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We derive corrections to atomic energy levels from disformal couplings in Galileon theories.
Through Bayesian inference, we constrain the cut-off radii and Galileon scale via these corrections.
To connect different atomic systems, we assume the various cut-off radii related by a 1-parameter
family of solutions. This introduces a new parameter « which is also constrained. In this model,
we predict shifts to muonic helium of 6 E s = 1.9779:28 meV and 6E e = 1.69772} meV as well

as for true muonium, d Eryr = 0.061‘8‘62 meV.

I. INTRODUCTION

Measurements in muon physics[1-4] have shown dis-
crepancies with theoretical calculations. This “muon
problem” could signal lepton universality violation from
beyond standard model (BSM) physics. A stronger muon
coupling to new physics is sensible from effective field the-
ory (EFT). Suppose the EFT has a cutoff scale A. Then,
observables should scale as powers of m;/A. This is anal-
ogous to the enhancement of weak interactions in muonic
systems [5].

Disformal scalar couplings can arise in Galileon theo-
ries currently being investigated in modified gravity sce-
narios [6, 7]. The disformal coupling to matter allow for
quantum loop corrections to atomic energy levels. This
opens up the tantalizing possibility gravitational effects
resolve the radii discrepancies [2, 4]. It is necessary to
include chameleon interactions to avoid constraints from
astrophysical and colliders [8]. These interactions, as
will be discussed below, introduce a mechanism for reg-
ularizing the divergence and explaining the origin of the
Galileon radius.

Due to the highly-singular nature of the disformal
scalar interaction, a particle-dependent cut-off radius r;
for the Galileon interaction had to be introduced to
render the 2s — 2p Lamb shift finite. Brax and Bur-
rage assumed r; was equal to the particle charge radius

(r2,), [8], but only considered bound states with nu-

clei. In [9], this assumption was applied to purely leptonic
bound states (e.g. eTe™, e"u™). The leptonic r; consis-
tent with the muonic hydrogen discrepancy was found to
be experimentally ruled out. Therefore r; = /(r2,), is
inconsistent with data.

Removing this constraint, the relation between r; of
different particles is must be specified some other way.
The nonperturbative nature of the Galileon field makes
computing r; from first principles difficult. In this work,
we instead introduce a phenomenological 1-parameter re-
lationship between r; of different particles. In [9], it was
seen that using the Lamb shift of multiple atoms is unable
to break the degeneracy between r; and M in parame-
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ter space. To resolve this issue we compute the Galileon
correction to the 1s Lamb shift, 1s — 2s interval, and
the circular transitions between states n < 5. These new
constraints are found to partially break the degeneracy
in regions of parameter space where sufficiently strong
experimental bounds exist.

We begin in Sec. IT with a short review of how dis-
formal couplings arise and what the leading order cor-
rections to the transitions are found. Sec. III is devoted
to introducing and motivating the model for r; used in
this paper. Following this is a short discussion of the
transitions used in our study in Sec. IV. In Sec. V are
found the results from considering all the experimental
values in a Bayesian analysis. Using the results, Sec. VI
presents prediction for the Galileon correction to muonic
helium. We conclude in VII with a short discussion of
future work.

II. CORRECTIONS FROM GALILEONS

Bekenstein has shown that the most general metric
formed from only g,, and a scalar field ¢ respecting
causality and weak equivalence is [10]:

g;w = A(¢7X)g;w + B(¢7X)ap¢au¢» (1)

where X = 3,,0,00,¢. The first term leads to con-
formal scalars, whose couplings to matter are heavily
constrained by various fifth-force experiments. For us,
only the second term, which yields the disformal cou-
pling, matters. This Lagrangian interaction is
Law = 28 g, 00,01y, &)
where T%" is the energy-momentum tensor of matter
given in the Jordan frame.
The leading disformal coupling in nonrelativistic sys-
tems is a one-loop quantum effect that results in a cor-
rection to the energy-level of an atomic system given

by [7, 11, 12]:
3mimj
2T (R
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where m; > m; are the masses of the constituent par-
ticles and M is the Galileon coupling scale.
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From this we can derive the correction to each energy
level. For the n = 1, 2 states, the correction diverges like
1/r* and therefore must be cut-off at some radius for each
mass m;, r;. For the n = 3, the correction has a milder
singularity of log(r). For states n > 4, the correction is
finite in the limit of » — 0, and therefore these higher
transitions can give limits on M that are less dependent
on 7.

Our results for the corrections to the transition ener-
gies are listed in in Tab. I. We note that these are the
exact relations obtained from using the full hydrogenic
wave functions, in contrast to previous works[7-9]. Using
the full wave functions was found to be necessary when
re-deriving the 2s — 2p Lamb shift correction. There, the
next-to-leading order term in the 2s state is larger than
the leading order 2p term, and therefore the energy cor-
rection used in [7-9] is inconsistent. Due to the small size
of these corrections in comparison to the leading-order 2s
term, previous results are unaffected except for very large
T5-

III. PARAMETERIZING WITH rqg

Asseen in [9], the combination of multiple bound states
can restrict the (r;, M) parameter space if the relation-
ship between the Galileon radii is known. The nonper-
turbative nature of the Galileon field with chameleon
traits makes computing r; from first principles at least
as difficult as computing the charge radii [13, 14], and
requires choosing a particular chameleon field interaction
which introduces model-dependence. For this work, we
instead develop a phenomenological relationship between
r; of different particles motivated by general features of
chameleon models and field distributions.

Following [9], we take the view that the Galileon radii
should be interpreted as other radii, as an expectation
value of an underlying distribution. Formally the charge
(where we mean charge in the general sense, e.g. elec-
tric charge, weak interaction, matter density) radius of a
particle is defined via the associated form factor,

Gi(¢?) :/dgxeiq‘mp(sc)
PRy
=/d3x (1+iq-w+(q;)+--~>p(w)
L o, 2

:Qi,tot_6|q‘ (re) +---, (4)
where G; is the form factor, p(x) is the charge density,
and Qo is the total charge of the particle. The standard
definition of (r?) is then

dG;
dq2 q2=0’

() =r? = —6 )

By this definition, we see that r; is related to a Galileon
density pg(x) which measures the spatial distribution of

matter coupling to the Galileons,

r? = /drd9d¢sin(9)r4p(;(r). (6)

In order to produce a viable phenomenological model
of r?, we therefore need an approximation for pgis(r).
To do this, we first digress to discuss chameleon mod-
els. Chameleon fields are scalar fields with density de-
pendent masses. In cosmology and astrophysics, this
feature is used avoid constraints on their production
in the early universe and star, while allowing them
to be a dark energy candidate. These fields are fully
characterized by their mass and coupling constants.
One example of chameleons is the large curvature f(R)
model [15, 16], which have a known function m, (pm,) =

My 0 (pm/po)(nJrQ)/2 where m,, is the Galileon mass, pg
is the matter density of the universe today, and n is a
model dependent positive index.

From this example, it is obvious to understand why
stellar constraints can be avoided. In vacuum, m, is
nearly massless (present constraints are ~ 1073° eV). In
the interior of a star, the matter density p,, ~ 10%°py,
implying that m, becomes large and suppresses the in-
teraction. The chameleon screening will have a more pro-
nounced effect in leptons and nuclei where the density is
even higher. This should regularize the divergence in en-
ergy levels, rendering them finite, and justify the physical
nature of 772

With these properties in mind, we can propose a gross
model for the Galileon radii. Empirically, the density
of nuclei A > 20 is found to saturate at p,, v ~ 100
MeV /fm3. Neglecting shell effects, the matter radii can
be related in the liquid drop model by[17]

Py = (7)
gﬂ"”

implying 74 o A3. For A < 20, the density isn’t satu-
rated. We can estimate the density of the proton using its
charge radius to be pp, , ~ 300 MeV /fm3. Conversely, if
we estimate the proton radius from the saturation den-
sity, we obtain rg = 1.2 fm which is off by a factor of
1.4.

If we can apply the liquid drop model to the Galileon
distribution, the chameleon screening effects should be
the same and model-independent for all particles and we
would obtain

CGpm,N
pdis(r) = B

X O(ra—m) (8)
where 14 = A%ro, and C¢ is the correction factor from
the chameleon interaction. If we modify the standard
definition of A to be A = m4/m,, we can extend this
definition to leptons as well. With this, we can ana-
lytically evaluate Eq. 11 to obtain r; = A3rg where

rg =
sidered a perturbation from the uniform density model,

\/g Cgro. A more general model, which can be con-



TABLE L. §E,, = kin (%) Fo (%)) = —sargl, @ = r;/a,where a = (Zam,)™! is the Bohr radius of the system, m, is the reduced

T3 M8Ba7

mass, and we have defined a function,where Ei(z) is the exponential integral function.

1s Lamb —55kr e™2®(3 — 2z 4 22% — 42%) — 82" Ei (—2z)

1s-2s skt 8e 2 (3 — 2z + 227 — 42®) — e (3 — ba + 42” — 42®) — 42" [16Ei(—27) + Bi(—w)]
2s-2p Lamb 5057 e (6 — 10z + Tz* — 72*) — 72*Fi (—x)

2p-1s 5901 2'e7?*(3 — 2z + 22 — 42%) — 2’ " (1 — z) — 2" [2"Ei(—2z) — Ei(—x)]

3d-2p — s e(=3 + 5z — 422 + 42°) + 4z* [Ei(fx) ~ 2 Fi (fgx)}

4£:3d — e e 3 (2+x) + 577Ei (- 22)

Bg-Af D e 3 (24 1) — are”  (3'5° + 150z + 302° + 4a%)

is where the density now depends on radius

n
pais(r) = ﬁ {1 + (;24) ] X O(ra—r). 9)
The power n in this model is determined by three things:
the scaling of p,, for a particle from the standard model
interactions, A to account for differences in particles, and
the decoupling due to the model-dependent my (p,,). On
general grounds, the competition between the first two
mechanisms and the last will drive |n| to smaller val-
ues and therefore a more uniform Galileon charge dis-
tribution. Since m, becomes very large, this decoupling
shouldn’t effect the matter distribution in the particle,
similar to how the weak interaction has a negligible ef-
fect on nuclear structure. In this model, the parameters
ra = f(A)ro, 7y = g(A)rg are two, as yet undefined func-
tions affected only by particle species. Integrating, we
find in this model that

33+ [(%)” +1))

S 54 5)(n+3 [(%)n+1})

FA? 5. (10)

Assuming that n is small and that f(A4), g(A) are slowly
varying functions of A, the A dependence of the numer-
ator and denominator will be weak and tend to cancel.
Then, we can absorb the numerical factors and 7y into
rg and obtain r; &~ f(A)rg. In this example, we see
that essentially any function f(A) can be specified for
the relationship between radii and mass.

Motivated by these toy models, we propose a phe-
nomenological 1-parameter family of relations between

the Galileon radii
m; *
i = , 11
' (m,,) e a

where m,, is the proton mass, r¢ = r, is the Galileon
radius for the proton (which is unrelated to the charge
radius, and to be determined), and « is a free parameter
that will be fit by the data that relates different radii.
With Eq. 11, corrections to transition energies from any
bound state are determined by (rg, M, «).

This choice of parameterization can be further mo-
tivated by comparison to the charge radii. In addi-
tion to the liquid-drop model discussed above, power-
law relations like Eq. 11 have found wide application.
Empirically fitting the r4 for large elements, the rela-
tion 74 = A%294()y_ is found to better account for the
data [18]. In relating isotopic chains, R4 = (A/Ag)Y° Ry
has been found to work well [19, 20]. Accounting for the
the finite surface thickness of nuclei, the charge radii has
been estimated using [21]

RO = (’I"() + "1 + T2 )A1/3, (12)

A2/3 T A4/3

where a strong anti-correlation between r; and ro de-
crease the violation of the leading order scaling with A.
With only the u~p and pu~ D results showing discrepan-
cies, we believe that the model of Eq. 11 balances well
the model-dependence of using a more complex relation
(with more free parameters) with the limited number of
data points showing discrepancies.

While v = 1/3,1/5, and 0.294(1) are all limiting cases
of our model, there is a final case worth considering, that
of @« = 0. This corresponds to limit where all particles
have the same rg. For this simplest case, we plot an
example set of constraints in Fig. 1.

IV. TRANSITIONS

Previous work on disformal scalars have focused al-
most exclusively on the discrepancies found in the 2s—2p
Lamb shifts in muonic hydrogen and muonic deuterium.
In order to break the degeneracy between rg and M, it is
useful to study the corrections to other atomic transitions
where there isn’t an existing discrepancy. We discuss the
various experimental values that are used in our analy-
sis in this section. Throughout this work, we consider
the energy difference AE¢yp_theor Which is the difference
between the experimental and theoretical values.

The muonic hydrogen and muonic deuterium
discrepancies[2, 4] we use are discrepancy between
experimental values and theoretical calculations using



TABLE II. Difference between experiment and theory for 2s—
2p Lamb shift in bound systems considered in this work.

Atom AFEexp—theor|meV] Ref.
wD 0.438(59) [4]
uwop 0.329(47) 2]
e uT —2.3(9.6) x 1075 [23-26]
eet  4(695) x 1078 [27, 28]

TABLE III. Difference between experiment and theory for the
1s — 2s interval in leptonic systems considered in this work

Atom APFEexp—theor|meV] Ref.
e pt 2.3(4.1)x 1075 [29-32]
e”et 2.4(3.5)x 107°  [28, 33]

the CODATA values of the charge radii[22] and are
found in Tab. II. Along with these, we use the analo-
gous constraints for muonium (e~ p™) and positronium
(e"e')[23-28]. Since the Galileon correction is pro-
portional to the mass of the two particles in the atom,
leptonic system bounds are much weaker for oo = 0 since
Me, My, K My, mp. For a < 1, these limits move upward
and becoming more constraining. Leptonic systems then
rule out small or negative « for all values of rg, and M.
The muonium Lamb shift was only measured to 0.5%
in 1990, and a renewed experimental effort reducing
this to match the 0.02% theoretical uncertainty could
significantly improve limits on new physics. For positro-
nium, the Lamb shift is also limited by experimental
precision that is two orders of magnitude larger than the
theoretical values.

For muonium and positronium, it is also possible to use
the 1s — 2s interval to constrain the Galileon corrections.
The values adopted in this work are found in Tab. III.
While the 1s — 25 intervals are also measured in hydro-
gen and deuterium, we neglect them due to their use in
deriving the Rydberg constant and their theoretical un-
certainty associated with QCD. Compared to the 2s —2p
Lamb shifts, the 1s — 2s interval’s experimental errors
are only one order of magnitude larger than theory, so
smaller gains are possible without theory improvements.

We also apply constraints from heavy hydrogen-like
ions to restrict o > 1 since any limit in these systems
becomes even more restrictive. In the ions we investi-
gated, the 1s Lamb shift has been measured to the 1%
level or less. The results we utilize are found in Tab. IV.
The error in these results is dominated by experimental
error, which is two orders of magnitude larger than the
theoretical values, although on-going work may improve
these soon.

Higher Z muonic atoms have been studied extensively,
and their transitions can also be leveraged to constraint

TABLE IV. Difference between experiment and theory for the
1s Lamb shift in heavy hydrogen-like ions considered in this
work.

Atom  AFEexp—theor[€V] Ref.

e Pbt  15.4(22.0) [34]
e Au' 2.8(13.0) [34]
e~ Aut -3.2(8.0) [35]
e Ut -3.4(4.7) [36, 37]

re and M. We note that the potential of Eq. 3 isn’t
sensitive to spin, so the fine structure of the x-ray transi-
tions aren’t effected. It would be interesting to compute
Galileon corrections from the annihilation channel. This
would open up both the fine structure and precision hy-
perfine splitting measurements to study.

The most precisely measured transitions occur in $3Mg
and #§Si, and these results have a large influence on
the viable parameter space. In the limit of a — 0,
they rule out Galileon corrections to muonic hydrogen
and deuterium at a level far below those observed for
re < 5 x 10713 m for most (rg, M) and therefore drive
« to positive values and r¢g to larger values (with the as-
sociated M being driven lower). The large set of muonic
transitions used in this study are found in Tab. V.

For most of the muonic transitions, the error from ex-
periment and theory are roughly equally, and therefore
reducing either could greatly improve these limits. These
experiments were all done during the 1970s and 1980s,
therefore dramatic improvement in their measurement
are possible. On the theory side, 66% of the error is
from only two sources: electron screening and nuclear
polarization [51] which can also potentially be reduced.

To get a sense for the functional dependence of each
transition on rg, and M, in Fig. 1 we have plotted a few
example limits for the case & = 0. The kinks appearing in
the limits can be traced to the fact that the corrections in
Tab. I are positive-semidefinite and negative-semidefinite
in different regions of (rg, M) space. When 0 < o <
1, atoms with m; < m, see their limits move higher,
while for m; > m,, limits are weakened. In this situation
for example, the parameter space from uMg are reduced
while the positronium, Ps, start ruling out more space.
The tension between limits like this are responsible for
a good deal of parameter space being unacceptable. As
will be seen, insisting that the 4~ p and g~ D Lamb shifts
are consistent place strong bounds on «

V. ANALYSIS

We use the Bayesian inference tool MultiNest which
calculates the evidence and explores parameter spaces
with complex posteriors and pronounced degeneracies in
high dimensions [52-54]. In addition to computing the



TABLE V. Difference between experiment and theory for
muonic x-ray transitions considered in this work.

Element Transition AFexp—theor[eV] Ref.
2c 3o — 1s1/2  —3.8(1.6) [38]
Ile 2psss — ls1s  —1.8(7.2) [39]
patN 2p — 1s* —2(11) [40, 41]
natQ 2p — 15 1(22) [40]
MWMg  3dsjo —2p1s  0.7(1.1) 42, 43]
3ds/2 — 2p3s2  0.08(0.23) [44]
—0.2(0.8)  [42, 43]
11Si 3ds /s — 2p1/2 0.6(2.0) [42, 43]

—0.18(0.33)  [44]
—0.4(1.2)  [42, 43]

3d5/2 — 2p3/2

Afss2 —3ds2  0.10(82) [45]
4f7/2 — 3ds2 0.12(23) [45]
HP 3dsj2 —2p1j2  —17.7(7.6)  [42, 43
3ds/2 — 2p3)2 0.4(2.6) [42, 43]
30Ca  3dzj2 — 2p1/2 —10(8) [46, 47]
3d5/2 - 2p3/2 —3(6) [46, 47}
19°Rh 4fs5)0 — 3ds)» —3(28) [47, 48]
Af7/2 — 3ds 2 18(27) [47, 48]
8'Sn 4fs/e — 3ds2 —6(7) [46, 47]
4f7/2 — 3ds 2 —-3(9) [46, 47]
56 Ba 4fs/2 — 3ds)2 0(7) [46]
12(10) [49]
—4(9) [50]
4f7/2 — 3ds )2 —4(11) [46]
17(9) [49]
—12(9) [50]
5g7/2 — 4fs/2 1(8) [46]
5g9/2 — 4f7/2 10(6) [46]
55 Ce 4f5/2 — 3ds/2 1(10) [50]
4f7/2 — 3ds )2 6(10) (50]
8o Hg  5g7/2 — 4f5)2 —32(29) [48]
5g9/2 — 4f7/2 —39(29) [48]
§?3T1 597/2 - 4f5/2 —17(30) [48}
—3(10) [50]
5g9/2 — 4f7/2 —27(30) [48]
—4(10) [50]
—10(7) [46]
8'Pb g —Afs 1(15) [46, 47]
0(13) [47, 49]
1(10) [47, 50]
5g9/2 — 4f7/2 —9(7) [46, 47]
23(12) [47, 49]
—6(10) [47, 50]

2 Unresolved fine structure
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FIG. 1. Selected limits for M as a function of rg with

a = 0. The solid lines correspond to 1o lower bounds, while
the dashed lines are the mean values of the discrepancies in
muonic hydrogen and muonic deuterium.

evidence from the data, MultiNest derives the posterior
probability distribution functions (PDF) through appli-
cation of Bayes’ theorem. As constraints, we take all
the results in Tabs. II, IV, III, V. We assume that the
prior probability distribution function of each observable
is given by a Gaussian with its standard deviation given
by the uncertainty. We have taken uniform logarithmic
priors in M = [107°,10%] MeV and rg = [1071%,1071]
m and a uniform prior in o = [—3, 3].

While the full results of our calculation are found in
Fig. 2, the mean values and 1o credible intervals are
re = 3755 x 10713 m, M = 13%7® MeV, and o =
0.2179-22. The mean value of rg found corresponds to a
radius ~ 425 times larger than r, = 0.8758(77) x 10~1°
m. This large value of rg is the same order of magni-
tude as the muonic hydrogen Bohr radius, implying that
the orbitals themselves may be strongly modified. The
mean value of M is excluded by LHC and astrophysi-
cal constraints, but these can be avoided by introducing
chameleon interactions as stated above. Our result for
M represents a limit, albeit model-dependent, of M > 7
MeV at the 1o level.

From the marginal PDFs, we see that a degeneracy
exists between rg and M. In contrast to [9] though the
20 confidence region is finite and bounded. In contrast,
the value of « is restricted to a small range o =~ [0, 0.6]
because of heavy ions and leptonic systems. The peak
in a can be understood by considering the ratio of the
energy correction to the n < 3 transitions in two muonic
atoms. The ratio between two muonic systems m; > m;

18
5Ez ; 1—4o Zz 3
~ (2 Zi) (13)
(SEJ‘ mj Zj




log(M) = 1.1370:3]
]

log(rg) = —12.437938
T —
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log(re)
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FIG. 2. 1D and 2D marginal PDFs for log(M), log(rg), and « produced using the Galileon contributions from Tab. I to the
transitions found in Tabs. II, IV, III, V. M is in units of MeV and r¢ is in units of meters. Additionally plotted are the
predictions for the 2s — 2p Lamb shifts in p~ He®, p~ He?*, and g~ pt. In the 1D plots, the dashed lines correspond to the
mean, lo credible regions. In the 2D plots, the contour regions are the 1o and 20 credible regions.

Since increasing charge is related to increasing mass,
the smallness of « prevent the mass-dependent term
from dominating over the charge term except for very
neutron-rich atoms, generically implying massive atoms
have larger corrections. In contrast, in the case of two

isotopes, the charge term cancels. The ratio is then is

SE. s 1—4a

x| — . (14)
(SEj m;
Using this relation, we can see that for a > }1 heavier
isotopes will have smaller corrections than lighter ones,




and have larger corrections for a < i. If we insert the
results from p~ D and p~p into this relation, we see that
they prefer a value of a = 0.16, which is near the peak of
the 1D PDF of «. This indicates that the muonic Lamb
shifts dominate the determination of «.

VI. PREDICTIONS FOR HELIUM AND TRUE
MUONIUM

Using the PDFs, it is possible to make predictions
for the 2s — 2p Lamb shift in u~He® and p~ He* that
will soon be presented by the CREMA collaboration.
In Fig. 2, we present the PDFs for these two mea-
surements and their relation to the model parameters.
We find the shifts to be §Epes = 1.977925 meV and

6Eer = 1.691720 meV. The mean value of these cor-
rections are more than a factor of four larger than the
discrepancies in muonic hydrogen and muonic deuterium,
and are 0.1% corrections to the theory values. This would
be easily measured by the CREMA collaboration. If
a smaller value of AFy, is found, it has the ability to
greatly restrict (rg, M, o) space.

Additionally, the as-yet undiscovered bound state of
true muonium, p~ ", offers an opportunity to constrain
the parameter space[5, 55-60]. We can predict a correc-
tion to the Lamb shift of §E7y = 0.061508 meV, which
corresponds to a 0.1% correction. From Fig. 2, we see
that the largest energy corrections in true muonium are
in a different region of parameter space, and therefore
are a strong complement to the muonic helium measure-
ments. Near-future experiments to detect and measure
true muonium have been proposed [61-65].

As can be observed in Fig. 2, although the uncertainty
on both predictions is large, they are strongly correlated.
The strong correlation between each muonic helium cor-
rections and the model parameters show the upcoming
measurements will have a large effect on restricting the

entire (rg, M, «) parameter space. From the insensitiv-
ity of Eq. 14 to (r¢, M), combining both muonic helium
measurements is greater than merely the sum of their
parts.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have shown that Galileon corrections
to muonic hydrogen and muonic deuterium can be consis-
tently explained by introducing a 1-parameter family of
relationships between the cut-off radii of different sys-
tems. Furthermore, predictions for the corrections to
upcoming muonic helium experiments have been made.
These corrections are can be quite large and the CREMA
collaboration’s upcoming results will dramatically reduce
the parameter space.

In the future, other than improving the experimental
and theoretical errors of the current measurements, an-
other important direction to investigate would be com-
puting the corrections to other observables. Comput-
ing the fine and hyperfine splittings due to the Galileon
couplings would be useful given there are no discrepan-
cies in these measurements. A very fruitful direction of
study would be in the calculation of the corrections to
the anomalous magnetic moment of leptons, (as). Com-
bining the high precision measurement of a. with the
persisting anomaly in a, would be useful in restricting
the parameter space of (rg, M, a).
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