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A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center
of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture
utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some
disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore
a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed
random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being
piece-wise linear, and an ensemble is generated by Monte Carlo methods. The physical space in
which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving,
growing and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble
therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to
be important for realizing the deconfining phase transition. We study both vortex percolation and
the potential V (R) between quark and anti-quark as a function of distance R at different vortex
densities, vortex segment lengths, reconnection conditions and at different temperatures. We find
three deconfinement phase transitions, as a function of density, as a function of vortex segment
length, and as a function of temperature.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is the regnant theory of the strong interaction. It is formulated in terms of
quarks and gluons, which are the basic degrees of freedom that make up hadronic matter. QCD is well understood
in the regime where we have a large momentum transfer (ultraviolet regime). In this regime, the theory is weakly
coupled and can thus be solved using perturbative methods. On the other hand, at low energy, analytical solutions
are very hard to obtain due to the large coupling constant and the highly nonlinear nature of the strong force. It
happens especially in this infrared regime that the QCD vacuum exhibits some extraordinary features, among them
the confinement of quarks into bound hadrons and chiral symmetry breaking (χSB), the origin of mass in QCD. A
perspective to construct a cogent, comprehensive model of the strong interaction vacuum in which, in particular, a
connection between topological properties and confinement can be drawn, appeared in the framework of the magnetic
(center) vortex picture [1–6]: Chromo-magnetic flux lines compress the chromo-electric flux between color electric
sources into a flux tube (or a ”string”), resulting in a linearly rising potential and thus confinement.
In D-dimensional space-time, center vortices are (thickened) (D − 2)-dimensional chromo-magnetic flux degrees of

freedom. The center vortex picture of the strong interaction vacuum assumes that these are the relevant degrees
of freedom in the infrared sector of the strong interaction; the center vortices consequently are taken to be weakly
coupled and can thus be expected to behave as random lines (for D = 3) or random surfaces (for D = 4). The
magnetic flux carried by the vortices is quantized in units which are singled out by the topology of the gauge group,
such that the flux is stable against small local fluctuations of the gauge fields. In the vortex model of confinement,
the deconfinement transition results from a percolation transition of these chromo-magnetic flux degrees of freedom.
This theoretically appealing picture has been buttressed by a multitude of numerical calculations, both in lattice
Yang-Mills theory and within a corresponding infrared effective model, see e.g. [7–20], or [21], which summarizes the
main features. Recent results [22] have also suggested that the center vortex model of confinement is more consistent
with lattice results than other currently available models. Lattice studies further indicate that vortices may also be
responsible for topological charge [23–31] and χSB [32–45], and thus unify all non-perturbative phenomena engendered
by the structure of the strong interaction vacuum in a common framework.
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A concrete implementation of the vortex picture, using a hypercubic lattice scaffolding to support the random
vortex lines or surfaces, has been studied extensively by one of the authors [12, 15, 24, 25, 36, 46–49]. The hypercubic
formulation has a number of advantages, among them, simple Monte Carlo updates which naturally include surfaces
fusing and disassociating, and a straightforward bookkeeping of vortex location, permitting, e.g., simple evaluation of
Wilson loops and counting of vortex surface intersections. On the other hand, however, this formulation has revealed
weaknesses as far as the calculation of topological charge is concerned. Vortex world-surface configurations in this
formulation, being restricted to only six discrete space-time directions in which they can extend, exhibit ambiguities
in the definition of topological charge which would not appear in ensembles of arbitrary two-dimensional surfaces in
continuous four-dimensional space-time.
In view of this, we explore in the present work an alternative formulation, which avoids the shortcomings of the

hypercubic construction, concentrating in a first step on a model of random flux lines in D = 2 + 1 space-time
dimensions, representing vortices of the SU(2) gauge group (i.e., there are no branchings of the vortex lines [12, 15]).
The lines are composed of straight segments connecting nodes randomly distributed in three-dimensional space.
Allowance is made for nodes moving as well as being added or deleted from the configurations during Monte Carlo
updates. Furthermore, Monte Carlo updates disconnecting and fusing vortex lines, i.e., reconnection updates are
implemented. Given that the deconfining phase transition is a percolation transition, such processes play a crucial
role in the vortex picture. The model is formulated in a toroidal finite volume, with periodic boundary conditions,
which allows for a study of finite temperatures (via changes in the temporal extent of the volume). The resulting
vortex ensemble is used, in particular, to evaluate the string tension and its behavior as a function of temperature,
with a view towards detecting the high-temperature deconfining phase transition.
The above scheme of modeling random lines (and higher-dimensional manifolds) is reminiscent of models employed

in the study of quantum gravity [50–55]. While the present work focuses only on the lowest-dimensional case, the
inclusion of a variable number of (vortex) clusters in the ensemble is a feature that is not generally contemplated
in quantum gravity applications. Here, it is crucial in order to include the physics of the deconfinement transition.
Also the use of a torus with periodic boundary conditions, on which the vortices are defined, in order to treat finite
temperature, constitutes a significant complication. The realization of the vortex model in continuous space-time
keeps spatial rotational symmetry intact. Hence, the model allows us to measure rotationally invariant potentials,
correlators or string tensions. One concrete example where rotational invariance would constitute an asset is the
study of the baryonic potential, where the existing work within the hypercubic construction [47] required a thorough
analysis of the angular dependence of the string tension to obtain a correct interpretation of the results. In general,
physical questions that require using off-axis directions can be treated better; for example, the model presented
here has already been used to study catenary solutions for meson-meson correlators represented by circular Wilson
loops [20], in which case the analysis becomes truly 1-dimensional, without any cubic artifacts in the way the minimal
surface forms. Having continuous degrees of freedom, however, requires a number of model parameters to restrict,
e.g., the vortex density, and precise fine-tuning of these parameters is necessary. Hence, we will start by introducing
the modeling details in section II and discuss all the parameters. In section III we explain the observables we analyze
in this paper and results will be presented and discussed in section IV. Section V provides a summary of the main
results and a short outlook.

II. MODEL DESCRIPTION

In the model, vortices are represented by closed random lines in 2+1-dimensional (Euclidean) space-time. Since
vortices of the SU(2) gauge group are being modeled, there are no branchings of the vortex lines. The physical space
in which the vortex lines are defined is a torus L2

S ×LT with ”spatial” extent LS, ”temporal” extent LT and periodic
boundary conditions in all directions. The random lines are modeled as being piece-wise linear between ”nodes” with
vortex segment length L restricted to a certain range Lmin < L < Lmax. This range sets a scale of the model; for
practical reasons we choose a scale of L ≈ 1, i.e. Lmin = 0.3 and Lmax = 1.7 in appropriate units. Within this paper
we use volumes with LS = 16, where finite size effects are under control (see Sec. IVE), and varying time lengths
LT . Variations of the vortex segment length range away from the aforementioned range will also be examined. An
ensemble is generated by Monte Carlo methods, starting with a random initial configuration. A Metropolis algorithm
is applied to add, move and delete nodes using the action

S = αL+ γϕ2 , (1)

with action parameters α and γ for the vortex segment length L and the vortex angle ϕ at nodes, respectively. At a
given (current) node the vortex segment length L is defined to be the distance to the previous node and the vortex
angle is the angle between the oriented vectors of the vortex lines connecting the previous, current and next nodes,
see Fig. 1. This type of action, penalizing both vortex length and curvature, is analogous to the action used in
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previous hypercubic lattice models [12, 15]. Furthermore, when two vortices approach each other, they can reconnect
or separate at a bottleneck, as described in detail further below. The ensemble therefore will contain not a fixed,
but a variable number of closed vortex lines or ”vortex clusters”. This is expected to be important for realizing
the deconfining phase transition. Moreover, new (three-node) clusters are permitted to ”pop out” of the vacuum
at random positions, again governed by the above action; hence a small equilateral triangle is more probable than
a long acute triangle, see Fig. 1. The new cluster then evolves further in subsequent updates, along with all other
clusters. Also the reverse process, annihilation of a three-node cluster, is possible; it occurs when a node is deleted
from a three-node cluster, leading to a two-node cluster. Such a cluster is equivalent to the absence of any flux, and
is therefore deleted completely.
In the following, we discuss the individual updates and parameters of the model in more detail.
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FIG. 1. a) The action S = αL+ γϕ2 of the current node (c) is given by the vortex length L to the previous node (p) and the
angle ϕ between the vortex lines to the previous (p) and the next node (n). Three node clusters of shape (b) are more likely
accepted by the Metropolis algorithm than of shape (c).

A. Move, Add & Delete

Move, add and delete updates are applied to the vortex nodes via the Metropolis algorithm, i.e., the difference of the
action of the affected nodes before (Si) and after (Sf ) the update determines the probability P = min(1, exp (Si − Sf ))
of the update being accepted. The move update attempts to move the current node by a random vector of maximal
length rm = 4Lmin; it affects the action of three nodes, the current node itself and its neighbors, see Fig. 2.
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FIG. 2. The movement of the current node (c) within a certain range rm is affecting the connected vortex lines and the angles
at the current (c), the previous (p) and the next node (n).

The add update attempts to add a node at a random position within a radius ra = 3Lmin around the midpoint
between the current and the next node, see Fig. 3. The action Si before the update is given by the sum of the action
at the current and the next node, while the action Sf after the update is the sum of the action at the current, the
new and the next node. Conversely, deleting the current node affects three nodes, i.e. the previous, the current and
the next node before the update and only two nodes (previous and next) after the update, see Fig. 4. Therefore
the probability P for the add update is in general much smaller than for the delete update; the vortex structure
tends to vanish quickly if both updates are tried equally often. As detailed below, add updates were attempted at a
significantly larger rate than delete updates.
In general, move, add and delete updates can come into conflict with the restricted range of allowed vortex segment

lengths L. In early implementations, the move update was applied to every node of the configuration, and if the
resulting vortex segment lengths conflicted with the allowed range, the corresponding nodes were deleted, or auxiliary
ones at midpoints were added, respectively. In principle, in this scheme, the configuration can be stabilized for a
set of fine-tuned parameters, but these parameters lead to very dense vortex configurations deep in the confinement
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FIG. 3. The add update adds a node after the current node (c) within a range ra around the midpoint of the vortex line to
the next node (n). Two vortex angles before and three after the update are affected, and one vortex line is split into two.

phase. Hence, in order to explore the whole phase space of the model, an additional density parameter ρ is introduced,
restricting the number of nodes in a certain volume. The add update is rejected if the number of nodes within a
3× 3× 3 volume around the new node exceeds the density parameter ρ. Also new clusters popping up are subjected
to this density cutoff, i.e., the number of nodes in a 3× 3× 3 volume has to be less than ρ− 3 for a three-node cluster
to pop up there. Further, all updates resulting in vortex segment lengths L out of the range Lmin < L < Lmax are
also rejected. The update strategy is randomized to move a node in two out of three cases (66%), and apply the
add update about five times more often than the delete update (28% vs. 6%). Maximal movement and add ”radii”
rm and ra are set to four resp. three times Lmin. The different parameters and restrictions in the model may seem
artificial at first sight, but they are optimized in order to guarantee a balance between action and entropy of the
system. The influence of the individual parameters on the model and their ”physical” effect to favor either action
or entropy will be discussed in Sec. IV. An overview of all parameters and the Monte Carlo sweep will be given in
sections II C and IID respectively, but before this, a detailed discussion of the reconnection update, which is applied
after every move and add update, is in order.
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FIG. 4. The delete update deletes the current node (c), joining the connected vortex lines into one between the previous (p)
and the next node (n). It affects three and two vortex angles before and after the update, respectively. The new vortex length
L has to lie in the range Lmin < L < Lmax, like for all other updates.

B. Reconnections

If the current node is not deleted, all nodes in a 3 × 3 × 3 volume around the current node are considered for
reconnections. The reconnection update causes the cancellation of two close, parallel vortex lines and reconnection of
the involved nodes with new vortex lines. Physically, this implements the fact that two vortex lines lying on top of
one another is equivalent to no physical flux being present; since the actual vortices being represented are considered
to possess a certain thickness, the cancellation can be considered to occur as soon as the vortices significantly overlap,
i.e., are sufficiently close and parallel. The terms ”close” and ”parallel” call for two more parameters in the model,
the reconnection length rr and the reconnection angle ǫ. The shortest distance and the angle between two vortex
lines must be smaller than rr and ǫ respectively, in order to reconnect the four involved nodes with new vortex lines.
An illustrative example of the reconnection update is shown in Fig. 5. The lengths of the new vortex lines, as always,
have to be smaller than Lmax; however, the constraint of minimal distance Lmin is not enforced in reconnection
updates in order to allow for reconnections of almost congruent vortex lines. If all conditions for the reconnection are
fulfilled, the update is subjected to the Metropolis algorithm, considering the action of the four nodes involved. The
reconnection update allows separation and merging of vortex clusters. It should be noted that the data structure of
the vortex nodes imposes an orientation on the vortex clusters (previous, next, etc.). If two merging clusters have
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opposite orientation, the orientation of one of the clusters is reversed, cf. Fig. 5. This orientation is a technical issue
only and has no physical meaning in this model.
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FIG. 5. The reconnection update deletes the vortex lines between nodes 1-2 and 3-4 and reconnects nodes 1-3 and 4-2. The
plot shows the affected vortex angles, the reconnection angle ǫ and distance rr. The plotted vortex lines/nodes might belong
to the same or different clusters. Note that the orientation of some vortex lines was reversed in this example, cf. main text.

C. Parameters

This section summarizes all parameters used in the model and the optimized values used for the simulations on
162×LT volumes. It should be noted that the search for viable parameter sets and update conditions constituted the
most demanding part of the simulation effort in this work. This includes tuning for useful acceptance rates for move,
add, delete, and reconnection updates as well as new clusters popping up out of the vacuum. In addition, a substantive
competition between action and entropy in the ensemble must be maintained to obtain physically interesting behavior.
The action, S = αL+ γϕ2, penalizes both vortex length and curvature (via the angles between vortex segments), and
thus mimics the first two terms of a systematic gradient expansion of the generic action associated with a line:

• Vortex length action parameter α = 0.11
The vortex segment length L at a node is defined as the distance to the previous node.

• Vortex angle action parameter γ = 0.33
The vortex angle ϕ is defined as the angle between the oriented vectors of the vortex lines connecting the
previous, current and next nodes, see Fig. 1.

• Minimal vortex segment length Lmin = 0.3
This parameter acts as a minimal length scale in the model, also determining

– the maximal radius of the move update rm = 4Lmin, see Fig. 2.

– the maximal radius of the add update ra = 3Lmin, see Fig. 3.

– the reconnection length rr = Lmin, see Fig. 5.

• Recombination angle ǫ = 5◦

ǫ is the maximal angle between recombining vortex lines, see Fig. 5.

• Vortex density cutoff ρ = 8
Maximal number of nodes in a 3× 3× 3 volume.

• Maximal vortex segment length Lmax = 1.7

Lmin = rr, ǫ and ρ are all manifestations of the vortex thickness, which determines the ultraviolet limit of validity
of the vortex picture. Two coinciding SU(2) vortex fluxes are equivalent to the vacuum, since they contribute a trivial
unit factor to any Wilson loop. Now, if the vortices have a certain thickness, then already two approximately parallel
vortices sufficiently close to one another are, in substance, equivalent to the vacuum; in a sense, they annihilate.
This has a number of consequences, encoded in the aforementioned parameters. For one, vortices cannot be packed
arbitrarily closely; only a certain maximal density is viable without annihilation. This is encoded in the parameter
ρ; in implementations of the vortex model employing a hypercubic scaffolding, the analogous parameter is simply
the lattice spacing. Furthermore, the vortex lines of the model cannot fluctuate on scales much smaller than the
vortex thickness; it makes no sense to think of a rapidly fluctuating line defining the center of a thickened vortex
structure. Any such fluctuation is smeared out by the thickening and cannot be resolved. This is encoded in the
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parameter Lmin. Also, a reconnection update consists, essentially, of an annihilation of two sufficiently coincident
vortex segments. For this, they have to be sufficiently parallel, as encoded in ǫ, and sufficiently close to one another,
as encoded in rr = Lmin. This, again, is a manifestation of vortex thickness, which determines how close and how
parallel vortices have to be to be regarded as annihilating.
Finally, the vortex ensemble also depends on the maximal vortex segment length parameter Lmax. It arises for a

technical reason, namely, because the simple manner in which vortex density is limited via the parameter ρ has a
shortcoming: The latter limits the density of nodes, not vortex line density itself, and thus there is still the possibility
for the system to attain a spuriously high line density by forming long vortex segments, even if the node density is
low. To preclude the formation of such a high line density state, which would be favored by entropy, it is necessary
to limit also the vortex length per node, i.e., introduce the auxiliary parameter Lmax. This somewhat artificial
implementation is motivated by considerations of practicality; Lmax would be superfluous in the presence of a more
sophisticated construction limiting vortex line density directly. A related issue arising at finite temperatures, also
resolved by the introduction of Lmax, is the following: If one were to allow long vortex line segments, these could
wind around the torus in the temporal direction multiple times. Each subsequent winding would roughly coincide
with previous windings and the windings should therefore annihilate in pairs. This situation is generally not properly
recognized by the reconnection step of our algorithm, again permitting the formation of a spuriously high vortex line
density that would not arise in a more sophisticated construction which properly detects all relevant annihilations.
The introduction of Lmax likewise limits this effect in a simple, ad hoc manner.

D. Monte Carlo Algorithm

For a simulation, the following algorithm was executed a total number of nr = nw +nm ∗ns times, where nw = 104

is the number of equilibration iterations, nm = 2 . . . 5× 105 is the number of measurements and ns = 10 the number
of sweeps between the measurements.

• The Metropolis algorithm for one 3-node cluster pop-up is called before the node updates; therefore, the new
nodes will also be updated before any measurement.

• Monte Carlo sweep over all nodes in the configuration:

– Metropolis move, add or delete updates are applied to the nodes with rates 66%, 28% and 6%.

– If a node is not deleted, possible reconnections are considered.

• After the nw = 104 equilibration iterations are complete, measurements are performed separated by ns = 10
Monte Carlo sweeps.

The next section introduces the observables measured in the model.

III. OBSERVABLES

The most directly accessible observables in the model are ones associated with the action used to generate the
ensemble, e.g., the total action itself and the actual vortex density. These were used to analyze the equilibration
phase of the simulations. A number of nw = 103 equilibration sweeps was seen to be generally sufficient for the
model to thermalize; however, for the following simulations, nw = 104 thermalization steps were used. After that, the
average action per node, the actual vortex density, the average vortex segment length and angle, and Wilson loops
were measured, and a vortex cluster analysis was performed, every ns = 10 Monte Carlo sweeps. Wilson loop and
vortex cluster measurements will be detailed below. The vortex density is a nontrivial observable since the cutoff
parameter ρ is applied only for the add update; the vortex node density can locally exceed this cutoff since the vortex
nodes can move without density restrictions. The actual vortex density is then given by the node density times the
average vortex segment length.

A. Vortex Cluster Analysis

The vortex cluster analysis comprises counting the number of closed vortex clusters, the number of vortex nodes/line
segments for each cluster, the cluster size or maximal extent of each cluster and the number of clusters winding around
the time dimension. The distribution of vortex flux into clusters of different sizes will be visualized in cluster size
histograms binning vortex nodes into 20 bins corresponding to the sizes of the clusters to which they belong, where
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cluster size is normalized using the maximal possible cluster size sm. Taking into account the periodic boundary
conditions, the maximal possible cluster size is determined by s2m = L2

S/2 + L2
T/4. In the following analysis, the

expression ”maximal cluster fraction” will refer to the fraction of vortex nodes/line segments which reside within a
cluster of size sm, i.e. the magnitude of the bin of maximal possible cluster size in the aforementioned histograms. This
quantifies to what extent vortices percolate. On the other hand, vortex clusters winding around the time dimension
are important in particular in the deconfined phase; in the percolation transition separating the confining and the
deconfined phase, the large percolating clusters of the confining phase decay into many such winding clusters [12].
The latter are instrumental in maintaining a spatial string tension in the deconfined phase while the physical string
tension extracted from temporal Wilson loops vanishes [12]. Monitoring in particular vortices winding around the time
dimension therefore provides an additional diagnostic for the deconfining transition. Such vortices can be produced
during reconnection updates, either in pairs or even singly if the temporal extent of the torus is sufficiently small
(LT < 3Lmax).

B. Wilson Loops

The Wilson loop W (R, T ) along a closed rectangular path in space and time of dimensions R×T is the observable
most frequently used to discuss confinement in lattice gauge theory. It can be interpreted in terms of the creation
of a static quark–anti-quark pair with a certain spatial separation R, its evolution for a time T , and its subsequent
annihilation. The effective action associated with this process yields the potential energy contained in the static
quark–anti-quark pair. Center vortices have a characteristic effect on Wilson loops; each center vortex linked with a
Wilson loop (or, equivalently, piercing any area spanned by the loop) contributes a multiplicative factor to the loop
corresponding to a center element of the gauge group. This can, indeed, be viewed as the defining property of a center
vortex; it specifies the flux carried by the vortex, which is measured by a Wilson loop encircling it. In the case of the
SU(2) gauge group considered here, the only non-trivial center element is −1; this is the factor by which any Wilson
loop linked to a vortex is multiplied.
To evaluate Wilson loops in the present model, it is sufficient to examine all vortex line segments in a configuration,

determining whether each line segment pierces the planar area spanned by the Wilson loop in question, and supplying
a factor −1 to the Wilson loop for each piercing (if there are no piercings, W (R, T ) = 1). Using the fact that larger
Wilson loops are simply given by products of smaller Wilson loops with which the larger loop can be tiled, one can
organize the calculation of a large number of Wilson loops on a given configuration efficiently. The expectation value
of the time-like Wilson loops 〈W (R, T )〉 yields the quark–anti-quark potential,

V (R) = − lim
T→∞

ln〈W (R, T )〉/T . (2)

To extract the string tension σ of the system, an ansatz V (R) = σR+C/R+V0 is fitted to the potentials. The spatial
string tension σs is obtained from spatial Wilson loops using Creutz ratios,

χ(R) = − ln

(

〈W (R,R)〉〈W (R + 1, R+ 1)〉

〈W (R+ 1, R)〉〈W (R,R+ 1)〉

)

R→∞
−→ σs . (3)

The spatial string tension is expected to be correlated with the number of vortex clusters winding in time direction,
since these vortices will pierce the spatial Wilson loops.

IV. RESULTS & DISCUSSION

A. Finite temperature phase transition from varying temporal extent LT

In this section, we study center vortex ensembles at different temperatures. The following results were obtained
on volumes 162 × LT for a range of inverse temperatures LT in order to resolve the deconfining phase transition at
different vortex density cutoffs ρ = 4, 6, 8, 10 and 12, with Lmax = 1.7 and Lmin = 0.3. In Fig. 6 we show the results
extracted for ρ = 4, namely, the cluster size histogram, the potential V (R) between the quark and anti-quark and
the spatial and temporal string tensions as well as the maximal cluster fraction as a function of temperature. For
all other densities (ρ = 6 . . . 12) we show the cluster size histograms in Fig. 8 and string tensions resp. maximal
cluster fractions vs. temperature in Fig. 9. In the ρ = 4 case (Fig. 6) we observe a phase transition in the vicinity
of the inverse temperatures LT = 5, 6. The cluster size histogram in Fig. 6a shows no cluster percolating through
the physical volume for LT = 4, whereas from LT = 7 onwards one large percolating cluster starts to dominate the
configuration. The quark–anti-quark potential shown in Fig. 6b is still flat (asymptotically) for LT = 5, while a
linearly rising behavior is evident by LT = 9. In between, the potentials do not show a clear linear behavior, and the
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determination of the string tension is somewhat ambiguous; however, a deviation of the potential below an exactly
linear behavior is to be expected in view of the finite spatial extent of the physical volume and the periodic boundary
conditions. In the ρ = 4 case, thus, the deconfining transition is not very sharply defined; this is associated with the
rather small density cutoff ρ, as is revealed by examination of higher values of ρ.
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FIG. 6. a) Cluster size histogram, elucidating the percolation properties of the vortex structure: at high temperatures (small
temporal lattice size, e.g. 162x1, 2 or 3) we find mainly small vortex clusters (histogram peaks on the left side), whereas for
lower temperatures, most of the vortex material is found in clusters of maximal size (right peak), i.e. clusters percolating
through the whole lattice. b) quark–anti-quark potentials and c) maximal cluster fraction (i.e., the fraction of vortex material
in clusters of maximal size, the right peak of the histogram plot), temporal and spatial string tensions σ and σs for 162 × LT

volumes, density cutoff ρ = 4, vortex lengths Lmax = 1.7, Lmin = 0.3.

For higher vortex densities, the phase transition becomes much sharper and the inverse critical temperature tends
to smaller temporal extents LT . This can be seen in Fig. 9 and especially Fig. 7, which summarizes the results on
the finite temperature phase transition for various vortex density cutoffs ρ, and also in the corresponding cluster size
histograms in Fig. 8 where one should note the different coloring and temperatures for the individual plots. We locate
the phase transition for ρ = 6 in the vicinity of LT = 2, for ρ = 8 in the vicinity of LT = 1.6, for ρ = 10 in the
vicinity of LT = 1.5 and for ρ = 12 in the vicinity of LT = 1.2. Further, we notice that Fig. 6c and the plots in
Fig. 9 show a perfect agreement between the confinement (string tension) and percolation (maximal cluster fraction)
transitions. In Fig. 11 we show sample configurations for various temperatures and density cutoff ρ = 4. While for
LT = 2 and 4 (Fig. 11a and b) we see many small vortex clusters, we observe already one big cluster extending
over the whole physical volume together with some small clusters for LT = 8 (Fig. 11c) while for LT = 16 (zero
temperature, Fig. 11d) it appears as though almost all nodes were connected. In fact, the careful observer can still
make out a few three- and four-node clusters, e.g., at the bottom left corner of the 3D plot in Fig. 11d, and indeed we
still have around 25-30 individual clusters in this configuration, see Fig. 10 for the average number of clusters within
a configuration at different inverse temperatures LT and vortex densities ρ. Nevertheless, the majority (≈ 70%, see
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FIG. 7. String tension σ and maximal cluster fraction vs. time extent LT of 162 × LT volumes, for different density cutoffs,
vortex lengths Lmax = 1.7, Lmin = 0.3.

Fig. 6a and c) of nodes in Fig. 11d is part of one big cluster percolating through the whole physical volume, indicating
a confined phase.
It remains to discuss the spatial string tension, which at first sight seems to display unusual behavior in Figs. 6c

and 9. Apart from the fact that the behavior at very small LT becomes unphysical, because the lower bound on the
vortex segment length Lmin artificially suppresses vortices winding around the time direction, one would expect that
the spatial string tension remains more or less constant across the deconfining transition; after all, spatial Wilson loops
will still be pierced by vortex clusters winding in the time direction even once the percolation effect ceases. However,
it appears that these two effects to a certain extent disentangle and are separated as a function of LT . For ρ = 4
we clearly see a decreasing spatial string tension with increasing temperature, in accordance with loss of percolation
in the vicinity of the percolation transition, while only below LT = 4, (i.e., above the transition temperature) the
effect of winding vortices sets in. Note that (much weaker) hints of such behavior are also seen in vortex ensembles
extracted from lattice Yang-Mills configurations [10]. In Fig. 10b we plot the number of vortices winding around the
time direction; the correlation of these windings with the behavior seen in the spatial string tension for ρ = 4 is clearly
visible. For higher densities, percolation and winding effects become more entangled and harder to distinguish.
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a)

b)

c)

d)

FIG. 11. 162× a) 2, b) 4, c) 8 and d) 16 sample configurations, density cutoff ρ = 4, vortex lengths Lmax = 1.7, Lmin = 0.3.
The right-hand views are directly into the temporal direction.



13

Examining once more Fig. 10, we observe that the total number of vortex clusters peaks around the deconfinement
temperature in all cases. This peak is rather weak for ρ = 4, but becomes stronger as ρ is allowed to rise. The
behavior of the plots in Fig. 10 converges with rising ρ; only the ρ = 4 case is fairly strongly separated from the ones
at higher ρ. By ρ = 8, the behavior of the vortex configurations appears to have converged, and the finite temperature
transition seen in Fig. 7 has become sharp. For this reason, we choose ρ = 8 for the analysis of the dependence on
vortex segment length range in Secs. IVC and IVD.

B. Deconfining transition as a function of vortex density cutoff ρ
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FIG. 12. a) Quark–anti-quark potentials on a 162×2 volume, string tensions b) σ, c) σs and d) maximal vortex cluster fraction
as a function of density cutoff ρ for 162 × LT volumes and vortex lengths Lmax = 1.7, Lmin = 0.3.

In this section, we investigate the random vortex line ensembles for varying density cutoff ρ = 4 . . . 13 on three
different physical volumes 162 × LT with LT = 2 . . . 4, Lmax = 1.7 and Lmin = 0.3. In Fig. 12 we show the quark–
anti-quark potentials on a 162 × 2 volume, as well as the string tensions σ and σs and the maximal vortex cluster
fraction as a function of ρ for the various LT . In Fig. 13 we show the corresponding cluster size histograms. We
observe a deconfinement transition with respect to the vortex density cutoff ρ. At ρ = 4 all cases are in the deconfined
phase; the LT = 4 configurations then immediately start to confine when ρ is increased, whereas the LT = 3 and
LT = 2 configurations reach the transition around ρ = 5 and ρ = 6, respectively. Again, the confinement and
percolation transitions (Fig. 12b and d) agree perfectly; the maximal clusters in Fig. 13 start to develop at exactly the
aforementioned critical densities. Higher densities of course allow for more reconnections and percolation, i.e., they
facilitate confinement. The spatial string tension at ρ = 4 essentially vanishes in the LT = 4 case with percolation
having ceased and almost no winding vortex clusters present to counteract the decline; on the other hand, for LT = 3
and LT = 2, the effect of winding vortices already manifests itself at ρ = 4 in a stabilization of the spatial string
tension at finite values. This interplay was discussed in more detail already in the previous section.
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FIG. 13. Cluster size histograms for a) 162 × 2 b) 162 × 3 c) 162 × 4 volumes and different density cutoffs ρ, vortex lengths
Lmax = 1.7, Lmin = 0.3.
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C. Phase transition from varying maximal vortex length Lmax
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FIG. 14. a) Cluster size histogram, b) quark–anti-quark potential and c) string tensions σ and σs as well as maximal cluster
fraction as a function of maximal vortex segment length Lmax, for a 162 × 2 volume, density cutoff ρ = 8 and Lmin = 0.3.

In this section, we investigate the behavior of the ensembles at different maximal vortex segment lengths Lmax =
1.0 . . . 2.2 for a physical volume 162 × 2 and a density cutoff ρ = 8, with Lmin = 0.3. In Fig. 14 we show the cluster
size histogram, the quark–anti-quark potential, and string tensions σ and σs as well as maximal cluster fraction versus
the different maximal vortex segment lengths Lmax.
In this case, we observe a well-defined phase transition at Lmax = 1.5, with no percolation and string tension σ,

i.e., a flat quark–anti-quark potential below that threshold, and percolation resp. confinement above. Restricting
the vortex line segment length to a more stringent upper bound shifts the action-entropy balance away from the
entropy-dominated regime and leads to small, separated vortex clusters which cannot reconnect or percolate, and
confinement is lost. Evidently, also the spatial string tension in the deconfined phase decreases as the Lmax bound
becomes more stringent, indicating that the number of vortices winding in the time direction is likewise suppressed.

D. Behavior as a function of minimal vortex/reconnection length Lmin

The interpretation of the phase space with respect to the minimal vortex segment length Lmin is more complex
than with respect to other parameters. Lmin defines a minimal length scale which enters a number of effects governing
the vortices; it not only restricts the minimal length of a vortex segment itself, but also determines the maximal move
radius rm = 4Lmin, the maximal add radius ra = 3Lmin and the reconnection distance rr = Lmin. That means that
if we choose a small Lmin, the vortex clusters will not spread out quickly and reconnections are strongly suppressed.
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FIG. 15. a) Cluster size histogram, b) quark–anti-quark potential, c) string tensions and maximal vortex cluster fraction,
average d) node action and e) vortex line density (= avg. node density × avg. vortex length) for 162 × 2 volumes, density
cutoff ρ = 8 and different vortex/reconnection lengths Lmin at Lmax = 1.7.
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On the other hand, a large Lmin restricts the set of available configurations, and thus drives the system away
from the entropy-dominated regime, while at the same time obstructing equilibration, with large attempted updates
and frequent recombinations. Both limits do not realize the physical behavior we want to study, and our analysis of
configurations in 162 × 2 volumes with vortex density ρ = 8, maximal vortex length Lmax = 1.7 and varying Lmin

seems to confirm these expectations. The aforementioned set of fixed parameters lies close to the critical point for
all the deconfining phase transitions studied further above, i.e., as a function of temperature, vortex density and
maximal vortex segment length Lmax. In Fig. 15 we plot the cluster size histogram, the quark–anti-quark potentials,
string tensions σ, σs and maximal cluster fraction as well as average vortex node action and vortex density versus
Lmin = 0.1 . . .0.7 in steps of 0.05. We observe deconfined phases for both very small and very large Lmin. In the
former case, the configurations remain rather static and do not readily recombine and percolate; in the latter case,
the space of configurations is restricted, leading to a suppressed vortex density which also does not exhibit good
percolation properties. At Lmin = 0.3, however, we find a common maximum for string tensions, maximal cluster
fraction and average vortex density, and simultaneously the average action shows a minimum. This validates our
initial choice for Lmin = 0.3, which appears to yield rather stable ensembles that permitted reliable studies of the
phase transitions investigated further above.

E. Finite Size Analysis

We did not perform a systematic study of scaling with the spatial extent LS, but comparison of selected results at
LS = 16 and LS = 32 revealed no significant discrepancies. For example, we show in Fig. 16 the quark–anti-quark
potential V (R, T = 1.5) from Wilson loops with temporal extent T = 1.5 and the string tension σ saturating with
temporal extent of Wilson loops T , for 162 × 8 and 322 × 8 volumes with density cutoff ρ = 8 and maximal resp.
minimal vortex segment lengths Lmax = 1.7 and Lmin = 0.3. The results are compatible within errors; for the string
tension we obtain σ = 0.438 and σ = 0.446 on the smaller resp. larger volume, which is a discrepancy of less than 2%
at about 5% statistical uncertainties. Similar results were found for other observables and therefore we conclude that
finite size effects are under control.
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FIG. 16. a) Quark–anti-quark potential V (R, T = 1.5) and b) string tension σ saturating with temporal extent of Wilson loops
T , for 162 × 8 and 322 × 8 volumes, density cutoff ρ = 8, Lmax = 1.7 and Lmin = 0.3.
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V. CONCLUSIONS & OUTLOOK

We presented a 2 + 1-dimensional center vortex model of the Yang-Mills vacuum. The vortices are represented
by closed random lines which are modeled as being piece-wise linear, and an ensemble is generated by Monte Carlo
methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions.
The motivation for this study was to explore a formulation which avoids the shortcomings of previous realizations of
random center vortex models that relied on a hypercubic scaffolding for the construction of the vortex configurations.
The present formulation preserves translational and rotational symmetry, and updates can occur continuously in
space-time. Vortex configurations are allowed to grow and shrink, and also reconnections are allowed, i.e., vortex
lines may fuse or disconnect. Our ensemble therefore contains not a fixed, but a variable number of closed vortex
lines. This is in fact a crucial ingredient for achieving a system of percolating vortices, i.e., a confining phase. All
vortex updates (move, add, delete, reconnect) are subjected to a Metropolis algorithm driven by an action depending
on vortex segment length and the angle between two adjacent vortex segments; i.e., the action contains both a length
and a curvature term. After tuning all necessary parameters, which are summarized in section II C, we use the model
to study both vortex percolation and the potential V (R) between quark and anti-quark as a function of distance R
at different vortex densities, vortex segment length ranges, reconnection conditions and at different temperatures (by
varying the temporal extent of the physical volume).
We have found three deconfinement transitions, namely, as a function of density, as a function of vortex segment

length range, and as a function of temperature. The deconfinement transitions coincide with percolation transitions in
the vortex configurations. For small vortex densities and restricted vortex segment lengths, the configurations consist
of small, independent vortex clusters, and for high temperatures, vortex clusters prefer to separate and wind around
the (short) temporal extent of the volume; in these cases, there is no percolation, the quark–anti-quark potentials
show no linearly rising behavior, i.e., no string tension is measured, and the system is in the deconfined phase. Once
one allows for higher vortex densities, less restricted vortex segment lengths, or larger temporal extent, i.e., lower
temperature, the vortex configurations begin to percolate; small clusters reconnect to mainly one large vortex cluster
filling the whole volume. In this regime, we measure a finite string tension, i.e. linearly rising quark–anti-quark
potentials; hence the vortices confine quarks and anti-quarks.
The physically most relevant extension of the modeling effort presented here is of course the one to D = 4 space-

time dimensions, where center vortices are described by 2-dimensional random world-surfaces. The surfaces can
be represented by random triangulations, anchored again by nodes which can move, be added, or deleted from
configurations. Surface separation at bottlenecks, and the converse process of fusing of surfaces constitute crucial
ingredients for achieving percolating configurations. In these D = 4 ensembles, one can then model Yang-Mills
topological properties in addition to the confinement properties. A sobering lesson of the present exploratory study
is the proliferation of modeling parameters in the type of formulation investigated here, compared to previous models
utilizing a hypercubic scaffolding. This of course restricts the predictive potential of such models. Nevertheless, it has
proven possible to reproduce the qualitative features of confinement physics seen in SU(2) Yang-Mills theory within
the formulation constructed here.
In addition, extensions of the model to the SU(3) and higher SU(N) gauge groups can be envisioned. For more

than two colors, vortices can branch and one would need to introduce a generalized move update in which only part
of the flux runs through the new path, and the rest stays on the old path. There would be more than one type of
flux, i.e., N − 1 types for SU(N); one would need to keep track of how much flux is carried by each vortex segment.
The implementation of higher N , just like the construction of higher-dimensional versions, would of course require
entirely new tuning of the model parameters.
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arXiv:9708023 [hep-lat].

[10] K. Langfeld, O. Tennert, M. Engelhardt, and H. Reinhardt, “Center vortices of Yang-Mills theory at finite
temperatures,” Phys. Lett. B452 (1999) 301, arXiv:9805002 [hep-lat].

[11] T. G. Kovacs and E. T. Tomboulis, “Vortices and confinement at weak coupling,” Phys. Rev. D 57 (1998) 4054–4062,
arXiv:9711009 [hep-lat].

[12] M. Engelhardt and H. Reinhardt, “Center vortex model for the infrared sector of Yang-Mills theory: Confinement and
deconfinement,” Nucl.Phys. B585 (2000) 591–613, arXiv:hep-lat/9912003 [hep-lat].

[13] M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert, “Deconfinement in SU(2) Yang-Mills theory as a center
vortex percolation transition,” Phys.Rev. D61 (2000) 054504, arXiv:hep-lat/9904004 [hep-lat].

[14] R. Bertle and M. Faber, “Vortices, confinement and Higgs fields,” arXiv:0212027 [hep-lat].
[15] M. Engelhardt, M. Quandt, and H. Reinhardt, “Center vortex model for the infrared sector of SU(3) Yang-Mills theory:

Confinement and deconfinement,” Nucl.Phys. B685 (2004) 227–248, arXiv:0311029 [hep-lat].
[16] A. L. L. de Lemos, L. E. Oxman, and B. F. I. Teixeira, “Derivation of an Abelian effective model for instanton chains in

3D Yang-Mills theory,” Phys. Rev. D85 (2012) 125014, arXiv:1105.0711 [hep-th].
[17] L. E. Oxman, “Confinement of quarks and valence gluons in SU(N) Yang-Mills-Higgs models,” JHEP 03 (2013) 038,

arXiv:1212.4102.
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[27] R. Höllwieser, M. Faber, U.M. Heller, “Intersections of thick Center Vortices, Dirac Eigenmodes and Fractional

Topological Charge in SU(2) Lattice Gauge Theory,” JHEP 1106 (2011) 052, arXiv:1103.2669 [hep-lat].
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