free
electrodynamics.

B Detailed derivations

In this appendix, we present the derivation of the geometric form of the foliation condition, Eq. (5.4).
All calculations are done using the poloidal metric and volume element, as indicated by the con-
tinued use of Latin indices.

B.1 Preliminaries

Recall from Eq. (4.6) that we defined T a = `
√
gPma. This implies that

LTφ = `
√
gPLmφ. (B.1)

The definition of ma in Eq. (4.5) can be inverted to give the useful relation

na = −εabP mb. (B.2)

It then follows that

κm = ∇ama = ∇a
(
εabP nb

)
= ∇a

(
εabP
∇bu
`

)
= εabP ∇a

(
1

`

)
∇bu+

1

`
εabP ∇a∇bu,

where in the last step, we used the compatibility of the Levi-Civita tensor εP . Since the Riemann
tensor always vanishes in two dimensions, ∇a∇bu is symmetric. Hence, its contraction εabP ∇a∇bu
with the antisymmetric symbol vanishes, leaving

κm = εab∇a
(

1

`

)
∇bu = − 1

`2
εab∇a`∇bu = −1

`

(
εab
∇bu
`

)
∇a` = −1

`
ma∇a` = −1

`
Lm`.

As such, we have established that

Lm log ` = −κm. (B.3)

For future reference, note also that

nb∇anb =
1

2
∇a
(
nbnb

)
=

1

2
∇a1 = 0. (B.4)
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Next, we define the acceleration of the foliation,

αa = nb∇bna, (B.5)

which obeys naα
a = 0, and therefore, αa ∝ ma. As such, there exists some proportionality constant

λ such that αa = λma. From the unit normalization of ma, we see that maαa = λmama = λ. Hence,

λ = maαa = manb∇bna =
(
manb − namb

)
∇bna =

(
gacgbd − gadgbc

)
mcnd∇bna,

where in the penultimate step we used Eq. (B.4) to see that namb∇bna = 0. Invoking the geometric
identity gacgbd − gadgbc = εabεcd, we find that

λ = εabP ε
cd
P mcnd∇bna = mc

(
εcdP nd

)
∇b
(
εabP na

)
= mcm

c∇b
(
−mb

)
= −∇bmb = −κm.

As such, the acceleration of the foliation is related to its normalized tangent by

αa = −κmma. (B.6)

The extrinsic curvature is defined as

Kab = ∇anb − naαb. (B.7)

Note that

naKab = na∇anb − nanaαb = αb − αb = 0, (B.8)

nbKab = nb∇anb − nbnaαb = 0− nbna (−κmmb) = 0, (B.9)

where in the second line, we used Eq. (B.4) together with the orthogonality condition nbmb = 0.
Since the projections of Kab along na all vanish, it results that we must necessarily have

Kab = τmamb (B.10)

for some proportionality constant τ , which may be determined from the unit normalization of ma:

τ = τ (mama)
(
mbmb

)
= mambKab = mamb (∇anb − naαb)

= mamb (∇anb + κmnamb) = mamb∇anb [by Eq. (B.6)]

= mamb∇anb + nanb∇anb =
(
mamb + nanb

)
∇anb [by Eq. (B.4)]

=
(
maεbcnc − naεbcmc

)
∇anb = (manc − namc)∇a

(
εbcnb

)
= − (manc − namc)∇a

(
εcbn

b
)

= − (manc − namc)∇amc

= −mbnd

(
gabgcd − gadgbc

)
∇amc = −mbndε

acεbd∇amc

= −mb

(
εbdnd

)
∇a (εacmc) = −mbm

b∇a (−na)

= ∇ana = κn.

In conclusion,

Kab = κnmamb. (B.11)
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We can now compute the commutator [m,n]a:

[m,n]a = mb∇bna − nb∇bma = εbcnc∇bna − nb∇b (εacnc)

= εbcnc (Kb
a + nbα

a)− εacαc = εbcn
cKba + εbcncnbα

a − εac (κmmc)

= mbK
ba + 0− κm (εacmc) = mb

(
κnm

bma
)
− κmna

= κnm
a − κmna.

Knowing this, we can now show that

LmLn log ` = [Lm,Ln] log `+ LnLm log ` = L[m,n] log `− Lnκm [by Eq. (B.3)]

= (κnLm log `− κmLn log `)− Lnκm = κn (−κm)− κmLn log `− Lnκm

= −
(
~Ln + κn + Ln log `

)
κm,

where the arrow on top of Ln indicates that it acts as a differential operator on any term outside
the parentheses. By acting with this operator again, we obtain the identity

L2
mLn log ` = Lm (LmLn log `) = − ~Lm

(
~Ln + κn + Ln log `

)
κm

= − ~Lm
(
~Ln + κn

)
κm − (LmLn log `)κm − (Lmκm)Ln log `.

In summary, we have obtained the following useful relations:

LTφ = `
√
gPLmφ, (B.12)

κn = ∇ana = gab∇anb = mamb∇anb, (B.13)

κm = ∇ama = εab∇anb = −namb∇anb, (B.14)

αa = nb∇bna = −κmma, (B.15)

Kab = ∇anb − naαb = κnmamb, (B.16)

[m,n]a = κnm
a − κmna, (B.17)

Lm log ` = −κm, (B.18)

LmLn log ` = −
(
~Ln + κn + Ln log `

)
κm, (B.19)

L2
mLn log ` = − ~Lm

(
~Ln + κn

)
κm − (LmLn log `)κm − (Lmκm)Ln log `. (B.20)

B.2 Derivation of the geometric formulation

We can now recast the terms entering the foliation condition (2.14) in terms of the geometric
invariants introduced in Eq. (5.3). First, recall from Eqs. (4.7)–(4.8) that

A = −gT |η|2 `
(
κn + Ln log

∣∣∣√−gT |η|2 `∣∣∣)+AΩ, (B.21)

AΩ = −g
T `2

α2
Ω′(u) [Ω(u)− ΩZ ] , (B.22)

B = −gT |η|2 `2, (B.23)
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where gT = −α2ρ2 is the determinant of the toroidal metric. We will assume for the moment that
Ω(u) is a constant, in which case AΩ = 0, and we can thus omit this term. Then, we see that

LTB = `
√
gPLmB = `

√
gPLm

(
−gT |η|2 `2

)
= `
√
gP
(
−gT |η|2 `2

)
Lm log

∣∣∣−gT |η|2 `2∣∣∣
= `B

√
gP
[
Lm log

∣∣∣−gT |η|2∣∣∣+ Lm log `2
]

= `B
√
gP (∆m + κm + 2Lm log `)

= `B
√
gP (∆m − κm) .

Proceeding in the same vein, we find that

L2
TB = LT (LTB) = `

√
gPLm

[
`B
√
gP (∆m − κm)

]
= `
√
gP
[
Lm (`)B

√
gP (∆m − κm) + `Lm (B)

√
gP (∆m − κm)

+ `BLm
(√

gP
)

(∆m − κm) + `B
√
gPLm (∆m − κm)

]
= `
√
gP
[

(−`κm)B
√
gP (∆m − κm) + (LTB) (∆m − κm)

+ `B
√
gPLm

(
log
√
gP
)

(∆m − κm) + `B
√
gPLm (∆m − κm)

]
.

After substituting the previous formula for LTB, this simplifies to

L2
TB = `2BgP

[
−κm (∆m − κm) + (∆m − κm)2 + Lm log

√
gP (∆m − κm) + Lm (∆m − κm)

]
= `2BgP

(
~Lm + ∆m − 2κm + Lm log

√
gP
)

(∆m − κm) .

Next, note that A may be rewritten as

A =
B

`
(∆n + Ln log `) . (B.24)

Hence,

LTA = `
√
gPLmA = `

√
gPLm

[
B

`
(∆n + Ln log `)

]
= B

√
gPLm (∆n + Ln log `) + (∆n + Ln log `) `

√
gPLm

(
B

`

)
.

Since

`
√
gPLm

(
B

`

)
=
√
gPLmB + `

√
gPBLm

(
1

`

)
=

1

`
LTB −

1

`

√
gPBLm`

= B
√
gP (∆m − κm)− 1

`

√
gPB (−`κm) = B

√
gP∆m,

it immediately follows that

LTA = B
√
gP
(
~Lm + ∆m

)
(∆n + Ln log `) . (B.25)

Finally, we can compute

L2
TA = LT (LTA) = `

√
gPLm

[
B
√
gP
LTA
B
√
gP

]

= `
√
gP

[
Lm (B)

√
gP
LTA
B
√
gP

+BLm
(√

gP
) LTA
B
√
gP

+B
√
gPLm

(
LTA
B
√
gP

)]
.
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Since

LmB =
1

`
√
gP
LTB =

1

`
√
gP

[
`B
√
gP (∆m − κm)

]
= B (∆m − κm) ,

we can factorize the previous expression as

L2
TA = `BgP

[
(∆m − κm)

LTA
B
√
gP

+ Lm
(

log
√
gP
) LTA
B
√
gP

+ Lm

(
LTA
B
√
gP

)]

= `BgP
(
~Lm + ∆m − κm + Lm log

√
gP
)( LTA

B
√
gP

)
.

In summary, we have shown that

LTA = B
√
gP
(
~Lm + ∆m

)
(∆n + Ln log `) , (B.26)

LTB = `B
√
gP (∆m − κm) , (B.27)

L2
TA = `BgP

(
~Lm + ∆m − κm + Lm log

√
gP
)( LTA

B
√
gP

)
, (B.28)

L2
TB = `2BgP

(
~Lm + ∆m − 2κm + Lm log

√
gP
)

(∆m − κm) . (B.29)

Next, recall that the foliation condition (2.14) can be written as detM = 0, where the matrix M is

M =

[
LTA LTB
L2
TA L2

TB

]
. (B.30)

We are thus free to replace the foliation condition by a new equation

det M̃ = 0, (B.31)

where M̃ can be taken to be any matrix whose determinant is proportional to that of M ,

detM = σ det M̃, σ 6= 0. (B.32)

The simplest choice we could find is

M̃ =

[
X Y(

~Lm + ∆m

)
X LmY

]
, (B.33)

where

X =
(
~Lm + κm

)
∆n −

(
~Ln + κn

)
κm = ∇a [∆nm

a − κmna] , (B.34)

Y = ∆m − κm, (B.35)

σ = `2B2
(
gP
)3/2

. (B.36)
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B.3 Derivation of the determinant form

To obtain M̃ starting from M , we apply a sequence of transformations that leave the determinant
unchanged. First, following Eq. (B.32), we note that we can strip from detM an overall factor of

σ = `2B2
(
gP
)3/2

[hence, Eq. (B.36)], leaving the nontrivial part

M̄ =

[
M̄11 ∆m − κm(

~Lm + ∆m − κm + Lm log
√
gP
)
M̄11

(
~Lm + ∆m − 2κm + Lm log

√
gP
)

(∆m − κm)

]
,

where the matrix entry M̄11 =
(
~Lm + ∆m

)
(∆n + Ln log `). In terms of Y = ∆m − κm, this is just

M̄ =

[
M̄11 Y(

~Lm + ∆m − κm + Lm log
√
gP
)
M̄11

(
~Lm + ∆m − 2κm + Lm log

√
gP
)
Y

]
.

Next, we define a new matrix ¯̄M by multiplying M̄ with a matrix O of unit determinant,

¯̄M = OM̄, O =

[
1 0

κm −∆m − Lm log
√
gP 1

]
,

so that det ¯̄M = det M̄ = σ−1 detM still encodes the foliation condition. The result is

¯̄M =

[
M̄11 Y
¯̄M21

¯̄M22

]
,

where the new matrix entries are

¯̄M21 =
(
κm −∆m − Lm log

√
gP
)
M̄11 +

(
~Lm + ∆m − κm + Lm log

√
gP
)
M̄11

= LmM̄11 = ~Lm
(
~Lm + ∆m

)
(∆n + Ln log `) ,

¯̄M22 =
(
κm −∆m − Lm log

√
gP
)
Y +

(
+ ~Lm∆m − 2κm + Lm log

√
gP
)
Y

=
(
~Lm − κm

)
Y =

(
~Lm − κm

)
(∆m − κm) .

Thus, we can simplify ¯̄M to

¯̄M =

[
M̄11 Y

LmM̄11

(
~Lm − κm

)
Y

]
.

Note that at this point, the foliation condition in the form of the determinant of ¯̄M is manifestly
independent of the poloidal metric gP , as it should be (because only the foliation should matter).
In order to proceed, we must now expand

M̄11 =
(
~Lm + ∆m

)
(∆n + Ln log `) =

(
~Lm + ∆m

)
∆n + ∆mLn log `+ LmLn log `.

The last term, LmLn log `, can be simplified using Eq. (B.19), leading to

M̄11 =
(
~Lm + ∆m

)
∆n −

(
~Ln + κn

)
κm + (∆m − κm)Ln log `

= X + Y∆n + Y Ln log `,
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where in the last step we used the definitions (B.34)–(B.35) of X and Y . It now results that

¯̄M =

[
X + Y (∆n + Ln log `) Y

Lm [X + Y (∆n + Ln log `)]
(
~Lm − κm

)
Y

]
,

which has determinant

det ¯̄M = [X + Y (∆n + Ln log `)]
(
~Lm − κm

)
Y − Y Lm [X + Y (∆n + Ln log `)]

= XLmY − Y LmX −XY κm + Y (∆n + Ln log `)
(
~Lm − κm

)
Y − Y Lm [Y (∆n + Ln log `)]

= XLmY − Y LmX −XY κm + Y∆nLmY − Y∆nκmY + Y Ln log `
(
~Lm − κm

)
Y

− Y (∆n + Ln log `)LmY − Y 2Lm (∆n + Ln log `)

= XLmY − Y LmX −XY κm − Y∆nκmY + Y Ln log ` (−κm)Y − Y 2Lm (∆n + Ln log `)

= XLmY − Y LmX −XY κm + Y 2 [−κm (∆n + Ln log `)− Lm (∆n + Ln log `)] .

Now observe that

XY κm = XY (∆m + κm −∆m) = XY∆m −XY 2, (B.37)

and hence, that

det ¯̄M = XLmY − Y LmX −XY∆m + Y 2 [X − κm (∆n + Ln log `)− Lm (∆n + Ln log `)] .

The term in brackets vanishes:

X − κm (∆n + Ln log `)− Lm (∆n + Ln log `)

= X − κm (∆n + Ln log `)− Lm∆n − LmLn log `

= X − κm (∆n + Ln log `)− Lm∆n +
(
~Ln + κn + Ln log `

)
κm

= X −
[(
~Lm + κm

)
∆n −

(
~Ln + κn

)
κm

]
= 0.

In conclusion, we have found that

det ¯̄M = XLmY − Y LmX −XY∆m.

By Eq. (B.32), this proves the claim (B.33) that

det M̃ = XLmY − Y LmX −XY∆m = det ¯̄M = det M̄ = σ−1 detM

still encodes the foliation condition.

B.4 The case of nonconstant field line angular velocity

So far, we have assumed that Ω(u) is a constant, which made AΩ vanish. We now generalize to the
case of Ω(u) nonconstant, and consequently reintroduce AΩ. The foliation condition detM = 0 is
then modified to

det (M +MΩ) = detM + detMΩ = 0, (B.38)
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where

MΩ =

[
LTAΩ LTB
L2
TAΩ L2

TB

]
. (B.39)

Recalling the definition (B.22) of AΩ and the fact that Lmf(u) = 0 for any function f , we see that

LTAΩ = `
√
gPLmAΩ = `

√
gPLm

(
−g

T `2

α2
Ω′(u) [Ω(u)− ΩZ ]

)
= `
√
gPLm

(
−g

T `2

α2

)
Ω′(u) [Ω(u)− ΩZ ]− `

√
gP
(
−g

T `2

α2

)
Ω′(u)LmΩZ

=
`3gT

√
gP

α2
Ω′(u)

(
− [Ω(u)− ΩZ ]Lm log

∣∣∣∣−gT `2α2

∣∣∣∣+ LmΩZ

)
.

Using the invariants the defined in Eq. (5.3), note that

Lm log

∣∣∣∣−gT `2α2

∣∣∣∣ = Lm log

∣∣∣∣∣−gT |η|2 `2α2 |η|2

∣∣∣∣∣ = Lm log
∣∣∣−gT |η|2∣∣∣− Lm log

∣∣∣α2 |η|2
∣∣∣+ 2Lm log `

= ∆m + κm − Lm log
∣∣∣α2 |η|2

∣∣∣− 2κm = ∆m − κm − αm.

Hence,

LTAΩ =
`3gT

√
gP

α2
Ω′(u) {− [Ω(u)− ΩZ ] (∆m − κm − αm) + LmΩZ} . (B.40)

We now define

XΩ =
`

α2 |η|2
Ω′(u) {[Ω(u)− ΩZ ] (∆m − κm − αm)− LmΩZ} . (B.41)

This quantity is invariant under changes of the foliation. The overall prefactor in XΩ is chosen for
later convenience. In terms of this new quantity, we have

LTAΩ = −`2gT
√
gP |η|2XΩ, (B.42)

and thus,

L2
TAΩ = LT (LTAΩ) = `

√
gPLm (LTAΩ) = −`

√
gPLm

(
`2gT

√
gP |η|2XΩ

)
= −`3gT gP |η|2

[
Lm log

∣∣∣`2gT√gP |η|2∣∣∣XΩ + LmXΩ

]
.

As before, we can expand

Lm log
∣∣∣`2gT√gP |η|2∣∣∣ = 2Lm log `+ Lm log

∣∣∣gT |η|2∣∣∣+ Lm log
√
gP

= −2κm + ∆m + κm + Lm log
√
gP = ∆m − κm + Lm log

√
gP ,

from which it follows that

L2
TAΩ = −`3gT gP |η|2

[(
∆m − κm + Lm log

√
gP
)
XΩ + LmXΩ

]
. (B.43)
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In summary, we have established that

LTAΩ = −`2gT
√
gP |η|2XΩ, (B.44)

LTB = `B
√
gP (∆m − κm) , (B.45)

L2
TAΩ = −`3gT gP |η|2 [(Σm + κm)XΩ + LmXΩ] , (B.46)

L2
TB = `2BgP

(
Σm + ~Lm

)
(∆m − κm) , (B.47)

Σm = ∆m − 2κm + Lm log
√
gP . (B.48)

Once again following Eq. (B.32), we note that we can strip from detMΩ an overall factor of

σ = −`4BgT
(
gP
)3/2 |η|2 = `2B2

(
gP
)3/2

[in agreement with the σ defined in Eq. (B.36)], leaving
the nontrivial part

M̄Ω =

[
XΩ Y

(Σm + κm)XΩ + LmXΩ

(
Σm + ~Lm

)
Y

]
,

where Y = ∆m − κm as usual. The matrix M̄Ω has determinant

det M̄Ω = σ−1 detMΩ = XΩ

(
Σm + ~Lm

)
Y − Y (Σm + κm)XΩ − Y LmXΩ

= XΩLmY − Y ( ~Lm + κm)XΩ = det M̃Ω,

where in the last step, we defined the final matrix

M̃Ω =

[
XΩ Y(

~Lm + κm

)
XΩ LmY

]
. (B.49)

Finally, since the sum of the determinants of both matrices (B.33) and (B.49) equals the original
determinant det (M +MΩ) up to the overall common scaling factor σ, one can rewrite the complete
geometric foliation condition as Eq. (5.4). This completes our derivation.
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