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We discuss the thermodynamics of the O(3) nonlinear sigma model in 1+1 dimensions at nonzero
chemical potential (equivalent to a magnetic field). In its conventional field theory representation
the model suffers from a sign problem. By dualizing the model, we are able to fully access the non-
zero density regime of an asymptotically free theory with dynamical mass-gap at arbitrary chemical
potential values. We find a quantum phase transition at zero temperature where as a function of
the chemical potential the density assumes a nonzero value. Measuring the spin stiffness we present
evidence for a corresponding dynamical critical exponent z close to 2. The low energy O(3) model
is conjectured to be described by a massive boson triplet with repulsive interactions. We confirm
the universal square root behavior expected for such a system at low density (and temperature) and
compare our data to the results of Bethe ansatz solutions of the relativistic and non-relativistic one-
dimensional Bose gas. We also comment on a potential Berezinskii-Kosterlitz-Thouless transition
at nonzero density.

PACS numbers: 11.15.Ha,12.40.Ee

I. INTRODUCTION

Analyzing quantum field theories at nonzero temper-
ature and chemical potential is of interest not only for
studying their thermodynamical properties, but may also
provide deep insights into the physical structure of the
theory under consideration. A recent such example is
given in [1], where we demonstrated that the grandcanon-
ical ensemble at low temperature and small volumes can
be connected to scattering data.

Before we outline the physics results presented in this
paper, we briefly mention the challenges of thermody-
namics for numerical lattice simulations, one of our best
ab-initio tools (since analytic approaches are typically
limited). Monte Carlo simulations are based on impor-
tance sampling and, while finite temperature simulations
are routine, simulations at nonzero chemical potentials
µ are in many cases plagued by the complex action/sign
problem: at nonzero µ the action S has a non-vanishing
imaginary part and the Boltzmann factor e−S cannot be
used as a probability weight in a stochastic process. One
of the most successful methods is to employ dualization
of the lattice path integral to new, so-called ‘dual vari-
ables’, where the partition sum has only real and positive
contributions (see, e.g., [2, 3] for reviews). Although, it
is not completely clear for which classes of models a dual
representation is useful for treating the sign problem, in
models where it is successful the dual representation has
allowed the exploration of the finite density phase dia-
grams, and the corresponding data also serve as a bench-
mark for other approaches to the complex action prob-
lem.

We would like to stress that dual representations not
only enable simulations at nonzero density, but also re-
veal physical aspects complementary to those of the stan-
dard representation. In the dual representation the dy-

namical degrees of freedom are worldlines and the chem-
ical potential couples to their temporal component. Via
a discrete version of current conservation on a space-
time lattice one finds that the chemical potential indeed
couples to the temporal winding number of the world-
lines. Thus the net number of particles (charged under
the Noether charge of the corresponding symmetry) can
be identified with the temporal net winding number of
the worldlines and the Noether charge becomes topolog-
ically conserved. As such the worldlines winding around
the time direction have a direct interpretation as quan-
tum states carrying the corresponding quantum number.
Since this is an all-scale statement, the dual worldlines
carry direct information about the infrared physics, gen-
erally obscured in the conventional formulation of asymp-
totically free theories.

The O(3) nonlinear sigma model, which we are dealing
with in this work, is conjectured to possess a particle
triplet as its infrared excitations, the mass of which is
generated dynamically. The dual wave function method
of [1] indeed utilizes the spatial distance of the worldlines
to obtain information about the particles’ scattering. In
the case of Quantum Chromodynamics (QCD), which is
also asymptotically free, the low energy excitations are
not the colored quarks and gluons, but colorless hadrons,
with a large fraction of their masses being dynamically
generated. A related dual lattice representation is that in
terms of meson hoppings plus (anti-)baryon worldlines,
to which the baryon chemical potential couples [4, 5] (this
dual representation, however, does not remove the sign
problem completely and does not take into account the
gauge action).

To be more concrete, we introduce a chemical poten-
tial for an O(2) subgroup of the O(3) symmetry of the
sigma model in two dimensions. At low temperatures a
nonzero density is expected to be induced into the system
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when µ reaches the threshold of the particle mass. In the
condensed matter context µ can be viewed as a constant
magnetic field inducing a magnetization; see Secs. 11 and
19 of [6]. We will analyze this transition in detail extend-
ing our previous simulations to large volumes. Beyond
the transition the system explicitly breaks the global in-
ternal symmetry from O(3) to O(2) and in principle al-
lows classical vortex solutions with half-integer topolog-
ical charge [7]. Although at asymptotically large densi-
ties vortices are expected to bind in neutral pairs, it was
conjectured in [7] that these vortices will be liberated at
small densities, so that a Berezinskii-Kosterlitz-Thouless
(BKT) transition [8, 9] may happen at some finite value
of the density. We remark that lattice results for the
O(2) model at finite density can be found in [10–12].

Our main findings are twofold: Concerning the O(3)
phase diagram we find a threshold crossover at nonzero
temperatures and a quantum phase transition at zero
temperature, as a function of µ at the mass threshold.
Note that lattice simulations become expensive in this
limit, as both temporal and spatial extension must be
taken to infinity. Using the concept of spin stiffness we
analyze spatial correlations and present evidence for a
dynamical critical exponent z close to 2, which is con-
sistent with the non-relativistic free fermions to which a
model at low density belongs to. We do not directly see
signatures of a BKT transition conjectured in [7] in any
of the observables studied in this work.

Secondly, the numerical data for the density near the
transition can be described by a square root. The latter
is universal for one-dimensional repulsive bosons. The
simplest example of which is the non-relativistic quan-
tum particle gas with repulsive delta-function interac-
tions (the Lieb-Liniger model [13]) and its limit when the
repulsion strength goes to infinity (the Tonks-Girardeau
limit [14, 15]). The latter is equivalent to free fermions.
These systems only differ in the specific form of the phase
shifts, relevant away from the transition. Eigenstates and
thermodynamics [16] of these systems can be obtained
from Bethe ansätze. We show that our data match well
with the corresponding analytical nonrelativistic or rela-
tivistic predictions. Our simulations are performed at a
lattice coupling in the continuum scaling regime, and we
believe that the continuum limit to be performed does
not reveal new qualitative features.

Our study demonstrates that dual lattice simulations
are capable of describing a system all the way from the
Lagrangian in terms of ultraviolet fields to the infrared
physics in terms of interacting particles (at nonzero den-
sities induced by µ). Such a transformation is the essence
of Wilson’s renormalization group, which is probably
very hard to tackle analytically, but specific questions
can be answered by the lattice, now that we have reli-
able lattice simulations at hand. To better understand
the structure of dual partition functions and observables
should also be of help in this program.

We briefly mention at the end that, although this pro-
gram is mostly inspired by the attempts to understand

the nonzero density structure of QCD, the potential ben-
efit of studying nonlinear sigma models goes past this
problem. Firstly, they are interesting in itself and ap-
pear as effective models of (anti-) ferromagnetic systems.
Secondly, the study of properties of these systems is inter-
esting in the context of continuum quantum field theories
themselves. On the one hand, we have recently shown for
the example of the O(3) nonlinear sigma model that lat-
tice dualities may provide a physical connection with the
low energy excitations of the theory. On the other hand,
the nonlinear sigma models play a crucial role in the de-
velopment of the continuum definition of quantum field
theories via the resurgence program (see [17] and ref-
erences therein). To date, resurgent constructions were
explicitly shown to work only in analytical tractable one-
dimensional reductions of the O(N) [18] and CP(N) [19]
nonlinear sigma models as well as of the principle chiral
model [20]. However, genuinely 1+1 dimensional nonzero
density systems, akin to what we study here, also show
similar resurgence structures [21]. Numerical and physi-
cal understanding of these systems is therefore important
for the fundamentals of quantum field theory as well.

II. DEFINITION OF THE MODEL AND ITS
LATTICE DISCRETIZATION

A. Continuum formulation and observables

The O(3) model is conventionally written in terms
of normalized vectors ~r(x) = (r1(x), r2(x), r3(x)) with
~r(x)2 = 1∀x (also called ‘spins’ or ‘O(3) rotors’) and the
continuum action reads [22],

S[~r ] =
1

g2

∫
d2x
[ 1

2

(
∂νra

)2
+ i µ

(
r1∂2r2 − r2∂2r1

)
+
µ2

2
r2
3 −

µ2

2

]
, (1)

where the coupling constant g is dimensionless in 1+1
dimensions. We have already coupled a chemical poten-
tial µ to one of the O(2) subgroups, which excites the
3-component of the angular momentum. Repeated in-
dices are summed over (ν = 1, 2 and a = 1, 2, 3) and ar-
guments x have been dropped. At nonzero temperature
T the Euclidean time x2 is periodic with period 1/T . In
such a bosonic theory, µ also enters quadratically tending
to suppress the perpendicular component r3(x).

Our main thermodynamic observables will be the ex-
pectation values of the charge Q, its density n and its
susceptibility χn:

Q = T
∂ lnZ

∂µ
, n =

Q

L
, χn =

∂n

∂µ
, (2)

where Z is the grand canonical partition function (see [23]
or Eq. (12) below). Eventually, all dimensionful quanti-
ties like µ, T, L, n etc. will be given in units of the mass
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m, e.g.,

n

m
=
T/m

Lm

∂ lnZ

∂(µ/m)
, (3)

whereas χn is already dimensionless.
We will also explore the spin stiffness for which one

imposes twisted spatial boundary conditions for a finite
spatial length L. To implement these, we first introduce
the O(2) polar angle φ by combining the first two com-
ponents into a complex number

r1(x) + ir2(x) = r12(x)eiφ(x) , (4)

and then replace the periodic boundary conditions in
space by twisted ones,

φ(x1 + L, x2) = φ(x1, x2) + ϕ . (5)

If the twist costs free energy, F = −T lnZ, at leading
order the dependence of F on ϕ is quadratic in ϕ, and we
define the spin stiffness (also called superfluid density)
by

σ = L
∂2F

∂ϕ2

∣∣∣∣
ϕ=0

= −LT 1

Z

∂2Z

∂ϕ2

∣∣∣∣
ϕ=0

, (6)

where we have used that Z is an even function of ϕ. Phys-
ically it is clear that σ depends on whether the regions
x1 and x1 + L are correlated, i.e., whether the system is
in a (spatially) ordered state.

The spin stiffness can be computed and related to vor-
tices in the lattice O(2) model without chemical poten-
tial1 [24]. For large lattice coupling, the vortices arrange
in pairs and the spin correlator decays algebraically,
which is the behavior closest to an ordered state in two
dimensions (as the Mermin-Wagner theorem forbids the
spontaneous breaking of the continuous symmetry). As
a consequence, the spin stiffness σ will be nonzero. At
small lattice coupling, the vortices condense and make
the correlator decay exponentially. In this regime the
spin stiffness σ will vanish if L is larger than the spatial
correlation length ξ. This is why the spin stiffness can
be used to detect BKT transitions characterised by the
change of the correlator decay and to measure the spatial
correlation length.

Actually, the dimensionful combination ϕ/L may be
viewed as an imaginary chemical potential in the spatial
direction, and therefore the stiffness is known to measure
spatial winding numbers [25]. As this is best seen using
dual variables, we give the corresponding formula in the
next section.

B. Lattice formulation and the dual representation

The lattice action discretizing (1) reads,

S[~r ] =− J
∑
x∈Λ
ν=1,2

[
r3(x) r3(x+ ν̂) +

1

2
r12(x) r12(x+ ν̂)

×
{
e−i(φ(x)−φ(x+ν̂))−µ δν,2 + c.c.|µ→−µ

}]
. (7)

As common in lattice field theory, the chemical poten-
tial µ introduces exponential factors for the forward and
backward temporal hopping terms. For µ = 0 these
terms are related by complex conjugation c.c., but when
µ has a nonzero real part we face a complex action prob-
lem. The parameter J is the lattice coupling constant
(dimensionless and positive) and the first sum runs over
the V ≡ Ns × Nt sites of a two-dimensional lattice Λ
with periodic boundary conditions. Again ν = 1, 2 and
ν̂ denotes the corresponding unit vector in direction ν.
Throughout this paper we set the lattice spacing a to
a = 1, implying that T = 1/Nt and L = Ns.

The continuum limit for the lattice model is reached
via J → ∞. The mass gap of the system can be ex-
pressed in the bare coupling J and a UV cut-off as
m2 = Λ2

UV exp(−4πJ). On the lattice the cut-off is pro-
portional to the inverse lattice spacing, ΛUV = C/a, and
to two loops the mass gap reads[26, 27],

am = C(1 + 2πJ) exp(−2πJ) for J →∞ . (8)

The partition sum is defined as the lattice path integral
Z =

∫
D[~r ] e−S[~r], where the measure D[~r ] is the product

over the O(3)-invariant measures for ~r(x) on all lattice
sites. The particle density and susceptibility are defined
as µ-derivatives of Z as in the continuum,

n =
1

NsNt

∂ lnZ

∂µ
, χn =

∂n

∂µ
. (9)

As a check we will also use the expectation value of the
action density at µ = 0,2

e = 4− 2

NsNt

∂ lnZ

∂J
, (10)

whose strong and weak coupling expansions are [28],

e =

{
4− 4y − 8y3 − 48

5 y
5 + . . . , for small J,

2
J + 1

4J2 + 0.156
J3 + . . . for large J.

(11)

where y = cothJ − 1
J .

In [23] we have introduced the following (exact) rep-
resentation of the partition function in terms of integer
dual variables mx,ν ∈ Z and kx,ν ,mx,ν ∈ N0,
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Z =
∑

{m,m,k}

(∏
x,ν

Jkx,ν

kx,ν !

(J/2)|mx,ν |+2mx,ν

(|mx,ν |+mx,ν)! mx,ν !

)
eµ

∑
xmx,2 (12)

×
∏
x

I
(∑

ν

(kx,ν + kx−ν̂,ν), 1 +
∑
ν

[
mx,ν +mx−ν̂ + 2 (mx,ν +mx−ν̂)

])

×
∏
x

δ

(∑
ν

[mx,ν −mx−ν̂,ν ]

)
E

(∑
ν

[kx,ν + kx−ν̂,ν ]

)
,

where the Kronecker delta, the evenness function E and
a function I related to Euler’s beta function B have been
used:

δ(n) =

{
1 n = 0

0 else
, E(n) =

{
1 n even

0 n odd
,

I(a, b) = B

(
a+ 1

2
,
b+ 1

2

)
=

Γ
(
a+1

2

)
Γ
(
b+1

2

)
Γ
(
a+b+2

2

) . (13)

Note that the current mx,ν is conserved since the Kro-
necker delta of

∑
ν [mx,ν−mx−ν̂,ν ] ≡ (∇m)x corresponds

to the discrete version of the vanishing divergence condi-
tion (at each site x). The chemical potential couples to
the corresponding sum over the temporal components of
mx,ν . This sum can be rewritten using the conservation
as
∑
xmx,2 = Nt

∑
x1
mx,2 = 1/T · w[m], where w[m] is

the total winding number of the m-loops reflected in the
net m-flux through every time slice. Thus, the chemi-
cal potential appears through weights exp(µ · integer/T ).
This is also the main advantage of dual representations of
systems with respect to chemical potentials: if the dual
partition function has no sign problem at vanishing µ –
which holds for our system – µ does not introduce a sign
problem either.

In the dual representation, the observables take the
form

n =
1

NsNt

〈 ∑
x

mx,2

〉
=

1

Ns

〈
w[m]

〉
, (14)

χn =
Nt
Ns

(
〈w[m]2〉 − 〈w[m]〉2

)
, (15)

e = 4− 2

NsNt

〈 ∑
x,ν

[
kx,ν + |m|x,ν + 2mx,ν

]〉
, (16)

where here 〈O〉 is the expectation value of O in the dual
representation obtained by inserting the expression O
into the sum in Eq. (12) and dividing by Z.

1 The O(2) lattice action is −J
∑
x,ν cos(φ(x + ν̂) − φ(x)), which

is nothing but (7) with r3 = 0, r12 = 1 at µ = 0.
2 This is obtained from e = 〈E〉/NsNt, where E =

∑
x,ν(∇ν~r)2

and (∇νf)(x) = f(x+ ν̂)− f(x) [28]. From the normalization of
~r it follows that e = 4− 2〈~r(x)~r(x+ ν̂)〉/NsNt and thus (10).

We will also measure the space-time average of the
third dual variable,

K =
1

NsNt

〈 ∑
x,ν

kx,ν
〉
, (17)

as a measure for the anisotropy of the system. For
its interpretation we sketch how the dual representa-
tion is obtained for the third variable, using that Z ∝∫
D[~r ]

∏
x,ν

∑∞
kx,ν=0

[
J r3(x)r3(x + ν̂)

]kx,ν
/kx,ν !. Eval-

uating (17) inserts another kx,ν into the dual partition
sum and reduces the argument of the factorial by one,
which can be compensated by a shift of the summation
variable giving a factor of J and the hopping term. It
follows that 〈kx,ν〉 = J 〈r3(x)r3(x+ ν̂)〉, where the latter
expectation value is in the conventional representation
(7). Hence K measures the amount of hopping in the
direction perpendicular to the x − y plane where we ex-
cite O(2) angular momentum. Thus, we expect K to be
small in the anisotropic phase at large µ.

At vanishing µ the theory enjoys the full O(3) symme-
try and the amount of hopping must be the same for all
components. In the energy density (16) above this can
be seen by virtue of the fact that |m|x,ν + 2mx,ν is the
sum of two dual variables of the same nature as kx,ν ; see
Eq. (12) of [23]. Therefore, e = 4− 6K/J should hold at
µ = 0.

In the same way the chemical potential couples to the
integrated temporal component of the conserved O(2)
current, the twist-induced imaginary spatial chemical po-
tential iϕ/L couples to the integrated spatial compo-
nent. The partition function in the presence of the twist
thus has an additional factor exp(iϕ/Ns ·

∑
xmx,1) =

exp(iϕws[m]), where ws[m] is the total spatial winding
number of m in each configuration. In the definition of
the spin stiffness σ, Eq. (6), the second derivative with
respect to ϕ brings down −ws[m]2 and setting ϕ to zero
afterwards results in the expectation value one obtains

σ =
Ns
Nt
〈ws[m]2〉 = LT 〈ws[m]2〉 , (18)

in the dual repesentation without twist (similar to χn in
Eq. (15)).
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III. NUMERICAL SIMULATION, TESTS AND
BASIC ANALYSIS

In this section we collect several more technical as-
pects of this paper. We briefly discuss our simulation
strategy for the dual formulation and evaluate the cor-
rectness of its results by comparing them to perturbative
strong and weak coupling calculations. Furthermore we
present numerical results for the phase diagram at finite
volume and temperature as well as a finite volume scaling
analysis which indicates that at nonzero temperature all
transitions are smooth crossovers.

A. Dual simulation and tests

In this subsection we briefly discuss Monte Carlo simu-
lation strategies for the dual representation Eq. (12) and
present tests for its correctness. Obviously each term in
the partition sum (12) is real and positive and a prob-
ability interpretation of the weights of the dual config-
urations is possible. The remaining challenge of a dual
Monte Carlo simulation is to generate only those config-
urations that obey all the constraints. For the uncon-
strained dual variables mx,ν conventional local Metropo-
lis updates are sufficient. For the constrained variables
mx,ν and kx,ν the constraints enforce closed loops and
loops where flux is conserved modulo 2, respectively. In
both cases one can generate new admissible configura-
tions by changing the variables along an arbitrarily cho-
sen closed loop which guarantees that the constraints re-
main intact. This loop along which one updates the dual
variables can for example be grown in steps using local
random choices and corresponding Metropolis decisions
until it closes, which is the well known worm strategy
[29] – this is the update used here. After equilibration,
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FIG. 1. Energy density versus the coupling at µ = 0. The
analytical results for the strong and weak coupling expansions
from Eq. (11) agree very well with the numerical results (hav-
ing very small error bars) obtained from simulating the dual
ensemble on a 10× 10 lattice and using Eq. (16).
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FIG. 2. Top: Expectation value of the particle number den-
sity versus the chemical potential µ, both in lattice units, at
different couplings J for lattice size 90 × 90. Bottom: Log-
arithm of the corresponding critical chemical potentials as a
function of the coupling. We compare our data to the strong
coupling result ln(3/J) and the weak coupling expansion of
the mass gap and Eq. (8), having obtained C = 102(2) from
a fit of the J ≥ 1.4 data.

we typically use 105 to 106 measurements on configura-
tions separated by O(20) sweeps. The statistical errors
we show are determined with the jackknife method tak-
ing autocorrelation times into account.

For a first test we computed the energy density at van-
ishing chemical potential, cf. Eq. (16). In Fig. 1 we show
the results for e at µ = 0 as a function of the coupling
J and compare to the weak and strong coupling expan-
sions from Eq. (11). We find excellent agreement in the
corresponding domains of J . This demonstrates that the
mapping to the dual variables and the implementation of
the dual Monte Carlo simulation are correct.

Likewise, the lattice mass-gap am (at µ = 0) has been
determined in the usual manner from the decay of time-
like correlators and was found to agree well with the crit-
ical chemical potential (see below).

We now switch to the situation where the dual ap-
proach is really essential, i.e., the simulations at nonzero
chemical potential. In the top panel of Fig. 2 we plot the
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J 0.01 0.05 0.1 0.2 0.4 0.6 0.8
aµc 5.69(3) 4.10(5) 3.35(2) 2.60(2) 1.80(2) 1.27(1) 0.87(2)

J 1.0 1.1 1.2 1.3 1.4 1.5 1.6
aµc 0.55(2) 0.42(1) 0.32(1) 0.22(1) 0.15(1) 0.09(2) 0.05(1)

TABLE I. Results for the critical chemical potential values in
lattice units used for normalizing.

particle density n measured via Eq. (14) as a function
of µ. As a general phenomenon at low temperatures a
net density is induced into the system only after µ has
reached a threshold, the mass of the lightest particle with
charge coupling to µ. The critical values of µ visible in
that plot thus depend on the coupling J just like the
mass. This is shown in the bottom panel of Fig. 2, again
with strong and weak coupling expansions. For compar-
ison we list the corresponding data in Table I.

The strong coupling behavior, µ = ln(3/J) for J → 0,
is worked out in App. A, whereas the weak coupling result
follows from the two-loop mass gap formula, Eq. (8), in
which we obtain the constant C related to the UV cut-
off by a one-parameter fit. The agreement is again very
good, which is seen also in a comparison to the literature
(Fig. 10 of [27]). Note also that the continuum scaling
sets in at J ' 1.4, as for the energy density in Fig. 1:
In particular from J ∼ 1.4 on the results for the energy
density (Fig. 1) and the mass gap (Fig. 2) agree very
well with the corresponding strong coupling curves (blue)
valid in the continuum limit.

Most of our lattice data were taken at J = 1.3, where
am ∼ 0.22. This means a restriction to µ � 5m, other-
wise aµ becomes comparable to 1 and strong discretiza-
tion effects set in.

B. Finite lattice phase diagram

Before we come to discussing continuum results, we
first consider nonzero lattice spacing and finite volume,
i.e., we study the system at fixed lattice size without a
final continuum limit J → ∞. We determine the J-µ
phase diagram at low temperature, using the onset of
non-zero particle density as a function of µ for determin-
ing the phase boundaries. Fig. 3 shows this phase dia-
gram for several critical chemical potentials. Note that
the number of temporal sites is fixed, so the temperature
in mass units T/m = 1/(Ntam) varies with the coupling
according to the mass gap formula am(J), e.g., Eq. (8).

In [1] we have shown that close to the continuum limit
at small temperatures and volumes, the particles are
induced into the system one by one displaying integer
plateaus in the particle number itself (not its density).
These transitions show up for large J and some exam-
ples are plotted in Fig. 3. The locations of these critical
µ’s are governed by the particle interaction phase shifts
and thus contain interesting physics, as explained in de-
tail in [1].
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0.0 0.1 0.2 0.3 0.4 0.5

µ
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Q=15
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ln(3/J)
ln(5/J)

FIG. 3. Phase transition in the J-µ plane for Ns = 30 and
Nt = 1000. At large J , i.e., towards the continuum limit, the
critical chemical potentials with increasing index (from red to
green to black to blue) induce individual transitions between
integer charges as utilized in [1]. At small J the first Ns of
them join to a single transition, µ1 = . . . = µNs, increasing
the particle density n in lattice units from 0 to 1 (see text).
The next critical chemical potential µNs+1 (blue) is separated
from those, and above it a density n = 2 will be induced. At
large J , on the other hand, the change from µNs to µNs+1

plays no particular role. The strong coupling predictions for
the transitions 0→ 1 and 1→ 2 are included as solid curves.

In the strong coupling regime at small J the situation
is different. In the dual representation of the partition
function, Eq. (12), every dual variable is suppressed by
the corresponding power of J . Still, the temporal com-
ponents of the flux variable m are promoted by factors
of eµ, that eventually overcome the factors of J/2. This
mechanism acts locally on every spatial site, which means
that if it is preferable to have Q particles at some site
(mx,2 = Q), then this immediately applies to all sites.
In fact, the superposition of Q fluxes does not cost any

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

J 
e
x
p

(µ
Q
)/

2

J

n=0

n=1

µ=0

Q=1
Q=15

(Ns=)Q=30
Q=31

FIG. 4. Phase transition as in Fig. 3, but with a modified
quantity on the y-axis (and some more data points for higher
J ’s), see text.
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action at strong coupling. Therefore, in this regime the
particle number density changes by one (in lattice units).
The corresponding critical values of µ depend on J loga-
rithmically, and their values are computed in Appendix
A. Fig. 3 shows good agreement with these curves for
small J and illustrates how intermediate couplings inter-
polate the transitions between these regimes. In partic-
ular all critical values of µ are on equal footing towards
the continuum (large J), whereas in the strong coupling
regime (small J) multiples ofNs bunch, such that regimes
with fixed lattice density open up.

In Fig. 4 we show the lattice phase diagram with the
quantity J/2 · exp(µQ) on the y-axis. In the strong cou-
pling limit Ns critical µ’s now meet at half integers 3/2,
5/2 etc., which agrees with the derivation in Appendix
A again. The corresponding diagram for the O(2) model
is shown in Fig. 3 of Ref. [12] (for this model the curves
meet at integer values).

 0.25

 0.3

 0.35

 0.4

 0.45

 0.6  1  1.4  1.8  2.2

K

µ /µc

 0.43

 0.44

 0.45

 0.9  1  1.1

FIG. 5. Expectation value K for the third dual variable (for
its definition and interpretation see Eq. (17) and below) also
displaying a transition at µ = m (J = 1.3, Ns = 200, Nt =
1000). The value at small µ is the isotropic one related to the
energy density by K = J(4− e)/6.

Let us conclude this subsection with a quick look at
the third dual variable kx,ν , or more specifically at its
sum K as defined in Eq. (17). For µ larger than the
threshold the O(3) symmetry is explicitly broken to O(2)
by the presence of the O(2) charge, which is expected
to be manifest in a decrease of K (see the discussion
below Eq. (17)). In Fig. 5 we show K as a function of µ
(normalized by µc) and indeed find the onset of a drop at
the critical chemical potential, which confirms the picture
that the system tends to become more and more planar
as µ increases.

C. Crossover at nonzero temperature

We conclude the first analysis of the lattice model by
studying the nature of the transitions mapped out in the
previous subsection. For this study we still keep the tem-

perature T fixed and perform the standard scaling anal-
ysis of order parameters with the spatial volume L to
analyze the nature of the transition.
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 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.85  0.9  0.95  1  1.05  1.1

n
/m

µ/µc

Lm=18
26
35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.85  0.9  0.95  1  1.05  1.1

χ

µ/µc

Lm=18
26
35

FIG. 6. Dependence of the particle number density and its
susceptibility on the chemical potential at a fixed low temper-
ature T/m = 0.023 for three spatial sizes volumes (coupling
J = 1.3, lattices with Nt = 200 and Ns = 80, 120, 160).

Fig. 6 shows the particle number density (top panel)
and its susceptibility (bottom panel) at a fixed low tem-
perature of 2% of the mass. As a function of chemical
potential µ the particle number n is monotonically in-
creasing, with a strong variation emerging only above µc,
while the susceptibility displays a maximum. Doubling
the spatial size, the data still fall on top of each other for
both observables. Equivalent results were found for two
other nonzero temperatures, T/m = 0.046 and 0.011, and
we conclude that for nonzero temperature the transition
is smooth, i.e., it is a crossover.

IV. QUANTUM PHASE TRANSITION

We now explore the possibility of a quantum phase
transition at zero temperature, i.e., we focus on the com-
bined limit of zero temperature and infinite volume, i.e.,
T = 0, L = ∞ and analyze the transitions of the O(3)
model as a function of the chemical potential. This
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amounts to sending the extents of both, Euclidean time
and space to infinity. Of course, with finite numerical
simulations this can only be done as a limit, T → 0 and
L−1 → 0. However, in general, the outcome depends
on the particular choice of the trajectory towards that
limit which one chooses in the T -L−1 plane. In partic-
ular the spatial and temporal correlation lengths can be
different, as expressed by the dynamical critical exponent
(see Sec. IV B below). Thus we will discuss the behav-
ior of the system for different ”scaling trajectories”, i.e.,
different paths leading to the limit T = 0, L−1 = 0. For
these scaling trajectories we will present and interpret
our data for the particle density and the spin stiffness.
For the interpretation we will partly rely on simple model
systems showing characteristic features observed in our
simulations.

A. Scaling trajectories towards zero temperature
and infinite volume and particle number results

As already outlined, when considering the limits T → 0
and L−1 → 0, the behavior of the system will depend on
the particular scaling trajectory one follows in the T -
L−1 plane towards the origin. These limits can be taken
in different ways, and a possible choice is to take the
L−1 → 0 limit first, keeping temperature fixed, and then
take T → 0. We can also keep L fixed and take T → 0
first, and then L−1 → 0. More generally we can take the
limit T, L−1 → 0 keeping

TLα = const. (19)

fixed, where α is a nonnegative real number. Generically,
the constant has a noninteger mass dimension, for the
practical implementation (e.g., for α = 2 below) one can
fix (T/m)(Lm)α to a dimensionless constant. Notice that
the consecutive limits mentioned above correspond to the
limiting cases α = 0 and α = ∞. Here we will consider
these two scaling trajectories plus α = 1, 2 as we illus-
trate in Fig. 7. In this subsection we briefly discuss these
different scaling trajectories and partly describe the re-
sulting physics using model calculations for the behavior
at the emerging phase transitions.

In the limiting trajectories α = 0 and α = ∞ one
has to perform the two limits consecutively. This is dif-
ficult to implement on the lattice but reveals interesting
physics. Therefore, we will use simple model calcula-
tions to illustrate characteristic features of the consecu-
tive limits. We will compare our numerical data to results
for free one-dimensional fermions: At low densities the
behavior is governed by the small momentum-exchange
between the particles, which for the O(3) model at hand
are one-dimensional repulsive bosons. At low momentum
their behavior is universal and given by free (spinless)
fermions, see Sec. V.

For the other two scaling trajectories, α = 1 and α = 2
the results will not differ much concerning the particle
density, but are characterized by a different behavior of

T

L−1

α = 0

α = 1

α = 2
α =∞

FIG. 7. Illustration of the four scaling trajectories in the T -
L−1 plane towards the zero temperature and infinite volume
limit (black dot) which we use in this study (see discussion
around (19)).

the spin stiffness, which we will discuss in detail in Sub-
section IV B.

The scaling trajectory α = 0

The α = 0 trajectory corresponds to the consecu-
tive limits

L−1 → 0 at fixed T, then T → 0 .

The first limit of this sequence corresponds to the finite
volume scaling at fixed nonzero temperature studied in
Subsection III C. This analysis has revealed a crossover
as seen from Fig. 6. Actually every fixed temperature
possesses a specific crossover curve n(µ)T , which upon

n
/
m

1.0 1.1 1.2 1.3 1.4

0.05

0.10

0.15

0.20

0.25

0.30

μ / m

FIG. 8. Emergence of a phase transition in the limit T → 0
for free one-dimensional fermions in an infinite volume. We
show that the smooth curves for T/m = 1/10 (green) and
T/m = 1/50 (blue) approach the T = 0 square root behavior
from Eq. (21). This is a model calculation for the scaling
trajectory α = 0, especially its second limit T → 0 at L−1 =
0.
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lowering the temperature T to zero in the second limit
might become steeper near some µc and turn into a gen-
uine phase transition. To some extent this feature is seen
in our data shown in Fig. 9 below, where it is, however,
overlaid by the formation of “condensation steps” (see
the discussion below).

The emergence of such a quantum phase transition as
T approaches 0 is of course a well known feature which
already appears in the simple model of free fermions in
one spatial dimension: The density n is given by the
Fermi-Dirac integral (L−1 = 0),

nf =

∫ ∞
−∞

dk

2π

1

1 + exp
(
(m+ k2/2m− µ)/T

) , (20)

where we use a nonrelativistic dispersion which is suf-
ficient for a first illustration. The density can be ex-
pressed by a polylogarithm Li1/2, from which one obtains
a square root in the T → 0 limit,

nf
m
→
√

2

π

√
µ/m− 1 ·ΘHeaviside(µ/m− 1)

for L−1 = 0, T → 0 . (21)

The square root behavior, which is non-analytic at
µ/m = 1, is indeed reached only for T = 0 via a sequence
of analytic crossover-type curves as shown in Fig. 8.

The scaling trajectory α =∞

We have already pointed out that our results for
the density as a function of µ start to show “conden-
sation steps” when the temperature T is lowered at
fixed L. Thus it is interesting to study also the scaling
trajectory α = ∞, which is defined by the consecutive
limits

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.9  0.92  0.94  0.96  0.98  1  1.02  1.04  1.06  1.08

n
/m

µ /µc

T/m= 0.023  
= 0.011  
= 0.0045
= 0.0023

FIG. 9. Particle density n in units of the mass as a function
of µ for different temperatures at a fixed volume of L = 22/m
(J = 1.3, Ns = 100, Nt = 200, 400, 1000, 2000). When lower-
ing the temperature one observes [1] the emergence of plateaus
at integer values of the particle number, which for the normal-
ized density n/m used here corresponds to integer multiples
of 0.046.

T → 0 at fixed L, then L−1 → 0 .

Our numerical results for the first one of these two lim-
its are shown in Fig. 9. When lowering the tempera-
ture T at fixed L we observe the emergence of plateaus
in the density where the particle numbers are integers.
The plateaus correspond to sectors with fixed particle
number, and are smoothed out by the finite temperature
(the width of the transition region being proportional to
the temperature). Therefore, sharp steps emerge in the
T → 0 limit at any fixed L.

After considering T = 0 at finite L for following
the α = ∞ trajectory we need to perform the second
limit L−1 → 0. Also the behavior of this second limit
can be illustrated in a one-dimensional fermion model,
the Tonks-Girardeau limit of the Lieb-Liniger system,
which we discuss in detail in Section V. One finds that
the minimal energy in each particle number sector Q is

n
/
m

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

μ / m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.2  1.4  1.6  1.8  2

n
/m

µ /m

Lm=  4.4
6.6

19.8

FIG. 10. Illustration of how the low temperature density with
its steps at any finite volume approaches its infinite volume
limit. Top: the Tonks-Girardeau gas similar to free fermions
at zero temperature (see text) for Lm = 4.4, 6.6, 19.8 (red,
green, blue) being a model calculation for the scaling trajec-
tory α = ∞ (second limit). Bottom: Our results for the
O(3) model at T/m = 0.0023. For the different scales recall
that free fermions approximate the O(3) model only at low
densities.
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E
(Q)
min = π2/(6L2m) · (Q2 − 1)Q. Steps occur whenever

E
(Q)
min −Qµ = E

(Q−1)
min − (Q− 1)µ and thus are located at

µQ = m+π2/2·Q(Q−1)/(L2m). The corresponding den-
sity n/m = 1/Lm ·∑∞Q=1 ΘHeaviside(µ− µQ) is shown in
the top panel of Fig. 10. It ‘oscillates’ around its square
root limit reaching it by ever smaller oscillations. The
square root can also be seen analytically, since for large
Q the steps are at µQ/m = 1 + π2/2 · (n/m)2.

The same behavior is seen in our numerical O(3) data
shown in the bottom panel of Fig. 10, where, in the same
fashion, ‘oscillations’ around a limiting curve diminish
with increasing L. However, this can only be done at low
but nonzero temperatures and, as discussed above, this
gives rise to a crossover instead of a phase transition.

The scaling trajectories α = 1 and α = 2:

In the scaling trajectories α = 1 and α = 2 we consider
approaches to the limit T = 0, L−1 = 0 by sending T
and L−1 to zero simultaneously. The trajectories differ
in their functional relation between T and L:

α = 1 : T → 0 and L−1 → 0 with T = L−1

α = 2 : T → 0 and L−1 → 0 with T ∝ (L−1)2

Obviously α = 1 corresponds to square lattices Nt = Ns,
while α = 2 corresponds to time elongated lattices with
Nt ∝ (Ns)

2. To be specific, in our numerical simula-
tions for α = 2 we have used Nt = (Ns/2)2 at J = 1.3
(am ∼ 0.22), which amounts to T/m = 0.88/(Lm)2 or

Lm = 0.94/
√
T/m. We summarize the parameters of

the simulations used for the analysis of the α = 1 and
α = 2 trajectories in Table II.

Fig. 11 shows our simulation results for these two scal-
ing trajectories. We show the particle density n as a
function of µ for T → 0 and L→∞ simultaneously. One
can see in both trajectories that n vanishes for values of µ
smaller than the threshold m, while it approaches certain
nonzero values for µ > m. This is an indication for a non-
analyticity developing at µ = m in the limit T → 0, and
thus for a quantum phase transition. Whether it emerges
in the form of a jump in n (first order transition) or
an infinite slope (second order) cannot be decided with
our current data (and the common infinite volume limit
L→∞ to distinguish the orders is part of the scaling to

scaling trajectory Nt Ns T/m Lm

α = 1 80 80 0.057 18
(T = L−1) 160 160 0.029 35

320 320 0.014 70
α = 2 400 40 0.011 9

(T/m = 0.88/(Lm)2) 1600 80 0.0028 18

(Lm = 0.94/
√
T/m) 6400 160 0.0007 36

TABLE II. Lattice extensions, temperature and spatial extent
for the two scaling trajectories α = 1 and α = 2 (at J = 1.3
for which am = 0.22).
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FIG. 11. Particle number density for the α = 1 (top) and
α = 2 (bottom) scaling trajectories, both at J = 1.3. For
α = 1 we approach T = 0 using L = 1/T , whereas for α = 2

L ∼ T−1/2 increases less rapidly. In the α = 2 panel we also
include the lowest T data from α = 1 for comparison. For the
lattice parameters see Tab. II.

zero temperature). The agreement with analytic predic-
tions for repulsive bosons presented in Sec. V indicates
a square root dependence on µ and thus a second order
transition.

Moreover, the data at lowest T/highest L do not differ
much between α = 1 and α = 2. This bulk quantity
therefore does not seem too sensitive to the particular
scaling trajectory in the limit T → 0 and L→∞.

B. Spin stiffness and dynamical critical exponent

Fig. 12 shows our spin stiffness data for the two scaling
trajectories α = 1 and α = 2. Qualitatively, the stiffness
behaves like the density: it vanishes for µ < m and is
nonzero for µ > m. In contrast to the density, however,
the stiffness shows a clear dependence on α: for α = 1
it is significantly smaller in the µ > m phase than for
α = 2. In addition, the stiffness agrees with the density
(divided by mass) for α = 2 at small densities, as Fig. 13
shows. Our stiffness data do not display the signature of
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FIG. 12. Spin stiffness for the α = 1 (top) and α = 2 (bottom)
scaling trajectories. As in Fig. 11 we include the lowest T data
from α = 1 in the α = 2 panel. For the lattice parameters see
Tab. II.

a BKT transition for µ > m in the spatial correlations
suggested in [7].

Let us now come to the interpretation of these data.
It is known that the stiffness depends on the order of the
limits T → 0 and L→∞ [30]: when L→∞ is taken first
(i.e. α = 0 scaling) the stiffness vanishes, whereas when
T → 0 is taken first (i.e. α = ∞ scaling) it approaches
the susceptibility of the ground state with respect to the
same twist.

For α = 0 one keeps the temperature fixed (and thus
the transition is a crossover), and then increases the spa-
tial size to infinity. It is clear that in this way one looses
all spatial correlations, the twist at the spatial bound-
ary has no effect on the free energy for L → ∞ and the
stiffness vanishes (the successive limit of zero tempera-
ture cannot change this any more). Our data for α = 1
suggest that this scaling trajectory is similar to α = 0
since the system size is growing too fast in comparison
to T → 0, such that spatial correlations are lost leading
to a small stiffness.

For α = ∞ one considers the zero temperature sys-
tem at fixed volume and only afterwards the size is in-
creased. At zero temperature one expects the ground

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.95  1  1.05  1.1  1.15  1.2

µ /m

 n/m
 σ

FIG. 13. Agreement of stiffness and density (in mass units)

close to zero temperature in a large volume L ∼ 1/
√
T (α = 2,

time elongated lattice): T/m = 0.0007, Lm = 36.

state to determine the thermodynamic properties. In
fact, the system at finite L is gapped proportional to
1/L2. Therefore, the partition function in the T → 0
limit is dominated by the ground state, and the free en-
ergy becomes the ground state energy (noting that the
latter is T -independent, this is nothing but the third law
of thermodynamics). As a consequence, the stiffness is
the susceptibility of the ground state with respect to the
spatial twist, as mentioned above.

On top of that, we now invoke an argument from the
Bethe ansätze of Sec. V. One can easily convince oneself 3

that the (nonrelativistic) pseudo-momenta ki in the pres-
ence of a spatial twist ϕ are shifted by ϕ/L. The ground

state energy
∑Q
i=1 k

2
i /(2m) receives no linear term in ϕ

since the total momentum
∑
ki vanishes. The quadratic

term is the constant Q · (ϕ/L)2/(2m), and we immedi-
ately obtain the stiffness as σ = Q/(Lm) = n/m. This
explains that the stiffness equals the density for α =∞,
for small densities. Our data for α = 2 suggest that this
scaling trajectory is similar to α = ∞ since the stiffness
still equals the density, as seen in Fig. 13.

Finally, let us discuss the dynamical critical exponent
[31] z that results from our findings. The correlation
length near a second order phase transition is known to
diverge. To achieve T = 0 in the study of the quan-
tum phase transition one has to send the extent Nt of
the Euclidean time to infinity. We remark that for the
discussion of the continuum scaling formulas below we
use the continuum notation with β = 1/T for the in-
verse temperature and identify (in lattice units) β ≡ Nt.

3 The Ii in Eq. (26) come from closing the boundary and thus need
to be shifted by ϕ/(2πL). Moreover, it is sufficient to consider the
nonrelativistic Bethe ansatz and thus replace θ ≈ k/m ≈ sinh(θ).
Then the Ii-shift can be transfered to a uniform shift in the ki,
because the ∆-term contains differences of k’s only and thus is
unchanged.
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Only at Nt = β = ∞ the phase transition occurs and
the spatial correlation length ξ is infinite. However, the
system also has a typical correlation length ξτ in the
Euclidean time direction. If nothing in the system dis-
tinguishes between space and Euclidean time, the two
correlation lengths have to agree (which corresponds to
z = 1 below). However, in general – and in particular in
the presence of µ which breaks the Euclidean symmetry
by coupling to temporal components/winding numbers –
the two correlation lengths are related by ξτ ∼ ξz with z
the dynamical critical exponent [31]. Note the similarity
to our scaling trajectories β ∼ Lα and indeed our stiff-
ness data can be used to determine z and the correlation
length critical exponent ν. For that we use finite size
scaling of the free energy density [32],

f ∼ 1

Lβ
g
( ξ
L
,
ξz

β
;ϕ
)

(22)

where the prefactor is the inverse volume (in 1+1 dimen-
sions) making f = F/L an intensive quantity and g is a
universal function of the spatial correlation length, the
box sizes and the twist angle. Again, noninteger dimen-
sions can be compensated by the corresponding powers
of the mass. Using the scaling ξ ∼ δ−ν with the nor-
malised distance to the critical value δ = µ/m − 1, and
the definition (6) we get for the stiffness

σ ∼ L1−z h(L1/νδ, TLz) (23)

where h is another universal function.
For practical purposes one can derive two criteria [33]:

(a) the curves µ vs. Lz−1σ intersect at µ = m,

if TLz is kept constant

simply because at δ = 0 the length L does not enter as
argument of h anymore and

(b) the curves L1/νδ vs. Lz−1σ collapse to a single curve,

again if TLz is kept constant

Our data are collected at constant TLα with α = 1, 2
and thus we can ask whether z = 1 or z = 2 obey these
statements, at least approximately. We will rescale all di-
mensionful quantites by the corresponding power of mass.

For statement (a) with z = 1 we thus plot σ(µ) keeping
TL constant, i.e., on the scaling trajectory α = 1, while
for z = 2 we plot L1σ(µ) keeping TL2 constant, i.e., on
the scaling trajectory α = 2, and see whether the data
for different L’s intersect. As Fig. 14 shows, the data
certainly do not intersect for z = 1. For z = 2 the curves
intersect pairwise (albeit at a value of µ slightly smaller
than m) when naively interpolated linearly. To com-
pletely resolve this regime, more accurate data (at more
chemical potential values and in the continuum limit)
and a better interpolation are needed. Note the inverted
order of the data points when crossing the critical chemi-
cal potential, which is the reason for the intersections we
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FIG. 14. Numerical checks of statement (a) for exponents
z = 1 (top) and z = 2 (bottom). For the lattice parameters
see Tab. II.

see and which is absent for z = 1. We expect that this
feature will remain also for more accurate data and that,
therefore, an exponent z = 2 describes the scaling better
than z = 1.

For statement (b) one has to deal with the appearance
of another critical exponent ν. In Fig. 15 we plot the
obervables of this statement assuming the value ν = 1/2
for free fermions. Again a collapse to a single describes
the situation much better for z = 2. This is consistent
with the finding that σ equal to n/m – for the α = 2
data, see Fig. 13 – follows the square root behavior of
Eq. (21) (see also Sec. V below). As a consequence of
the square root behavior, the α = 2 data collapse for
any (z, ν) with 1/ν = 2(z − 1). Finally, we can assume
z = 2 and check the value of ν away from 1/2. Fig. 16
shows data proposing ν = 1/3 and ν = 3/4, for which
the curves certainly do not collapse.

From this analysis we conclude that the critical expo-
nents of the O(3) quantum phase transition at µ = m are
consistent with z = 2 and ν = 1/2, the values of free 1d
fermions.



13

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-50  0  50  100  150  200  250

σ

(Lm)2 δ

T/m=0.057, Lm=18
T/m=0.029, Lm=35
T/m=0.014, Lm=70

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-50  0  50  100  150  200  250

(L
m

) 
σ

(Lm)2 δ

T/m=0.011,     Lm=9
T/m=0.0028, Lm=18
T/m=0.0007, Lm=36

sqrt(2)//π*sqrt(x)

FIG. 15. Numerical checks of statement (b) for z = 1 (top)
and z = 2 (bottom) assuming ν = 1/2. In the bottom panel
we also include the square root behavior in these variables.
For the lattice parameters see Tab. II.

V. COMPARISON TO ANALYTIC RESULTS
ON REPULSIVE BOSONS

In this section we will compare our density data to
the density for systems of repulsive bosons in one spa-
tial dimension. One of the best known examples is the
one introduced by Lieb and Liniger (LL), where boson
pairs interact via a Dirac delta function [13]. The sys-
tem can be solved in terms of plane waves picking up
phase shifts δ when two bosons are interchanged. Such a
Bethe ansatz [34] works for nonrelativistic or relativistic
bosons, without antibosons though.

The phase shifts of the O(3) model are also known [35]
and those of “isospin 2”,

δ = − arctan
π

2θ
, (24)

with the relative rapidity,

θ = arsinh(k/m) , (25)

govern the low density regime [1, 22]. We will thus use
the Bethe ansatz equations with those phase shifts. Note
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FIG. 16. Numerical checks of statement (b) assuming z = 2
for ν = 1/3 (top) and ν = 3/4 (bottom). For the lattice
parameters see Tab. II.

that the O(3) wave functions are not plane waves any-
more, but the Bethe ansatz is believed to give an exact
result at low densities [36].

At very low momenta the O(3) phase shifts agree
with those of the LL model, actually all repulsive one-
dimensional bosons are universal in the deep IR, where
the precise UV shape of the interaction is not relevant
and where δ(0) = −π/2 by Levinson’s theorem [37]. Us-
ing only this value one arrives at the Tonks-Girardeau
(TG) gas, which is the infinite coupling limit of the LL
model [14, 15]. Its eigenvalues are known to be that of
free fermions with the modification that the numbers Ii
in Eq. (26) below are not always half-integers as is the
case for antiperiodic fermions (which is not relevant for
large L) and that the eigenfunctions of the TG gas are
still symmetric under exchange of bosons. We have al-
ready shown that this results in the square root behavior
(21) of the particle density for µ ≈ m at zero temperature
and infinite volume (see also Eq. (31) below).

To be more precise, the relativistic Bethe ansatz reads

Lm sinh(θi)− 2

Q∑
j=1
j 6=i

∆(θj − θi) = 2πIi , (26)
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where the Ii are distinct, and half-integer/integer for
even/odd total charge Q. In our conventions the dy-
namics enters via the phase shifts in

∆ = δ + π/2 (27)

with limk→0 ∆ = 0. This ansatz works for ground states
(with the choice {Ii} = {−(Q − 1)/2, . . . , (Q − 1)/2})
and excited states at fixed particle number Q in any fi-
nite volume L. The nonrelativistic Bethe ansatz can be
obtained by approximating the rapiditites as θ ≈ k/m.
Both are not too hard to solve numerically.

Furthermore, Yang and Yang have derived a thermody-
namic Bethe ansatz for the density ρ(k) and energy den-
sity ε(k) at nonzero temperatures and chemical potentials
[16] in infinite volumes. The non-relativistic Yang-Yang
equations give rise to

2πρ(k)[1 + eε(k)/T ] = 1 +

∫ ∞
−∞

dk̃ ρ(k̃) ∆′(k − k̃) , (28a)

ε(k) =
k2

2m
+ (m− µ)− T

π
(28b)

×
∫ ∞
−∞
dk̃ log

(
1 + e−ε(k)/T

)
∆′(k − k̃) .

while, following similar arguments of [16], and ignor-
ing thermal pair production4, the relativistic Yang-Yang
equations read

2πρ(θ)
(
1 + eε(θ)/T

)
= m cosh θ + 2

∫ Θ

−Θ

dθ̃ ρ(θ)∆′(θ − θ̃) ,
(29a)

ε(θ) = m cosh θ − µ− T

π
(29b)

×
∫ Θ

−Θ

dθ̃ log(1 + e−ε/T )∆′(θ̃) .

In both relativistic and non-relativistic equations,

∆′(x) = d∆(x)
dx , where ∆ is defined by (27). Having

solved this system one can extract the particle density
as n =

∫∞
−∞dk̃ ρ(k̃).

Finally, the zero temperature limit for the density is,

2πρ(k) = 1 +

∫ K

−K
dk̃ ρ(k̃) ∆′(k − k̃) , ρ(|k| > K) = 0 ,

(30)

where K is the analogue of the Fermi momentum related
to µ by K =

√
2m
√
µ/m− 1. Low densities amount to

µ ≈ m and thus K → 0, for which the integration range
shrinks, ρ(0) = 1/(2π) and n = ρ(0) 2K such that

n

m
=

√
2

π

√
µ/m− 1 (T = 0, small n/m) , (31)

4 Because of this, the equations are only exact at zero temperature.
Nevertheless we will use them at finite, but small temperature
to compare to lattice data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2

n
/m

µ /m

T/m=0.228, Lm=22
rel. tBA

nonrel. tBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2
n

/m

µ /m

T/m=0.091, Lm=22
rel. tBA

nonrel. tBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2

n
/m

µ /m

T/m=0.046, Lm=22
rel. tBA

nonrel. tBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2

n
/m

µ /m

T/m=0.005, Lm=22
rel. tBA

nonrel. tBA
sqrt(2)/pi*sqrt(µ /m-1)

FIG. 17. The density n/m versus chemical potential µ/m
at temperatures T/m = 0.228, 0.091, 0.046, 0.005 from top to
bottom. We compare the numerical evaluation of the rel-
ativistic Bethe ansatz equation (29) (green curve) and the
non-relativistic Bethe ansatz equation of (28) (blue curve),
with the lattice data (red symbols, J = 1.3, Ns = 100 and
Nt = 20, 50, 100, 1000). The black line in the bottom plot is
the universal square-root behavior given in (31).
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confirming once more the square root behavior for low
densities.

We solve these integral equations numerically and com-
pare to the lattice data in Fig. 17. The agreement is
fairly good. Note that these are parameter-free ansätze,
so no fit is involved in the comparison. Let us repeat
that the agreement is expected for low temperatures only,
since Bethe ansätze do not contain antibosons and pair
production.

VI. SUMMARY

In this paper we have presented thermodynamic lattice
simulations of the asymptotically free two-dimensional
O(3) model. The complex action problem of the con-
ventional representation at finite chemical potential is
overcome by using a representation in terms of dual vari-
ables, i.e., we simulated worldlines. In the O(3) model
the mass of the particle triplet is generated dynamically,
and in our simulations we have confirmed the expectation
that at low temperatures a nonzero particle number (or
charge) density occurs only when µ reaches the thresh-
old given by the mass. Furthermore, in small volumes
several critical values of µ occur which correspond to in-
teger particle numbers induced by µ [1] (for finite lattice
couplings see the lattice phase diagram in Sec. III B).

A finite volume scaling analysis has revealed that at
nonzero temperatures the particle density as a function
of µ is regular, i.e., the transition is a crossover. The pos-
sibility of a phase transition at zero temperature has been
analyzed through a simultaneous scaling of Euclidean
time and space. Indeed, the data indicate a quantum
phase transition at µ = m, which, using the agreement
with Bethe ansätze for one-dimensional repulsive bosons,
should be of second order because the particle density
follows the universal square root behavior. Further com-
parisons to these ansätze have shown that the O(3) model
can indeed be described by these bosons, including the
crossover behavior at nonzero temperature.

We stress that for a more complete analysis of the phys-
ical picture presented here a systematic continuum limit
has to be performed by increasing J and the lattice vol-
ume accordingly. So far this has been done only in some
exploratory runs and the results confirm the physical pic-
ture presented here, although a systematic continuum
limit has to be postponed to future work. Also the fact
that in [1] it was found that the J = 1.3, 1.4 and 1.5 re-
sults agree supports the claim that the physical picture
presented here is already the continuum one.

We have also measured the spin stiffness which in the
conventional representation is defined via twisted spatial
boundary conditions and in the dual representation mea-
sures spatial winding numbers of the worldlines. Based
on the boson description at zero temperatures with only
ground states, the stiffness is expected to be equal to the
particle density. This is consistent with our low tempera-
ture data, when scaling L such that TL2 is constant, i.e.,

α = 2. However, when L is larger in the zero temper-
ature limit, e.g., when TL is kept constant, i.e., α = 1,
then this equality does not hold and the spin stiffness
is significantly lower, which indicates a lost correlation
between the spatial boundaries. From these findings we
conclude that the dynamical critical exponent z is close
to 2, in agreement with free fermions.

Although originally introduced for studying a poten-
tial BKT transition, our stiffness data have not indicated
such a transition in the O(3) system at chemical poten-
tials larger than the mass where it tends to be planar
(as we have also confirmed). In [7] it was suggested that
the O(3) model may enter an effective O(2) model in
two phases: the vortex percolating or the vortex pairing
regime, which are separated by a BKT-like transition af-
fecting the mass of the underlying condensing particles.
Unlike the case of zero density O(2) model, the mea-
surements of stiffness which we performed here cannot
distinguish between these two phases, because as we saw
in one dimensional finite density systems the stiffness is
very sensitive on the way zero temperature and infinite
volumes are taken, and is not simply an indicator of the
mass of the underlying particles (i.e., whether or not vor-
tices percolate).

Besides higher precision, further studies in various di-
rections would be useful: First of all, perturbation the-
ory should match our lattice data at high µ’s (keeping
aµ small to avoid discretization effects). Secondly, mea-
suring the vortex correlation functions or the topologi-
cal susceptibility should shed light on the possibility of
a BKT-like transition. Extensions to higher O(N) or
CP(N-1) models as well as to 2+1 dimensions could be
done straightforwardly with the dual representation.

The physically very interesting regimes of complex
chemical potentials, where fractional instantons should
occur (which in turn underly the resurgence program
mentioned in the introduction), and at large theta an-
gle, with the Haldane conjecture of a phase transition
at theta angle equal to π, remain a challenge as the dual
variables used here do not solve the sign problem in these
situations.
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Appendix A: Critical µ’s at strong coupling

In this appendix we derive the critical values of the
chemical potential in the strong coupling limit which we
use for comparing to our numerical data in Figs. 2 and
3.

For small values of J , the configurations that dominate
the partition function Z of Eq. (12) have minimal values
of all dual variables,

kx,ν = mx,ν = 0 ∀x, ν and mx,1 = 0 ∀x , (A1)

except the temporal component of the flux variable,
which assumes a constant value

mx,2 = r ∀x , (A2)

which amounts to r static particle world lines on each
temporal bond. From Eq. (14) it is clear that the result-
ing particle density is n = r (in lattice units). We restrict
ourselves to positive µ and thus positive r for simplicity.
These configurations obey the constraints in Eq. (12) and
result in the partition functions

Zr(J, µ) =

[(
Jeµ

2

)r
Γ(1/2)

Γ(r + 3/2)

]NsNt
, (A3)

(where the factorials have cancelled against Γ-factors
from the beta function) or grand potential densities

Ωr(J, µ) = −r ln
(Jeµ

2

)
+ ln Γ(r + 3/2) , (A4)

up to an irrelevant additive constant. Certain values of
r yield the smallest grand potential Ωr depending on the
values of µ and J . The neighboring values of r take over,
when the corresponding Ωr’s become equal

Ωr(J, µ) = Ωr−1(J, µ) for some µ = µr , (A5)

which gives the following critical chemical potentials µr
(in units of a),

eµr =
2

J

Γ(r + 3/2)

Γ(r + 1/2)
, µr = ln((2r + 1)/J) . (A6)

Note further, that critical µ’s inducing a density n = r
induce a charge Q = rNs, thus

µQ=rNs = ln((2r + 1)/J) , (A7)

as used in Sec. III B.
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