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Abstract

We elaborate upon the model of baryogenesis from decaying magnetic helicity by focusing

on the evolution of the baryon number and magnetic field through the Standard Model elec-

troweak crossover. The baryon asymmetry is determined by a competition between the helical

hypermagnetic field, which sources baryon number, and the electroweak sphaleron, which tends

to wash out baryon number. At the electroweak crossover both of these processes become inac-

tive: the hypermagnetic field is converted into an electromagnetic field, which does not source

baryon number, and the weak gauge boson masses grow, suppressing the electroweak sphaleron

reaction. An accurate prediction of the relic baryon asymmetry requires a careful treatment

of the crossover. We extend our previous study [Kamada & Long (2016)] taking into account

the gradual conversion of the hypermagnetic into the electromagnetic field. If the conversion

is not completed by the time of sphaleron freeze out, as both analytic and numerical studies

suggest, the relic baryon asymmetry is enhanced compared to previous calculations. The ob-

served baryon asymmetry of the Universe can be obtained for a primordial magnetic field that

has present day field strength and coherence length of B0 ∼ 10−17 G and λ0 ∼ 10−3 pc and a

positive helicity. For larger B0 the baryon asymmetry is over-produced, which may be in conflict

with blazar observations that provide evidence for an intergalactic magnetic field of strength

B0 & 10−14∼16 G.

∗kohei.kamada@asu.edu
†andrewjlong@kicp.uchicago.edu

1



1 Introduction

The origin of the matter / antimatter asymmetry of the Universe (or baryon asymmetry of the

Universe, BAU) remains a long-standing problem at the interface of cosmology and high energy

physics. In order to generate a baryon asymmetry from an initially matter / antimatter symmetric

universe, it is necessary for the system to contain processes that violate baryon-number [1]. Such

processes are already present in the Standard Model (SM) due to field theoretic quantum anomalies

[2–4]. These anomalous processes involve either the SU(2)L weak isospin gauge fields or the U(1)Y

hypercharge gauge field. Whereas SM baryon-number violation via the SU(2)L gauge field features

prominently in many models of baryogenesis, such as electroweak baryogenesis and leptogenesis,

we are interested in SM baryon-number violation via the U(1)Y gauge field.

In the symmetric phase of the electroweak (EW) plasma (T & 160 GeV in the SM [5]) the

anomaly expresses the fact that changes in baryon number (QB) and lepton number (QL) can be

induced by changes in SU(2)L Chern-Simons number (Ncs) or U(1)Y hypermagnetic helicity (HY )

as

∆QB = ∆QL = Ng∆Ncs −Ng
g′2

16π2
∆HY . (1.1)

The factor of Ng = 3 is the number of fermion generations and g′ is the U(1)Y gauge coupling.

Thermal fluctuations of the SU(2)L gauge fields (EW sphalerons [6]) allow Ncs to diffuse, which

pushes QB and QL to zero (assuming a vanishing B−L asymmetry). The system may also contain

a helical hypermagnetic field, i.e. a primordial magnetic field (PMF) in the symmetric phase of the

EW plasma associated with U(1)Y hypercharge that has excess power in either the left- or right-

circular polarization mode. A helical PMF can arise, for example, from axion dynamics during

inflation [7–14] (see also Refs. [15, 16]). Due to interactions of the hypermagnetic field with the

charged plasma, the hypermagnetic helicity slowly decays. If HY > 0 initially, then ∆HY < 0

implies the generation of a baryon asymmetry ∆QB > 0. In this way, the BAU may have arisen

from a helical hypermagnetic field in the early universe.

Various studies have explored the relationship between baryon-number violation and magnetic

fields in the early universe. Among the earliest works, Joyce & Shaposhnikov (1997) [17] showed that

a helical hypermagnetic field can arise in the symmetric phase of the EW plasma from a pre-existing

lepton asymmetry carried by the right-chiral electron [18] (see also Refs. [19, 20]). This work was

soon extended by Giovannini & Shaposhnikov (1997-99) [21–24] to consider the generation of baryon

number isocurvature fluctuations from a pre-existing stochastic hypermagnetic field. These ideas

were formulated into a model of baryogenesis by Bamba (2006) [25] where the dynamics of an axion

field during inflation leads to the growth of a helical hypermagnetic field with a large correlation

length, which is partially converted into baryon number by the SM anomalies at the electroweak

phase transition (see also Refs. [26, 27]). Other related work has explored the connection between

helical magnetic fields in the early universe and the anomalous violation of chiral charge [28–32]

and lepton number [33–43].
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Models of baryogenesis from magnetogenesis are interesting in part because the primordial

magnetic field is expected to persist today as an intergalactic magnetic field (IGMF). Although the

existence and origin of the IGMF have not yet been established, the body of evidence is growing.

(See Refs. [44, 45] for recent reviews on cosmological magnetic fields.) Recent measurements of TeV

blazar spectra have identified a deficit of secondary cascade photons. These observations can be

explained to result from a magnetic broadening of the cascade by the IGMF [46–52], which thereby

provides indirect evidence for the existence of a PMF with a field strength and coherence length

today of B0 & 10−14∼16 G and λ0 & 10−2 ∼ 1 pc. Similarly, searches for GeV pair haloes around

TeV blazars have also reported evidence for an IGMF [53, 54] (see also [55, 56]). Additionally,

measurements of the diffuse gamma ray flux at Earth suggest a parity-violating character in gamma

ray arrival directions, which can be interpreted as evidence for the presence of a helical IGMF [57–

60].

Motivated in part by these new probes of the IGMF, Fujita & Kamada (2016) [61] recently

revisited baryogenesis from hypermagnetic helicity. By drawing on the results of recent magneto-

hydrodynamic simulations, they used an improved model for the evolution of the magnetic field

(inverse cascade behavior) to calculate the slowly decaying magnetic helicity and corresponding

production of baryon number. Their calculation indicates that a maximally helical magnetic field

stronger than B0 ∼ 10−12 G today would generate a much larger baryon-number than what is

observed. Since this baryogenesis is an inevitable consequence of SM physics once the helical

hypermagnetic field is provided, there is a mild conflict between the observed BAU and blazar

observations, which favor B0 & 10−14∼16 G.

However, none of these studies directly address the conversion of the hypermagnetic field

into an electromagnetic field at the EW crossover and the corresponding effect on the relic baryon

asymmetry. Since the electromagnetic field has vector-like interactions, it does not contribute to the

baryon-number anomaly. Therefore, if the conversion completes before the EW sphalerons freeze

out, the sphalerons threaten to erase the baryon asymmetry. In the early works of Giovannini and

Shaposhnikov, Bamba, et. al. [21–26] it was argued that the EW phase transition must be first

order so that the EW sphaleron process is out of equilibrium in the broken phase and washout

of baryon number is avoided. The assumption is implicit in later work [27, 61] where baryon-

number violation due to both the EW sphaleron and the hypermagnetic field are assumed to shut

off simultaneously at EW temperatures.

Kamada & Long (2016) [62] recently demonstrated that a complete washout of baryon number

is avoided even if there is no B − L asymmetry and the EW phase transition is a continuous

crossover as we expect in the SM. Although the EW sphaleron remains in thermal equilibrium

until T ' 130 GeV [63] after the hypermagnetic field has been converted to an electromagnetic

field, and therefore no longer sources baryon-number, washout is avoided because the EM field

sources chirality and inhibits the communication of baryon-number violation from the left-chiral

to right-chiral fermions. To model the conversion of the hypermagnetic field into electromagnetic

field at the EW crossover, Ref. [62] assumed that the transformation occurs abruptly at a fiducial
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temperature of T = 160 GeV where the Higgs condensate first starts to deviate from zero (see also

Ref. [64]). As discussed in Ref. [62], this is a conservative approach: since the electromagnetic field

does not violate baryon number this approximation can under-estimate the relic baryon asymmetry

if the conversion of the hypermagnetic field into the electromagnetic field is gradual.

In this work, we develop a more sophisticated treatment for the conversion of hypermagnetic

field into electromagnetic field at the EW crossover. By drawing on analytic and lattice results

we see that the hypermagnetic field is not fully converted into an electromagnetic field even at

temperatures as low as T = 140 GeV. Therefore, the source term from decaying magnetic helicity

remains active while the washout by EW sphalerons goes out of equilibrium. Consequently, we

show that the relic baryon asymmetry can be greatly enhanced as compared to Ref. [62]. It is

possible to generate the observed BAU from a maximally helical magnetic field that was generated

prior to the EW crossover and has a strength and coherence length today of about B0 ∼ 10−16∼17 G

and λ0 ∼ 10−2∼3 pc. If the magnetic field strength is larger, such as B0 & 10−14∼16 G suggested by

blazar observations, the relic baryon asymmetry is generally over-produced. This presents a new

constraint for models of magnetogenesis that rely on inflation or cosmological phase transitions

prior to the EW epoch.

The rest of the paper is organized as follows. In Sec. 2 we generalize the calculation of

Ref. [62] to allow for a gradual conversion of the hypermagnetic field into an electromagnetic field

at the EW crossover. In Sec. 3 we present an analytic solution of the kinetic equations, which gives

the equilibrium baryon number abundance. In Sec. 4 we solve the kinetic equations numerically

and compare with our analytic formula. We show how the relic baryon asymmetry depends on

the field strength and coherence length today. We see that baryon number is over-produced for

relatively large magnetic field strength, B0 & 10−16 G. In Sec. 5 we discuss ways to avoid the

baryon overproduction while also accommodating the IGMF interpretation of blazar observations.

Finally we conclude in Sec. 6 and point to directions for future work.

2 Derivation of Source Terms

In this section, we generalize our previous calculation in order to model the gradual conversion of

the hypermagnetic field into an electromagnetic field. For definitions and notation, the reader is

referred to Ref. [62].

First let us recall what is the quantity of interest. In the presence of a helical magnetic field,

SM quantum anomalies lead to the appearance of source terms in the kinetic equations for the

various SM particle asymmetries. These source terms appear in the kinetic equation for fermion

species f in the following way [62]:

dηf
dx

= c1,f Sbkgy + c2,f Sbkgw + c3,f Sbkgyw + · · · . (2.1)

Here ηf = nf/s is the particle number asymmetry in species f divided by the entropy density of

the cosmological plasma. We use the dimensionless temporal coordinate x ≡ T/H = M0/T where
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T is the temperature of the cosmological plasma and H = T 2/M0 with M0 ' 7.1 × 1017 GeV is

the Hubble parameter at temperatures where the entire SM particle content is relativistic. The

coefficients of the source terms ci,f depend on the quantum numbers of f ; see Ref. [62]. The

dots (· · · ) represent other interactions in which a fermion of species f participates. These include

Yukawa interactions, EW and strong sphalerons, and weak interactions. The source terms S take

the form [see Eq. (2.44) of Ref. [62]]

Sbkgw =
1

2

( 1

sT

1

16π2

)
g2 〈W a

µν〉〈W̃ aµν〉 (2.2a)

Sbkgy =
( 1

sT

1

16π2

)
g′2 〈Yµν〉〈Ỹ µν〉 (2.2b)

Sbkgyw = 2
( 1

sT

1

16π2

)
gg′ 〈Yµν〉〈W̃ 3µν〉 . (2.2c)

where Yµν and W a
µν are the field strength tensor of U(1)Y hypercharge and SU(2)L isospin, re-

spectively, and g′ and g are their respective coupling parameters. The dual tensor is defined by

F̃µν = εµνρσFρσ/2 with normalization ε0123 = 1. The angled brackets indicate thermal ensemble

averaging, and the bar denotes volume averaging. In this section, we seek to evaluate these three

sources.

Now let us recall how we modeled the gauge fields during the EW crossover in Ref. [62].

We assumed that the system passes abruptly from the symmetric phase to broken phase as the

temperature is lowered through Tco ' 162 GeV in a similar way to Ref. [64]. This numerical value

is taken from lattice studies of the EW crossover [65]. In the symmetric phase (T > Tco) the

non-Abelian SU(2)L gauge field is screened due to its self-interactions [66], and it is well-known

that the corresponding iso-magnetic field vanishes (up to thermal fluctuations). Meanwhile the

U(1)Y sector is assumed to carry a hypermagnetic field BY (x, t) generated by a magnetogenesis

mechanism that occurred before the EW crossover. In the broken phase (T < Tco) the Higgs

condensate induces a mass for charged W±µ (x) and neutral Zµ(x) gauge fields. We argued that

the massive fields decay quickly leaving only the massless electromagnetic field Aµ(x). We defined

the electromagnetic field through the standard electroweak rotation, Aµ = sin θW0W
3
µ + cos θW0 Yµ

where the vacuum weak mixing angle θW0 is expressed in terms of the U(1)Y and SU(2)L and gauge

couplings, g′ and g, respectively, as tan θW0 = g′/g. This relation furnishes the matching condition

BA(x, tco + ε) = cos θW0BY (x, tco − ε), which we used to relate the electromagnetic field just after

the crossover tco ≡ t(T = 162 GeV) to the hypermagnetic field just before the crossover.

The approach described above is not correct in the following sense. During the EW crossover,

the gauge fields acquire mass from both the Higgs condensate and thermal effects in the plasma.

If the thermal effects could be neglected, then we would have four massless fields in the symmetric

phase where the Higgs condensate is zero, and we would have one massless field in the broken

phase. If we define the weak mixing angle as the parameter of the SO(2) matrix that diagonal-

izes the quadratic gauge field terms in the Lagrangian, then this approximation corresponds to

an abrupt change from tan θW = 0 in the symmetric phase to tan θW = g′/g in the broken phase.
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However, this is not the case1. As we have already mentioned above, the non-Abelian gauge fields

W a
µ (x) also acquire mass from their self-interactions in the plasma, which leads to the screening of

iso-magnetic fields. Consequently the mixing angle θW(t) will change slowly with time while inter-

polating smoothly between its symmetric and broken phase limiting values. It continues to deviate

appreciably from its zero-temperature value tan θW0 = g′/g even at relatively low temperatures of

T = 140 GeV. This behavior is confirmed by analytic calculations [67] and recent numerical lattice

simulations [65]. We will study it quantitatively in Sec. 4.

In light of the preceding discussion, we generalize our treatment of the gauge fields at the

EW crossover as follows. At any time, the spectrum consists of three massive and one massless

gauge field degrees of freedom. In general the massless degree of freedom at time t can be written

as an SO(2) rotation of W 3
µ(x) and Yµ(x) with parameter θW(t). In other words θW(t) is defined as

the rotation angle that projects the massless field degree of freedom onto the U(1)Y field axis. As

before, we assume that the massive fields are screened or decay away quickly compared to the time

scale on which the baryon asymmetry evolves.2 Therefore the field evolution can be modeled by

the Ansatz

〈W 1
µ(x)〉 = 〈W 2

µ(x)〉 = 0 (2.3a)

〈W 3
µ(x)〉 = sin θW(t)Aµ(x) (2.3b)

〈Yµ(x)〉 = cos θW(t)Aµ(x) . (2.3c)

By requiring the three massive field degrees of freedom to vanish and their decay not to affect the

evolution of the massless field degree of freedom, we have reduced the problem to a single degree

of freedom as represented by the classical vector field Aµ(x).

The Ansatz (2.3) is represented graphically in Fig. 1, which illustrates the conversion from

hypermagnetic field to electromagnetic field. Here we denote the magnetic field of a gauge field Y
as BY ≡ ∇×Y. We have drawn the figure so as to suggest that |BA| does not decrease appreciably

during the EW crossover. As we will explain later, this is the case because Aµ evolves slowly

according to the cosmic expansion and the inverse cascade.

Having generalized the gauge field Ansatz from our earlier work, we are now prepared to

revisit the calculation of source terms (2.2). Using the Ansatz in Eq. (2.3), the source terms can

1We are grateful to Mikhail Shaposhnikov for bringing this point to our attention.
2This assumption is confirmed with the following rough estimates. Parametrically, the perturbative Z-boson

decay width at temperature T is given by ΓZ ∼ (g2 + g′2)3/2v(T ) where v(T ) is the vacuum expectation value of the

Higgs field at temperature T . Comparing this decay rate with the Hubble expansion rate during the EW epoch we

have ΓZ/H ∼ 1015(T/100 GeV)−2(v(T )/100 GeV), which supports our assumption that the Z-field decays quickly.

We expect this general conclusion to be unchanged when thermal and non-perturbative effects are considered more

carefully.
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BY Bem

BZ

BW 3

BA

Figure 1: A graphical representation of the conversion from hypermagnetic field BY into elec-

tromagnetic field Bem during the EW crossover. The (blue) parabolas indicate the curvature of

the thermal effective potential. The weak mixing angle θW(t) measures the separation of the flat

direction (massless field degree of freedom) and the U(1)Y axis.

be written as

Sbkgw =
1

2

( 1

sT

1

16π2

)
g2
(

sin2 θW(t)AµνÃµν + 2
dθW

dt
sin 2θW(t)δ0µAνÃµν

)
(2.4a)

Sbkgy =
( 1

sT

1

16π2

)
g′2
(

cos2 θW(t)AµνÃµν − 2
dθW

dt
sin 2θW(t)δ0µAνÃµν

)
(2.4b)

Sbkgyw = 2
( 1

sT

1

16π2

)
gg′
(

sin θW(t) cos θW(t)AµνÃµν + 2
dθW

dt
cos 2θW(t)δ0µAνÃµν

)
(2.4c)

where Aµν is the field strength tensor associated with Aµ(x), and Ãµν = εµνρσAρσ/2 is the dual

tensor. In terms of the 3-vector notation, the two terms in parentheses are

AµνÃµν = −4EA ·BA and δ0µAνÃµν = AA ·BA (2.5)

where EA(x, t) is the electric field with
(
EA
)
i

= A0i, BA(x, t) is the magnetic field with
(
BA
)
i

=

Ã0i, and AA(x, t) is the vector potential with
(
AA
)
i

= Ai. With this replacement, the sources
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become

Sbkgw =
1

2

( 1

sT

1

16π2

)
g2
(
−4 sin2 θW(t)EA ·BA + 2

dθW

dt
sin 2θW(t)AA ·BA

)
(2.6a)

Sbkgy =
( 1

sT

1

16π2

)
g′2
(
−4 cos2 θW(t)EA ·BA − 2

dθW

dt
sin 2θW(t)AA ·BA

)
(2.6b)

Sbkgyw = 2
( 1

sT

1

16π2

)
gg′
(
−4 sin θW(t) cos θW(t)EA ·BA + 2

dθW

dt
cos 2θW(t)AA ·BA

)
. (2.6c)

The second term in parentheses is new, since we are now allowing dθW/dt 6= 0. Recall that AA ·BA
is the helicity of the gauge field Aµ(x). Under a gauge transformation we send AA → AA −∇χ

and since ∇ ·BA = 0 the helicity density AA ·BA transforms into itself up to a total 3-divergence.

The volume averaged helicity AA ·BA is gauge-invariant provided that the surface term vanishes;

for example, see Ref. [68].

To evaluate the electric field EA, we recognize that the electric current JA is given by

JA = σA
(
EA + v ×BA

)
+ JCME,A . (2.7)

The first term is simply Ohm’s law with σA the conductivity. The second term is the chiral magnetic

effect (CME) current, which we evaluate below. The current JA also appears in the equation of

motion3 for the field Aµ(x),

∇×BA = JA + ĖA . (2.8)

Combining these two formulas, we can show that

EA =
1

σA
∇×BA −

1

σA
JCME,A − v ×BA (2.9)

where we have neglected the displacement current ĖA. This is justified in the MHD approximation

[68] where |ĖA|/|∇ ×BA| ∼ v/c � 1. The term involving fluid velocity v does not contribute to

the source term (2.6) since BA · v ×BA = 0.

The chiral magnetic effect is the phenomenon whereby a magnetic field induces an electric

current in a medium with a charge-weighted chiral asymmetry [69]. By adapting the standard result

for quantum electrodynamics [70] to our problem, the induced electric current can be written as

JCME,A =
g2A
2π2

µ5,ABA (2.10)

3 Here we gloss over some subtleties related to gauge invariance. In general the transformation (2.3) should be

generalized to include the orthogonal field direction Zµ(x). Due to the time-dependent linear transformation, the

field equations for A and Z acquire “mass terms” of the form (dθW/dt)
2AA and (dθW/dt)

2AZ . Nevertheless, one

can verify explicitly that the field equations are gauge invariant. This is because the field strength tensors are no

longer invariant under the gauge transformation when (dθW/dt) 6= 0. Despite these subtleties, we have checked that

the source terms appearing in Eq. (2.6) are gauge invariant. In writing Eq. (2.8) we have dropped the mass term

(dθW/dt)
2AA from the right hand side. It is numerically negligible since dθW/dt ∼ HdθW/d lnx and the coherence

length of the field λ is much smaller than the Hubble scale H−1.
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where gA(t) ≡ g′ cos θW (t) is the effective gauge coupling for Aµ and µ5,A is the charge-weighted

chiral chemical potential. The corresponding charge-weighted chiral charge abundance is given by

η5,A = µ5,AT
2/6s. The chiral charge abundance is constructed from the abundances for the various

SM particle species as

η5,A =
∑
i

[
−q2uLAηuiL − q

2
dLAηdiL

− q2νLAηνiL − q
2
eLAηeiL

+ q2uRAηuiR
+ q2dRAηdiR

+ q2eRAηeiR

]
(2.11)

where the sum runs over the three fermion families. The effective charges can be read off of the

Lagrangian upon using the Ansatz in Eq. (2.3). These charges are found to be

quLA(t) = yQ +
1

2

tan θW(t)

tan θW0
(2.12a)

qdLA(t) = yQ −
1

2

tan θW(t)

tan θW0
(2.12b)

qνLA(t) = yL +
1

2

tan θW(t)

tan θW0
(2.12c)

qeLA(t) = yL −
1

2

tan θW(t)

tan θW0
(2.12d)

quRA(t) = yuR (2.12e)

qdRA(t) = ydR (2.12f)

qeRA(t) = yeR (2.12g)

where y’s are the corresponding hypercharges.

Finally we put these pieces together. By combining Eqs. (2.9) and (2.10) we evaluate the

electric field. This lets us express the source terms (2.6) as

Sbkgw =
[
−g

2

2
sin2 θW

]
SBdB +

[g2
2

dθW

d lnx
sin 2θW

]
SAB +

[g2g′2
2

sin2 θW cos2 θW

]
γCMEη5,A (2.13a)

Sbkgy =
[
−g′2 cos2 θW

]
SBdB +

[
−g′2 dθW

d lnx
sin 2θW

]
SAB +

[
g′4 cos4 θW

]
γCMEη5,A (2.13b)

Sbkgyw =
[
−2gg′ sin θW cos θW

]
SBdB +

[
2gg′

dθW

d lnx
cos 2θW

]
SAB +

[
2gg′3 sin θW cos3 θW

]
γCMEη5,A .

(2.13c)

where we have used dθW/dt = HdθW/d lnx and defined

SBdB(t) ≡ 1/(4π)

πσAsT
BA ·∇×BA (2.14a)

SAB(t) ≡ H

8π2sT
AA ·BA (2.14b)

γCME(t) ≡ 12

π2
1

(4π)2
BA ·BA
σAT 3

. (2.14c)

Due to the volume averaging, the source terms are independent of the spatial coordinate. They

depend upon the temporal coordinate through the entropy density s, the temperature T , the

conductivity σA, and the volume-averaged field products.
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Equation (2.13) is one of the main results of this paper. It should be compared with

Eqs. (2.53) and (2.60) of our earlier work [62]. To regain Eqs. (2.53) and (2.60) we can take

θW(t) to be a step function and set dθW/d lnx = 0. In the present calculation, we have generalized

to an (as yet) arbitrary θW(t). As such, it is not necessary to treat the symmetric and broken phase

cases separately, as we did in Ref. [62]. Rather, Eq. (2.13) interpolates smoothly between the two

solutions that we found previously. The term proportional to dθW/d lnx was overlooked in previous

studies, and we will see that it can provide an efficient source of baryon number.

3 Analytic Equilibrium Solution

Previous studies [21, 22, 27, 61, 62] have shown that a helical hypermagnetic field in the symmetric

phase of the EW plasma sources baryon number, which thereby competes against the washout of

baryon number by EW sphalerons [71]. Unlike the earlier work, in Sec. 2 we have taken a more

careful treatment for the evolution of the magnetic field through the EW crossover, specifically

allowing for a time-dependent weak mixing angle θW(t). By doing so, we have identified an addi-

tional source term in the kinetic equation for baryon number, namely the (dθW/d lnx)SAB term in

Eq. (2.13). Here we examine the evolution of the baryon asymmetry analytically with an emphasis

on the effect of varying θW.

We derive the kinetic equation for baryon number by combining the the kinetic equations in

Ref. [62] with the sources in Eq. (2.13). Denoting the baryon number-to-entropy ratio as ηB, its

kinetic equation takes the form

dηB
dx

=
3

4

(
g2 + g′2

)[(
cos 2θW − cos 2θW0

)
SBdB + 2

dθW

d lnx
sin 2θWSAB

]
− (washout terms) (3.1)

where θW = θW(t) is the time-dependent weak mixing angle. In the presence of a helical magnetic

field, the terms containing SBdB and SAB (2.14) become nonzero and source baryon number. In

the symmetric phase the weak mixing angle vanishes θW = 0 and SBdB drives the growth of baryon

number. During the EW crossover θW begins to increase, and SAB contributes to the baryon number

growth. After the crossover, θW approaches its vacuum value, tan θW0 = g′/g, and both source terms

become inactive, i.e. their coefficients vanish. As we will see, the coefficient of the new source term

SAB can vanish more slowly than the coefficient of SBdB, and therefore the baryon asymmetry can

be enhanced compared to previous calculations.

The growth of baryon number is inhibited by several washout processes. These include

the chiral magnetic effect, the EW sphaleron, and the electron spin-flip interaction, which comes

into equilibrium below T ' 80 TeV and communicates baryon-number violation to the right-

chiral electron [18]. The equilibrium baryon asymmetry ηB,eq(t) is controlled by the slowest (least

efficient) washout processes. For T & 145 GeV the CME and spin-flip processes are slowest, and

for T . 145 GeV the EW sphaleron is slowest. Thus we calculate the equilibrium baryon number

separately for these two periods below.
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At sufficiently high temperatures, T & 145 GeV, the EW sphaleron efficiently violates baryon

number, and the equilibrium baryon asymmetry is controlled by a combination of the slower chiral

magnetic effect and electron spin-flip interactions. The CME tends to deplete the charge-weighted

chiral charge abundance η5,A (2.11), and the electron spin-flip interactions tend to equilibrate left-

and right-chiral electron abundances. In this way, EW sphalerons violate baryon number among

the left-chiral fermions, and the other washout processes communicate baryon-number violation

to the right-chiral fermions. As in Ref. [62] we calculate the equilibrium baryon asymmetry in

the regime where all of the SM processes are in chemical equilibrium except for the CME and

electron spin-flip interactions.4 We also require the four conserved charges to vanish; these are

(B/3 − Li)-number and electromagnetic charge: ηB/3 − ηLi = ηem = 0. As discussed in Ref. [62],

the baryon asymmetry in equilibrium in this regime can be read off from the kinetic equation for

the first-generation right-chiral electron abundance. Under these assumptions, it is reduced to

dηe1R
dx

= g′2
[
cos2 θW SBdB +

dθW

d lnx
sin 2θW SAB −

37

11
g′2 cos4 θWγ

CMEηB

]
−37

11

(
1

2

(
γ11ehe + γ11νhe

)
+ γ11ee

)
ηB .

(3.2)

The transport coefficients γ11ehe, γ
11
νhe, and γ11ee were defined in Ref. [62]. The equilibrium condition

dηe1R
/dx ≈ 0 give the behavior of the baryon asymmetry in equilibrium,

ηeqB ≈
11

37

g′2
(
cos2 θW SBdB + dθW

d lnx sin 2θW SAB

)
1
2

(
γ11ehe + γ11νhe

)
+ γ11ee + g′4 cos4 θWγCME

. (3.3)

By taking θW = 0 and dθW/d lnx = 0 we regain Eq. (3.10) of Ref. [62]. Notice how the equilibrium

solution takes the form of (source)/(washout), which expresses the balance between these two

competing effects.

At lower temperatures, T . 145 GeV, the EW sphaleron rate becomes exponentially sup-

pressed as the weak gauge boson masses grow, but nevertheless the sphaleron remains in equilibrium

until T ≈ Tsph,fo ' 130 GeV [63]. In this window the EW sphaleron is the slowest washout pro-

cess, and therefore it controls the equilibrium baryon asymmetry. Assuming that all of the SM

processes are in equilibrium except for the EW sphaleron, the kinetic equation for baryon number

(3.1) reduces to

dηB
dx

=
3

4

(
g2 + g′2

)[
2
dθW

d lnx
sin 2θWSAB

]
− 111

34
γw,sphηB (3.4)

where γw,sph is the transport coefficient associated with the EW sphaleron process [62]. Here we

omit the term that includes SBdB since generally it is much smaller than the term with SAB at

4 This approach assumes that spin-flip interactions with the background Higgs condensate are in equilibrium.

At higher temperatures when the Higgs condensate has not yet developed, these interactions do not occur. In this

regime, the baryon asymmetry can be calculated with Eqs. (3.6) and (3.7) in Ref. [62], but those formulas also agree

with Eq. (3.3) below up to an O(1) prefactor. It is known that this treatment during EW crossover gives O(1− 10%)

error in the estimate [72], but here we neglect it.
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this period. The baryon asymmetry is well-approximated by the equilibrium solution of Eq. (3.4).

Solving dηB/dx ≈ 0 gives

ηeqB ≈
17

37

(
g2 + g′2

)
dθW
d lnx sin 2θW SAB

γw,sph
. (3.5)

This contribution to the baryon asymmetry is only present when dθW/d lnx 6= 0, and consequently

it was overlooked in previous studies that did not treat the evolution of the magnetic field through

the EW crossover so carefully.

Let us summarize the results of the preceding calculation. During the temperature win-

dow 80 TeV & T & 130 GeV all of the SM processes are in thermal equilibrium, including the

electron spin-flip interaction and the EW sphaleron. In this regime, the baryon asymmetry is

well-approximated by

ηeqB =
11

37

g′2
(
cos2 θW SBdB + dθW

d lnx sin 2θW SAB

)
1
2

(
γ11Ehe + γ11νhe

)
+ γ11Ee + g′4 cos4 θWγCME

+
17

37

(
g2 + g′2

)
dθW
d lnx sin 2θW SAB

γw,sph
. (3.6)

At lower temperatures T . Tsph,fo ' 130 GeV the EW sphaleron has frozen out, and this calculation

over-estimates the baryon asymmetry. If the source terms are still active when T < Tsph,fo, because

the conversion from hypermagnetic field into electromagnetic field is very slow, then there can be

a further enhancement of the baryon asymmetry. This is obtained by neglecting the washout term

and directly integrating Eq. (3.1) to find

ηB(x) ≈ ηB(xsph,fo) +
3

4

(
g2 + g′2

) ∫ x

xsph,fo

dx′
[
2
dθW

d lnx
sin 2θWSAB

]
, (3.7)

where xsph,fo = x(Tsph,fo) is the time of the EW sphaleron freeze-out. If the magnetic field conversion

is sufficiently gradual, then dθW/d lnx remains nonzero for a long time, and the baryon asymmetry

can be enhanced by as much as O(10− 102), as we will see in the next section.

4 Resultant Baryon Asymmetry Evolution

In this section, we present the quantitative results. We solve the kinetic equations now using

the source terms that were derived in Sec. 2. However, we must first clarify a few additional

assumptions.

Following Ref. [62] we assume that the magnetic field is maximally helical and that its spec-

trum is peaked at the length scale λB(t) where the field strength is Bp(t). This allows us to estimate

the volume-averaged magnetic field products, which appear in Eq. (2.14), as follows

BA ·∇×BA ≈ ±
2π

λB(t)
Bp(t)

2 (4.1a)

AA ·BA ≈ ±
λB(t)

2π
Bp(t)

2 (4.1b)

BA ·BA ≈ Bp(t)2 . (4.1c)
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The ± sign indicates the helicity of the magnetic field. Hereafter we assume that the maximally

helical magnetic field has a positive helicity (i.e. the “+” signs in Eq. (4.1) are used). Flipping the

sign of the helicity simply flips the sign of the resultant baryon asymmetry.

It is well-known that a freely-decaying, maximally-helical magnetic field in a turbulent plasma

experiences the inverse cascade evolution where power is transported from small scales to large

ones [73–75]. As in Ref. [62] we assume that the primordial magnetic field experiences the inverse

cascade from a time well before the EW crossover until recombination, and afterward it evolves

adiabatically (simply diluting with the cosmological expansion). Thus, we can relate the field

strength and coherence length in the early universe, Bp and λB, to their values today, B0 and λ0,

via the scaling laws

Bp =

(
a

a0

)−2( τ

τrec

)−1/3
B0 and λB =

(
a

a0

)(
τ

τrec

)2/3

λ0 (4.2)

where a is the scale factor and τ is conformal time. These formulas apply when τ ≤ τrec with τrec

the conformal time at recombination, and for later times the factors of (τ/τrec) must be removed to

describe the adiabatic evolution of the magnetic field. Implicitly the scaling law assumes that back

reaction from the presence of particle / antiparticle asymmetries in the plasma is negligible, and

we justify this assumption in Appendix A. We also impose the constraint λ0/pc = B0/(10−14 G),

which is expected to hold for causally generated magnetic fields that are processed on small scales

by magnetohydrodynamic (MHD) turbulence [76] (see also the discussion in Ref. [62]).

The time-dependent weak mixing angle θW(t) has been calculated both analytically [67] and

numerically [65]. We give these results in Fig. 2. Evidently, the one-loop perturbative analytic

calculation and the numerical lattice calculation agree only marginally. However, we can infer from

both approaches that the weak mixing angle varies on a scale of ∆T ∼ 10 GeV during the EW

crossover, which takes place at roughly T ∼ 160 GeV. Since the analytic calculation of Ref. [67]

is only a one-loop result, the true behavior of θW(t) may differ when higher-order corrections are

taken into account. Although the numerical lattice calculation is an all-orders calculation that

includes non-perturbative effects, the error bars are still quite large. Since neither the analytic nor

the numerical results for time-dependence of the weak mixing angle appear more reliable, we will

instead introduce a phenomenological parametrization for θW(t). Specifically, we write cos2 θW(t)

as a smoothed step function,

cos2 θW(T ) = cos2 θW0 +
1− cos2 θW0

2

(
1 + tanh

T − Tstep
∆T

)
, (4.3)

which interpolates between cos2 θW0 = g2/(g2 + g′2) ' 0.773 at low temperature and cos2 θW = 1

at high temperature. A few trial functions are also shown in Fig. 2. It is straightforward to obtain

θW in terms of the dimensionless temporal coordinate x = M0/T .

The conductivity of the SM plasma has been calculated in Ref. [77]. In the symmetric phase

at temperature T � 100 GeV they find the hypermagnetic conductivity to be σY ' 55T , and
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Figure 2: The time-dependent weak mixing angle, expressed as cos2 θW(t). Results of numerical

lattice simulations [65] appear as (gray) data points, and results of one-loop perturbative analytic

calculations [67] appear as a (black) dashed line. The other curves correspond to the “smoothed

step” interpolating function from Eq. (4.3), which we use for our analysis.

in the broken phase at temperature T ∼ 100 GeV the electromagnetic conductivity is given by

σem ∼ 109T (see also [62]). The conductivity σA that appears in Eq. (2.7) interpolates between

these two limiting behaviors. However, for simplicity we estimate the conductivity instead as

σA = 100T in both the symmetric and broken phases.

Adopting Eq. (4.3) to model the time-dependence of the weak mixing angle, we solve the

kinetic equations [62] using the source terms in Eq. (2.13). The evolution of the baryon asymmetry

during the EW crossover is shown in Fig. 3 where we compare the numerical solution with the

analytic formula that appears in Eq. (3.6). Evidently, the evolution of ηB depends strongly on

how the weak mixing angle evolves through the EW crossover; this behavior can be understood as

follows.

Let us first consider the pair of (purple) curves which correspond to Parameterization A

(Tstep = 162 GeV,∆T = 1 GeV) in Fig. 2. In this case, the weak mixing angle quickly transitions

between its asymptotic values at Tstep = 162 GeV. The sudden change in θW implies an abrupt

decrease in the helicity of the hypermagnetic field, and a correspondingly large source of baryon

number via the SAB term in Eq. (3.1). As predicted in Ref. [62] the baryon number grows suddenly,

but soon the hypermagnetic field is fully converted into an electromagnetic field, and the EW

sphaleron, which remains in thermal equilibrium until T ≈ Tsph,fo ' 130 GeV, is able to wash

out the injection of baryon number. At temperatures T & 135 GeV, the analytic formula from

Eq. (3.6) (dashed curve) matches the numerical result (solid curve) very well. After EW sphaleron

freeze-out, T . 130 GeV the baryon number is fixed.
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Figure 3: Evolution of the baryon asymmetry ηB during the EW crossover. The temporal coordinate

is x = T/H = M0/T . The four panels correspond to different values of the relic magnetic field

strength B0 and coherence length λ0 today. In each panel, the five pairs of colored curves correspond

to the five parameterizations of θW(t) that appear in Fig. 2. The solid curves are the result of

numerically solving the kinetic equations, and the dashed curves evaluate the formula in Eq. (3.6).

The (gray) dotted curve corresponds to the calculation in Ref. [62].

The (gray) dotted curve in Fig. 3 corresponds to the calculation of Ref. [62], which as-

sumed that the weak mixing angle changes abruptly and discontinuously at T = 162 GeV while

dθW/d lnx = 0 at all times. The resultant relic baryon asymmetry agrees well with Model Pa-

rameterization A, which approximates the change in θW as a sudden but smooth step. The slight

discrepancy between them can be traced to the factor of cos θW0 that arose in the calculation of

Ref. [62] where BA(x, tco + ε) = cos θW0BY (x, tco− ε) was used to artificially match the hypermag-

netic field into the electromagnetic field at the EW crossover.

For the models with a more gradual change in θW, we see four distinct stages of evolution.

First, ηB begins to grow because θW (and hence dθW/d lnx) start to deviate from zero. This

growth occurs earlier for the models of θW that have a broader step (larger ∆T ). The increase
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of ηB continues until Tstep ∼ 160 GeV where dθW/d lnx peaks. The baryon asymmetry then

decreases until T ' 145 GeV since the decrease of the source term with dθW/d lnx is faster than

that of the washout rate by the chiral magnetic effect and the electron spin-flip interaction. At

T ' 145 GeV, the EW sphaleron becomes the least efficient washout process. Afterward ηB

grows as the EW sphaleron becomes less efficient at washout (γw,sph term in Eq. (3.5) decreases

exponentially, much is faster than the decay of the source term with dθW/d lnx). This growth

continues until Tsph,fo ' 130 GeV where the EW sphaleron freezes out. The evolution of ηB down

to T ' 135 GeV is well-described by the analytic solution in Eq. (3.6), which appears as the dashed

lines in Fig. 3. If the hypermagnetic field is not fully converted into an electromagnetic field by the

time that the EW sphaleron freezes out, there can be a continued growth of ηB, which is described

by Eq. (3.7). Eventually, the hypermagnetic field is fully converted into an electromagnetic field,

and the relic baryon asymmetry is fixed. Practically, it is almost saturated5 at T ∼ 100 GeV.

The relic baryon asymmetry (analytic formula Eq. (3.6) and numerical results) is shown in

Fig. 4 as a function of the relic magnetic field strength today. It depends sensitively the evolution

of the weak mixing angle θW(t). In Parameterization A where θW(t) rapidly interpolates between its

asymptotic values, the relic baryon asymmetry always falls below the observed baryon asymmetry

of the Universe ηB,obs ∼ 10−10. In the other cases, we allow for a more gradual variation in

θW(t), and the relic baryon asymmetry is much larger. The observed BAU is obtained for B0 ∼
10−16∼17 G and λ0 ∼ 10−2∼3 pc, depending on the evolution of θW. For a weaker magnetic field,

the baryon asymmetry is under-predicted, and an additional baryogenesis mechanism is required

to explain cosmological observations. For a stronger magnetic field, the baryon asymmetry is over-

predicted, and the model comes into tension with the observed baryon asymmetry. The relic BAU

is particularly sensitive to the value of ∆T , and by changing ∆T from just 5 to 20 GeV the relic

BAU varies by up to three order of magnitude. Therefore, the accurate determination of θW(t) is

necessary to reliably calculate the relic baryon asymmetry. Nevertheless, the qualitative behavior

will be unchanged, and the problem of baryon overproduction will persist for large field strengths.

Before we close this section, let us draw attention to the regime ηB � 10−10. If the predicted

baryon asymmetry is too large, then our calculation is unreliable. Specifically, in deriving the

kinetic equations [62] we have assumed that µi/T � 1 for the chemical potentials µi associated

with each of the SM particle species. The corresponding abundance is calculated as η = µT 2/(6s) '
(4×10−3)(µ/T ) with s = (2π2/45)g∗ST

3 the entropy density and g∗S ' 106.75. Then, the condition

µi/T � 1 implies ηi � 10−3. Consequently, the formula in Eq. (3.6) for the equilibrium baryon

asymmetry cannot be trusted6 if ηB � 10−3, but the calculation is certainly reliable for ηB as large

5Note that the kinetic equations solved here neglect the effect of masses of the Higgs boson, weak bosons and

top quarks and hence are not so reliable at low temperatures. However, since they do not contribute to the source

term of the baryon number or the washout effects, we expect that there will not be significant change of the baryon

asymmetry and the numerical result at T ∼ 100 GeV gives an appropriate estimate for the relic baryon asymmetry.
6One might wonder whether the conclusion of baryon number over-production can be avoided in the strong field

regime where a more sophisticated calculation is required to accurately infer the late-time behavior of ηB . While we

cannot exclude this possibility outright, we cannot envisage any mechanism that would suppress ηB back down to
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Figure 4: The relic baryon asymmetry as a function of the relic magnetic field strength and coher-

ence length today. The five pairs of colored lines correspond to the different parameterizations of

θW(t) in Fig. 2: the solid lines show the result of numerical integration, ηB(T = 100 GeV), and the

dashed lines show the analytic approximation (3.6) evaluated at T = 135 GeV. The (gray) dotted

curve corresponds to the calculation in Ref. [62].

as 10−10. We discuss further in Appendix A the reliability of our calculation in the large ηB regime.

5 Avoiding Baryon-Number Over-Production

As we discussed in the Introduction, various blazar observations provide evidence for the existence

of an intergalactic magnetic field with strength B0 & 10−14∼16 G and coherence length λ0 & 1 pc.

However, our calculations of the relic baryon asymmetry, which are summarized in Fig. 4, imply

that for such a strong PMF the BAU may be dramatically over-produced, ηB � ηB,obs. Therefore,

if there exists an intergalactic magnetic field at the level suggested by the blazar observations, and

if it is a relic of the early universe that became maximally helical before the EW crossover, then

some amount of baryon-number generation is unavoidable due to Standard Model anomalies, and

having calculated ηB here, we identify a conflict between the inferred IGMF and the known baryon

asymmetry of the Universe. In drawing this conclusion, we echo the earlier concerns of Fujita &

Kamada (2016) [61]. In this section, we discuss a few ways to avoid this tension.

It is possible to avoid the over-production of baryon number by relaxing one (or more) of the

assumptions that went into our analysis. These assumptions and possible ways out are cataloged

order 10−10.
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below.

1. We have assumed that the primordial hypermagnetic field is present in the symmetric phase

of the EW plasma. In the broken phase the electromagnetic field, which has vector-like

interactions, does not contribute to the (B + L) anomaly. If the primordial magnetic field

arises after the EW crossover has occurred (T . 100 GeV) then there is no baryogenesis.

2. We have assumed that the magnetic field is maximally helical. In this case, either the left-

or right-circular polarization mode amplitude is dominant, and we can estimate the magnetic

field products as in Eq. (4.1). Instead, if the magnetic field is non-helical, then it does not

source a global baryon number [SBdB = SAB = 0 in Eq. (3.1)], and there is no baryogenesis.

More generally, if the magnetic field is partially helical at the EW epoch, then the relic baryon

asymmetry is suppressed by the helicity fraction. For this case, the calculation in Sec. 4 must

be modified as follows. For a non-helical magnetic field, the inverse cascade scaling relations

of Eq. (4.2) is replaced with the direct cascade scaling relations according to Ref. [75]

Bp =

(
a

a0

)−2( τ

τrec

)−1/2
B0 and λB =

(
a

a0

)(
τ

τrec

)1/2

λ0 (5.1)

for τ ≤ τrec. Let us denote the helicity fraction at conformal time τ by ε(τ), and note that

0 ≤ ε ≤ 1. Then the magnetic field products in Eq. (4.1) should be generalized to

B ·∇×B ≈ ±ε 2π

λB
B2
p , A ·B ≈ ±ελB

2π
B2
p , and B ·B ≈ B2

p . (5.2)

Since comoving helicity is approximately conserved, H = a(t)3A ·B, we see that the helicity

fraction grows as ε(τ) = (τ/τrec)
1/2ε0 for τ ≤ τrec where ε0 ≤ 1 is the helicity fraction today7.

Since the relic baryon asymmetry is primarily controlled by SAB ∝ A ·B, we expect that the

BAU is suppressed by a factor of

SAB(τew)|new
SAB(τew)|old

=

[(
τew
τrec

)1/2
ε0

][(
τew
τrec

)1/2
λ0

][(
τew
τrec

)−1/2
B0

]2
[(

τew
τrec

)2/3
λ0

][(
τew
τrec

)−1/3
B0

]2 = ε0 (5.3)

compared to our previous estimates. Thus for a given B0 and λ0 that lead to baryon-number

over-production in the maximally-helical case, it is possible to chose a ε0 � 1 such that the

partially-helical magnetic field reproduces the observed BAU.

3. We have assumed that the cosmological medium evolves adiabatically during the epoch be-

tween the EW crossover and today. Consequently there is a conserved quantity ηB = nB/s

with nB the number density of baryon number and s the entropy density. Instead, if there

is an entropy injection after EW crossover then ηB will decrease, and baryon-number over-

production can be avoided with a sufficient amount of dilution. However, the late-time entropy

7We are considering the case where the helicity of the primordial (hyper)magnetic fields is extremely tiny and

hence it does not become maximally helical until today.
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production also dilutes the magnetic field relative to the plasma energy density. Hence, we

expect that it is difficult to accommodate the observed BAU while simultaneously generating

a strong enough IGMF to explain the blazar observations.

By relaxing any one of these assumptions, we can avoid the problem of baryon-number over-

production, but only Cases 2 & 3 are able to accommodate the observed BAU.

Finally, we have assumed that the coherence length is initially small enough that the magnetic

field evolves subject to the turbulent motions of the cosmological plasma and the inverse cascade

scaling behavior (4.2) is reached before the EW epoch. If instead the initial coherence length is much

larger than the one determined by MHD turbulence, then the magnetic field evolves adiabatically at

first and only enters the inverse cascade regime when the eddy scale catches up the coherence scale,

which can be at a time after the EW crossover. It was shown in Ref. [61] that the magnetic field

strength is smaller for this initially-adiabatic scenario than for the purely inverse cascade scenario.

Therefore, one might expect that the resultant baryon asymmetry is suppressed, but as we see from

the following estimates, this is not the case.

For the initially-adiabatic scenario the scaling relations (4.2) are replaced by

Bp =

(
a

a0

)−2( τts
τrec

)−1/3
B0 and λB =

(
a

a0

)(
τts
τrec

)2/3

λ0 (5.4)

where τ ≤ τts, and τts denotes the conformal time when the inverse cascade scaling begins, which

is assumed to be after the EW epoch, τew < τts. Consequently the source terms, SBdB ∼ B2
p/λB

and SAB ∼ λBB2
p , are modified as

SBdB(τew)|new
SBdB(τew)|old

=

[(
τts
τrec

)2/3
λ0

]−1[(
τts
τrec

)−1/3
B0

]2
[(

τew
τrec

)2/3
λ0

]−1[(
τew
τrec

)−1/3
B0

]2 =

(
τew
τts

)4/3

(5.5a)

SAB(τew)|new
SAB(τew)|old

=

[(
τts
τrec

)2/3
λ0

][(
τts
τrec

)−1/3
B0

]2
[(

τew
τrec

)2/3
λ0

][(
τew
τrec

)−1/3
B0

]2 = 1 (5.5b)

where we have used the scaling relations in Eqs. (4.2) and (5.4) Indeed, SBdB is suppressed at

the EW crossover by (τew/τts)
4/3 < 1, which is the origin of the suppression of the BAU in

Ref. [61]. On the contrary, SAB is unchanged for the same B0 and λ0. Since the main source

of baryon overproduction at the EW crossover is SAB, the problem cannot be avoided even in

the initially-adiabatic scenario. This also suggests that baryon overproduction is hardly avoided

for the maximally helical magnetic fields with large correlation length λ0/pc > B0/(10−14 G),

which are generated acausally and evolve fully adiabatically until today. We have seen that SAB

is independent of the evolution of magnetic fields but only depends on λ0 and B0. Since SAB is

proportional to λ0B
2
0 , for larger correlation length larger SAB is obtained, which predicts baryon

overproduction even in the case of larger correlation length with fully adiabatic evolution.
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6 Conclusion

In this work we have studied the evolution of the baryon asymmetry through the EW crossover

in the presence of a helical magnetic field. Building on earlier work, we have now taken into

account the gradual conversion of the hypermagnetic field into an electromagnetic field during

the crossover. This effect is described by the time-dependent weak mixing angle θW(t). Since a

robust and accurate calculation of θW(t) is not available in the literature, we have studied a few

phenomenological parameterizations, which appear in Fig. 2. For each of these parameterizations,

we solve a system of kinetic equations to determine the evolution of the baryon asymmetry during

the EW crossover.

The main result, which appears in Fig. 3, reveals that a large injection of baryon number

occurs when the hypermagnetic field is converted into an electromagnetic field. This is because (B+

L)-number is sourced by changes in hypermagnetic helicity via the Standard Model anomalies (1.1),

and the hypermagnetic helicity decreases significantly when the hypermagnetic field is converted

into an electromagnetic field. If θW(t) is sufficiently slowly varying, as we expect from lattice

simulations (Fig. 2), then this baryon asymmetry is not fully washed out by EW sphalerons, and

the relic baryon asymmetry can be greatly enhanced compared to previous calculations, which can

be seen in Fig. 4.

In this way, the observed baryon asymmetry of the Universe is obtained for a maximally

helical magnetic field with positive helicity and present-day field strength and coherence length of

B0 ∼ 10−17∼16 G and λ0 ∼ 10−3∼2 pc. A maximally helical primordial magnetic field is generated

naturally in axion models of inflationary magnetogenesis (the predictions for its present strength

are still under discussion, though; see recent works by Refs. [13, 14]).

Various measurements of TeV blazars have begun to uncover evidence for the existence of an

intergalactic magnetic field with strength B0 & 10−14∼16 G. For such a strong magnetic field, our

calculation implies that the baryon asymmetry can be over-produced by many orders of magnitude.

Anticipating that future observations will provide firm evidence for the existence of a strong IGMF,

we have assessed in Sec. 5 various ways of avoiding baryon-number over-production. For instance,

the relic primordial magnetic field may be a subdominant component of the present intergalactic

magnetic field.

In closing, let us remark upon how the calculation could be extended and improved. As

we have seen, the resultant baryon asymmetry is strongly dependent on how we parametrize the

time-dependence of the weak mixing angle θW(t) during the EW crossover. We have been forced to

employ over-simplified parameterizations for θW(t), see Fig. 2, which are motivated by the one-loop

analytic calculation and the most recent numerical lattice simulations. In order to more accurately

determine θW(t) we would encourage that the analytic calculations are extended beyond the one-loop

order, and the precision of the numerical lattice calculations is improved. Of particular importance

is the behavior of θW(t) at temperatures T . 140 GeV, because at these temperatures the EW

sphaleron goes out of equilibrium, and the baryon asymmetry is able to grow without washout.
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A Assess Back Reaction on Magnetic Field Evolution

In the present analysis (also Refs. [61, 62]) we have assumed that the background magnetic field

evolves according to the inverse cascade scaling relation (4.2). The inverse cascade is observed

in studies of freely decaying maximally-helical magnetic fields subject to MHD turbulence. Such

studies do not take into account neither the anomaly affects nor presence of particle / antiparticle

asymmetries in the plasma. In our calculation these asymmetries can be large (η � 10−10), and the

reliability of the inverse cascade scaling relation becomes questionable. For instance, it is known

that a large chiral asymmetry can lead to magnetic field growth or depletion through the chiral

magnetic effect [28]. In this appendix, we assess the regime in which these effects can be neglected,

which thereby justifies our use of the inverse cascade scaling law.

Let us begin with energetic considerations. The volume-averaged energy density of the mag-

netic field is given by

ρB =
1

V

∫
d3x

1

2

(
|EA(x, t)|2 + |BA(x, t)|2

)
≈ 1

2
Bp(t)

2

'
(
20 GeV4

)( B0

10−14 G

)2( T

100 GeV

)14/3

(A.1)

where we have used Eq. (4.2) to evaluate Bp on the second line. The Helmholtz free energy density

of the SM plasma at temperature T is

F = −π
2

90
g∗ T

4 +
∑

species

O(µ2iT
2) + · · · (A.2)

where g∗(T ) is the effective number of relativistic species. In the second term, we sum the chemical

potentials µi of the various SM particle species. The dots indicate terms that are higher order in

the small quantity µi/T .

The anomaly allows us to increase |µi| at the expense of lowering Bp. When µi increases

at the EW epoch due to the decaying hypermagnetic helicity, its growth is limited by energy

conservation to satisfy ∆F < |∆ρB| if the system is in equilibrium. When expressed in terms of

the corresponding charge abundance, η = µT 2/(6s) ∼ 10−3µ/T , this condition becomes

η . 10−6
(

B0

10−14 G

)(
T

100 GeV

)1/3

. (A.3)
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From these estimates, we conclude that the growth of the particle / antiparticle asymmetries at the

EW epoch may have a negligible back reaction on the magnetic field evolution when Eq. (A.3) is

satisfied. If Eq. (A.3) is violated, then energetic considerations suggest that it may not be justified

to neglect the back reaction on the evolution of the magnetic field.

As a concrete source of the back reaction, we can consider the particle / antiparticle asym-

metries, which affect the evolution of the magnetic field through the chiral magnetic effect. This

can be seen as follows. Transcribing the relevant formulas from Sec. 2, the field equations are

d

dt
BA = −∇×EA and

d

dt
EA = ∇×BA − JA , (A.4)

and the electric current JA is given by Eq. (2.7). Eliminating the electric field EA from these

equations and using ∇ ·BA = 0, we obtain

d

dt
BA =

[ 1

σA
∇2BA + ∇×

(
v ×BA

)]
mhd

+
g2A
2π2

µ5,A
σA

∇×BA . (A.5)

The terms in square brackets represent the standard MHD effects of magnetic diffusion and advec-

tion. Along with the Navier-Stokes equations, these terms lead the system to the inverse cascade

scaling behavior. The remaining term corresponds to the chiral magnetic effect.

We move to Fourier space and decompose onto the circular polarization basis. Let B±A(k, t)

denote the amplitudes of the right- and left-circular polarization modes with wavevector k at time

t. From Eq. (A.5) we see that the CME affects their evolution via

d

dt
B±A(k, t) = ±

g2A
2π2

µ5,Ak

σA
B±A(k, t) + · · · (A.6)

where k = |k|, and the dots indicate the MHD terms. If µ5,A > 0 the right-circular polarization

mode is amplified while the left-circular polarization mode is suppressed. In this way, the growth

of the charge-weighted chiral asymmetry µ5,A back reacts on the evolution of the magnetic field.

From Eq. (A.6) we can read off the time scale, τ = (2π2σA)/(g2A|µ5,A|k). The effect of the

CME on the magnetic field evolution can be neglected while the age of the Universe tU ∼ H−1 is

much smaller than τ . The spectrum of the magnetic field is peaked at the scale k = 2π/λB(t). For

these modes, the CME is negligible (tU � τ) as long as

|µ5,A| �
πσAHλB

g2A
. (A.7)

We estimate the right hand side using Eq. (4.2) to calculate λB at the EW epoch and using g2A ≈
g′2 ' 0.1. When expressed in terms of the charge abundance, η5,A = µ5,AT

2/(6s) ∼ 10−3µ5,A/T ,

the condition becomes

|η5,A| � 10−4
(
λ0
pc

)(
T

100 GeV

)1/3

. (A.8)
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Typically the chiral asymmetry is comparable in magnitude to the baryon asymmetry, |η5,A| ∼ |ηB|,
since they are both sourced by the helical magnetic field. From these estimates, we conclude that

the growth of the particle / antiparticle asymmetries at the EW epoch have a negligible back

reaction on the evolution of the magnetic field due to the chiral magnetic effect provided that

|η5,A| � 10−4(λ0/pc).

One might wonder whether the CME can become relevant after the crossover when T is

lower. For instance, at the time of recombination T ∼ 0.1 eV and Eq. (A.8) gives a stronger limit:

|µ5|/T . 10−4(λ0/pc). However, this does not imply a corresponding limit on |µB|. In the broken

phase, baryon number is conserved but chirality is largely washed out by spin-flip scatterings [64].

(A complete washout is avoided by the presence of the helical electromagnetic field.) Therefore, if

the back reaction from CME is negligible at the EW crossover, it is also negligible afterward.

Let us close this section by comparing the bound in Eq. (A.3), which is derived from the

energetic argument, with Eq. (A.8), which is derived from the CME argument. We make use of the

relation (B0/10−14 G) = (λ0/pc), which is expected to be maintained (up to an O(10) factor) for a

causally generated PMF (see below Eq. (4.2)). Both bounds have the same scaling with temperature

T . The bound derived from energetic considerations is stronger than the bound derived from the

CME calculation by a factor of order 100. This discrepancy is not necessarily inconsistent given

the rough nature of our estimates. However, both arguments confirm that for ηB ∼ 10−10 we are

justified to neglect the back reaction on the magnetic field evolution.
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