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Testing gravity theories using tensor perturbations

Weikang Lin∗ and Mustapha Ishak†

Department of Physics, The University of Texas at Dallas, Richardson, TX 75083, USA

Primordial gravitational waves constitute a promising probe of the very early universe and the
laws of gravity. We study in this work changes to tensor-mode perturbations that can arise in
various proposed modified gravity theories. These include additional friction effects, nonstandard
dispersion relations involving a massive graviton, a modified speed, and a small-scale modification.
We introduce a physically motivated parametrization of these effects and use current available data to
obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction,
we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as
constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the
tensor-to-scalar ratio r = 0.01, we find that an additional friction of 3.5 ∼ 4.5% compared to GR
will be detected at 3-σ by these experiments, while a decrease in friction will be more difficult to
detect. The speed of gravitational waves needs to be by 5 ∼ 15% different from the speed of light for
detection. We find that the minimum detectable graviton mass is about 7.8 ∼ 9.7×10−33eV , which is
of the same order of magnitude as the graviton mass that allows massive gravity theories to produce
late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity
during inflation using our parametrization. We find that, in addition to being related to r, the
tensor spectral index would be related to the friction parameter ν0 by nT = −3ν0 − r/8. Assuming
that the friction parameter is unchanged throughout the history of the universe, and that ν0 is
much larger than r, the future experiments considered here will be able to distinguish this modified-
gravity consistency relation from the standard inflation consistency relation, and thus can be used
as a further test of modified gravity. In sum, tensor-mode perturbations and cosmic-microwave-
background B-mode polarization provide a complementary avenue to test gravity theories.

PACS numbers: 95.36.+x,98.80.Es,98.62.Sb

I. INTRODUCTION

Current problems in cosmology such as cosmic accel-
eration, or older motivations such as finding unified the-
ories of physics have led to searches and proposals of
theories of gravity beyond General Relativity (GR). As-
sociated with these proposals are efforts to test GR us-
ing cosmological probes. See, for example [1–7] for re-
views on testing modifications to gravity at cosmological
scales. In doing so, instead of building frameworks to test
individual modified gravity models, a common and rea-
sonable approach is to parameterize and test departures
from general relativity predictions. This approach is well-
justified in view of the success of the relativistic Λ Cold
Dark Matter (ΛCDM) standard model when compared
to observations so that any deviation from GR should be
small. It can be viewed as simply testing GR with no
reference to any modified gravity models. Any difference
in the model parameters from their standard values in
GR can point us to the right direction of modification to
GR. One could also argue that an efficient parametriza-
tion should meet some minimum criteria. First, it should
obviously reduce to GR in some limit or given point. Sec-
ond, it should assemble the behaviors of more than one
theories of modified gravity. Third, the parametrization
should be minimum so that the possibly captured devia-
tion is not merely due to the increased degrees of freedom
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to fit the data. And finally the parametrization should
allow us to easily assign physical meanings to the param-
eters.

There has been a considerable amount of work to sys-
tematically parameterize scalar-mode-perturbation devi-
ations from GR in the literature, and we refer readers
to some reviews on the topic [1–8] and publicly available
codes to perform such tests [9, 10]. On the other hand,
the tensor-mode parametrization for modified gravity has
not been systematically nor extensively studied, although
several non-GR behavior in the tensor sector have been
individually investigated [11–15]. It is worth mentioning
that methods of parametrization come also with some
limitations [16, 17], nevertheless they can be informative
in some cases.

In this paper, we aim to provide a systematic study of
tensor-mode modified-gravity (MG) parameters includ-
ing current bounds on the parameters and future con-
straints. In section II, we discuss a general form of
the modified tensor-mode propagation equation includ-
ing different physical effects. In section III, we investi-
gate the tensor-mode perturbations during inflation for
two of our parametrization schemes. In section IV, we il-
lustrate the effects of our MG parameters on the cosmic-
microwave-background (CMB) B-mode polarization. In
section V we use the available BKP [18] and Planck 2015
[19] data to put bounds on the parameter spaces. In sec-
tion VI, we analyze and provide a forecast of constraints
on our tensor-mode MG parameters from some future
experiments. Finally, we summarize in section VII.
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II. TENSOR MODES IN MODIFIED GRAVITY
AND THEIR PARAMETRIZATION

Scalar-, vector- and tensor-mode perturbations with
respect to rotation symmetry can be treated separately
[20, 21]. The line element only with tensor-mode pertur-
bations reads,

ds2 = −dt2 + a2(t)(δij +Dij(x, t))dx
idxj , (1)

where Dij is the traceless (i.e., Dii = 0) and transverse
(or divergenceless, i.e., ∂iDij = 0) part of the perturbed
metric, t is the cosmic time (or the comoving time), and
a(t) is the scale factor. When working in Fourier space,
the propagation equation for a mode with a comoving
wavenumber k and with either helicity (λ = ±2) takes
the following form,

ḧk + 3
ȧ

a
ḣk +

k2

a2
hk = 16πGΠT

k , (2)

where ḣ ≡ dh
dt , and ΠT

k is the tensor part (i.e., traceless
and divergenceless) of the perturbed energy-stress ten-
sor in Fourier space. Since the above equation does not
depend on the helicity λ, we have dropped it from the
subscript, but we still keep the subscript k to remind us
that the amplitude is a function of the wavenmuber. We
can see from eq. (2) that the dynamics of the tensor-
mode amplitude for each mode behaves like a damping
harmonic oscillator with a source. The second term 3 ȧa ḣk
represents the damping effect (or the friction) caused by

the cosmic expansion. The third term k2

a2 hk means that
the frequency of a free wave ωT is the same as its physical
wavenumber k

a , which consequently means that gravita-
tional waves propagate at the speed of light. The term
on the right hand side represents the source that comes
from the tensor part of the stress-energy anisotropy. In
GR, the effects from the source on the dynamics of the
tensor-mode perturbations are small [20, chapter 6.6],
and we assume this is also true in MG. So we ignore the
source term and assume the major modification to the
tensor-mode perturbations is from the change to the free
propagation equation, i.e., the left hand side of eq. (2).
Here a test particle is assumed to follow a geodesic as in
GR and there will be no modification to the Boltzmann
equations.

Relativistic theories of gravity other than GR can (i)
change the damping rate of gravitational waves (i.e., the

term with ḣ in the propagation equation), (ii) modify the
dispersion relation (i.e., rather than k2/a2 in the third
term, it can be a generic function of k/a, see for example
the Hořava-Lifshitz gravity [22] and the Einstein-Æther
theory [23]), and (iii) bring an additional source term
on the right hand side even in the situation of a perfect
fluid (see, for example, in the generalized single scalar
field theory [24, 25], and a recent extension to the Horn-
deski theories [26–28]). Ignoring the source term as we
assume it gives small effects, we suggest in this paper

the following practical form of the modified propagation
equation for tensor-mode perturbations,

ḧk + 3
ġ

g
ḣk + ω2

Thk = 0 , (3)

where g is a model-dependent function of time via some
background variables and is k-independent in the linear
regime, ω2

T depends on time and the physical wavenum-
ber k/a. Similar modified equations are found in the
literature [11, 12, 14, 15]. In particular, in some previ-

ous papers the coefficient in the ḣ term has been mod-
ified to (3 + αM )H instead of 3H, which corresponds

to g = a1+
αM
3 with a constant αM in eq. (3). For

the dispersion relation, a modified speed and a graviton
mass have also been considered in the literature. But
here we introduce and use a specific form (3) based on
a more generic friction term and modified dispersion re-
lation. A different parametrization scheme is considered
in Ref. [29], in which the friction term and the source
term are modified in a way that they are both time- and
wavenumber-dependent. This is different from our con-
sideration: 1. We argue that the friction term is only
time-dependent via some background variables. 2. We
neglect changes to the source term since we assume that
the effect due to those changes is small in MG. 3. We
consider a more general dispersion relation.

Our proposed form of the friction term has more an-
alytical advantages, because it can represent the general
friction term for a wide range of MG theories. For ex-
ample, in f(R) theories (with R being the Ricci scalar),

g =
√
fR × a, where fR = df(R)

dR and equals 1 in GR. In
the Horndeski models, we can combine eq. (5) and eq.

(6) in Ref. [15] and manipulate to get g = ω
1/3
1 × a. In

TeVeS theory, we can modify eq. (163) in Ref. [30] and
get g = bγ. For all MG theories, the function g depends
only on time but not on the wavenumber.

Our consideration of the modified dispersion relation
can in principle cover more gerenic cases, and not limited
to a constant modified speed cT or a graviton mass µ.
The proposed form of dispersion relation in Ref. [11]
reads,

ω2
T = c2T

k2

a2
+ µ2, (4)

which can be manipulated and written as,

ω2
T

k2/a2
− 1 = (c2T − 1) +

a2

k2
µ2 . (5)

Here we can see clearly from eq. (4) or eq. (5) that the

difference from a standard dispersion (i.e.,
ω2
T

k2/a2 −1 = 0)

can be caused by a modified speed cT 6= 1 or by a nonzero
mass µ 6= 0. Note that the squared phase speed of grav-

itational waves is actually
ω2
T

(k/a)2 , which is different from

the squared speed c2T . In this work, we parameterize the
dispersion relation from a different approach. Our start-
ing point of the dispersion-relation parametrization is to
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treat the right hand side of eq. (5) as a whole and small
piece. But we will see that, under a few assumptions, our
parameterized dispersion relation corresponds to three
physical cases: a modified speed, a graviton mass, and (in
addition) an ultraviolet (high-k/a or small-scale) modifi-
cation.

There are already some constraints on the dispersion
relation in the literature. First, the consideration of grav-
itational Cherenkov radiation puts a strong lower limit
on the phase speed of gravitational waves, which is very
close to the speed of light [31]. The idea is that, if the
phase speed is slower than the speed of light, there must
be some energetic particles moving faster than the phase
speed of gravitational waves and lead to gravitational
Cherenkov radiation. Such gravitational Cherenkov radi-
ation should in principle slow down these energetic par-
ticles. But the observed energetic particles can have a
speed close to the speed of light, and do not appear to
have been slowed down by this process. Or, such particles
can only have traveled for a short distance, which con-
tradict the assumption that they are from the Galactic
center or other further sources. In other words, if the idea
of gravitational Cherenkov radiation is correct, a sublu-
minal phase speed of gravitational waves is not allowed.
Second, for the graviton mass, Ref. [13] estimated an
upper limit from the CMB observations for a nonvanish-
ing tensor-to-scalar ratio. This bound of graviton mass
is stronger than those set by the gravitational-wave de-
tectors. For a more comprehensive list of observational
bounds of the graviton mass, we refer readers to Ref.
[32]. In this work, however, we will release the above
constraints on the dispersion relation. We do so in or-
der to give independent constraints on the tensor sector
solely from a Monte-Carlo Markov-Chain (MCMC) anal-
ysis on the current CMB observations.

Now we turn to our parametrization. We first param-
eterize the dispersion relation. Instead of starting with
modifying the speed and adding a graviton mass, we pa-
rameterize the dispersion relation from a mathematical
point of view. We assume that the dispersion relation
depends only on the physical wavenumber k/a, but not
explicitly on time. A general modified dispersion relation
that only depends on the physical wavenumber k/a takes
the following form,

ω2
T

k2/a2
− 1 = ε(k/a) , (6)

where ε(k/a) is an arbitrary function of k/a which van-
ishes in GR. In the last step, we have denote everything
on the right hand side of (5) as ε(k/a). This arrangement
is motivated by the fact that the deviation from GR is
small in the scalar sector, and so we assume the deviation
is also small in the tensor sector. A positive/negative ε
corresponds to a superluminal/subluminal phase speed.
To parameterize the k/a dependence of the dispersion re-
lation, we model it such that the deviation either happens
in the large-scale or the small-scale limit but unchanged
on the other limit, or the deviation is k/a-independent.

And the dispersion relation should be isotropic, so it
should be an even function of k/a. Under the above
assumptions, the following proposals can capture the de-
viation up to the lowest order, (and there are examples
of theories corresponding to each of the following cases,)

ε(k/a) =


εh

(
k/a
K0

)2
, small scales,

ε0 , k/a-independent,

(εl)
n
(
µ0

k/a

)2
, large scales.

(7)

In the above, ε0, εh and εl are tensor-mode MG param-
eters. The subscripts h and l stand for high- and low-
physical wavenumbers representively. K0 and µ0 are nor-
malization constants. They are inserted to make εh and
εl dimensionless and within a practical range (i.e., of
unity). For consistency of the units, k in CAMB is mea-
sured in Mpc−1, so K0 and µ0 is also in Mpc−1. There
are examples of modified gravity theories that have a
dispersion relation in each of the three forms in eq. (7).
The first case is a ultraviolet deviation. For example in
the Hořava-Lifshitz theory, the dispersion relation devi-
ates from the standard one at small scales [22], which
falls into the first case to the leading order. More ex-
plicitly, in Ref. [22], K0

ε2h
= g3

ζ2 to the leading order at

moderately small scales. The second case corresponds
to a constant nonstandard speed of gravitational waves,
which can be found in the Einstein-Æther theory [11, 23].
For the third case, an example of deviation happening at
large scales is when a graviton mass is added to propa-

gation equation, ω2
T = k2

a2 + µ2, which can be written as
ω2
T

k2/a2 − 1 = µ2

k2/a2 . And we can identify (εl)
n as the ratio

µ2/µ2
0 in the last case. Then our modified dispersion re-

lation is divided into three separate cases, each of which
has one parameter, namely ε0, εl and εh. The three pa-
rameters characterizing the modified dispersion relation
vanish in GR.

For the first case, we find K0 = 100 Mpc−1 suitable.
Roughly speaking, K0/

√
εh is the physical-wavenumber

onset of the small-scale deviation. In the last case we
use (εl)

n instead of simply εl, and we set n = 4. That
is because the current constraint on the graviton mass is
very weak (to be explored in section V), and it can span
4 orders of magnitude. Using (εl)

4 roughly gives differ-
ent order of εl the same footing when implementing in
CosmoMC. If further data can put stronger constraints,
we can set n to be a smaller value, for example n = 1. A
value of µ0 = 1 Mpc−1 corresponds to a graviton mass
of ∼ 5× 10−58Mp in the planck units, or ∼ 6× 10−30eV .
In Ref. [13], they used 3000H0 (the expansion rate at re-
combination), which is roughly 0.7 Mpc−1 and this sug-
gests µ0 = 1 Mpc−1 is suitable. Any other choices of K0

and µ0 can be absorbed into the constants εh and εl.
The necessity of the case separation in eq (7) needs

to be justified. We concede that separating the disper-
sion relation into cases increases the complexity of the
analysis. It might not be useful if we only have data cor-
responding a narrow range of k/a, because we would not
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Parameters Scales of deviation Physical Meaning or example Physical ranges GR values

ν0 all scales modulating the friction > −1

0
εh small scales high k

a
deviation, like in Ref. [22] ≥ 0

ε0 all scales gives a modified speed > −1

εl large scales gives a finite graviton mass ≥ 0

TABLE I. Table of the tensor-mode MG parameters and their corresponding physical meanings or typical examples. In this
work, we consider the four MG parameters separately. Each MG parameter corresponds to a one-parameter modification. All
parameters vanish in GR. The physical ranges will be discussed in section IV.

be able to tell any dependence on k/a from the data. And
such case separation does not represent a more general
situation where the deviation can occur at both small and
large scales. However, the above separation clearly de-
scribes different physics of the possible deviations, mak-
ing it possible to quickly link the modified parameters
and the reason of their non-vanishing values. Also for a
practical reason, the constraints on the tensor sector is
very weak, so it is unrealistic to consider the three de-
viations simultaneously. One might want to replace the
three cases with an power index, such as (k/a)n. Then
the positive, zero and negative values of n can gener-
alize the above three cases. But a continuous n lacks
physical meaning and can lead to confusions. Therefore,
we choose to separate the dispersion relation into three
cases.

For the friction term, we simply assume g = a1+ν0

for a constant ν0, which is equivalent to the work in
Ref. [11, 12] as explained earlier in this section. A posi-
tive/negative ν0 means the friction is larger/smaller than
the one in GR, and consequently the gravitational waves
are more/less damped.

In sum, the MG parameters ν0, ε0, εl and εh charac-
terize the modified gravitational-wave-propagation equa-
tion in four different cases, and they all vanish in GR.
When considered separately (as in this work), the four
MG parameters correspond to four one-parameter modi-
fications. The tensor-mode MG parameters and the cor-
responding physical meanings are summarized in table
I.

III. TENSOR-MODE PERTURBATIONS
DURING INFLATION WITH CONSTANT

FRICTION AND SPEED

Our parametrization of the friction term has more an-
alytical advantages. One example is the study of tensor-
mode perturbations during inflation. For the case with
only a constant friction parameter ν0, eq. (3) in confor-
mal time dτ = dt/a reads,

h′′k + 2
g̃′

g̃
h′k + k2hk = 0 , (8)

where g̃ = a(1+ν̃0) for a constant ν̃0 and ′ stands for
derivative with respect to the conformal time. Note that,
the constant ν̃0 in eq. (3) is different from the one in
eq. (8). But they are simply related to each other, and
ν̃0 = 3

2ν0. When we let W = g̃ × hk, eq. (8) takes the
canonical form,

W ′′ + (k2 − g̃′′

g̃
)W = 0 . (9)

At the early time of inflation when perturbations were
inside the horizon, eq. (9) and W = g̃ × hk suggest that
the solution is normalized such that,

hk(t)→
√

16πG

(2π)3/2
√

2kg̃
exp(−ik

∫
dτ) . (10)

The difference from GR is that we have g̃ in the de-
nominator instead of the scale factor a. We assume the
universe was in the ground state so that eq. (10) will
serve as an asymptotic initial condition of hk. To get hk
outside the horizon (by the end of inflation), we need to
know the expansion background. Here we first assume
the background is exactly exponentially expanding with
respect to the cosmic time t (i.e., de Sitter background).
We make this assumption at first in order to isolate the
MG effects from the slow-roll inflation. Under this as-
sumption, we have a = − 1

Hτ , where H is the constant
expansion rate during inflation. And eq. (8) becomes,

h′′k −
2(1 + ν̃0)

τ
h′k + k2hk = 0 . (11)

If we let x = −kτ and hk = x
3
2+ν̃0y, the above equation

becomes,

x2
d2y

dx2
+ x

dy

dx
+ [x2 − (

3

2
+ ν̃0)2]y = 0 , (12)

which is a Bessel differential equation of order ν = 3
2 + ν̃0

(and this is the reason we use the notation ν0). The
general solution of (12) is a linear combination of the

first-kind and the second-kind Hankel functions H
(1)
ν and

H
(2)
ν . Matching the solution deep inside the horizon eq.

(10), we eliminate the H
(2)
ν component since H

(1)
ν (−kτ)

already goes as ∼ exp(−ikτ). And taking the outside
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horizon limit −kτ →∞, we obtain the tensor-mode spec-
trum,

|h0k|2 =
G(2H)2(1+ν̃0)

[
Γ( 3

2 + ν̃0)
]2

π3 · k3+2ν̃0
. (13)

whereG is the Newtonian constant. The result in GR in a
de Sitter background is recovered for ν̃0 = 0. Since |h0k|2
is proportional to k−3−2ν̃0 , we can identify the tensor
spectral index as,

nT = −2ν̃0 = −3ν0 . (14)

So if a ∝ eHt during inflation, nT and ν0 should be re-
lated by (14).

For the case of slow-roll inflation, the background is
not exactly de Sitter and H is not a constant. One of the
slow-roll parameter ε (not our modified gravity parame-
ters) measures the first derivative of H with respect to
time,

ε = −Ḣ/H2 . (15)

In this case, the scale factor a no longer goes as a = − 1
Hτ .

Instead it is replaced by aH = − 1
(1−ε)τ , which is obtained

by integrating eq. (15). As a result, eq. (11) becomes,

h′′k −
2(1 + ν̃0)

(1− ε)τ
h′k + k2hk = 0 . (16)

For a small ε, we have 1
1−ε ' 1 + ε, and eq. (16) can be

approximately written as,

h′′k −
2(1 + ν̃0 + ε)

τ
h′k + k2hk = 0 . (17)

Note that ν̃0 in (11) is now replaced by ν̃0 + ε in (17).
Consequently, we only need to replace ν̃0 by ν̃0 + ε in the
final result, i.e., in eq. (13). In particular, the tensor
spectrum index nT is related to both the MG friction
parameter ν0 = 2

3 ν̃0 and the slow-roll parameter ε by,

nT = −3ν0 − 2ε . (18)

In contrast, the ordinary slow-roll inflation in GR gives
nT = −2ε [20]. We can see from (18) that the MG friction
parameter ν0 and the slow-roll parameter ε are degener-
ate on their roles of the tensor spectral index nT . This
means the value of nT can’t tell us whether the back-
ground is exactly de Sitter with an MG friction parameter
ν0, or slowly changing with a small slow-roll parameter
ε. The slow-roll inflation consistency relation,

nT = −r/8 , (19)

is expected to change if the friction parameter ν0 is
nonzero. More explicitly, if we assume the result of the
scalar sector is unchanged, the tensor-to-scalar ratio r is
still related to the slow-roll parameter ε by,

r = 16ε . (20)

Note that we have used the fact that the tensor-mode
amplitude is not affected by ν0 to the leading order. Then
the inflation consistency relation is now modified in MG
and becomes,

nT = −3ν0 − r/8 . (21)

We call eq. (21) the modified-gravity inflation consis-
tency relation (MG consistency relation).

Verifying the inflation consistency relation is one of
the important tasks for future CMB experiments. How-
ever the near-future experiments have limited capability
of doing so [33–35]. The presence of ν0 in the MG consis-
tency relation (21) makes the situation even worse. For
example, if future experiments falsify the standard con-
sistency relation nT = −r/8, it does not necessarily mean
the slow-roll inflation is wrong, it can be that general rel-
ativity needs to be modified so that the friction term is
changed.

It is difficult for the near-future CMB experiments to
disentangle the standard and the MG consistency rela-
tions. However, on some extreme cases, the two con-
sistency relations are very different, and this will help
us to tell which consistency relation is possibly correct.
We explain as follows. The current upper bound of the
tensor-to-scalar ratio r is around 0.1 [18]. If the true
value of ν0 is much larger than r, we can ignore the term
−r/8 in the MG consistency relation (21). Then the
tensor spectral index reduces to nT ' −3ν0 in modified
gravity. In contrast, the standard consistency relation
still gives nT = −r/8. In this case, the MG consis-
tency relation expects nT to be much larger than what
is expected in GR. In the future, if we see nT ' −3ν0
with ν0 � r, then we can say the MG consistency re-
lation is possibly right (or the slow-roll inflation theory
has some troubles). In section VI 3, we explore how fu-
ture experiments can distinguish the standard and the
MG consistency relations. For the forecast section VI 3,
we set for our fiducial model r = 0.01 and ν0 = 0.2.
We can then ignore the term −r/8 in the MG consis-
tency relation, so nT = −3ν0 − r/8 ' −3ν0 = −0.6.
In contrast, the standard consistency relation in GR is
nT = −r/8 = −0.00125. So the values of nT are then
very different according to the two consistency relations.
For this fiducial model, future experiments will then be
able to verify the MG consistency relation and rule out
the standard consistency relation. We refer readers to
section VI 3 for some details.

It is possible to test the MG consistency relation, eq.
(21), with future CMB experiments, because ν0 affects
the CMB B-mode power spectrum. We will explore these
effects in section IV 1. If we are able to obtain the val-
ues of ν0, r and nT from observations, we can then test
whether eq. (21) is satisfied. However, we note that it is
possible to do so with CMB data only if ν0 is constant
throughout the history of the universe, or at least from
inflation to recombination. Only in this case, it will be
the same MG friction parameter ν0 in eq. (21) that also
affects the CMB B-mode power spectrum. The value of
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ν0 inferred from CMB data is actually the one after in-
flation (let us call it ν0,cmb), while the ν0 in the MG con-
sistency relation eq. (21) is the one during inflation (let
us call it ν0,inf ). If ν0,cmb 6= ν0,inf , it will be incorrect
to test the MG consistency relation nT = −3ν0,inf − r/8
with CMB data which only give ν0,cmb. For example, if
ν0,inf = 0 but ν0,cmb 6= 0, the standard consistency rela-
tion is correct but we will see a nonzero ν0,cmb from future
CMB experiments. Another example is if ν0,inf 6= 0 but
ν0,cmb = 0, the MG consistency relation is correct but
we will not see any extra friction effects from CMB data.
Fortunately, even if ν0 changes its value after inflation,
we can still test the standard inflation consistency rela-
tion in GR. Indeed, a nonzero ν0,inf during inflation still
breaks the relation between nT and r in eq. (19). If
the standard consistency relation is not satisfied by fu-
ture CMB experiments, one can draw a conclusion that
either GR needs to be modified or the slow-roll inflation
theory is inconsistent. In this work, we will assume, for
simplicity, that ν0 is constant.

We will close the section with a brief discussion of pos-
sible generalizations of the result of eq. (13). For exam-
ple, the result can be generalized to include a constant
modified speed parameter ε0 in addition to a constant
friction parameter ν0. In this case, equation (13) can be
easily generalized to

|h0k|2 =
G(2H)2(1+ν̃0)

[
Γ( 3

2 + ν̃0)
]2

π3 ·
(√

(1 + ε0)× k
)3+2ν̃0

. (22)

In other words, we have replaced k in eq. (13) with√
(1 + ε0) × k to obtain eq. (22). But this does not

change the dependence of |h0k|2 on k, which means the
tensor spectral index nT does not depend on a constant
modified speed of gravitational waves. So the consis-
tency relation will not be changed due a modified con-
stant speed of gravitational waves. Additionally, since
the wave-propagation equation (8) is a differential equa-
tion in time, mathematically the result (22) can be gener-
alized to cover cases where ν0 and ε0 are functions of the
comoving wavenumber k. The only difference for such
general cases will be that ν0 and ε0 in eq. (22) become
k-dependent. But such generalization is not physically
meaningful because the function g in the friction term
(and hence ν0) is k-independent, and the dispersion re-
lation usually depends on the physical wavenumber k/a
instead of the comoving wavenumber k.

IV. EFFECTS OF TENSOR MODE MODIFIED
GRAVITY PARAMETERS

After investigating the primordial fluctuation during
inflation (only for the cases of constant ν0 and ε0), the
next step is to see how the MG parameters change the
evolution of tensor-mode perturbations in the later time,
and use observational data to put constraints on our MG
parameters. In order to do so, we used a modified version

of CAMB [36] and CosmoMC [37]. In addition to the
changes to the scalar sector in ISiTGR, we add modi-
fications of the wave-propagation equation in the tensor
sector. For the scalar modes, we refer the modifications
of these to packages ISiTGR [10, 38]. We add to the top
of these modifications the tensor modes.

We already mentioned in section II some of the con-
straints on the dispersion relation in the literature. Es-
pecially, a subluminal phase speed of gravitational waves
is almost forbidden by consideration of gravitational
Cherenkov radiation. But, in this work we will not use
those as prior bounds but rather aim to obtain indepen-
dent and complementary constraints. We will constrain
our MG parameters solely from the current CMB obser-
vations. Our results should thus serve as independent
constraints on the dispersion relation. However, some
physical ranges need to be imposed on the MG parame-
ters for the stability of the solutions of the perturbation
equations:

• ν0 > −1. If not, the friction term in eq. (3) has an
enhancing instead of suppressing effect.

• ε0 > −1. If ε0 < −1, ω2
T = (1 + ε0) × k2

a2 is neg-
ative and tensor modes will all be unstable. We
also exclude the situation ε0 = −1 for a practical
reason. If ε0 = −1, hk = constant is a solution of
eq. (3). Then tensor modes will not contribute to
CMB temperature anisotropy or polarization spec-
tra, and the tensor-to-scalar ratio r can be arbi-
trarily large. Our allowed range of ε0 means that
we are also considering subluminal phase speed of
gravitational waves (i.e., for −1 < ε0 < 0).

• (εl)
n ≥ 0. If not, the squared graviton mass

µ2 = (εl)
n × µ2

0 is negative. Tensor modes become
tachyonic, and ω2

T will be negative for large-scale
modes with k2/a2 < |µ2|. The evolution of these
modes will then grow exponentially and become un-
stable.

• εh ≥ 0. If not, ω2
T will be negative for small-scale

modes with k2/a2 > |εh| ×K2
0 .

Those physical ranges of MG parameters are also listed
in table I.

1. Analyzing the effects of modified friction and
nonstandard speed

In this subsection, we explore the effects of the MG
parameters ν0 and ε0 on the CMB B-mode polarization
power spectrum. We vary each one of them individually,
and set the other MG parameters to their GR value. To
verify our modification in CAMB, in Fig. 1 and Fig. 2
we reproduced two figures in the previous works [12] and
[14].

Fig. 1 shows the effects due to different values of ν0,
corresponding to different strengths of friction. In Fig. 1
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FIG. 1. Reproducing Fig. 1 from Ref. [12]. Within the
figure, ‘tensor’ refers to the B-mode due to tensor modes only,
and ‘all’ includes the lensing in scalar mode. Notice that we
set r = 0.2 here to reproduce consistent results with Ref.
[12]. Larger friction leads to small tensor-mode amplitude and
consequently smaller tensor-induced B-mode polarization.

we have used αM to denote the friction term instead of
ν0, in order to keep consistency with Ref. [12]. For the
rest of this paper, we use our notation ν0. Again, for con-
stant ν0 and αM , they are only different by a factor of 1

3 ,

and ν0 = 1
3αM . We refer readers to Ref. [12] for more de-

tailed analysis of the friction term. For a brief discussion,
we can see that larger ν0 or (αM ) means larger damp-
ing effect, and generally leads to smaller tensor-mode
amplitude. But we need to keep in mind that, smaller
tensor-mode amplitude does not necessarily mean smaller
B-mode polarization induced by tensor-mode perturba-
tions, since it is the time derivative of the amplitude that
is important, see chapter 7 in Ref. [20]. However, it turns
out in this case that larger ν0 (or αM ) simply leads to
smaller B-mode, as shown in Fig. 1.

Fig. 2 shows the effects due to different values of ε0,
corresponding to different speeds of gravitational waves.
We do not restrict our parameter ε0 to be nonnegative,
which means we do not use the constraint set by the con-
sideration of gravitational Cherenkov radiation, in order
to derive complementary results as we explained at the
beginning of section IV. Detailed analysis of a nonstan-
dard speed was given in Ref. [14], in which the speed
was parameterized as c2T . Their parametrization is the
same as our 1 + ε0 parametrization. The major effect
of different ε is a horizontal shift of the peaks in the
B-mode power spectrum. The reason of such peak shift-
ing can be understood as follows. Roughly speaking, for
a nonzero ε0, solutions of eq. (3) are changed so that
hk → h′k = h√1+ε0k

. For the same k, the frequency (in

time) ωT = k/a is now replaced by ωT =
√

1 + ε0 × k/a.
Consequently, for the same frequency ωT , the corre-
sponding comoving wavenumber is now k/

√
1 + ε0 in-

stead of k. If the original peak is at multiple l, it will
be shifted to l√

1+ε0
. For example, the B-mode recombi-

nation peak in GR is around l ∼ 100. For 1+ε0 = 1.5 and
0.5, this peak will be shifted to l ∼ 80 and ∼ 140 respec-
tively, as shown in Fig. 2. Another effect from nonstan-
dard speed is on the amplitude of the reionization peak.
We can see in Fig. 2 that smaller speed leads to smaller
amplitude of this peak, in addition to a horizontal shift.
This is because smaller speed makes all modes re-enter
the horizon later, so that the largest-scale modes remain
constant for a longer time and do not contribute to the B-
mode production (recall again that the important part is
the time derivative of the tenso- mode amplitude). Such
contribution is important for the reionization peak, and
so smaller speed leads to smaller peak. Vice versa, larger
speed makes the largest-scale modes re-enter the hori-
zon, and oscillate earlier and participate in the B-mode
production.

2. Effects of large-scale deviation

The large-scale (low-k/a) deviation represents a con-
stant graviton mass. Again, the squared mass µ2 need to
be nonnegative to avoid small-scale tachyonic instability.
If µ2 is negative, roughly speaking the solution will grow
exponentially for the modes with k2/a2 + µ2 < 0.

An analysis of the effects on the CMB due to a gravi-
ton mass has been given in Ref. [13]. Authors there
estimated an upper bound of the graviton mass, µ <∼
10−30eV , for a nonvanishing tensor-to-scalar ratio. Here
we reproduce some of their numerical results and show
in Fig. 3. Similar upper bound of the graviton mass will
be obtained in section V 2, where, instead of estimating,
we will use a MCMC analysis and get constraints from
the current available data. In Fig. 3, since the effects are
not monotonic with εl, we show them in two panels. In
fact, the effects have an oscillating dependence on εl, as
we will explain in the next paragraph. We only show the
effects on the B-mode polarization, because the temper-
ature and E-mode are dominated by the scalar modes.

Depending on the time ordering of recombination, the
horizon re-entering (when k/a ∼ H), and the transition
from being relativistic to nonrelativistic (when k/a ∼ µ),
there are different effects on the evolutions of different
perturbation modes. We can qualitatively see that as
follows. With a finite graviton mass, there is a dis-
tinct feature from GR for the perturbation evolutions
- all perturbation modes will eventually become nonrel-
ativistic (i.e., k/a < µ, or the momentum of a graviton
is smaller than its mass). Since the physical wavenum-
bers decrease with time, perturbation modes always start
with being relativistic (i.e, k/a > µ), and later transi-
tion to nonrelativistic (i.e, k/a < µ). And once they
become nonrelativistic, they remain so. The time for
the relativistic-to-nonrelativistic transition is roughly de-
termined by the condition k/a ∼ µ, which depends on
k. Different modes have different transition time. Con-
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FIG. 2. Reproducing Fig. 1 from Ref. [14]. We also set r = 0.2 here to get the same results as Ref. [14]. On the left panel,
we show the effects on the B-mode polarization. The solid lines represent the results due to tensor modes plus lensing, and the
dash lines represent tensor modes only. As explained in Ref. [14], modifying the speed of gravitational wave shifts the peaks
of the B-mode polarization. The effects on the temperature power spectrum are shown on the right panel. The solid and the
dash lines have the same correspondences as on the left panel. We can see that even if the tensor-induced temperature power
spectrum is changed, the total temperature power spectrum is not affected because the scalar modes are dominating.

sider only the polarizations produced near recombina-
tion, for the modes whose relativistic-to-nonrelativistic
transitions happen after recombination (true for small-
scale modes), their evolutions before recombination will
be almost the same as in GR. Therefore, their contri-
butions to the CMB temperature and polarization will
be nearly unchanged. For the modes whose transitions
happen before recombination, the situation is different
and interesting effects take place, but the analysis will
be more involved. Detailed discussions were provided in
Ref. [13], in which perturbation modes are divided into
three classes: class I, modes that are relativistic at recom-
bination; class II, modes that are nonrelativistic as they
enter the horizon; and class III, modes that are relativis-
tic when they re-enter the horizon and become nonrela-
tivistic during recombination. Depending on whether the
graviton mass is larger or smaller than the Hubble rate
at recombination, the third class may or may not exist.

Now we discuss whether the largest-scale modes (small
wavenumber compared to µ and H) are well behaved for
a finite µ2. The discussion here will also explain the
oscillatory dependence of the large-scale effects. Consider
the largest-scale modes with k/a negligible compared to
µ and H. In this simple situation, eq. (3) becomes,

ḧk +
2

t
ḣk + µ2hk = 0 . (23)

Solutions to eq. (23) is the spherical Bessel functions of
the order 0. The asymptotically constant initial condi-
tion gives,

hk(t) ∝ j0(µt) =
sin(µt)

µt
, (24)

where j0(x) is the spherical Bessel function of the fist kind
of order 0. It means that with a finite µ, the largest-scale-
mode evolutions don’t depend on k, and they started to

oscillate earlier than they would in GR. So the largest-
scale modesare well behaved. If the graviton mass is
large enough (more explicitly, larger than Hubble rate
at recombination, i.e., µ > Hrecom), they oscillate be-
fore recombination, and consequently contribute to the
CMB temperature anisotropy and polarization spectra.
In contrast, in GR, the largest-scale modes remain con-
stant and don’t contribute. Since the tensor-mode ampli-
tude has an oscillating dependence on the graviton mass
(and hence on εl) as shown in eq. (24), the largest-scale-
mode contribute to the B-mode polarization in MG also
has an oscillating dependence on εl. As shown in the
left panel of Fig. 3, for small εl, the low-` spectrum of
B-mode polarization decreases with εl. But in the right
panel, for larger εl, it increases with εl. A more detailed
analysis and similar numerical results were given in Ref.
[13], where they show two more panels, and the B-mode
spectrum decreases and increases again with even larger
graviton masses.

3. Effects of small-scale deviation

In this subsection we investigate the effects of the
small-scale (high-k/a) parameter εh on the B-mode po-
larization. Fig. 4 shows the results of the B-mode polar-
ization power spectrum for different values of εh. Here
we set r = 0.1. Recall that we restrict εh to be non-
negative because a negative εh can leads to small-scale
instability. This small-scale instability can be seen from

eq. (4) and eq. (7), and when εh

(
k/a
K0

)2
< −1 the

squared frequency ω2
T becomes negative. If one wants to

allow a negative εh, it is necessary to introduce a cut-
off or include a positive higher-order term. We will not
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FIG. 3. The effects of the large-scale deviation on the tensor-induced B-mode polarization. Both panels have the same
horizontal and vertical scales. On the left panel, for a small εl, larger εl leads to smaller large-scale B-mode polarization. On
the right panel, opposite effects take place. For a large εl, larger εl leads to greater large-scale B-mode polarization. These
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FIG. 4. Effects of small-scale (high-k/a) deviation on the B-
mode power spectrum. Here we only show the tensor-induced
B-mode polarization. The spetrum at small scales (low `)
is not affected as expected. Larger εh makes the small-scale
modes re-enter the horizon earlier, resulting in smaller tensor-
mode amplitude and consequently smaller B-mode polariza-
tion. This effect is hard to observe since the dominating B-
mode polarization at small scales is from the lensed E-mode.

do these, because, first, the cut-off is totally arbitrary
and the results are not converging for higher and higher
cut-off. Higher cut-off only leads to higher amplitude.
Second, to include a positive higher-order term requires

another parameter specifying the physical wavenumber
from which the higher-order term becomes significant.
Doing so requires more complicated considerations, such
as analyzing the competition of the second order term
and the higher-order term. So for simplicity we keep the
number of parameters to be minimum, but stil be able
tol catch some (if not most) physics of modified gravity
at small scales.

As Fig. 4 shows, the tensor-induced B-mode polariza-
tion power spectrum can be significantly suppressed at
small scales (large `) while keeping it unaffected at large
scales (small `), as expected. The effects of small-scale
deviation can be understood as follows. A nonzero εh
changes the time of horizon re-entering. For a certain
mode with comoving wavenumber k, larger εh leads to
earlier horizon re-entering, resulting in a smaller tensor-
mode amplitude. So the tensor-induced B-mode is ex-
pected to be smaller.

This small-scale deviation is difficult to observe, be-
cause it hardly changes the total B-mode power spec-
trum at small scales, where the contribution from lens-
ing is dominating. Larger εh only makes the tensor-mode
contribution less significant in the high-` spectrum. Con-
sequently, the dominating B-mode from lensing at small
scales makes it very difficult to set a constraint on the pa-
rameter εh. So we will not do the corresponding Monte-
Carlo analysis for εh and leave it for future data. Fortu-
nately, with the near-future CMB experiments we will be
able to see such small-scale effects, if εh is large enough
so that small-scale deviation begins with a large-enough-
scale onset. We will estimate the constraint on εh with
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FIG. 5. The 1-σ (green) and 2-σ (blue+green) confidence levels of marginalized constraints in the r vs. ν0 (left panel) and
the r vs. ε0 (right panel) parameter spaces. Equivalently, we can say the white parameter region is disfavored at the 95%
confidence level.

the Fisher matrix formalism in section VI.

V. CONSTRAINTS ON TENSOR MODE
MODIFIED GRAVITY PARAMETERS

Tensor-mode perturbations, if present, can smooth
out the temperature-anisotropy power spectrum and
generates E-mode and B-mode polarization patterns in
CMB. Therefore, both CMB temperature and polariza-
tion maps can be used to constrain the parameters re-
lated to tensor-mode perturbations. In the following
subsections, we study the constraints on the four MG
parameters individually. For example, when we are con-
straining ν0, we fix ε0, εh and εl to their GR values. We
do that for a practical reason since current data gives
very weak constraints on the tensor-mode MG parame-
ters. It is computationally expensive to constrain the MG
parameters simultaneously. In the MCMC analysis, we
also fix the six standard cosmological parameters to the
values of the Planck 2015 best fit [19], and constrain the
tensor-to-scalar ratio r with one of the tensor-mode MG
parameters at a time using the joint data of Planck and
BICEP2 [18] and the Planck 2015 low-` polarization data
[19]. In this section, we use the standard inflation con-
sistency relation on the value of nT , namely, nT = −r/8.
For the current data, we will not vary the tensor spectral
index nT since otherwise the parameter space would be
too large and gives no useful information.

For current data, the tensor-induced B-mode polariza-
tion has not been detected yet so we will provide only
some bounds on the MG parameters. Due to the weak
constraining power of current data, we will also not at-

tempt any joint constraints on the four MG parameters.
We also do not constrain εh because the observed high-`
B-mode polarization is dominated by the lensed E-mode,
so current data only give large and non meaningful al-
lowed region in the r vs. εh parameter space. Instead,
we will forecast the constraint on εh in section VI for
some future experiments.

1. Updating the constraints on friction and
constant speed using the new BKP data

We first update the constraints on the friction the and
the speed by using the data from the Planck-BICEP2
joint analysis (BKP) [18] and the Planck 2015 low-`
polarization data [19]. To validate our modification to
CAMB, we reproduced the marginalized likelihood dis-
tributions in the αM vs. r and r vs. c2T parameter spaces
in Ref. [12] using the old BICEP2 data [39], and we got
the same results.

The left panel in Fig. 5 shows the marginalized con-
straints in the r vs. ν0 parameter space using the BKP
and the Planck 2015 low-` polarization data. The black
curves are iso-likelihood contours, within which the inte-
grated probability are 68% and 95% respectively. Con-
sequently, the green and the blue+green regions respec-
tively correspond to the 1-σ (68%) and 2-σ (95%) con-
fidence levels (C.L.). There is a probability of 68% for
the true values of r and ν0 to be located within the green
region, and 95% within the blue+green region. In other
words, at the 95% C.L., the white parameter space is
ruled out. (Note that the blue-only region is ruled out
at the 68% C.L., but allowed at the 95% C.L.). We can
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see from the left panel of Fig. 5 that the degenerate
direction goes roughly as r − 0.05ν0 = constant, consis-
tent with that in Ref. [12]. The tensor-to-scalar ratio
r is consistently zero. We cut out the large ν0 parame-
ter space, because larger ν0 only leads to larger allowed
tensor-to-scalar ratio r.

Using the same data, in the right panel of Fig. 5 we
show the constraints in the r vs. ε0 parameter space. The
green and blue regions have the same meanings as those
in the left panel of Fig. 5. Since we have not observed the
tensor-induced B-mode polarization, we should not ex-
pect the peak position of the B-mode power spectrum to
constrain the speed of gravitational waves as in Ref. [14].
Instead we see in the right panel of Fig. 5 that smaller ε0
(and hence smaller speed) allows larger tensor-to-scalar
ratio. As ε0 approaches to −1, at the 1-σ C.L., we have
an upper limit of r ∼ 1.75 shown by the green region in
the right panel of Fig. 5. As mentioned in section IV, a
smaller speed means a later horizon re-entering. An ex-
treme case is a vanishing speed (ε0 = −1), in which the
tensor-mode perturbations would never re-enter the hori-
zon and their amplitudes would always remain constant.
Since the tensor-induced B-mode polarization requires
time variation of the tensor-mode perturbations, vanish-
ing speed then means no tensor-induced B-mode polar-
ization and r can be arbitrarily large. This is also why
we excluded the parameter value ε0 = −1 in the MCMC
analysis. The arbitrarily large value of the allowed r as ε0
approaches to −1 is shown by the blue region in the right
panel of Fig. 5. On the other hand, larger ε0 does not
seem to affect the constraint on r very much. This is be-
cause, besides making the tensor-mode amplitudes vary
with time, horizon re-entering also makes them smaller.
Larger ε0 then have both enhancing effect (due to the
time-varying tensor-mode amplitudes) and suppressing
effect (due to smaller amplitudes) on the CMB B-mode
polarization.

2. Constraints on large-scale deviation

Using the same data, we obtained the constraints in the
r vs. εl parameter space as shown in Fig. 6. The conver-
sion between εl and the graviton mass µ (for n = 4 in eq.
(7)) is µ = ε2l ×5.238×10−58Mp = ε2l ×6.395×10−30eV .
We can see that the constraint of r is insensitive to
the parameter εl for εl <∼ 1.5, which means a graviton
mass smaller than ∼ 10−29eV should have no observa-
tional effect on CMB for the current level of sensitiv-
ity. The constraint of r in this range of εl is roughly
the same as case in GR. Both the 1-σ and 2-σ contours
have relatively sharp turns at εl ∼ 1.5. Larger εl leads
to significant drops of the allowed value of r for both
contours. This location (εl ∼ 1.5) of the sharp turns
roughly corresponds to an upper bound of the graviton
mass µupper ∼ 1.4×10−29eV unless r is very small. This
upper bound is roughly of the same order of magnitude of
the estimation in Ref. [13]. Note that, if massive gravity
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l

0

0.05

0.1

0.15
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FIG. 6. Constraints in the r vs. εl parameter space. The
plateau from εl = 0 to ∼ 1.5 means this range of εl makes
little difference on the constraint of r, which is similar to
the massless case. Unless r is very small, the sharp drop of
the allowed value of r after εl ∼ 1.5 sets an upper bound of
the graviton mass, µupper ∼ 1.4× 10−29eV , for most allowed
values of r.

is responsible for the late-time cosmic acceleration, the
graviton mass should be of the order of the Hubble con-
stant H0 (in natural units) [13, 40], which is ∼ 10−33eV
and is about 3 ∼ 4 orders of magnitude smaller than the
rough upper bound (for nonvanishing r) obtained in this
work.

There is an allowed parameter-space ‘tail’ for εl >∼ 2.5.
This ‘tail’ extends to very large εl which has been cut off
in Fig. 6. The presence of this ‘tail’ is because, as r ap-
proaches 0, the amplitude of tensor-mode perturbations
approaches 0 as well. Then there would be no tensor-
induced effects on CMB (temperature or polarization),
and εl (and the graviton mass) can be arbitrarily large.

VI. FORECAST OF CONSTRAINTS ON
TENSOR MODE MODIFIED GRAVITY

PARAMETERS

In this section, we use the Fisher matrix formalism to
forecast the constraints on the tensor-mode MG param-
eters that could be obtained by the COrE mission [33],
CMB Stage-IV [41] and PIXIE [34]. Table II, III and
IV list the specifications of these three near-future ex-
periments. To do the forecast correctly, we need to take
into account the diffuse foreground components. Follow-
ing the method described in Ref. [42], we calculate the

degraded-noise power spectrum Npost
` after a component

separation. To calculate the foreground residuals, we use
the framework described in Ref. [35, 43]. We include in
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the analysis the synchrotron and dust as the dominant
diffuse foregrounds. So the number of signal components
ncomp is 3 including CMB. We denote CMB as the 0
component, synchrotron as 1 and dust as 2.

1. Formalism of CMB forecast and foreground
residuals estimation

With the likelihood provided in Ref. [33], the fisher
matrix reads,

Fij = −
〈
∂2(lnL)

∂θi∂θj

〉
=
fsky

2

∑
`

(2`+ 1)Tr

[
R−1`

∂C`

∂θj
R−1

`

∂C`

∂θj

]
,

(25)

where θ is the parameter vector of a model, R` is the
summation of the theoretical power spectra and the total
noise-like power spectra R` = C` +Ncmb

` , where,

C` =

C
TT
` CTE` 0

CTE` CEE` 0

0 0 CBB`

 ,

and Ncmb
` =

N
TT
` 0 0

0 NEE
` 0

0 0 NBB
`

 .

(26)

For the B-mode polarization, the theoretical power spec-
trum is the summation of the contributions from tensor
modes and lensing. We don’t consider delensing.

Since we are considering foreground subtraction, we
take the summation of the degraded (or post-component-

separation) noise Npost
` and the foreground residuals

Cfg,res` as the total noise-like power spectrum [33, 35].
For B-mode,

NBB
` = Npost

` + Cfg,res` . (27)

The degraded-noise power spectrum is obtained by,

Npost
` =

(
(ATN−1` A)−1

)
cmb,cmb

, (28)

where N` is the instrumental-noise power spectra before
component separation, which is assumed to be a nchan×
nchan diagonal matrix for each multiple `. The diagonal
element of N` is given by,

(
N`

)
νν

= (∆Ωσ2
v) exp

(
−`(`+ 1)

θ2fwhm(ν)

8 ln 2

)
, (29)

where the index ν (not our friction parameter) denotes
the central frequency of a channel, and there are nchan
channels. For example, for the COrE mission, there are
nchan = 15 frequency channels as shown in the 1st row in

table II. The full-width-at-half-maximum angle θfwhm(ν)
and the quantity ∆Ωσ2

v (inverse of the weight) can be
obtained from the 3rd and the 4th rows in table II. The
nchan × ncomp mixing metric A in eq. (28) is calculated
as,

Aνi =

∫
dν′δν(ν′)Arawi (ν′) , (30)

where the index i can be cmb, sync or dust, denoting the
signal components. Different components can be sep-
arated because they have different emission laws. Dif-
ferent emission laws are expressed as different antenna-
temperature functions Arawi (ν′) of frequency ν′. In eq.
(30) δν(ν′) is a normalized band-pass-filter function for
each channel. Take the COrE specification for example,
the central frequency ν and the frequency width ∆ν of
δν(ν′) are given by the 1st and 2nd rows in table II. For
CMB, the antenna temperature reads,

Arawcmb(ν) =
(ν/Tcmb)

2 exp(ν/Tcmb)

[exp(ν/Tcmb)− 1]2
. (31)

We have set h = kB = 1. The temperature of the CMB
Tcmb is 2.73 K, corresponding to 56.7 GHz.

For the synchrotron, the antenna temperature follows
a power law,

Arawsync(ν) ∝
(

ν

νref,s

)βs
, (32)

where the reference frequency νref,s will be set to 30
GHz to be consistent with that for the Planck 2015 syn-
chrotron polarization map [45]. If it is only the CMB
component that concerns us, the proportional coefficient
in eq. (32) is irrelevant. Since any other proportional
coefficient can be absorbed into a redefined νref,s, the
value of νref,s is actually also irrelevant when we only
care about the CMB component. The estimated syn-
chrotron spectral index βs is −3.1.

For the dust, the antenna-temperature function follows
a grey-body radiation,

Arawdust(ν) ∝
(

ν

νref,d

)βd+1
exp

(
νref,d
Td

)
− 1

exp
(
ν
Td

)
− 1

 , (33)

The dust reference frequency νref,d = 353 GHz is chosen
to be consistent with the one for the Planck 2015 dust
polarization map, but again its value is irrelevant when
we only care about the CMB component. The dust tem-
perature Td is fixed to 19.6 K [43]. The estimated dust
spectral index is βd = 1.59. We assume the emission laws
for synchrotron and dust are spatially independent.

We follow the framework described in Ref. [35, 43] to
calculate the foreground residuals. The idea is as follows.
Since we don’t exactly know what the emission laws are
followed by the synchrotron and the dust, the subtraction
of those two components from the signal is not ideal. As-
suming that the synchrotron and the dust emission laws
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ν/(GHz) 45 75 105 135 165 195 225 255 285 315 375 435 555 675 795

∆ν/(GHz) 15 15 15 15 15 15 15 15 15 15 15 15 195 195 195

θfwhm/(arcmin) 23.3 14.0 10.0 7.8 6.4 5.4 4.7 4.1 3.7 3.3 2.8 2.4 1.9 1.6 1.3

Pol. RJ
8.61 4.09 3.50 2.90 2.38 1.84 1.42 2.43 2.94 5.62 7.01 7.12 3.39 3.52 3.60

(µK · arcmin)

TABLE II. Specifications of the COrE mission obtained from Ref. [33]. fsky = 0.7. Here, ν denotes the central frequency of
each band, (not our friction parameter).

ν/(GHz) 40 90 150 220 280

∆ν/(GHz) 30% fractional bandpass

θfwhm/(arcmin) 11.0 5.0 3.0 2.0 1.5

Pol. RJ
(µK · arcmin)

2.9 1.2 0.86 1.6 1.6

TABLE III. Specifications of Stage-IV obtained and calculated from Ref. [35]. fsky = 0.5.

ν/ GHz ∆ν (GHz) θfwhm/(arcmin) Pol. RJ (µK · arcmin)

15 : 7665 15 96
The sensitivities of the 511 frequencies channels

are provided by [44].

TABLE IV. Specifications of PIXIE obtained from Ref. [34]. fsky = 0.7.

take the form of eq. (32) and eq. (33), our uncertain-
ties are now on the two spectral indices βs and βd, (Td
is fixed here). One first estimates the uncertainties on
the spectral indices βs and βd, and then infer the propa-
gated errors in the foreground subtraction. These errors
are identified as the foreground residuals. According to
[43], the uncertainties of the spectral indices are specified
by the matrix Σ, which is calculated as,(

Σ−1
)
ββ′

= −Tr
{[∂AT

∂β
N−1ACNA

TN−1
∂A

∂β′

− ∂AT

∂β
N−1

∂A

∂β′
]
× F̂

}
.

(34)

where CN = (ATN−1A)−1. Note that the nchan×nchan
matrix N here (to be distinguished from N`) is the
noise covariance at each pixel, whose diagonal element

is, Nνν = (12×nside2)
4π ×

(
∆Ωσ2

ν

)
. For three known com-

ponent template maps (i.e., scmb, ssync and sdust), the

ncomp × ncomp matrix F̂ in eq. (34) is,(
F̂
)
ij

=
∑
p

spi s
p
j , (35)

where i, j = cmb, sync or dust, and the superscript p
denotes the pixel location.

To calculate the matrix Σ, we need to have the syn-
chrotron and the dust polarization template maps (i.e.,

ssync and sdust), and a mask that specifies nside and
which pixels are included in the sum in eq. (35). We
don’t actually need a template map for CMB. That is
because Arawcmb does not depend on βs or βd, and the corre-
sponding CMB components do not contribute to the sum-
mation when we take the trace in eq (35). In this work,
we use the Planck-2nd-released component polarization
maps and polarization mask, and we degrade them to
nside = 128 resolution. Once the matrix Σ is obtained,
the foreground residuals can be computed as,

Cfg,res` =
∑
ββ′

∑
jj′

Σββ′κjj
′

ββ′C
jj′

` , (36)

where κjj
′

ββ′ is given by,

κjj
′

ββ′ = a0jβ a
0j′

β′ , (37)

and a0jβ is,

a0jβ =

[
CNA

T (N)−1
∂A

∂β

]0j
. (38)

Cjj
′

` ’s in (36) are the auto and cross power spectra of the
synchrotron and dust polarization maps.

We refer readers to [35, 43] for detailed discussions of
the above framework. In Fig. 7 we show results for the
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FIG. 7. COrE (top), Stage-IV (middle) and PIXIE (bot-
tom): The power spectra of (1) tensor B-mode polarization
with r = 0.01 in ΛCDM (solid green), (2) total B-mode (dash
magenta), (3) degraded instrumental noise (solid red), (4)
(total) foreground residual (solid blue), (5) total noise-like er-
ror (solid black), and (6) foreground signals (shown only on
top of the COrE panel, dotted for synchrotron-auto, dash for
dust-auto and dotted-dash for synchrotron-dust cross spec-
tra). Note the minimal ` for Stage-IV is just 20. And the
maximum ` for PIXIE is 200.

power spectra of the degraded instrumental noise, the
(total) foreground residual and the B-mode polarization
with our base fiducial model for the three future experi-
ments we considered. Different experiment specifications
lead to different degraded noises and foreground residu-
als.

2. Performance forecast of constraints on
tensor-mode MG parameters

In this subsection, we consider the following question:
how significant the deviations from GR in the tensor sec-
tor need to be, so that we can detect them with the
near-future CMB experiments? To answer this question,
we do a performance forecast using the Fisher matrix
formalism with the specifications of COrE, Stage-IV and
PIXIE listed in table II, III and IV.

In table V we list the base fiducial model used in our
Fisher matrix analysis. In this subsection, we only con-
sider the ΛCDM+r with the standard inflation consis-
tency relation as our base model, where ΛCDM stands
for the six standard cosmological parameters. The test
of the standard vs. the MG consistency relation will be
in the next subsection. On top of the base model, we
consider four extended models, namely, ΛCDM+r+ν0,
ΛCDM+r+ε0, ΛCDM+r+εl, and ΛCDM+r+εh. When
we consider the ΛCDM+r+ν0 model, for example, we
fix the other MG parameters to their GR values. The six
standard ΛCDM parameters are then marginalized over
to give 2-D confidence-region plots in the r + ν0. We
then derive the minimum detectable values of the tensor-
mode MG parameters for those future experiments. In
this work, the minimum detectable value xmin of an MG
parameter x is conservatively defined as the one when
the x-direction half width of the 3-σ likelihood ellipse in
the marginalized r-x space equals xmin itself (or −xmin
if x is negative). We will repeat and do the same for
the other extended models. These minimum detectable
values should depend on the base fiducial model, espe-
cially on the fiducial value of r. We do not consider the
constraints on MG parameters simultaneously since the
near-future CMB experiments all have limited constrain-
ing power. Moreover, we want to explore the individual
minimum detectable value for each MG parameter so we
can estimate which modification to GR will be most likely
detectable with these experiments.

In Fig. 8 (for friction) and Fig. 9 (for dispersion re-
lation) we show the results of the performance forecast.
Take the COrE specification for example, we can infer
from those plots that the minimum detectable values of
ν0, |ε0|, εl, and εh are 0.035 (−0.11 for negative ν0),
∼ 0.05, 0.035 and 0.02 respectively. These minimum de-
tectable values tell us that the COrE mission can detect
deviations from GR if (1) the additional friction is at
least 3.5% larger than that in GR, (2) or the friction is
suppressed and at least 11% less than that in GR, (3) the
speed of gravitational waves is at least by ∼ 5% different
from the speed of light, (4) gravitons process a mass of
at least 7.8 × 10−33eV , and (5) the small-scale disper-
sion relation is modified with a critical scale of 1.4 kpc.
The critical scale in the last case is defined as the inverse
of k0/

√
εh, which means the dispersion relation at scales

smaller than this will be modified. In particular, the
ΛCDM+r+εl model corresponds to a massive graviton
model. With r = 0.01 and the standard inflation con-
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Base fiducial parameters r ns τ Ωbh
2 Ωch

2 H0 As

Values 0.01 0.9645 0.079 0.02225 0.1198 67.27 2.2065× 10−9

TABLE V. The Base fiducial model (ΛCDM +r) used in the Fisher matrix analysis. We extend it to four MG models (i.e.
ΛCDM + r+ 1 MG parameter).
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FIG. 8. Results of constraints on the friction term for COrE (left), Stage-IV (middle) and PIXIE (right) specifications. We
show the 1-σ, 2-σ and 3-σ the marginalized confidence-region contours in the r-ν0 space for the ΛCDM+r+ν0 model. We set
rfid = 0.01. All top panels are for positive ν0 and bottom panels for negative. These figures show the minimum detectable
values of ν0, which can be converted to a minimally required percentage difference in the strength of friction.

sistency relation, the minimum detectable graviton mass
is 7.4 × 10−33eV for COrE. This is important, because,
as we mentioned earlier, if the massive gravity models
are responsible for the late-time cosmic acceleration, the
graviton mass will be at the order of 10−33eV .

The minimum detectable graviton mass depends on
the value of n we set in eq. (7). We set n = 4 for
the convenience in the MCMC analysis with the current
data. We can choose a different n for future data. Choos-
ing a different n will give us a different value of εl,min,
and consequently a different minimum detectable gravi-
ton mass. This is because changing the value of n effec-
tively sets a different uniform prior. But this change does
not give a very different result. For example, we later set
n = 1 and obtain a minimum detectable graviton mass
of 8.5× 10−33eV .

We list all the minimum detectable values and their
physical meanings in table VI for the three near-future

experiments. We found that those three near-future ex-
periments are optimistic on the constraints of the tensor-
mode MG parameters. For rfid = 0.01, the additional
friction only needs to be different from that in GR by
3.5% ∼ 4.5% to allow detection. If the friction is sup-
pressed (negative ν0), it is required to be 11 ∼ 50%
smaller than that in GR for detection. For the speed
of gravitational waves, it only requires a difference of
4 ∼ 15%. All experiments can detect a graviton mass
with a magnitude order of 10−33eV , comparable to the
one in the massive gravity theories that give late-time
cosmic acceleration.

At the end of this subsection, it is worth clarifying
why we can constrain εh in the presence of lensing. It is
true that εh only changes tensor-induced B-mode power
spectrum at small scales, where it is generally considered
to be contaminated by the signal from lensing. But if
the tensor-to-scalar ratio r is not completely negligible,
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FIG. 9. Results of constraints on the dispersion relation for the COrE (left), Stage-IV (middle) and PIXIE (right) specifications.
The first two rows: the ΛCDM+r+ε0 model. Take COrE for example, a value of |ε0,min| = 0.05 means COrE can observe
a speed fractional deviation that is 5% different from the speed of light. Third row: the ΛCDM+r+εl model. A value of
εl,min = 0.035 (with n=4) means the minimum detectable mass of graviton will (at best) be 7.8 × 10−33eV . Fourth row: the
ΛCDM+r+εh model. This is a high k/a deviation model, εh,min = 0.02 means the dispersion is not changed for physical
wavenumber smaller than k0/

√
εh = 700 Mpc−1. Similar interpretations apply to the other two experiments.

the tensor-mode contributions are important for B-mode
polarization at ` <∼ 150. Larger εh leads to smaller ` onset
of the damping effects on the B-mode power spectrum,
see Fig. 4. The values of the minimum detectable εh
shown in table VI, VII and VIII are large compared to
the ones shown in Fig. 4, which are large enough to
suppress the B-mode power spectrum within ` <∼ 150. If

the foreground signals can be truly subtracted down to
the levels shown in Fig. 7, we will be able to see this
suppressing effect due to the MG parameter εh.
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ΛCDM+r+ min. det. physical effects associated with a detection at the 3-σ level

ν0 0.035 an enhanced friction that is 3.5% (or more) larger than that in GR can be detected

negative ν0 − 0.11 a suppressed friction of at least 11% smaller than the GR value can be detected

|ε0| 0.04 a speed deviation from the speed of light of ∼ 4% or larger can be detected

εl 0.035 a graviton mass > 7.8× 10−33eV can be detected

εh 0.02
the small-scale dispersion relation need to be modified with a critical wavenumber (k/a)critical <∼
700 Mpc−1 (or critical scale >∼ 1.4 kpc) for detection.

TABLE VI. Results for the COrE specifications of the minimum detectable values of the tensor mode modified gravity param-
eters and their physical meaning with r = 0.01.

ΛCDM+r+ min. det. physical effects associated with a detection at the 3-σ level

ν0 0.04 an enhanced friction that is 4% (or more) larger than that in GR can be detected

negative ν0 − 0.3 a suppressed friction of at least 30% smaller than the GR value can be detected

|ε0| ∼ 0.05 a speed deviation from the speed of light of ∼ 5% or larger can be detected

εl 0.038 a graviton mass > 9.7× 10−33eV can be detected

εh 0.023
the small-scale dispersion relation need to be modified with a critical wavenumber (k/a)critical <∼
660 Mpc−1 (or critical scale >∼ 1.5 kpc) for detection.

TABLE VII. Results for the Stage-IV specifications, similar to TableVI.

ΛCDM+r+ min. det. physical effects associated with a detection at the 3-σ level

ν0 0.045 an enhanced friction that is 4.5% (or more) larger than that in GR can be detected

negative ν0 − 0.5 a suppressed friction of at least 50% smaller than the GR value can be detected

|ε0| 0.15 & 0.05 a speed deviation from the speed of light 15% faster, or 5% slower can be detected

εl 0.035 a graviton mass > 7.8× 10−33eV can be detected

εh 0.07
the small-scale dispersion relation need to be modified with a critical wavenumber (k/a)critical <∼
380 Mpc−1 (or critical scale >∼ 2.6 kpc) for detection.

TABLE VIII. Results for the PIXIE specifications, similar to TableVI.

3. Testing the standard consistency relation vs.
the MG consistency relation

Another question is: can we test the standard consis-
tency relation (19) vs. the MG consistency relation (21)?
We find that in some situations we are able to do so, and
we show it with the method of performance forecast de-
scribed in the previous subsection. We assume in this
work that the friction parameter ν0 is constant through-
out the history of the universe.

We first extend the model from ΛCDM+r+ν0 to
ΛCDM+r+ν0+nT , where nT is the tensor spectral in-
dex. We assume the true value of ν0 is much larger
than r. Here we set rfid = 0.01 and ν0,fid = 0.2. The
small term −r/8 can be ignored in the MG consistency
relation (21), so it becomes nT ' −3ν0 = −0.6. On
the other hand, the standard consistency relation gives
nT = −r/8 = −0.000125. Therefore, the two consistency
relations can be very different: while |nT | can be large
for the MG consistency relation, it must be small for the

standard one (given the fact that r < 0.1 from current
observational upper bound). To experimentally test the
two consistency relations, we want to see whether future
data are consistent with only one of them. In our perfor-
mance forecast, we set the fiducial model to be consistent
with the MG consistency relation. At the end, we will
marginalize over the six standard ΛCDM parameters and
r to get a 2-D confidence-region plot in the nT vs. ν0 pa-
rameter space. Once we obtain such a 2-D plot, we will
be able to see whether the uncertainty is small enough
to rule out the standard consistency relation.

We take the COrE as an example to examine the above
question. In the left panel of Fig. 10, the co-center of the
three ellipses shows the fiducial model in the nT vs. ν0
parameter space, and the three ellipses are the 1-σ, 2-σ
and 3-σ marginalized likelihood contours. The ‘straight
line’ shows the standard consistency relation nT = −r/8
with 3-σ uncertainty of r. This ‘straight line’ is actually
a green shaped band. But its off-set from 0 and its un-
certainty are too small compared to the vertical scale of
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FIG. 10. Demonstration of how we can distinguish the standard and the MG consistency relations. We assume that the fiducial
model satisfies the MG consistency relation with ν0 = 0.2 on the left and ν0 = 0.11 on the right. Both panels have a fiducial
value of r = 0.01. For the left panel, the MG consistency relation predicts nT ' −0.6, which is much larger than the one
predicted in GR nT = −0.00125 with the standard consistency relation. There is a shaped band in the figure that shows the
range of nT according to the standard consistency relation nT = −r/8. That shaped band is so narrow that it looks like a
‘straight line’ in the ν0 vs. nT parameter space. The side box shows the shaped band with a 3-σ uncertainty of r in a more
suitable ranges of axis. We can see that the three iso-likehood contours do not intersect with the shaped band. Therefore, such
simulated data favor the MG consistency relation over the standard consistency relation. However, the true value of ν0 needs
to be large enough in order to distinguish the two consistency relations observationally.. The right panel shows the minimum
value of ν0 that allows us to distinguish the two consistency relations for COrE, which is ν0,min = 0.11.

the graph, so it looks like a straight line. We zoom in and
show this shaped band in a side box at the top-right cor-
ner. The ellipses do not intersect with the shaped band,
which means the observation is not consistent with the
standard consistency relation at a 3-σ confidence level.
In such case, we can verify the MG consistency relation
and rule out the standard one.

The next question is: how large ν0 needs to be for us
to experimentally distinguish the two consistency rela-
tions? If the fiducial value of ν0 is small, nT will also be
small even if it follows the MG consistency relation. The
ellipses will then move upwards in the r vs. ν0 plane, and
intersect with the shaped band. In that case the data will
be consistent with both consistency relations, and we will
not be able the tell which one is correct. The minimum
value of ν0 (for COrE) that allows us to observationally
distinguish the two consistency relations (at a 3-σ C.L.)
is demonstrated in the right panel of Fig. 10. There we
set the fiducial value of ν0 to 0.11. The 3-σ likelihood
contour marginally intersects with the shaped band. So
if ν0 > 0.11, the ellipses will be below the shaped band
(like the case in the left panel), and if ν0 < 0.11 they
intersect. This minimum value of ν0 is still very large
compared to r, that is, ν0,min = 0.11� r = 0.01.

For the case of negative ν0, the discussion will be sim-
ilar as the above. But since the negative ν0 is more dif-
ficult to observe (see section VI 2), |ν0| needs to be very
large for us to distinguish the standard and the MG con-
sistency relation.

The conclusion of this subsection is: Yes, in some sit-

uations, we can observationally distinguish the standard
and the MG consistency relations; The friction parameter
|ν0| needs to be much larger than the tensor-scalar-ratio
r in order for us to experimentally disentangle the stan-
dard and the MG consistency relations with the next-
generation CMB experiments.

VII. SUMMARY

We propose a general form of tensor-mode propaga-
tion equation, which can be applied to a wide range of
modified gravity theories. Based on this equation, we
write four physically-motivated parametrization schemes
which include the changes to the friction, the propaga-
tion speed, as well as the dispersion relation at large and
small scales. Some similar modifications have been in-
dividually considered in the literature [12–14], but we
combine them in a different approach and extend them
to cover more possible cases. We also derive a consistency
relation for the MG models. We then perform parameter
constraints and forecasts.

Before investigating the current and future data con-
straints, we study the parametrized tensor-mode pertur-
bations during inflation and derive a few useful equations
in the modified gravity case. We obtain an MG inflation
consistency relation nT = −3ν0 − r/8. Besides relating
the tensor spectral index nT to the tensor-to-scalar ratio
r as in the standard inflation consistency relation, the
MG inflation consistency relation also relates nT to the
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friction parameter ν0. If the friction parameter is con-
stant throughout the history of the universe (including
inflation and the period after it), we can use the CMB
B-mode polarization data to test the standard and the
MG consistency relations. If the friction parameter is
finite but changes its value after inflation, then at least
the standard inflation consistency relation can be falsified
due to the additional contribution from ν0 to the value
of nT .

To see the MG effects on the B-mode polarization
and to constrain the MG parameters from the current
observations, we modify CAMB to implement the our
parametrization and apply a Monte-Carlo Markov-Chain
analysis using CosmoMC. We study the effects of the
four parameters individually on the B-mode polarization
power spectrum. Then using the currently available data
from the Planck-BICEP2 joint analysis and the Planck-
2nd-released low-` polarization, we set exclusion regions
on the MG parameters.

Then we calculate performance forecasts on constrain-
ing MG parameters for the next-generation CMB exper-
iments. We use the specifications of the near-future mis-
sions COrE, Stage-IV and PIXIE. We perform calcula-
tions of the corresponding foreground residuals and the
degraded noise for the analysis. For a fiducial cosmo-
logical model with a tensor-to-scalar ratio r = 0.01, we
determine the 3-σ confidence contours in the r + each
MG parameter spaces. We find that (i) an additional
relative friction of 3.5 ∼ 4.5% compared to its GR value
will be detected at 3-σ level by these experiments (the
details are given in our tables VI, VII, and VIII); (ii) a
suppressed friction will be harder to constrain (−11% to
−50% is required for a detection); (iii) the speed of grav-
itational waves with a relative difference of 5 ∼ 15% or
larger compared to the speed of light will be detected;
(iv) the minimum detectable graviton mass is around

7.8 ∼ 9.2 × 10−33eV for these experiments. This is im-
portant because this minimum detectable graviton mass
is at a magnitude order of 10−33eV , which is the same as
the one in the massive gravity theories that can produce
the late-time cosmic acceleration; (v) for the small-scale
deviation, the dispersion relation needs to be modified
with a critical wavenumber (k/a)critical <∼ 380 ∼ 700
Mpc−1 (or the critical scale need to be >∼ 1.4 ∼ 2.6 kpc)
for detection.

Finally, with the performance forecast, we explore
the possibility for the next-generation CMB experiments
to distinguish the MG inflation consistency relationship
(nT = −3ν0 − r/8) from the standard inflation consis-
tency relation (nT = −r/8). We show that in order to
disentangle the two consistency relations, the MG fric-
tion parameter |ν0| needs to be much larger than the
tensor-to-scalar ratio r.

In sum, we find that the near-future experiments prob-
ing tensor-induced B-modes such as the COrE mission
[33], PRISM mission [46], POLARBEAR2 [47], CMB
Stage-IV [41] and PIXIE [34] will open a new promising
window on testing gravity theories at cosmological scales.

ACKNOWLEDGMENTS

We would like to thank J. Dossett and E. Linder for
useful comments, J. Errard for providing suggestions on
the steps to calculate the foreground residuals, H. Eriksen
for providing a resolution upgraded version of the planck
synchrotron polarization map, A. Kogut for sending us
information on the sensitivity of PIXIE for each channel,
and A. Lewis for pointing us to useful references. MI
acknowledges that this material is based upon work sup-
ported in part by NSF under grant AST-1517768 and an
award from the John Templeton Foundation.

[1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Phys. Rep. 513, 1 (2012).

[2] K. Koyama, Reports on Progress in Physics 79, 046902
(2016).

[3] A. Joyce, B. Jain, J. Khoury, and M. Trodden,
Phys. Rep. 568, 1 (2015).

[4] A. Joyce, L. Lombriser, and F. Schmidt, Annual Review
of Nuclear and Particle Science 66, 95 (2016).

[5] E. Berti et al., Classical and Quantum Gravity 32,
243001 (2015).

[6] T. Baker, P. G. Ferreira, and C. Skordis, Phys. Rev. D
87, 024015 (2013).

[7] S. Dodelson, K. Heitmann, C. Hirata, K. Honscheid,
A. Roodman, U. Seljak, A. Slosar, and M. Trodden,
ArXiv e-prints (2016), arXiv:1604.07626.

[8] W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007).
[9] A. Hojjati, L. Pogosian, and G.-B. Zhao, Journal of Cos-

mology and Astroparticle Physics 8, 005 (2011).

[10] J. N. Dossett, M. Ishak, and J. Moldenhauer, Phys.
Rev. D 84, 123001 (2011), http://www.utdallas.edu/

~jnd041000/isitgr/.
[11] I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz,

Physical Review Letters 113, 191101 (2014).
[12] V. Pettorino and L. Amendola, Physics Letters B 742,

353 (2015).
[13] S. Dubovsky, R. Flauger, A. Starobinsky, and

I. Tkachev, Phys. Rev. D 81, 023523 (2010).
[14] M. Raveri, C. Baccigalupi, A. Silvestri, and S.-Y. Zhou,

Phys. Rev. D 91, 061501 (2015).
[15] L. Amendola, G. Ballesteros, and V. Pettorino, Phys.

Rev. D 90, 043009 (2014).
[16] E. V. Linder, G. Sengör, and S. Watson, Journal of Cos-

mology and Astroparticle Physics 5, 053 (2016).
[17] J. N. Dossett and M. Ishak, Phys. Rev. D 88, 103008

(2013), arXiv:1311.0726.
[18] M. J. Mortonson and U. Seljak, J. Cosmology & Astro-

Part. Phys. 10, 035 (2014).

http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1088/0034-4885/79/4/046902
http://dx.doi.org/10.1088/0034-4885/79/4/046902
http://dx.doi.org/10.1016/j.physrep.2014.12.002
http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1103/PhysRevD.87.024015
http://dx.doi.org/10.1103/PhysRevD.87.024015
http://arxiv.org/abs/1604.07626
http://dx.doi.org/10.1103/PhysRevD.76.104043
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://dx.doi.org/10.1103/PhysRevD.84.123001
http://dx.doi.org/10.1103/PhysRevD.84.123001
http://www.utdallas.edu/~jnd041000/isitgr/
http://www.utdallas.edu/~jnd041000/isitgr/
http://dx.doi.org/10.1103/PhysRevLett.113.191101
http://dx.doi.org/10.1016/j.physletb.2015.02.007
http://dx.doi.org/10.1016/j.physletb.2015.02.007
http://dx.doi.org/10.1103/PhysRevD.81.023523
http://dx.doi.org/10.1103/PhysRevD.91.061501
http://dx.doi.org/10.1103/PhysRevD.90.043009
http://dx.doi.org/10.1103/PhysRevD.90.043009
http://dx.doi.org/10.1088/1475-7516/2016/05/053
http://dx.doi.org/10.1088/1475-7516/2016/05/053
http://dx.doi.org/10.1103/PhysRevD.88.103008
http://dx.doi.org/10.1103/PhysRevD.88.103008
http://arxiv.org/abs/1311.0726
http://dx.doi.org/10.1088/1475-7516/2014/10/035
http://dx.doi.org/10.1088/1475-7516/2014/10/035


20

[19] Planck Collaboration, P. A. R. Ade, and et al., Astron-
omy & Astrophysics 594, A13 (2016).

[20] S. Weinberg, Cosmology (Oxford: Oxford UP, 2008).
[21] S. Dodelson, Modern Cosmology (San Diego, CA: Aca-

demic, 2003).
[22] A. Wang, Phys. Rev. D 82, 124063 (2010).
[23] T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003

(2004).
[24] T. Kobayashi, M. Yamaguchi, and J. Yokoyama,

Progress of Theoretical Physics 126, 511 (2011).
[25] J.-C. Hwang, Astrophys. J. 375, 443 (1991).
[26] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.

Rev. Lett. 114, 211101 (2015).
[27] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi,

Journal of Cosmology and Astroparticle Physics 2, 018
(2015).

[28] S. Tsujikawa, Journal of Cosmology and Astroparticle
Physics 4, 043 (2015).

[29] L. Xu, Phys. Rev. D 91, 103520 (2015).
[30] C. Skordis, Phys. Rev. D 74, 103513 (2006).
[31] G. D. Moore and A. E. Nelson, Journal of High Energy

Physics 2001, 023 (2001).
[32] C. de Rham, J. Tate Deskins, A. J. Tolley, and S.-Y.

Zhou, ArXiv e-prints (2016), arXiv:1606.08462.
[33] The COrE Collaboration et al., ArXiv e-prints (2011),

arXiv:1102.2181.
[34] A. Kogut et al., Journal of Cosmology and Astroparticle

Physics 7, 025 (2011).

[35] J. Errard, S. M. Feeney, H. V. Peiris, and A. H. Jaffe,
Journal of Cosmology and Astroparticle Physics 3, 052
(2016).

[36] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J.
538, 473 (2000).

[37] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[38] J. N. Dossett and M. Ishak, Phys. Rev. D 86, 103008

(2012).
[39] P. A. R. Ade et al., Physical Review Letters 112, 241101

(2014).
[40] C. de Rham, Living Reviews in Relativity 17, 7 (2014).
[41] W. L. K. Wu, J. Errard, C. Dvorkin, C. L. Kuo, A. T.

Lee, P. McDonald, A. Slosar, and O. Zahn, Astrophys.
J. 788, 138 (2014).

[42] A. Bonaldi, L. Bedini, E. Salerno, C. Baccigalupi, and
G. de Zotti, Mon. Not. R. Astron. Soc. 373, 271 (2006).

[43] J. Errard, F. Stivoli, and R. Stompor, Phys. Rev. D 84,
069907 (2011).

[44] Private communication with Dr. Alan Kogut.
[45] Planck Collaboration, R. Adam, and et al., Astronomy

& Astrophysics 594, A10 (2016).
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