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We compute the electrical conductivity of quark-gluon plasma in a strong magnetic field B with
quantum field theory at finite temperature using the lowest Landau level approximation. We provide
the one-loop result arising from 1-to-2 scattering processes whose kinematics are satisfied by the
(1+1) dimensional fermion dispersion relation. Due to the chirality conservation, the conductivity
diverges in the massless limit, and is sensitive to the value of the current quark mass. As a result,
we find that the conductivity along the direction of the magnetic field is quite large compared with
the value at B = 0, mainly because of the small value of the current quark mass. We show that the
resummation of the ladder diagrams for the current-current correlator gives rise to only sub-leading
contributions beyond the leading-log order, and thus verify our one-loop result at the leading-log
accuracy. We also discuss possible implications for the relativistic heavy-ion collisions.

I. INTRODUCTION

The relativistic heavy-ion collision programs at RHIC
and LHC have been providing successful results for the
creation of quark-gluon plasma (QGP) at high tempera-
ture, and various properties of quantum chromodynamics
(QCD) at the extreme condition have been investigated.
It was also suggested that an extremely strong magnetic
field (B) is induced in the noncentral collisions by the
Ampere’s circuital law [1, 2] (see Ref. [3] for recent re-
views). The magnitude of the magnetic field is estimated
to be of the order or larger than the QCD scale ΛQCD

(Λ2
QCD

<∼ eB with e being the coupling constant in quan-

tum electrodynamics). Since such a strong magnetic field
has not been realized in other terrestrial experiments,
the heavy-ion collisions provides us with a unique oppor-
tunity to investigate the properties of QCD matter at
the high temperature and in the strong magnetic field.
Understanding the properties of QCD matter in strong
magnetic fields can be also useful for neutron star and
magnetar physics, where a strong magnetic field and a
high density state are expected to be realized.

In the recent years, the strong magnetic field induced
by the heavy ion collisions have attracted a number
of interests. The anomaly-induced transport, the so-
called chiral magnetic effect [1], triggered not only inten-
sive theoretical studies but also experimental efforts (see
Refs. [3–5] for reviews). While significant progresses have
been made, the interpretation of the experimental results
appear to be still controversial due to the uncertainties
such as the lifetime of the magnetic field, the distribution
of the axial charges, the background of the experimental
signal, etc. Therefore, deeper understanding of various
aspects of the QGP in the strong magnetic field has been
becoming important to achieve the consistent dynamical
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modelling.
In this perspective, the transport coefficients are im-

portant quantities. Preceding studies addressed effects
of the magnetic field on, e.g., the electrical conductivity
[6–13], the shear viscosity [12, 14–16], the heavy-quark
diffusion constant [16, 17], and the jet quenching param-
eter [18] by various methods and with different assump-
tions for the hierarchy of scales. Since there were several
progresses also in the dynamical modelling of the anoma-
lous charge separation [19], the magnetohydrodynamics
[20–22], and the Langevin dynamics for open heavy fla-
vors [23], it is an urgent task to compute the transport
coefficients from the microscopic theories.

In this paper, we focus on one of the most impor-
tant transport coefficients in the magnetohydrodynamics,
that is, the electrical conductivity of QGP. This quantity
is interesting from the phenomenological point of view: If
the conductivity is large enough, it is expected that the
magnetic field induced by the heavy ion collision persists
longer in time [3, 24–26].

Also, from the theoretical point of view, we will find a
drastic change of the relaxation dynamics in the strong
magnetic field limit. This change is originated from the
Landau level quantization for the periodic cyclotron mo-
tion: The quark spectrum in the magnetic field (applied
in the z-direction) is discretized as

εn =
√
p2z +m2

f + 2n|eB| , (1.1)

where mf is the current quark mass and pz is the z com-
ponent of the quark momentum. Therefore, the low-
energy fermion dynamics is dominated by the (1+1)-
dimensional ground state (n = 0), i.e., the lowest Lan-
dau level (LLL). This is the quantum system realized in
the strong magnetic field limit where the magnitude of
the magnetic field is much greater than the other energy
scales of the system such as temperature. On the other
hand, the electrically neutral gluons are not coupled to
the magnetic field at the leading order in weak-coupling
theories, so that they move in the three dimensions.
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Thus, we need to consider the transport process with the
fermions moving in one dimension and the bosons moving
in three dimensions. This is an intriguing system which
is quite different from both the usual (3+1)-dimensional
theory, and the (1+1)-dimensional theory where there is
no dynamical gluonic degrees of freedom and the fermions
suffer the confinement. In fact, the effect of the strong
magnetic field opens novel 1-to-2 scattering processes (see
Refs. [27, 28] for the study at T = 0), which were forbid-
den by the kinematic reason when B = 0. In addition,
in the massless limit (mf = 0), the chirality conservation
forbids the scattering process [29], so that the conductiv-
ity, which diverges without scatterings, is expected to be
very sensitive to mf even when the mass is quite small.
It makes a striking contrast to the computations of the
transport coefficients without a magnetic field [30–34],
where we could safely neglect the current quark mass at
the high temperature T � mf . While the conductiv-
ity in weak magnetic fields has been evaluated by lattice
QCD [6], AdS/CFT correspondence [7], and the Boltz-
mann equation [8–11], this strong-field regime has not
been explored.

We will evaluate the electrical conductivity in strong
magnetic field at finite temperature and vanishing chem-
ical potential. As discussed shortly, we use the lowest
Landau level (LLL) approximation, and our calculation
is performed at the leading-log accuracy. It is known
that the transport coefficients, including the electrical
conductivity, can be consistently obtained from the ki-
netic equation [34] and the diagrammatic method [30–
33]. However, in the presence of the magnetic field, the
ordinary kinetic equation will not be directly applicable
due to the quantum nature of the Landau levels, and one
needs to elaborate the construction of kinetic equation.
In an accompanying paper [35], one can find the formu-
lation of an effective kinetic equation and the evaluation
of the conductivity beyond leading-log accuracy. In this
paper, starting out from quantum field theory, we show
that a consistent conclusion is drawn by using the dia-
grammatic method, and briefly discuss an equivalence to
the kinetic equation in Appendix D.

This paper is organized as follows: In the next section,
we introduce how to evaluate the electrical conductivity
in the real time formalism. By performing one-loop or-
der analysis, we obtain the expression of the conductivity
written in terms of the quark damping rate, and explic-
itly evaluate the damping rate generated by the 1-to-2
scatterings in Sec. III. Section IV is devoted to explain-
ing the features of the result for the conductivity. In
Sec. V, we discuss the resummation of the ladder dia-
grams. We briefly discuss possible implications of our
results for the heavy ion collision experiments in Sec. VI.
In Sec. VII, we summarize this paper and give a few con-
cluding remarks. In the four Appendices, we discuss the
gauge-fixing independence of our result, the integration
range with respect to the energy of the scattering particle
in the 1-to-2 scattering process, consistency of our dia-
grammatic scheme to the Ward-Takahashi identity, and

the equivalence of our scheme to the approach with ki-
netic equation, respectively.

Prior to going into explicit computations, we would
like to discuss the characteristic energy scales involved in
the problem, and specify our hierarchy assumed through-
out this paper. In the analysis below, a few characteris-
tic energy scales appear: The largest energy scale,

√
eB,

is due to the magnetic field. Because we work in the
strong magnetic field regime, we assume that it is much
larger than the temperature,

√
eB � T . This condi-

tion justifies the usage of the LLL approximation, i.e.,
neglect of the higher Landau levels. We also have the
current quark mass (mf ). In most calculation at QGP
phase, this quantity has been neglected because it is of
order ∼ 1MeV while T ∼ 100MeV. When infrared di-
vergence appears, it was regulated by thermal masses of
quarks and gluons. However, in the LLL approximation,
we cannot neglect mf because the scattering processes
are forbidden if mf = 0 due to the chirality conserva-
tion [29], as we will discuss later. On the other hand, the
gluon also dynamically gets a screening mass (M), which

is of order g
√
eB (g: QCD coupling constant) [17, 36].

Because we are interested in the case that finite-T effect
is significant, we consider the case of mf ,M � T , where
the quarks and gluons are thermally well excited. Sum-
marizing, we work in the regime mf ,M � T �

√
eB.

As for the ordering of mf and M , we consider both of
the cases: mf �M and mf �M .

II. ELECTRICAL CONDUCTIVITY IN REAL
TIME FORMALISM

In this section, we introduce how to evaluate the elec-
trical conductivity in the real time formalism. We be-
gin with formal introduction of the electrical conductiv-
ity. Consider the situation that, the system is initially
at equilibrium whose temperature is T in magnetic field
B, and then external electric field E disturbs the sys-
tem and induces electromagnetic current jµ. Due to the
linear response theory, the retarded current correlator

ΠRµν(x) ≡ iθ(x0)〈[jµ(x), jν(0)]〉, (2.1)

determines the induced current in the momentum space:

jµ(p) = −ΠRµν(p)Aν(p), (2.2)

where Aν is a vector potential that creates E. When E
is homogenous in space, we have p = 0 and E = iωA,
and thus ji(ω) = ΠRij(ω)Ej(ω)/(iω). By taking ω → 0
limit, we have ji = σijEj , where we have introduced the
DC conductivity tensor,

σij ≡ lim
ω→0

ΠRij(ω)

iω
. (2.3)

Thus, the DC conductivity can be evaluated by calcu-
lating the current correlator in low energy limit at zero
momentum, whose expression is called Kubo formula.
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This expression can be rewritten as follows in the real
time formalism: By using nB(ω) ' T/ω for ω � T ,
where nB(ω) ≡ [eβω− 1]−1 is the Bose distribution func-
tion with β ≡ 1/T , we have

σij =
β

2
Πij

12(ω → 0), (2.4)

where Πµν
12 (x) ≡ 〈TCjµ1 (x)jν2 (0)〉 = 〈jν(0)jµ(x)〉 and

ρµν(p) ≡ 2ImΠRµν(p) is the spectral function of the cur-
rent, that satisfies Πµν

12 (p) = nB(ω)ρµν(p). Here we have
introduced the contour in complex time drawn in Fig. 1,
where the limits t0 → −∞ and tf →∞ are taken. TC is
an ordering operator on this contour and jµ1/2 is a current

operator whose time belongs to C1/2. For more detail of
the real time formalism, see [37, 38].

Here we write the current correlator in terms of quark
field for evaluation. The current operator is defined as

jµ(x) ≡ e
∑
f

qfψf (x)γµψf (x), (2.5)

where f is an index for flavor, qf is a EM charge for the
quark, and ψf is a quark operator. In the LLL approxi-
mation, the quark field reads [39]

ψf (x) =

∫
pL,p2

e−i(pL·xL−p2x2)Pf+χ
f
p2(pL)H(x1 − rfp2),

(2.6)

where we have adopted the Landau gauge considered
the case that B is along z-axis, in which A2

ext = Bx1

with Aµext the vector potential that yields the mag-
netic field. We have also introduced d2pL ≡ dp0dp3,

pL ≡ (p0, 0, 0, p3),
∫
p
≡
∫
dp/(2π), rfp2 ≡ −p

2/Bf ,

Bf ≡ eqfB, and χfp2(pL) is the quark operator at the

LLL. We note that p2 here does not mean the square
of four-vector pµ, (p0)2 − p2, but the y-component of

pµ. Pf± ≡ (1 ± sgn(Bf )iγ1γ2)/2 is a projection opera-

tor into a state with spin aligning with B. H(x− rf ) ≡
[|Bf |/π]1/4 exp[−|Bf |(x− rf )2/2] is the normalized har-
monic oscillator function coming from quark wave func-
tion in transverse plane at the LLL. In this approxima-
tion, the current operator becomes

jµ(x) = e
∑
f

qf

∫
p2,pL,k2,kL

e−ixL·(kL−pL)eix
2(k2−p2)

×H(x1 − rfp2)H(x1 − rfk2)χfp2(pL)γµχfk2(kL).

(2.7)

The current correlator can be written in terms of four-
point function of quark:

Πµν
12 (p = 0) = e2

∑
f,f ′

qfqf ′

∫
k2,kL,q2,qL,l2,lL,r2,rL

(2π)δ(k2 − q2)(2π)2δ(2)(kL − qL)(2π)δ(l2 − r2)(2π)2δ(2)(lL − rL)

×
[∫

dx1H(−x1 − rf
′

l2 )H(−x1 − rf
′

r2)

]
H(−rfk2)H(−rfq2)

〈
TCχ

f
1k2(kL)γµχf1q2(qL)χf

′

2l2(lL)γνχf
′

2r2(rL)
〉

= e2
∑
f,f ′

qfqf ′

∫
k2,kL,l2,lL

[
H(−rfk2)

]2 〈
TCχ

f
1k2(kL)γµχf1k2(kL)χf

′

2l2(lL)γνχf
′

2l2(lL)
〉
,

(2.8)

where we have used
∫
dx[H(x)]2 = 1. When we use

the symmetry in the color space and neglect the fla-
vor changing process, which will be justified in the
analysis later since we will consider only the ladder
diagrams, the four-point function above has the struc-

ture
〈

TCχ
f
1k2(kL)γµχf1k2(kL)χf

′

2l2(lL)γνχf
′

2l2(lL)
〉

=

Ncδff ′G
µνf
1122(k, k, l, l), with the four-

point function Gµνf1122(k, k, l, l) ≡〈
TCχ

f
1k2(kL)γµχf1k2(kL)χf2l2(lL)γνχf2l2(lL)

〉
. Here

the color summation in Gµνf1122 has been done. We further

assume that
∫
l2
Gµνf1122(k, k, l, l) does not depend on k2,

which also will be justified later. Then, Πµν
12 can be

written as

Πµν
12 (p = 0) = e2

∑
f

(qf )2Nc
|Bf |
2π

∫
k2,kL,lL

Gµνf1122(k, k, l, l),

(2.9)

where we have used
∫
p
[H(−rfp )]2 = |Bf |/2π.

For later convenience, we move to r/a basis. By intro-
ducing χr ≡ (χ1+χ2)/2 and χa ≡ χ1−χ2, the four-point
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function can be written as

G1122 = Grrrr +
1

2
(Garrr +Grarr −Grrar −Grrra)

+
1

4
(Gaarr −Garar −Garra

−Graar −Grara +Grraa)

+
1

8
(−Gaaar −Gaara +Garaa +Graaa) ,

(2.10)

where we have omitted the Lorentz/flavor indices for
simplicity, introduced Gijkl ≡ 〈TCχiγµχjχkγνχl〉 with
i, j, k, l = r or a, and used Gaaaa = 0. By using the gen-
eralized fluctuation-dissipation theorem [30, 40, 41], this
expression can be rewritten as

G1122 = α1Gaarr + α2Gaaar + α3Gaara + α4Garaa

+ α5Graaa + α6Garra + α7Garar

+ β1G
∗
aarr + β2G

∗
aaar + β3G

∗
aara + β4G

∗
araa

+ β5G
∗
raaa + β6G

∗
arra + β7G

∗
arar,

(2.11)

where we have introduced the Fermi distribution function
nF (E) ≡ [eE/T +1]−1 and α1 = β1 ≡ nF (k0)[1−nF (k0)].
We do not write the other coefficients explicitly be-
cause they will be found to be irrelevant to the leading-
order calculation. The bar above G means the inter-
change between the quark and the anti-quark: G

µν

ijkl ≡
〈TCχjγµχiχlγνχk〉. Neglecting the irrelevant terms in

Eq. (2.11) and using Gaarr(k, k, l, l) = Gaarr(k, k, l, l),
which can be shown by using the definition of G, we get

G1122 = 2nF (k0)[1− nF (k0)]ReGaarr + (other terms).

(2.12)

It makes Eq. (2.4) as

σij = e2β
∑
f

(qf )2Nc
|Bf |
2π

∫
k2,kL,lL

× nF (k0)[1− nF (k0)]ReGijfaarr(k, k, l, l),

(2.13)

by using Eq. (2.9).

III. ONE-LOOP ANALYSIS

In this section, we examine the four-point function in
the LLL approximation, which is necessary for computing
the electrical conductivity. While we work at the one-
loop order, we use the dressed quark propagator in which
the quark damping rate is resummed. We also explicitly
evaluate the quark damping rate taking into account the
1 to 2 scattering in both of the two cases, mf �M and
mf �M .

C+

x0

C-

t0 tf

tf-iε

t0-iβ

FIG. 1: The contour in complex time plane. The part C+ is
on the real axis and C− is below that axis by ε.

A. Four-point function of quark

We evaluate the four-point function at the one-loop
approximation. By using Wick’s theorem, the four-point
function becomes

Gµνfaarr(k, k, l, l) = −(2π)δ(k2 − l2)(2π)2δ(2)(kL − lL)

× Tr[γµSar(kL)γνSra(kL)],

(3.1)

where we have introduced the quark propagators in r/a

basis, Sij(pL) ≡ 〈TCχip2(pL)χjp2(pL)〉, where i, j = r, a

and omitted flavor indices for simplicity. We note that
this quantity becomes independent of k2 after integrat-
ing over l2, so the assumption we made above Eq. (2.9)
is justified. It also implies that the k2 integral in the
right-hand side of Eq. (2.9) can be trivially performed
thanks to δ(k2− l2), so that there remain only kL and lL
integrals. This property manifests the gauge invariance.
The other terms with different indices in Eq. (2.11) vanish
because Saa = 0. This contribution corresponds to the
one-loop diagram drawn in Fig. 2. As we will see later,
S(kL) is proportional to (/kL + mf )P+, so Gµν vanishes
when µ, ν =⊥ (1 or 2) because P+γ

⊥P+ = γ⊥P−P+ = 0.
Therefore, we consider the case of µ, ν = 0 or 3 from now
on.

If we naively use the quark propagator in the free limit
in the expression above, we would have a divergence,
which is called pinch singularity [30–33]. To regulate
this singularity, one needs to resum the damping rate of
the quark (ξp). The resummed quark retarded/advanced

propagator (SR/A = iSra/ar) at the LLL approximation
reads

SR/A(p) = (/pL +mf )P+∆
R/A
S (p), (3.2)

where ∆
R/A
S (p) ≡ −[p2L − m2

f ± 2iξpp
0]−1, with p2L ≡

(p0)2 − (p3)2 and mf is the current quark mass. The
free part of the expression above is given in Ref. [39],
for example. We note that the modification of the quark
mass mf due to the interaction effect is not necessary at
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the leading-order calculation, because the modification to
mf is suppressed by the factor of g2mf/T , at most [42].
This point is quite different from the B = 0 case, where
the quarks move in three-dimension so that the scattering
process is finite even at mf = 0, and thus the thermal
mass is independent from mf (it is of order gT [43]) when
T is large enough. By using this expression, Eq. (3.1)
becomes

Gµνfaarr(k, k, l, l) = (2π)δ(k2 − l2)(2π)2δ(2)(kL − lL)

×
kµLk

ν
L

ξkk0
ρS(kL),

(3.3)

where we have evaluated the trace by using Tr[(/kL +
mf )P+γ

µ(/kL + mf )P+γ
ν ] = 4kµLk

ν
L, which is obtained

by using the on-shell condition k2L = m2
f . We have also

introduced the spectral function of the quark related to
∆R/A, ρS(pL) ≡ −i[∆R

S (pL) − ∆A
S (pL)], which satisfies

∆R
S (pL)∆A

S (pL) = ρS(pL)/(4ξpp
0).

Using this resummed propagator, Eq. (2.13) for i =
j = 3 becomes

σ33 =
β

2
e2
∑
f

(qf )2Nc
|Bf |
2π

∫
dk0dk3

π

× nF (k0)[1− nF (k0)]
(k3)2

ξk|k0|
δ(k2L −m2

f ),

(3.4)

where we have used the approximation

ρS(kL) ' (2π)sgn(k0)δ(k2L −m2
f ). (3.5)

We see that Eq. (3.4) is proportional to ξ−1k , so it di-
verges when ξk → 0. This is the pinch singularity, and
physically it corresponds to the fact that the conductiv-
ity diverges when the quark do not scatter with other
particles so that the mean free path becomes infinitely
large.

B. Quark damping rate

We need to evaluate the quark damping rate for pro-
ceeding the calculation. The contribution from the one-
loop diagram, which is drawn in the left panel of Fig. 3,
is as follows:

ImΣR(kL) =
g2CF

2

∫
l

γLµ (/l L +mf )P+γ
L
ν ρ

µν
D (k − l)ρS(lL)

×
[
Rf (k⊥ − l⊥)

]2
[nF (l0) + nB(l0 − k0)],

(3.6)

where we have introduced kµ⊥ ≡ (0, k1, k2, 0),

CF ≡ (N2
c − 1)/(2Nc), the form factor Rf (p⊥) ≡

exp[−p2
⊥/(4|Bf |)], and the gluon spectral function

ρµνD (k) ≡ 2ImDRµν(k) with DRµν(k) the retarded gluon
propagator. We note that we have used the Ritus ba-
sis [39, 44], in which the momentum of the form fac-
tor is that of the gluon instead of the quark, and the

Schwinger phases were canceled and thus did not appear
in the expression above. Again, this absence of the phases
is a manifestation of the gauge invariance. It yields the
damping rate

εLk ξk = −1

2
Tr
[
(/kL +mf )ImΣR(kL)|k0=εLk

]
= −g

2CF
4

∫
l

Tr
[
(/kL +mf )γLµ (/l L +mf )P+γ

L
ν

]
× ρµνD (k − l)ρS(lL)

×
[
Rf (k⊥ − l⊥)

]2
[nF (l0) + nB(l0 − k0)]|k0=εLk ,

(3.7)

where we have introduced εLk ≡
√

(k3)2 +m2
f , which is

the on-shell energy of the quark with longitudinal mo-
mentum k3.

We need to know the gluon propagator for eval-
uating the damping rate. In the LLL approxima-
tion, the self-energy of the gluon coming from the
quark loop has the tensor structure [17] Ωµν(k) =
Ω‖(k)Pµν‖ (kL), where Pµν‖ (kL) ≡ −[gµνL −k

µ
Lk

ν
L/k

2
L] with

gµνL ≡ diag(1, 0, 0,−1). The self-energy coming from the
gluon/ghost loop is much smaller, so we neglect it in this
work. The resultant gluon retarded propagator is, in the
covariant gauge [17, 28],

DRµν(k) = −
Pµν‖ (kL)

k2 + iεk0 −Ω‖(k)
−
Pµν0 (k)− Pµν‖ (kL)

k2 + iεk0

+ α
kµkν

(k2 + iεk0)2
,

(3.8)

where α is a gauge-fixing parameter and Pµν0 (k) ≡
−[gµν − kµkν/k2]. We note that the denominators in
P0 and P‖ also contains iεk0. The second and the third
terms are shown not to contribute to the damping rate
in Appendix A, so we omit them from now on. Thus, the
gluon spectral function reduces to

ρµνD (k) = Pµν‖ (kL)ρD(k), (3.9)

where ρD(k) ≡ −2Im[1/(k2 + iεk0 − Ω‖(k))]. Then,
Eq. (3.7) becomes

εLk ξk = g2CFm
2
f

∫
l

ρD(k + l)ρS(lL)

×
[
Rf (k⊥ + l⊥)

]2
[nF (l0) + nB(l0 + k0)]|k0=εLk ,

(3.10)

where we have evaluated the trace by using
Tr
[
(/kL +mf )γLµ (/l L +mf )P+γ

L
ν

]
Pµν‖ (kL−lL) = −4m2

f ,

which is obtained by the on-shell conditions
k2L = l2L = m2

f . We also flipped the sign of l for
future convenience.
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FIG. 2: The current correlator Gµνfaarr(k, k, l, l) at one-loop
level. The solid line represents quark propagator.

2Cut

FIG. 3: The quark self-energy at one-loop level (left panel)
and the matrix element of the 1 to 2 scattering (right panel),
which corresponds to the imaginary part of the self-energy.
The curly line represents gluon propagator.

1. mf �M case

We start with the case that the current quark mass is
much larger than the gluon screening mass, mf � M .
In this case, the current quark mass regulates all the
infrared singularities as will be found later, so we can
safely neglect the gluon self-energy:

ρD(k) = (2π)sgn(k0)δ(k2). (3.11)

By using this equation and the spectral function of free
quark, Eq. (3.5), Eq. (3.10) becomes

εLk ξk = g2CFm
2
f

∫
d4l

(2π)4
(2π)2sgn(l0)sgn(k0 + l0)

× δ([k + l]2)δ(l2L −m2
f )

×
[
Rf (k⊥ + l⊥)

]2
[nF (l0) + nB(l0 + k0)]|k0=εLk

'
g2CFm

2
f

8π

∫
dl0sgn(l0)sgn(εLk + l0)

∑
s=±1

×
θ((l0)2 −m2

f )θ
(
m2
f + εLk l

0 − sk3
√

(l0)2 −m2
f

)
√

(l0)2 −m2
f

× [nF (l0) + nB(l0 + εLk )],

(3.12)

where we have performed the integrations for l2⊥ and l3 by
using the two delta functions. Because the distribution
functions give the ultraviolet cutoff at the scale T in l0 in-

tegration, |k⊥+ l⊥|2 = 2[m2
f + εLk l

0−sk3
√

(l0)2 −m2
f ] <∼

T 2 � eB as long as |k3| is of the order or much smaller
than T . Therefore, we have approximated the form factor
as unity. We note that s = sgn(l3), so s shows the direc-
tion of the movement of the anti-quark whose momentum

is l3. The integration range is shown to be l0 > mf in
Appendix B, so we arrive at the expression1

εLk ξk =
g2CFm

2
f

4π

∫ ∞
mf

dl0
nF (l0) + nB(l0 + εLk )√

(l0)2 −m2
f

. (3.13)

The distribution function factor can be rewritten as
nF (1 +nB) +nB(1−nF ), which shows that the physical
process that yields the damping rate above is the pair an-
nihilation of the quark and the anti-quark and its inverse
process, which is drawn in the right panel of Fig. 3.

As we will see later, the dominant contribution to the
electrical conductivity comes from the quark whose mo-
mentum is of order T . Thus, we focus on the case that
|k3| ∼ T . In this case, Eq. (3.13) can be evaluated at the
leading-log order2 as

εLk ξk '
g2CFm

2
f

4π

[
1

2
+ nB(εLk )

] ∫ T

mf

dl0
1√

(l0)2 −m2
f

'
g2CFm

2
f

4π

[
1

2
+ nB(εLk )

]
ln

(
T

mf

)
,

(3.14)

where we have used
∫
dl0/

√
(l0)2 −m2

f =

ln
(
l0 +

√
(l0)2 −m2

f

)
and the fact that the domi-

nant contribution comes from the energy region l0 � T .
We see that the energy of the quark is εLk ∼ T and that
of the anti-quark is l0 � T , which makes the gluon
energy εLk + l0 ∼ T .

2. mf �M case

Next, we consider the opposite case, mf �M . In this
case, we need to take into account the gluon screening
mass:

ρD(k) = (2π)sgn(k0)δ(k2 −M2), (3.15)

where

M2 ≡ 1

2
· g

2

π

∑
f

|Bf |
2π

. (3.16)

Here we note that the dispersion relation above has a
nonnegligible correction when k <∼ mf [17]. Nevertheless,
such low momentum region is found to be irrelevant in
the current calculation because the gluon energy is εLk +

1 The term containing nF was already given in Ref. [42].
2 Leading-log approximation means that, we regard ln(ε−1), where
ε is a small quantity, as a large number and approximate
ln(ε−1) + O(1) ' ln(ε−1). In the current case, ε is mf/T .
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l0 >∼ T , where we have used εLk ∼ T . By using this gluon
spectral function, Eq. (3.10) becomes

εLk ξk = g2CFm
2
f

∫
d4l

(2π)4
(2π)sgn(l0)δ(l2L −m2

f )

× (2π)sgn(k0 + l0)δ([k + l]2 −M2)

×
[
Rf (k⊥ + l⊥)

]2
[nF (l0) + nB(l0 + k0)]|k0=εLk

'
g2CFm

2
f

4

∫
dl0

(2π)
sgn(l0)sgn(εLk + l0)

×
∑
s=±1

θ

(
m2
f + l0εLk − sk3

√
(l0)2 −m2

f −
M2

2

)

×
θ((l0)2 −m2

f )√
(l0)2 −m2

f

[nF (l0) + nB(l0 + εLk )],

(3.17)

where we have approximated Rf (k⊥ + l⊥) ' 1.

Let us consider the case |k3| < kc first, where kc ≡
M2
√
A/(2mf ) ∼ M2/mf with A ≡ 1 − 4m2

f/M
2. The

integration range is shown to be l± < l0 for s = ±sgn(k3)
in Appendix B, where l± is defined in Eq. (B4). Because
l+ ∼ M2T/m2

f � T , the contribution from s = sgn(k3)

to Eq. (3.17) is exponentially suppressed due to the
Fermi/Bose distribution functions. Thus, Eq. (3.17) be-
comes

εLk ξk '
g2CFm

2
f

4

∫ ∞
l−

dl0

(2π)

nF (l0) + nB(l0 + εLk )√
(l0)2 −m2

f

'
g2CFm

2
f

8π

[
1

2
+ nB(εLk )

]
ln

T

l− +
√

(l−)2 −m2
f

'
g2CFm

2
f

4π

[
1

2
+ nB(εLk )

]
ln
T

M
,

(3.18)

where we have used l− ' M2[1 + (k3/kc)
2]/(4|k3|) �

T for |k3| ∼ T � mf , and performed the leading-log
approximation in the middle line. This expression is the
same as Eq. (3.14) except for the infrared cutoff in the
log: When mf � M , the screening mass of the gluon
gives the cutoff instead of the current quark mass.

Next we consider the case of |k3| > kc. Appendix B
shows that the integration range is mf < l0 < l− and
l+ < l0 for s = −sgn(k3), and mf < l0 for s = sgn(k3).
Again, the contribution from l+ < l0 can be neglected,

and Eq. (3.17) becomes

εLk ξk '
g2CFm

2
f

8π

[∫ l−

mf

+

∫ ∞
mf

]
dl0

nF (l0) + nB(l0 + εLk )√
(l0)2 −m2

f

'
g2CFm

2
f

8π

[
1

2
+ nB(εLk )

]
ln

T

m2
f

(
l− +

√
(l−)2 −m2

f

)
'
g2CFm

2
f

4π

[
1

2
+ nB(εLk )

]
ln
T

M
,

(3.19)

at the leading-log accuracy. Unexpectedly, the expression
is the same as the other case, Eq. (3.18).

IV. RESULTS

Let us evaluate the conductivity by using the ex-
pression of the quark damping rate. First we work in
mf �M case. By using Eq. (3.14), Eq. (3.4) yields

σ33 = e2
∑
f

(qf )2Nc
|Bf |
2π

β

π

×
∫ ∞
mf

dk0nF (k0)[1− nF (k0)]

√
[k0]2 −m2

f

ξk|k0|

= e2
∑
f

(qf )2Nc
|Bf |
2π

8β

g2CFm2
f ln (T/mf )

×
∫ ∞
mf

dk0n2F (k0)[1− nF (k0)]

√
[k0]2 −m2

f

nB(εLk )

' e2
∑
f

(qf )2Nc
|Bf |
2π

4T

g2CFm2
f ln (T/mf )

,

(4.1)

where we have used the fact that the integrand becomes
quickly small at k0 � T , so that we can safely change
the lower bound of the integral to 0 in the last line. The
integrand is suppressed exponentially also in k0 � T
region. Therefore, the dominant contribution of the in-
tegral above comes from the energy region k0 ∼ T . We
also used the formula

∫
dkkn2F (k)[1 − nF (k)]/nB(k) =

−T 2n2F (k)[ek/T (k/T + 1) + 1] in the last line.
Equation (4.1) is one of the central results of this pa-

per. Several remarks on this expression are in order:

1. The conductivity is proportional to |Bf | ∼ eB,
which is larger than any other scales that have di-
mension of (energy)2. It is because of large Landau
degeneracy of the quark at LLL in the transverse
plane.

2. The g-dependence of the conductivity is ∝ g−2, in
contrast to B = 0 case (∝ g−4 [32, 34]). It is due to
the fact that the 1 to 2 scattering process instead
of 2 to 2 process, which is the leading contribution
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in B = 0 case, is responsible for determination of
the conductivity.

We can understand how this process is allowed
when B is strong as follows: Let us consider the
1 to 2 process in which a gluon becomes a quark
with momentum k and an anti-quark with momen-
tum l. When B = 0, these particles have dispersion
relations in three-dimension, k2 = l2 = m2

f and

(l + k)2 = 0. By using the first equation, we see
that the last equation can not be satisfied3. Physi-
cally, it is clear because a massless particle can not
become two massive particles. By contrast, when
we have strong B, the quark have one-dimensional
dispersion relation while the gluon’s dispersion re-
lation is still three-dimensional: k2L = l2L = m2

f and

(k + l)2L = (k + l)2⊥. We note that these equations
are similar to those at B = 0, except for the right-
hand side of the last equation. These equations
can be satisfied, as was seen from the calculation
we have done. It is because the transverse momen-
tum of the gluon, k⊥ + l⊥, plays a role of gluon
mass in the last equation, so that the gluon can
decay into two massive particles.

3. The conductivity is proportional to m−2f , so it di-
verges in the massless limit. Physically, it is be-
cause that the scattering process is forbidden when
mf = 0 [29]: In the 1 to 2 scattering process drawn
in Fig. 3, the quark and the anti-quark moving in
the opposite direction along B in the initial state
have the same chirality. On the other hand, the
gluon in the final state has no chirality, so the chi-
rality conservation law forbids such process in the
massless limit. Since mf is much smaller than other
energy scales, this dependence makes the conduc-
tivity quite large.

4. The component of the conductivity other than σ33

vanishes as was discussed after Eq. (3.1). Phys-
ically, it is because that the quarks in the LLL
can only move along the direction of the magnetic
field, so that the electric charge can not move in
the transverse plane.

5. ln(T/mf ) can be understood from the fact that the
ultraviolet cutoff of the energy of the anti-quark
coming from the medium is of order T while the
infrared cutoff is given by mf , as can be seen from
Eq. (3.14).

Next we proceed to the case mf � M . Because the
quark damping rate is the same as that in mf � M
case except for the argument of the log, the conductivity

3 Strictly speaking, this equation is satisfied when k and l are
parallel. However, such configuration would be impossible if the
screening effect is taken into account [45].

is obtained by changing the infrared cutoff of the log in
Eq. (4.1), from mf to M :

σ33 ' e2
∑
f

(qf )2Nc
|Bf |
2π

4T

g2CFm2
f ln (T/M)

. (4.2)

V. LADDER DIAGRAM SUMMATION

In the calculation of the electrical conductivity with-
out magnetic field, all the ladder diagrams were found to
contribute at the leading-order [30–33]: The suppression
of the ladder diagrams by the positive power of g from
the kernel is cancelled by the negative power of g from
the pinch singularity. The maximum cancellation hap-
pens when the ladder diagram with n kernels contains
(n + 1) pinch singularities. Because of this cancellation,
the order of the magnitude of the ladder diagram does
not depend on n. This situation persists also in the pres-
ence of strong magnetic field, so that we need to sum
all the ladder diagrams for completing the leading-order
calculation.

We start by showing that the terms with α2 ∼ α7 and
β2 ∼ β7 in Eq. (2.11) do not contribute at the leading
order. Let us consider Gaaar as an example. As was
shown in the previous subsection, this quantity vanishes
at one-loop order. Switching to the ladder diagram, we
consider the one with one kernel (Kijkl) shown in the left
panel of Fig. 4. The properties Saa = 0 and Krrrr = 0
determine all the indices in this diagram as in the figure.
The two propagators at the left of the kernel has a pinch
singularity because there appear Sra and Sar with the
same momentum, but the ones at the right does not have
the singularity since a pair of Sra appears. Therefore, the
number of the pinch singularity and that of the collision
kernel are equal (one in this case).

It is the case also in the diagram with more kernels: We
consider the diagram shown in the right panel of Fig. 4.
As in the previous diagram, both of the indices in the left
part of the leftmost kernel are r. There are two patterns
of the configuration of the indices in the right part of the
leftmost kernel. One is the case that both the indices are
a (Krraa), which makes the left part of the indices of the
next kernel r. The other case is that one of the indices is
r and the other is a. Also in this case, both the indices
of the left part in the next kernel are r, in order to have
pinch singularity: From the expression

Srr(kL) =

(
1

2
− nF (k0)

)
[Sra(kL)− Sar(kL)], (5.1)

we see that Srr contains both Sra and Sar. Since the
pinch singularity appears from the pair of Sra and Sar,
the pair of the propagator we are considering should be
Srr and Sar because we can not have Sra and Sar. There-
fore, the two indices in the left part of the kernel are r
in each case. In the same way, we can apply this argu-
ment to the next kernel and find that the indices of the
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FIG. 4: The ladder diagrams with one kernel (left panel) and more kernels (right panel) for Gaaar. The (blue) square is the
kernel Kijkl introduced later. The two brackets in the right panel represent the two cases indicated in the text.
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FIG. 5: One of the ladder diagram for Gaarr. The four brack-
ets represent the two cases indicated in the text.

left part in the rightmost kernel are r. Then one can see
that the number of the pinch singularity and that of the
collision kernel are equal, by using the argument used in
the case of one kernel. The situation is the same also for
the other terms than Gaaar.

Now let us discuss for Gaarr, by taking a look at the
diagram drawn in Fig. 5. In the same way as in Gaaar,
the leftmost kernel is Krraa or Krrar, and to have pinch
singularity, the indices of the left part of the next kernel
are (rr). By repeating the same argument, we can list
all the configurations of the indices as in the figure. In
any of these configurations, we see that there are (n+ 1)
pinch singularities for the ladder diagram with n kernels.
Thus, we see that Gaarr is much larger than Gaaar and
the other terms in Eq. (2.11).

Now we can proceed the calculation. For the conve-
nience to check the Ward-Takahashi identity, we intro-
duce the quark-photon vertex function Γµ(k), which is
related to the four-point function as

∫
l2,lL

Gµνfaarr(k, k, l, l) = Tr
[
γµSA(kL)Γ ν(k)SR(kL)

]
,

(5.2)

which is represented diagrammatically in Fig. 6. From
this figure, one sees that this vertex function has the
indices (rra) in r/a basis. The integral equation (Bethe-
Salpeter equation) that is used to sum all the ladder dia-

grams, whose diagrammatic expression is in Fig. 7, reads

Γµ(k) = γµ +

∫
l

∑
α,β=r,a

[Krrαβ(k, l)Sαr(lL)Γµ(l)Srβ(lL)].

(5.3)

We note that the kernel Krrαβ generally has a spinor
structure. Also, notice that only the vertex with the
indices (rra) appears: One may think that the other
nonzero vertex, which has the indices (aaa), can appear
in the second term in the right-hand side. Nevertheless,
in that case, the property Saa = 0 forces us to make
the indices of the kernel as Krrrr, which vanishes identi-
cally, so only the vertex with the indices (rra) appear at
the equation above. By using Eq. (5.1), we pick up only
the pairs of Sar(lL) and Sra(lL), which generate pinch
singularity, in the summation of α, β above:

Γµ(k) = γµ +

∫
l

[{
Krraa(k, l)

+

(
1

2
− nF (l0)

)
(Krrar(k, l)−Krrra(k, l))

}
× Sar(lL)Γµ(l)Sra(lL)

]
.

(5.4)

The kernel is given by the one-gluon exchange process
at the leading order (lower panel of Fig. 7). With this
kernel, Eq. (5.4) becomes

Γµ(k) = γµ − g2CF
∫
l

[Rf (k⊥ − l⊥)]2
{
Dαβ
rr (k − l)

+

(
1

2
− nF (l0)

)(
Dαβ
ra (k − l)−Dαβ

ar (k − l)
)}

× γαSar(lL)Γµ(l)Sra(lL)γβ

= γµ + g2CF

∫
l

γαS
A(lL)Γµ(l)SR(lL)γβρ

αβ
D (k − l)

×
(
nF (−l0) + nB(k0 − l0)

)
[Rf (k⊥ − l⊥)]2,

(5.5)

where we have used Dµν
rr (k) = −i[1/2+nB(k0)][Dµν

R (k)−
Dµν
A (k)] and Dµν

ra/ar = −iDµν
R/A in the last line. This
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FIG. 6: The relation between Gaarr and Γ . The (red) square
represents Gaarr. The black blob represents a vertex function
Γµ.

equation is shown to be consistent with the Ward-
Takahashi (WT) identity in Appendix C. We note
that only the on-shell gluon appears at the inte-
gral above. We decompose the spinor structure as
SA(kL)Γµ(k)SR(kL) = (/kL + mf )P+ρS(kL)Aµ(k)/2,
where Aµ does not have a spinor structure. Then, the
integral equation for Aµ becomes

ξkk
0Aµ(k) = kµ − g2CFm2

f

∫
l

ρS(lL)ρD(k − l)Aµ(l)

×
(
nF (−l0) + nB(k0 − l0)

)
[Rf (k⊥ − l⊥)]2,

(5.6)

where we have used Eqs. (3.2), (3.9), (/kL +mf )γµ(/kL +

mf ) = 2kµ(/kL + mf ), and γα(/l L + mf )γβP
αβ
‖ (k − l) =

−(/kL + mf ), which are valid for the on-shell kL and lL.
From the expression above, we see that

A3(k0, k3,k⊥) = −A3(k0,−k3,k⊥) = −A3(−k0, k3,k⊥),
(5.7)

by looking at the integral kernel. By changing the sign
of l, and using this property and the expression of the
damping rate (3.10), Eq. (5.6) for µ = 3 becomes

k3 = g2CFm
2
f

∫
l

ρS(lL)ρD(k + l)[A3(k)−A3(l)]

×
(
nF (l0) + nB(k0 + l0)

)
[Rf (k⊥ + l⊥)]2.

(5.8)

This is the integral equation that is necessary for the
complete leading-order analysis. From the definition of
the Aµ(k) below Eq. (5.5), the relation to the four-point
function is∫

l2,lL

Gµνfaarr(k, k, l, l) = ρS(kL)kµAν(k), (5.9)

One can see that these equations are equivalent to the
linearized Boltzmann equation in Appendix D.

Now we perform iteration in Eq. (5.8), to see the effect
of the ladder diagram summation. In mf � M case,
from Eq. (3.14), the zeroth order solution reads

A3
(0)(k) =

k3

ξkk0

=
8πk3nF (k0)

g2CFm2
fnB(k0) ln (T/mf )

.

(5.10)

=

= +

= =
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r

r

r
r

aa
a

= +

=

r

r

a
r

r

ar

r

FIG. 7: Bethe-Salpeter equation (upper panel) and the ex-
plicit form of the kernel for the one gluon exchange (lower
panel).

By iterating it into Eq. (5.8) we have

g2CFm
2
f

∫
l

ρS(lL)ρD(k + l)A3
(0)(l)

×
(
nF (l0) + nB(k0 + l0)

)
[Rf (k⊥ + l⊥)]2

=
1

ln (T/mf )

∫ ∞
mf

dl0
∑
s=±1

s

×
(
nF (l0) + nB(k0 + l0)

) nF (l0)

nB(l0)
,

(5.11)

which is found to be zero after summing over s, corre-
sponding to the cancellation of the contributions coming
from positive and negative l3. Therefore, the ladder sum-
mation is not necessary at the leading order calculation.

On the other hand, in mf � M case,
the zeroth order solution is A3

(0)(k) =

8πk3nF (εLk )/[g2CFm
2
fnB(εLk ) ln (T/M)], and the first

iteration reads

g2CFm
2
f

∫
l

ρS(lL)ρD(k + l)A3
(0)(l)

×
(
nF (l0) + nB(k0 + l0)

)
[Rf (k⊥ + l⊥)]2

=
1

ln (T/M)

∫ ∞
l−

dl0
nF (l0)

nB(l0)

(
nF (l0) + nB(k0 + l0)

)
,

(5.12)

where we have considered the case |k3| < kc and retained
only s = sgn(k3) term. The integral above does not
contain any infrared singularity, so this quantity is of
order T/ ln(T/M). This is smaller than the left-hand
side of Eq. (5.8), k3 ∼ T , by the factor of [ln(T/M)]−1,
so taking only the zeroth order solution (5.10) is enough
at the leading-log accuracy. One can show that the ladder
summation is unnecessary also in |k3| > kc case in the
same way.

Finally, we verify the assumption made above

Eq. (2.8), that is, the integral
∫
l2
Gµνf1122(k, k, l, l) does not

depend on k2. According to Eq. (5.9), this verification is
accomplished if one could show that Aν(k) does not de-
pend on k2. In both of mf �M and mf �M cases, the
zeroth-order solution A3

(0)(k) does not depend on k2. In
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the former case, this completes the confirmation because
A3

(0)(k) is already the full solution at the leading order.

In the latter case, we see that iteration does not yield k2

dependence by looking at Eq. (5.12), so the assumption
is valid also in this case.

VI. IMPLICATION IN HEAVY ION COLLISION

In this section, we briefly discuss possible implications
for the heavy ion collisions from our results obtained in the
previous section. We evaluate the value of the conductiv-
ity by using typical values of T , B, g, and mf realized in
the heavy ion collision, and make a comparison with the
preceding results at B = 0. We also discuss the back re-
action from the induced current to the electromagnetic
field. Furthermore, we discuss the effect of magnetic field
on the production rate of soft dileptons.

A. Evaluation of conductivity

Having the heavy ion collisions in mind, we use the fol-
lowing values for the parameters:

αs ≡
g2

4π
= 0.3,

mf = 3 MeV (u), 5 MeV (d), 100 MeV (s)

eB = 10m2
π = (443 MeV)2,

(6.1)

where mπ = 140 MeV is the pion mass. In order to highlight
the effect of the magnetic field, we have taken the very large
value for eB. With these parameters, the gluon screening
mass (3.16) is approximately M ' 140 (160) MeV in Nf =
2 (3) case. Because it satisfies mf < M , we use our results
(4.2) in the case mf �M from now on.

First, let us compare the parametric behaviors of our
result at finite B and of the result at B = 0. From
Eq. (4.2), the conductivity along the magnetic field is para-
metrically evaluated as σ33/e2 ∼ eBT/[g2m2

f ln(T/M)].
On the other hand, the parametric estimate for B = 0 is
σB=0/e

2 ∼ g−4T (ln g−1)−1 [32, 34]. Thus their ratio is
given by

σ33/σB=0 ∼ g2
eB

m2
f

' 8.2× 104, (6.2)

where we have neglected the log factor and used the pa-
rameters given in Eq. (6.1). We see that the conductivity
in the strong magnetic field is much larger than that with-
out the magnetic field, mainly because of the small value of
the current quark mass.

To show our results in a more useful form for the phe-
nomenology and to explicitly indicate the region of validity
of our calculation, we show a plot of σ33 as a function
of T for two- and three-flavor cases (Nf = 2 and 3) in
Fig. 8. In Eq. (4.2), we take Nc = 3 and e2 = 0.092 from

α ≡ e2/(4π) = 1/137. The values for g, mf , and
√
eB are

FIG. 8: The orange and blue curves shows our results (4.2)
for two- and three-flavor cases, respectively. The parameters, g,
mf , and eB, are set to the values given in Eq. (6.1). The red
(purple) area in the left (right) part shows the temperature range

that does not satisfy
√
αseB < T (T <

√
eB). The red points

are the result of BAMPS at B = 0 for the massless three-flavor
case [46], in which αs is fixed with the value in Eq. (6.1). The
green points with statistical error bars are the result of two-flavor
lattice QCD at B = 0 with pion mass ∼ 270 MeV [47].

given in Eq. (6.1). The red and purple areas are shown to

exclude the temperature ranges in T <
√
αseB and

√
eB <

T , respectively, where our assumption M � T �
√
eB is

not valid. Therefore, our result is expected to be reliable
only in the window in between, and there are crossovers to
the regions of other hierarchies near the boundaries. The
reference results at B = 0 are taken from the numerical so-
lution of the Boltzmann equation4 (BAMPS) [46] for mass-
less three-flavor quarks with 2 to 2 collision effects and from
the two-flavor lattice QCD simulation [47] as an example of
nonperturbative calculations. Though there is a deviation
between these two reference results by a factor of ∼ 10,
both of them are almost constant in all the temperature
range, which is consistent with the parametric behavior in-
formed from the perturbative calculations discussed above.
Compared with the result of BAMPS (lattice) at B = 0, our
result is larger by a factor ∼ 104 (∼ 105) in all the temper-
ature range. Thus again, we see that the strong magnetic
field significantly increases the conductivity. Nevertheless,
when T is as large as or much larger than

√
eB (the purple

area in the figure), the higher LL, whose scattering process
is not suppressed by m2

f , is expected to contribute to the

conductivity. Therefore, σ33 in such temperature region is
likely to be much smaller than our result, so that the smooth
crossover from our result to the perturbative result at B = 0
(BAMPS) is realized.

4 We could not find the numerical prefactor of the conductivity at
B = 0 in perturbative QCD, so instead we plot the value obtained
with this model.
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We also comment on the contribution from s quark: Our
result (4.2) is proportional to m−2f , which is therefore quite
sensitive to the current quark mass when it is small. Be-
cause of this enhancement, the contributions of the u and
d quarks dominate over the s-quark contribution. In Fig. 8,
we confirm that the two-flavor result is barely changed by
adding the s-quark contribution.

B. Back reaction from induced current to
electromagnetic field

We briefly discuss the effect of the induced current to
the dynamics of the electromagnetic field. The Maxwell
equations read

∇×E = −∂tB, (6.3)

∂tE
i = (∇×B)i − σijEj . (6.4)

When σij = σδij , which is the case when E and B are
weak, these equations lead to ∇2B = (∂2t + σ∂t)B. If σ
is large enough, it reduces to

∇2B = σ∂tB. (6.5)

This expression indicates that the lifetime of the mag-
netic field is parametrically τ ∼ σL2, where L is the
characteristic length of the system [24–26].

On the other hand, when σij = σ33δi3δj3, which is real-
ized when B is quite strong, we get the following equation
for B3 from the Maxwell equations:

∇2B3 = ∂2tB
3. (6.6)

This equation does not contain σ33, so the back reac-
tion to the 3-component of the magnetic field is found
to be absent in the LLL approximation. For the current
to have the transverse components, the transitions be-
tween the Landau levels need to be activated. Therefore,
more quantitatively, the other components of σij is sup-

pressed by the Boltzmann factor e−
√
eB/T , so also the

back reaction from the induced current to B3 should be
suppressed by the same factor. This suppression persists
until the magnetic field becomes weaker and becomes of
order

√
eB ∼ T in the time evolution of the heavy ion

collision.

C. Soft dilepton production rate

It was discussed that the conductivity and the pro-
duction rate of soft dilepton are related in the case of
B = 0 [48]. We apply the same argument to our case,
B 6= 0. The production rate of the dilepton with mo-
menta p1 and p2 reads

dΓ

d4p
= − α

24π4p2
gµνΠ

µν
12 (p), (6.7)

where p ≡ p1 + p2 is a momentum of the virtual photon
that decays into the dilepton. When p is large enough so
that the effect of B on the virtual photon is negligible,
we expect that this expression is reliable. This condition
is parametrically, p � e

√
eB, which is the energy scale

of the photon self-energy due to the magnetic field [36].
The current correlator has a form Πµν

12 (p) =

Π
‖
12(p)Pµν‖ (p) for general p at the LLL approxima-

tion [28, 36]. Because we have Eq. (2.4) in |p| = 0 limit,
we have

Π
‖
12(ω,p = 0) = 2Tσ33. (6.8)

We also need to assume p � ξk ∼ g2m2
f/T ln(T/M) to

apply this result, in which the collision effect is essentially
important.

Summarizing these expressions, we obtain the result
for the dilepton production rate at p = 0 as

dΓ

d4p
=

α

12π4ω2
Tσ33, (6.9)

for ω satisfying e
√
eB � ω � g2m2

f/T ln(T/M). Here

we have used gµνP
µν
‖ (p) = −1. This expression shows

that the production rate is proportional to the conduc-
tivity, which is a large value, so it suggests that the pro-
duction of the soft dilepton may be significantly enhanced
by the magnetic field.

We note that there are difference of factor 3 compared
with the expression for B = 0 case [48]. It is because, the
conductivity tensor is isotropic when B = 0 so that there
are three nonzero components (x, y, and z), while it has
only one nonzero component (z), whose direction is along
the magnetic field, in the presence of strong magnetic
field.

VII. SUMMARY AND CONCLUDING
REMARKS

We computed the electrical conductivity of QGP in
magnetic field by using LLL approximation, starting
from quantum field theory by taking into account 1 to 2
scattering process for mf �M and mf �M cases. We
showed that the one-loop approximation suffices at the
full leading order for mf � M case, and at the leading-
log approximation for mf �M case. We found that the
conductivity tensor is nonzero only in (33) component,
and it is quite large value mainly due to small current
quark mass. We also discussed possible implications to
the heavy ion collision experiment, such as the back re-
action of the induced current to the electromagnetic field
and the soft dilepton production rate.

Our result suggests that σ33 is also enhanced by the
large degeneracy-factor of eB/(2π), when B is strong
enough. This behavior is in contrast with the results from
the lattice QCD [6] and the Boltzmann equation [10, 11]
for weak B, which suggest that the conductivity is inde-
pendent of B.
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Here a few remarks on implications of our result are
in order: As was mentioned in the Introduction, the
electrical conductivity is an important quantity in the
magnetohydrodynamics. Implementation of theoretical
prediction of this quantity, including ours, needs to be
done in the numerical simulation. Also, it was suggested
that the anisotropy of the conductivity tensor yields the
elliptic flow (v2) of the photon [49]. Our result shows
very strong anisotropy, so it may have large effect on the
photon v2. Another application is directed to the Dirac
semimetal realized in condensed matter experiment [50].
The quasiparticles appearing in this material has prop-
erties of a chiral fermion with the relativistic dispersion
relation. The energy scale of the magnetic fields applied
in the experiments is much larger than the temperature:
T = 20 K and B = 2 ∼ 9 T are realized in Ref. [50], so the
energy scales for the temperature and the magnetic field
are kBT = 1.7 × 10−3 eV and

√
eBh̄c2 = 11 ∼ 23 eV,

respectively. Thus, our assumption (kBT �
√
eBh̄c2) is

expected to be satisfied, and our formalism may be appli-
cable to this system, though the explicit expression for the
quark damping rate may need to be modified depending on
the specific form of interactions.

We have not gone beyond the leading-log approxima-
tion, for which one needs to fully evaluate the quark
damping rate and solve the integral equation (5.8) for
mf � M case. We also need to consider 2 to 2 scatter-
ing effect at this order5. Also, to explore the intermediate
regime

√
eB ∼ T , one needs to go beyond the LLL ap-

proximation. Finally, analyzing the back reaction from
the induced current to the electric field and the trans-
verse components of the magnetic field (B1, B2) would
be an interesting task. We leave these interesting tasks
to a future work.
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Appendix A: Gauge fixing paremeter invariance

The gluon spectral function generated from Eq. (3.8)
is,

ρµνD (k) = 2πsgn(k0)kµkν

[
δ(k2L)

{
1

k2
⊥

+ Re
1

k2 −Ω‖(k)

}

− δ(k2)

k2
⊥

+ (α− 1)δ′(k2)

]
+ [Eq. (3.9)],

(A1)

where we have used Im[(k0 + iε)2 − k2]−2 =
πsgn(k0)δ′(k2). We note that they are generated from
the gauge fixing term and the denominator of the pro-
jection operators in Eq. (3.8). We see that all the terms
are proportional to kµkν as long as µ, ν = 0, 3, which is
the case in the calculation of the quark damping rate in
the LLL approximation. Therefore, the trace in Eq. (3.7)
becomes proportional to

Tr
[
(/kL +mf )γLµ (/l L +mf )P+γ

L
ν

]
(k − l)µ(k − l)ν

=
1

2
Tr
[
/kLγ

L
µ /l Lγ

L
ν +m2

fγ
L
µ γ

L
ν

]
(k − l)µ(k − l)ν

= 2{2[kL · (k − l)L][lL · (k − l)L]

− (k − l)2L[kL · lL −m2
f ]},

(A2)

which vanishes by using the on-shell conditions for kL
and lL. Therefore, only Eq. (3.9) contributes to the quark
damping rate, and the other terms in the gluon spectral
function do not.

The contribution to the ladder summation (Eq. (5.5))
is also found to be zero in the same way.

Appendix B: Integration range in 1 to 2 scattering
process

We evaluate the range of l0 integral in the collision
kernel of 1 to 2 scattering process in this Appendix.

1. mf �M case

We start with the mf � M case. The two step func-
tions in Eq. (3.12) determines the integration range. The
first one gives

l0 < mf , mf < l0. (B1)

The second one leads to

f(l0) ≡ m2
f + εLk l

0 − sk3
√

(l0)2 −m2
f > 0, (B2)

where s is the sign of l3. The solution of f = 0 is l0 = −εLk
when s = −sgn(k3), and does not exist when s = sgn(k3).
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It shows that f(l0) does not cross the y axis at positive
l0, so the properties f(mf ) = mf (mf + εLk ) > 0 and
f(∞) =∞ lead us to the result that f(l0) is larger than
zero for positive l0. For negative l0, we have the proper-
ties f(−mf ) = −mf (εLk −mf ) < 0 and f(−∞) = −∞.
At most only one solution of f = 0 exists in the negative
l0 region, so the properties above show that f(l0) < 0
for negative l0. Summarizing these observation and con-
sidering Eq. (B1), we see that the integration range is
l0 > mf .

2. mf �M case

Next, we evaluate the integration range in the case of
mf �M . In this case, the function f is modified by the
effect of M as

f(l0) ≡ m2
f + εLk l

0 − sk3
√

(l0)2 −m2
f −

M2

2
. (B3)

Its value at a few specific points is f(±∞) = ±∞
and f(±mf ) = m2

f ± mf ε
L
k − M2/2. f(−mf ) is al-

ways negative because of M � mf , and f(mf ) is neg-
ative (positive) when |k3| < kc (|k3| > kc), where

kc ≡M2
√
A/(2mf ) with A ≡ 1− 4m2

f/M
2.

a. |k3| < kc case

When |k3| < kc, the solution of f(l0) = 0 is l0 = l± for
s = ±sgn(k3), where

l± ≡
M2

2m2
f

[
εLk

(
1−

2m2
f

M2

)
± |k3|

√
A

]
. (B4)

Combining this property and the behaviors above, we see
that the range where f(l0) > 0 is satisfied is

l± < l0, (B5)

for s = ±sgn(k3).

b. |k3| > kc case

When |k3| > kc, the solution of f(l0) = 0 is l0 = l+ and
l0 = l− for s = sgn(k3), and there is no solution for s =
−sgn(k3). Combining this property and the behaviors
above, we see that the range where f(l0) > 0 is satisfied
is

mf < l0 < l−, l+ < l0 (for s = −sgn(k3)),

mf < l0 (for s = −sgn(k3)).
(B6)

Appendix C: Ward-Takahashi identity

We show that Bethe-Salpeter equation (5.5) that is
used to sum all the ladder diagrams is consistent with
the Ward-Takahashi (WT) identity. The identity for the
vertex function reads [51]

pµΓ
µ(k + p, k) = [SA(kL)]−1 − [SR(kL + pL)]−1, (C1)

where Γµ(k + p, k) is a vertex function where the two
quarks have momenta p+k and k, and p is the momentum
of the photon. This equation reduces to

pµΓ
µ(k) = −2iImΣR(kL), (C2)

at p→ 0.
By multiplying Eq. (5.5) with pµ, we get

pµΓ
µ(k) = /p+ g2CF

∫
l

γα[SR(lL)− SA(lL)]γβρ
αβ
D (k − l)

×
(
nF (−l0) + nB(k0 − l0)

)
[Rf (k⊥ − l⊥)]2,

(C3)

where we have used the WT identity (C1) in the right-
hand side. By taking the limit p→ 0, the right-hand side
becomes

ig2CF

∫
l

γα(/l L +mf )P+ρS(lL)γβρ
αβ
D (k − l)

×
(
nF (−l0) + nB(k0 − l0)

)
[Rf (k⊥ − l⊥)]2,

(C4)

which is found to be equal to −2iImΣR(kL) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [35]:

[∂T + v3∂Z + eqfE
3(T,Z)∂k3 ]nf (k3, T, Z) = C[n],

(D1)

where nf (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k3 and
space-time position is (T,Z), v3 ≡ ∂εLk /(∂k

3) = k3/εLk ,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
as nf (k3, T, Z) = nF (εLk ) + δnf (k3, T, Z). Then, the lin-
earized version of Eq. (D1) reads

eqfE
3(T,Z)βv3nF (εLk )[1− nF (εLk )] = C[δnf (k3, T, Z)],

(D2)
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that δnf does not depend on
T and Z. The induced current is given by the distribu-
tion function as

j3(T,Z) = 2e
∑
f

qfNc
|Bf |
2π

∫
dk3

2π
v3δnf (k3, T, Z),

(D3)

where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
C[δnf ] ' −τ−1k δnf with τk being the relaxation time.
Then, the current reads

j3 = e2
∑
f

q2fNc
|Bf |
2π

4βE3

∫ ∞
0

dk3

2π
(v3)2τk

× nF (εLk )[1− nF (εLk )]

= e2
∑
f

q2fNc
|Bf |
2π

2

π
βE3

∫ ∞
mf

dk0v3τk

× nF (k0)[1− nF (k0)].

(D4)

By using j3 = σ33E3, we get

σ33 = e2
∑
f

q2fNc
|Bf |
2π

2

π
β

∫ ∞
mf

dk0

√
(k0)2 −m2

f

k0
τk

× nF (k0)[1− nF (k0)].

(D5)

By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ξk = τ−1k /2.

Let us go beyond the relaxation time approximation,
and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by

C[n] =
1

2εLk

∫
l

ρD(k + l)ρS(lL)|M |2[Rf (k⊥ + l⊥)]2

× {nB(εLk + l0)[1− nf (k3)][1− nf (l3)]

− [1 + nB(εLk + l)]nf (k3)nf (l3)},
(D6)

where the matrix element is given by

|M |2 = g2CFP
‖
µν(k + l)Tr[(/l L −mf )γµP+(/kL +mf )γν ]

= 4g2CFm
2
f .

(D7)

The linearized version of Eq. (D6) is

C[δnf ] = −
2g2CFm

2
f

εLk

∫
l

ρD(k + l)ρS(lL)[Rf (k⊥ + l⊥)]2

× {δnf (k3)[nB(εLk + l0) + nF (l0)]

− δnf (l3)[nB(εLk + l0) + nF (εLk )],

(D8)

where we note that δnf (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes −τ−1k δnf (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ξk in the diagrammatic calculation.

By introducing Wk that satisfies δnf (k3) =
eqfβnF (εLk )[1 − nF (εLk )]WkE

3/2, Eq. (D2) whose left-
hand side is replaced with Eq. (D8) becomes

g2CFm
2
f

∫
l

ρD(k + l)ρS(lL)[Rf (k⊥ + l⊥)]2

× [Wk −Wl][nB(εLk + l0) + nF (l0)] = k3,

(D9)

where we have used nF (l0)[1 − nF (l0)][nB(εLk + l0) +
nF (εLk )] = nF (εLk )[1−nF (εLk )][nB(εLk + l0)+nF (l0)]. The
relation to the current is, by using Eq. (D3),

j3 = e2
∑
f

q2fNc
|Bf |
2π

E3β

∫ ∞
mf

dk0

π
nF (k0)[1− nF (k0)]Wk.

(D10)

By comparing this expression with Eqs. (2.13) and (5.9),
and Eq. (D9) with Eq. (5.8), we see that solving the
linearized Boltzmann equation taking into account the
full collision integral corresponds to the summation of the
ladder diagram in diagrammatic analysis, by identifying
Wk = A3(k).
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