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Several possibilities to relate the t-dependence of Generalized Parton Distributions (GPDs) to the
distribution of angular momentum in the transverse plane are discussed. Using a simple spectator
model we demonstrate that non of them correctly describes the orbital angular momentum distri-
bution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.
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I. INTRODUCTION

Since the famous EMC experiment [1] there has been
great interest to understanding the contributions from
orbital angular momentum and from gluon spin to the
nucleon spin. Meanwhile, Generalized Parton Distribu-
tions (GPDs) have been introduced as a novel tool to de-
scribe the internal structure of hadron. Over more than a
decade, there has been a strong interest in GPDs as many
observables can be linked to them. Specifically, GPDs
have been used extensively after they were first identi-
fied with the total angular momentum of the quarks or
gluons within a nucleon. The total angular momentum
carried by the quarks is calculated using the 2nd moment
of GPDs as [2]

Jz =
1

2

∫
dxx [H(x, 0, 0) + E(x, 0, 0)] . (1)

However, this famous Ji relation or sum rule, yields the z
component of the total angular momentum of the quarks
in a nucleon that is polarized in the +z direction only
when GPDs are extrapolated to t = 0 in the general
expression

J(t) ≡ 1

2

∫
dxx [H(x, ξ, t) + E(x, ξ, t)] , (2)

where t = ∆2, x is the light-cone momentum fraction
carried by the quark (averaged between initial and fi-

nal state), ξ ≡ p+−p′+
p++p′+ = − ∆+

p++p′+ is the longitudinal

momentum transfer, p and p′ are initial and final state
momenta of the nucleon, respectively, and ∆ ≡ p′ − p is
the momentum transfer.

GPDs have also been used to visualize nucleons in
three-dimensions after doing the suitable Fourier trans-
form (FT) of these GPDs [3–5]. These images in a space
where one dimension describes the light-cone momentum
fraction (x) and the other two dimensions describe the

transverse position (~b⊥) of the parton (relative to the
transverse center of momentum). This distribution of
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partons in the transverse plane has a probabilistic inter-
pretation, in the same sense and with the same limita-
tions as the usual parton distributions. For an unpolar-
ized nucleon, the 2-dimensional FT of GPD H(x, 0, t) in
the transverse plane reads [3]

q(x,~b⊥) =

∫
d2~∆⊥
(2π)2

e−i
~∆⊥·~b⊥H(x, 0,−~∆2

⊥), (3)

where the impact parameter ~b⊥, which is the Fourier-

conjugate to ~∆⊥, is defined in the 2-dimensional trans-
verse plane perpendicular to the light-cone direction.

Here, |~b⊥| ≡ b⊥ is introduced as the displacement of
the active quark (q) from the transverse center of mo-
mentum of the entire nucleon. The transverse center of
momentum ~R⊥ is defined as the weighted average of the
transverse positions of all partons, where the weight fac-
tor is the respective momentum fraction [6]

~R⊥ =
∑
i∈q,g

xi~r⊥i = x~r⊥ + (1− x)~R⊥s, (4)

where x and ~r⊥ ≡ ~r⊥1 are the momentum fraction and
transverse position of the active quark and 1−x and ~R⊥s
are that of the spectator(s). Therefore, for a quark, one
can write

~b⊥ = ~r⊥ − ~R⊥ = (1− x)(~r⊥ − ~R⊥s). (5)

Further details of q(x,~b⊥) can be found in Refs. [3–5, 7].
In the context of t 6= 0, there have been many discus-

sions on the connection between the current theoretical
GPD framework and Deeply Virtual Compton Scatter-
ing (DVCS) experiments. One can find the details in
Ref. [8]. It is therefore useful to study the t-dependence
of GPDs with the total angular momentum in the co-
ordinate space to check if the partonic interpretation
still holds in that space. Furthermore, the work pre-
sented in Ref. [9] (see also Ref. [10]) suggests that the
3-dimensional FT of Eq. (2) can be used to calculate the
distribution of angular momentum in coordinate space.
The ‘Chiral Quark Soliton Model’ that was used in Ref.
[10] had an infinite target mass, and therefore there was
no issue of relativistic corrections. The relativistic cor-
rections would potentially be an issue upon taking the 3-
dimensional FT of the generalized form factors [available
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in Eq. (2)] for finite nucleon mass. The interpretation of
the 3-dimensional FT of form factors (FFs) as a distri-
bution in 3-dimensional space becomes ambiguous and
suffers from relativistic corrections at length scales equal
to or smaller than the Compton wavelength of the target
[3, 11]. However, a 2-dimensional FT of FFs does not
suffer from such relativistic corrections. As a corollary,
one finds that the distribution of charge in the transverse
plane is given by the 2-dimensional FT of the Dirac form
factor [11]. Bcause of these results, it has been suggested
(see for example Ref. [12]) to perform a 2-dimensional
FT of FFs to study the angular momentum distribution
in the transverse plane. Furthermore, there are potential
issues due to total derivative terms linking canonical and
symmetric energy momentum tensors [13]. We are there-
fore motivated by these investigations and suggestions
as mentioned above to investigate the t-dependence of
GPDs with the total angular momentum distributions of
the quark in the transverse plane for a longitudinally po-
larized nucleon. Before proceeding, we should note that

while Lz does not commute with ~b⊥, it does commute

with |~b⊥| and it is thus meaningful to discuss Lz(|~b⊥|).
In the following sections, we prescribe four different

techniques to study the angular momentum distributions
in the context of the Scalar Diquark Model (SDQM).

First, we define a 2-dimensional FT of Eq. (2) as J̃(~b⊥).
This technique will be referred to as naive technique in

this paper. In the second technique, using J̃(~b⊥), we
derive the 2-dimensional FT of the result that was origi-
nally suggested for the purpose of the 3-dimensional FT
in Refs. [9, 10]. This technique will be referred to as
Polyakov-Goeke (PG) technique. In the third technique,
we present an independent derivation of the distribution
of angular momentum in the transverse plane in the Infi-
nite Momentum Frame (IMF). Finally, we will compare
these three different distributions with the one calculated
directly from light-front wavefunctions (LFWFs) using
widely-recognized Jaffe-Manohar (JM) definition for or-
bital angular momentum (OAM). In momentum space,
this definition preserves the partonic interpretation.

II. DISTRIBUTION OF ANGULAR
MOMENTUM IN THE TRANSVERSE PLANE

1. Naive Technique:

We take the 2-dimensional FT of Eq. (2) to calculate
the distribution of total angular momentum (TAM) in
the transverse plane in the Drell-Yan frame as

J̃(~b⊥) =

∫
d2~∆⊥
(2π)2

e−i
~∆⊥·~b⊥J(t = −~∆2

⊥) (6)

where the TAM distribution depends only on the distance

b⊥ ≡ |~b⊥| from the origin, which is the transverse center

of the entire nucleon. It is evident that∫
d2~b⊥J̃(~b⊥) = J(t = 0) ≡ Jz, (7)

but that does not automatically imply that J̃(~b⊥) repre-
sents the distribution of TAM in the transverse plane.

2. Polyakov-Goeke (PG) Technique: Two
Dimensional Reduction of Polyakov-Goeke

Prescription:

The relation between the symmetric energy-
momentum tensor (EMT) and the total angular
momentum distribution, which is defined and available
in Ref. [9], reads [2, 14, 15]

J(t) +
2t

3

d

dt
J(t) =

∫
d3~b ei

~b·~∆ εijksibjT0k(~b,~s), (8)

where Tµν is the EMT, T0k(~b,~s) represents the momen-
tum distribution of the quarks within the nucleon and
thus the integrand on the right hand side is interpreted

as the angular momentum density, ~b is 3-dimensional co-
ordinate space, and ~s is the nucleon spin. In our case,
the nucleon is polarized in the +z direction.

Refs. [9, 10] suggest that the 3-dimensional FT of
Eq. (8) yields the distribution of angular momentum
in 3-dimensional coordinate space. As mentioned be-
fore, there is an issue of relativistic corrections for the
3-dimensional FT. However, there are no such corrections
to the 2-dimensional FT of FFs in the infinite momen-
tum frame. We thus define the 2-dimensional FT in the
coordinate space (~b⊥) as

ρPG
J (~b⊥)≡

∫
dbz ε

ijk si bj T0k(~b,~s). (9)

With the help of Eq. (6), the 2-dimensional FT of Eq. (8)
yields

ρPG
J (b⊥) =

1

3
J̃(b⊥)− 1

3
b⊥

d

db⊥
J̃(b⊥). (10)

In the following, the total angular momentum (TAM)
distribution defined by Eq. (10) will be referred to as
Polyakov-Goeke (PG) technique because it was derived
as the 2-dimensional reduction of the result available in
Ref. [9].

3. Infinite Momentum Frame (IMF) Technique:

As an alternative, one can derive the distribution of
TAM directly in the Infinite Momentum Frame (IMF).
For this purpose, we define the EMT Tµν in terms of sev-
eral form factors. Note that it is the same Tµν that was
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used to derive Eq. (8). The form factors of the symmetric
EMT (valid for quarks/gluon) read [2, 10]

〈p′|Tµν |p〉

= ū(p′)

[
M2(t)

PµP ν

MN
+ J(t)

i(Pµσνρ + P νσµρ)

2MN
∆ρ

+ d1(t)
∆µ∆ν − gµν∆2

5MN
± c̄(t)gµν

]
u(p),

(11)

where u(p) is the nucleon spinor, MN is the mass of the
nucleon, and 2P = p+ p′.

The z-component of the total angular momentum of
the quarks in terms of angular momentum density Mαµν

is defined as [16]

Jz = εzxy
∫
d2~b⊥M

+xy, M+xy=T+ybx − T+xby. (12)

To define TAM distribution in the transverse plane,
one needs to localize the nucleon in the transverse direc-
tion. For this purpose, states |p+, ~R⊥, sz〉, which are the
eigenstates of the transverse center of momentum, are
introduced in terms of the light-cone helicity eigenstates
as

|p+, ~R⊥ = ~0⊥, sz〉 =
N

(2π)2

∫
d2~p⊥|p+, ~p⊥, sz〉, (13)

where N is a normalization constant satisfying

|N |2
∫
d2 ~P⊥
(2π)2 = 1 [3–7].

For these transversely localized states the TAM distri-
bution in impact parameter space (in the IMF) can be
defined as

ρIMF
J (~b⊥) ≡ 1

p+
〈p+, ~R⊥ = ~0⊥, sz|

[
T+y(~b⊥)bx

− T+x(~b⊥)by

]
|p+, ~R⊥ = ~0⊥, sz〉.

(14)

In order to evaluate the matrix elements we note the
phase factor

〈p+, ~p′⊥, sz|T+j(~b⊥)|p+, ~p⊥, sz〉

= 〈p+, p′⊥, sz|T+j(0⊥)|p+, p⊥, sz〉e−i
~b⊥·~∆⊥ , j = x, y,

(15)

where the matrix elements of the EMT are evaluated
using Eq. (11). We note that only the term involving
p+σxy∆y in second term of Eq. (11) survives taking the
matrix elements between helicity eigenstates that have
the same light-cone helicity [〈p+, p′⊥, sz|σ+j |p+, p⊥, sz〉 =
0] and symmetric integration around the z axis.

Eq. (14) after simplification thus yields

ρIMF
J (b⊥) = ∓1

2

[
b⊥

d

db⊥
J̃(b⊥)

]
, (16)

where the TAM distribution depends only on the distance

b⊥ ≡ |~b⊥|.

Here, it is noted that Eq. (8), which was derived in
Ref. [9], has been used in Ref. [10] to study the angu-
lar momentum density in the infinite target mass frame.
Eq. (8) was later modified to its relativistic version in
Ref. [13]. One can derive Eq. (16) directly from the rel-
ativistic version of Eq. (8) available in Ref. [13].

III. MODEL CALCULATIONS AND RESULTS

We use the SDQM to calculate the proposed OAM den-
sities to test if any of the densities agrees with the dis-
tribution of OAM in the transverse plane obtained using
light-front wavefunctions which has a partonic interpreta-
tion. The SDQM is not a good approximation for Quan-
tum Chromodynamics (QCD). However, it is perfect to
illustrate a point-of-principle: none of the above pro-
posed distributions agree with the partonic calculation
to be derived below. What is particularly useful about
the SDQM in this context is that maintaining Lorentz
invariance (which is important here) is straightforward
and there are no added complications due to the absence
of gauge fields. Of course QCD is a gauge theory, but if a
certain interpretation fails already in a non-gauge theory
- as we will demonstrate - it is very unlikely to hold in a
gauge theory.

The relevant GPDs contained in Eq. (2) are calculated
using the following LFWFs for the SDQM [17–19]:

ψ↑
+ 1

2

(
x,~k⊥

)
=
(
M +

m

x

)
φ(x,~k2

⊥),

ψ↑− 1
2

(x,~k⊥) = −k
1 + ik2

x
φ(x,~k2

⊥),

ψ↓
+ 1

2

(x,~k⊥) =
k1 − ik2

x
φ(x,~k2

⊥),

ψ↓− 1
2

(x,~k⊥) = (M +
m

x
)φ(x,~k2

⊥),

(17)

where

φ(~k2
⊥) ≡ φ(x,~k2

⊥) =
g/
√

1− x

M2 −
~k2⊥+m2

x −
~k2⊥+λ2

1−x

=
−gx

√
(1− x)

~k2
⊥ + u(λ2)

and u(λ2) =m2(1− x)−M2x(1− x) + xλ2.

(18)

Here, g is the Yukawa coupling and M , m, and λ are the
masses of the ‘nucleon’, ‘quark’, ‘diquark’, respectively.

Furthermore, ~k⊥ ≡ ~k⊥q − ~k⊥scalar represents the rela-
tive transverse momentum between the quark and the
diquark (scalar). The upper wave function index ↑ refers
to the helicity of the ‘nucleon’ and the lower index to
that of the ‘quark’.

GPDs using overlap integrals of LFWFs in the Drell-
Yan frame read [18]
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H(x, 0,−~∆2
⊥) =

∫
d2~k⊥
16π3

[
ψ↑ ∗

+ 1
2

(x,~k′⊥)ψ↑
+ 1

2

(x,~k⊥)

+ ψ↑ ∗− 1
2

(x,~k′⊥)ψ↑− 1
2

(x,~k⊥)

]
(19)

=
g2

16π3
(1− x)

∫
d2~k⊥

[
(m+ xM)2

[(~k′2⊥ + u(λ2))(~k2
⊥ + u(λ2)]

+
k′1 − ik′2

(~k′2⊥ + u(λ2))
· k1 + ik2

(~k2
⊥ + u(λ2))

]
(20)

and

E(x, 0,−~∆2
⊥) =

−2M

∆1 − i∆2

∫
d2~k⊥
16π3

×
[
ψ↑ ∗

+ 1
2

(x,~k′⊥)ψ↓
+ 1

2

(x,~k⊥) + ψ↑ ∗− 1
2

(x,~k′⊥)ψ↓− 1
2

(x,~k⊥)

]
(21)

=
−2Mg2

16π3(∆1 − i∆2)

∫
d2~k⊥ (22)

× (Mx+m)(1− x)

[(~k′2⊥ + u(λ2))(~k2
⊥ + u(λ2)]

[
(k1 − ik2)− (k′1 − ik′2)

]
,

where ~k′⊥ = ~k⊥ + (1 − x)~∆⊥ is the relative trans-
verse momentum of the quark in the final state of a
nucleon and u(λ2) is defined in Eq. (18). Since some

of the above ~k⊥-integrals diverge, a manifestly Lorentz-
invariant Pauli-Villars regularization is applied to regu-
larize the divergent pieces of the integrals. For this pur-
pose, λ2 → Λ2 (= 10λ2) is employed throughout the work
presented in this paper.

Using Eq. (1) and the GPDs available in Eqs. (20) and
(22), one can calculate the quark OAM for a nucleon
polarized in the +z direction as

Lz =
1

2

∫ 1

0

dx [xH(x, 0, 0) + xE(x, 0, 0)−∆q(x)] ,

where

∆q(x) =

∫
d2~k⊥
16π3

[∣∣∣ψ↑
+ 1

2

(x,~k⊥)
∣∣∣2 − ∣∣∣ψ↑− 1

2

(x,~k⊥)
∣∣∣2] ,

(23)

and the quark spin angular momentum reads [17, 20]

S =
1

2

∫ 1

0

∆q(x)dx =
g2

32π2

∫ 1

0

(1− x)

×
[
(Mx+m)2

(
1

u(λ2)
− 1

u(Λ2)

)
− ln

(
u(Λ2)

u(λ2)

)]
dx.

(24)

Now, from Eqs. (2) and (6), one can define GPDs and
TAM in impact parameter space b⊥ as [21]

J̃(~b⊥) =
1

2

∫ 1

0

x[H(x,~b⊥) + E(x,~b⊥)]dx, (25)

where

H(x,~b⊥) =

∫
d2~∆⊥
(2π)2

e−i
~∆⊥·~b⊥H(x, 0,−~∆2

⊥)

=

[
ψ↑∗

+ 1
2

(x,~r⊥)ψ↑
+ 1

2

(x,~r⊥) + ψ↑∗− 1
2

(x,~r⊥)ψ↑− 1
2

(x,~r⊥)

]
× 1

(1− x)2

(26)

and

E(x,~b⊥)=

∫
d2~∆⊥
(2π)2

e−i
~∆⊥·~b⊥E(x, 0,−~∆2

⊥).

(−i ∂
∂bx −

∂
∂by )

2M
E(x,~b⊥)=

[
ψ↑∗

+ 1
2

(x,~r⊥)ψ↓
+ 1

2

(x,~r⊥)

+ψ↑∗− 1
2

(x,~r⊥)ψ↓− 1
2

(x,~r⊥)

]
1

(1− x)2
, (27)

where ~b⊥ and ~r⊥ are related by ~b⊥ = (1−x)~r⊥ [21]. This
relation is recently discussed in Ref. [22] using LFWFs
constructed from the soft-wall ADS/QCD prediction.

Here, in order to describe distributions in impact pa-
rameter space, we introduce LFWFs in the impact pa-
rameter space b⊥ as

ψ↑↓± 1
2

(x,~b⊥) ≡ 1

2π(1− x)

∫
d2~k⊥e

−i
~k⊥·~b⊥
1−x ψ↑↓± 1

2

(x,~k⊥),

ψ↑↓± 1
2

(x,~r⊥) ≡ 1

2π

∫
d2~k⊥e

−i~k⊥·~r⊥ψ↑↓± 1
2

(x,~k⊥).

(28)

The factor 1
1−x in the exponent accounts for the fact

that the variable ~k⊥ is Fourier-conjugate to ~r⊥ = ~r⊥1 −
~r⊥2, the displacement between the active quark and the
spectator (scalar). The prefactor 1

(1−x) also ensures the

proper normalization of the wave functions.∫
|ψ↑↓± 1

2

(x,~b⊥)|2 d2~b⊥ =

∫
|ψ↑↓± 1

2

(x,~r⊥)|2 d2~r⊥

=

∫
|ψ↑↓± 1

2

(x,~k⊥)|2 d2~k⊥.

(29)

Inserting Eqs. (26), (27), (28), and (17) into Eq. (25)
yields

J̃(b⊥) =
g2

32π3

∫ 1

0

x

1− x

×
[
(Mx+m)2

[
K0(Z)

]2
+ u(λ2)

[
K1(Z)

]2]
dx

+
2Mg2

32π3

∫ 1

0

x(Mx+m)
[
K0(Z)

]2
dx,

(30)

where Z =
∣∣∣ b⊥1−x

∣∣∣√u(λ2), u(λ2) is defined in Eq. (18),

and Kn(Z) is the modified Bessel function of second kind.
Using Eqs. (2), (6), (20), (22), and (25), it is straight

forward to verify the following relation numerically for a
consistency check of our expressions.∫

d2b⊥J̃(b⊥) =
1

2

∫
dxx [H(x, 0, 0) + E(x, 0, 0)] . (31)
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Using the LFWFs available in Eq. (28), one can evalu-
ate the spin angular momentum distribution in the trans-
verse plane (b⊥) for a nucleon polarized in the +z direc-
tion as

S(b⊥) =
1

2

∫ 1

0

dx

[∣∣∣ψ↑
+ 1

2

(x,~b⊥)
∣∣∣2 − ∣∣∣ψ↑− 1

2

(x,~b⊥)
∣∣∣2] , (32)

where∣∣∣ψ↑
+ 1

2

(x,~b⊥)
∣∣∣2 =

g2

16π3

(Mx+m)2

(1− x)

[
K0(Z)

]2
,∣∣∣ψ↑− 1

2

(x,~b⊥)
∣∣∣2 =

g2

16π3

u(λ2)

(1− x)
[K1(Z)]

2
.

(33)

If one assumes that J̃(b⊥), ρPG
J (b⊥), and ρIMF

J (b⊥) can
be interpreted as TAM densities then the differences

Lnaive(b⊥) ≡ J̃(b⊥)− S(b⊥), (34)

LPG(b⊥) ≡ ρPG
J (b⊥)− S(b⊥), and (35)

LIMF(b⊥) ≡ ρIMF
J (b⊥)− S(b⊥) (36)

would have to represent the respective OAM densities.
In the following section, we will investigate if that is

indeed the case by comparing these distributions with the
one calculated directly from LFWFs in impact parameter
space using the JM definition.

A. Impact Parameter Space Distribution Directly
from Light-Front Wavefunctions:

With the LFWFs available in Eq. (17), one can com-
pute the orbital angular momentum Lz of the ‘quark’
for a ‘nucleon’ polarized in the +z direction directly as
[16, 23–25]

Lz =

∫ 1

0

dx

∫
d2~k⊥
16π3

(1− x)
∣∣∣ψ↑− 1

2

(x,~k⊥)
∣∣∣2

=
g2

16π2

∫ 1

0

(1− x)2 ln

[
u(Λ2)

u(λ2)

]
dx.

(37)

Manifestly Lorentz-invariant Pauli-Villars regularization
is applied to evaluate the above integral. It is straight-
forward to show

Lz = Lz (38)

as was expected since Lz in the SDQM does not contain
a vector potential, and therefore no gauge related issues
arise [23, 26]. Likewise, one can define the OAM density
directly from the LFWFs available in Eq. (28) as

L(b⊥) =

∫ 1

0

dx (1− x)
∣∣∣ψ↑− 1

2

(x,~b⊥)
∣∣∣2

=
g2

16π3

∫ 1

0

dxu(λ2) [K1(Z)]
2
.

(39)

Here, L(b⊥) represents the orbital angular momentum
density for the active quark as a function of the distance
from the transverse center of momentum in a ‘nucleon’
that is polarized in the +z direction.

The TAM distribution of the active quark in the trans-
verse plane is shown in Fig. 1. For the different tech-
niques, obviously, the area under the graphs is the only
feature that all four distributions have in common, i.e.∫ ∞

0

db⊥b⊥J̃(b⊥)=

∫ ∞
0

db⊥b⊥ρ
PG
J (b⊥)

=

∫ ∞
0

db⊥b⊥ρ
IMF
J (b⊥) =

∫ ∞
0

db⊥b⊥(L(b⊥) + S(b⊥)).

(40)

Similarly, the OAM distributions of the active quark
in the transverse plane are shown in Fig. 2; also in this
case, the area under the graphs for all four distributions
is the only common feature, i.e,∫ ∞

0

db⊥b⊥L
naive(b⊥)=

∫ ∞
0

db⊥b⊥L
PG(b⊥)

=

∫ ∞
0

db⊥b⊥L
IMF(b⊥) =

∫ ∞
0

db⊥b⊥L(b⊥) =
Lz

2π
.

(41)

Eqs. (40) and (41) ensure that the TAM/OAM does not
change regardless of whether one uses a different frame
or technique to perform the calculations.

The b⊥- distributions of OAM presented in Fig. 2
for the three different techniques [naive, Polyakov-Goeke
(PG), and IMF] do not agree with the one associated
with the definition introduced by Jaffe-Manohar. There-
fore, these results clearly demonstrate that Lnaive(b⊥),
LPG(b⊥), and LIMF(b⊥) do not represent the orbital an-
gular momentum distribution for a longitudinally polar-
ized nucleon since L(b⊥) already has that interpretation
in momentum space. Furthermore, using the naive tech-
nique in the SDQM, we also conclude that the FT of
J(t) does not represent the distribution of angular mo-
mentum in the transverse plane regardless of whether the
FT is 2-dimensional or 3-dimensional. All three tech-
niques discussed above are associated with the FT of
J(t). While J(t) itself indeed is identified with the 2nd

moment of GPDs in the limiting case t→ 0, our investi-
gation exhibits three different possibilities of relating the
t-dependence of GPDs to the angular momentum dis-
tributions in the transverse plane. None of them turns
out to yield the distribution one would expect from the
Jaffe-Manohar definition for a longitudinally polarized
nucleon.

IV. DISCUSSION

A. Naive technique

It was demonstrated using the SDQM that, although
J(t) yields the z-component of the total angular momen-
tum of the quarks for a nucleon polarized in the +z di-
rection in the limit t → 0, the 2-dimensional FT of its
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FIG. 1: Total angular momentum (TAM) distribution of the quark in the scalar diquark model for a nucleon polarized in the +z
direction. Solid line: L(b⊥) +S(b⊥) , directly from LFWFs [Eq. (39) +Eq. (32)] , Dashed line: ρPG

J (b⊥), Polyakov-Goeke (PG)

technique [Eq. (10)] , Dotted line: ρIMF
J (b⊥), IMF technique [Eq. (16)], Dash-dotted line: J̃(b⊥), naive technique [Eq. (30)].

The plots are in units of g2

16π
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FIG. 2: Orbital angular momentum (OAM) distribution of the quark in the scalar diquark model for a nucleon polarized in
the +z direction. Solid line: L(b⊥) , directly from LFWFs [Eq. (39)], Dashed line: LPG(b⊥), Polyakov-Goeke (PG) technique
[Eq. (35)] , Dotted line: LIMF(b⊥), IMF technique [Eq. (36)], Dash-dotted line: Lnaive(b⊥), naive technique [Eq. (34)]. The

plots are in units of g2

16π
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t-dependence does not yield the distribution of angular
momentum in the transverse plane.

This result is best understood by recalling that
Lorentz/rotational-invariance was heavily used in Ref. [2]
for deriving Eq. (1) as it restricts the allowed tensor
structure. In Ref. [27], Ji’s angular momentum sum
rule was rederived by considering the transverse defor-
mation of parton distributions in a transversely polar-
ized nucleon, and in several steps of the derivation rota-
tional invariance was used for rotations that mix ‘longi-
tudinal’ and ‘transverse’ directions. When one considers
distributions in the transverse plane, rotational invari-
ance is no longer fully applicable. This is analogous to
the observation that the unintegrated Ji relation , i.e.
J(x) ≡ x

2 [H(x, 0, 0) + E(x, 0, 0)] is not the x- distribu-
tion of Jz(x) for a longitudinally polarized nucleon [23].

B. Polyakov-Goeke (PG) technique and IMF
technique

In hadron spin structure studies, the total angular mo-
mentum of a quark is decomposed into spin and orbital
parts, and the spin distribution of the quark in the trans-
verse plane can be obtained using a 2-dimensional FT
of axial form factors. To study angular momentum dis-
tribution in the transverse plane, one may be tempted
to interpret the two distributions (densities), proposed
in Eq. (10) and Eq. (16), as a sum of spin and orbital
angular momentum distributions (densities). In particu-
lar the observation that ρIMF

J (b⊥) differs from the light-
front wavefunctions based result may thus appear sur-
prising. However, both proposed densities have in com-
mon that they are based on the symmetric energy mo-
mentum tensor Tµν . On the other hand, the symmet-
ric energy momentum tensor Tµν can be expressed in
terms of canonical energy momentum tensor T µν and
spin current Sµνλ[28, 29]. The total angular momentum
density, which preserves the interpretation as a sum of
spin and orbital angular momentum densities, is based
on the canonical energy momentum tensor. Therefore, it
is important to illustrate the role of the total divergence
term available in Tµν .

The symmetric energy momentum tensor for the mass-
less Dirac particle can be expressed as

Tµν =
i

2
q̄

(
γµ

↔
Dν +γµ

↔
Dν

)
q. (42)

Using the equations of motion (valid in matrix elements),
one finds

q̄γx
↔
D+ q = q̄γ+

↔
Dx q − ∂y

(
q̄γ+γxγyq

)
+

1

4
∂−

[
q†−γ

0γxγ+γ−q+ − q†+γ0γxγ−γ+q−

]
.

(43)

Inserting into the total angular momentum density, one
finds

xT+y − yT+x = xq̄γ+i
↔
Dy q − yq̄γ+i

↔
Dx q + q̄γ+iγxγyq

+ i∂x
(
xq̄γ+γxγyq

)
+ i∂y

(
yq̄γ+γxγyq

)
+
i

4
∂−
[
xq̄γyγ+γ−q − yq̄γxγ+γ−q

]
,

(44)

therefore, there are two terms that together have the
physical interpretation as an orbital angular momentum
density, one term that represents the spin density and a
total derivative term. While the presence of these total
derivative terms has no consequences for the integrated
quantities, they cause a profound dilemma when at-
tempting to study angular momentum densities: Though
xT+y − yT+x seems to be a perfect candidate for the to-
tal angular momentum density, one has to be careful not
to interpret that density as a simple sum of orbital angu-
lar momentum density and spin density. This statement
may sound paradoxical but is due to the presence of terms
that are total derivatives and thus do not contribute to
the overall angular momentum. Nevertheless, these con-
tributions play an important role while attempting to
study the angular momentum density in the transverse
plane. Note that, although the issue of total derivative
terms was raised and discussed in Ref. [13], it was illus-
trated explicitly in this paper using model calculations.
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