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The Fock quantization of free scalar fields is subject to an infinite ambiguity when

it comes to choosing a set of annihilation and creation operators, choice that is equiv-

alent to the determination of a vacuum state. In highly symmetric situations, this

ambiguity can be removed by asking vacuum invariance under the symmetries of the

system. Similarly, in stationary backgrounds, one can demand time-translation in-

variance plus positivity of the energy. However, in more general situations, additional

criteria are needed. For the case of free (test) fields minimally coupled to a homo-

geneous and isotropic cosmology, it has been proven that the ambiguity is resolved

by introducing the criterion of unitary implementability of the quantum dynamics,

as an endomorphism in Fock space. This condition determines a specific separation

of the time dependence of the field, so that this splits into a very precise back-

ground dependence and a genuine quantum evolution. Furthermore, together with
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the condition of vacuum invariance under the spatial Killing symmetries, unitarity

of the dynamics selects a unique Fock representation for the canonical commutation

relations, up to unitary equivalence. In this work, we generalize these results to

anisotropic spacetimes with shear, which are therefore not conformally symmetric,

by considering the case of a free scalar field in a Bianchi I cosmology.
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I. INTRODUCTION

The present era of high-precision cosmology, with the recent observations provided by the

Planck Collaboration [1], is imposing strong bounds on the plausible cosmological models

that can be used to describe the physics of the Early Universe. Indeed, several candidate

models have already been ruled out, while some particular ones are being favored [2], since

they present a good balance between the number of parameters required to specify them and

the matching of their predictions with observations. Besides, the observed power spectrum of

temperature anisotropies of the cosmic microwave background (CMB) seems to reveal certain

anomalies at large angular scales. This combination of high-precision observations and

potential anomalies with respect to the traditional models is an incentive for the exploration

of more general and extended scenarios. Actually, the predictions are commonly based on

the assumptions of homogeneity and isotropy of the background spacetime, except for small

inhomogeneities that explain the small anisotropies of the CMB. In addition, predictions

are usually based on classical general relativity, inheriting the well-known initial singularity

problem if one extends the evolution backwards in time. In this respect, bouncing matter

cosmologies [3] or quantum cosmology models based on nonperturbative quantizations of

general relativity, like loop quantum cosmology [4, 5], allow one to extend the evolution

beyond the region where the singularity is located, according to general relativity, and may

provide predictions that fit better with observations.

Interestingly, one of the extensions that has not been investigated in full detail and which

may shed light on the early physics of the Universe concerns the breakdown of the isotropy

hypothesis. Although anisotropies are diluted during inflation, there exists the possibility

that they might have left some imprint in those scales of the perturbations that are crossing

the cosmological horizon today. Cosmological perturbations in anisotropic spacetimes with

flat spatial sections of the Bianchi I type were analyzed in Refs. [6, 7]. These works provide a

formulation in terms of gauge-invariant perturbations. The evolution of these perturbations

turns out to be dictated by a set of linear, second-order, ordinary differential equations

without dissipation. The dynamical system is complicated by the fact that, unlike what

happens in the traditional isotropic models, now the equations of motion couple the scalar

and tensor modes for each possible wavevector. This coupling shows that the classification of

the perturbations in scalar and tensor modes (as well as vector modes that are nonphysical)
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has a limited use in an expanding universe with shear. Nonetheless, the coupling turns out

not to affect the dominant terms in an asymptotic expansion for infinitely large wavenumbers

of the modes (with the wavenumber defined as the norm of the wavevector), suggesting

that the classification may be helpful in the discussion of the ultraviolet regime of high

wavenumbers.

One could expect that the coupling between scalar and tensor modes (even if subdominant

in the ultraviolet) might introduce nontrivial correlations among them. These correlations

can be explicitly quantified through the scalar-tensor 2-point functions, and/or described by

means of entanglement between the quantum states of the scalar and tensor perturbations.

Indeed, the search of entanglement of scalar and tensor modes is currently under study [8, 9],

adopting a more general scenario where the entanglement is assumed to be generated by an

unspecified mechanism. These investigations analyze the consequences of such a quantum

entanglement in the spectrum of anisotropies, yielding nontrivial contributions that might

be put to the test and compared with observations in future missions.

A correct analysis of the quantum issues and phenomena that affect the perturbations

and their dynamics requires special care, since the system possesses infinitely many degrees

of fredom. For this kind of systems, the uniqueness Stone-von Neumann theorem [10] cannot

be applied and, in consequence, there is no guaranty of a unique representation of the field

analog of Weyl’s algebra. Fortunately, it is possible to find privileged Fock representations

under the requirement of certain physical criteria. For instance, for linear fields propagating

in curved spacetimes, the existence of a timelike Killing vector (together with the positivity

of the energy [11, 12]) and/or of a sufficient number of symmetries allows one to select a

concrete representation compatible with them. This is the case in some special situations,

like free field theories in Minkowski or de Sitter spacetimes [13]. However, in cosmological

scenarios, in general, there are neither timelike Killing vectors nor the sufficient number

of symmetries. Nevertheless, in the last decade, this issue has been successfully addressed

by demanding a physically well-motivated criterion that serves to select a unique family

of Fock representations that are unitarily equivalent. This criterion consists in requiring

a unitarily implementable quantum dynamics, as well as invariance under the symmetries

of the equations of motion, symmetries that in many situations can be identified with (or

simply restricted to) the Killing symmetries of the background. This criterion was first

proposed in the context of Gowdy cosmologies [14–20], which are midisuperspaces that,
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after reduction, can be regarded as a scalar field propagating in an 1+1 effective spacetime.

The analysis of the applicability of the criterion was later extended to the case of test scalar

fields propagating in homogeneous and isotropic universes [21–32], a case that is relevant

for the quantization of scalar cosmological perturbations. More recently, the criterion was

generalized to the study of fermion fields in conformally ultrastatic backgrounds [33–36].

Notice that the implementation of the dynamics as a unitary operator on the Fock space

determined by the vacuum, as required by this criterion, makes the quantum treatment

of the field theory compatible with the standard probabilistic interpretation of quantum

mechanics, inasmuch as it provides a well defined Schrödinger picture.

In the case of scalar fields in homogeneous and isotropic cosmologies, the criterion of

a unitary quantum dynamics leads to the introduction of a new pair of canonical vari-

ables related with the original field and momentum by a time-dependent (or equivalently

background-dependent) transformation: the field is rescaled by a time-dependent function,

while the conjugate momentum adopts the inverse scaling and includes an additional term

that is linear in the field [25]. This new pair (auxiliary in the construction of a repre-

sentation for the original one [32]) is completely specified by the requirement of unitarity.

Indeed, the time-dependent factors that relate the original field variables and the new ones

extract a contribution of the dynamics that cannot be implemented unitarily, whereas the

remaining nontrivial evolution is implementable as a unitary operator on Fock space. For

instance, in cosmological perturbation theory in isotropic scenarios, while the time varia-

tion of the comoving curvature perturbation does not admit a unitary implementation, the

Mukhanov-Sasaki variable presents a unitary dynamics in conformal time, the two variables

being related by means of a rescaling with a time-dependent function. Thus, the separation

of the time dependence in a background-dependent (and hence classically varying) part and

a (nontrivial) quantum dynamical part turns out to be a key ingredient in the construction

of the Fock description of the system if the quantum evolution is to be unitary [32].

Although the above mentioned separation of the time dependence is achieved by means

of a field rescaling – which is a local transformation –, in more general situations the ex-

traction of the explicitly time-dependent part of the evolution needs a nonlocal canonical

transformation. For scalar fields, the nonlocality comes typically from a dependence on

the spectrum of the Laplace-Beltrami operator defined on the spatial sections, so that the

transformation appears as mode-dependent if one introduces an expansion of the field in the
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eigenmodes of that operator [26, 28]. For fermions, the explicitly time-dependent part that

must be extracted is different for terms associated with different helicities and chiralities, so

that the total transformation is not a rescaling of the field as a whole [34, 35].

The considered uniqueness criterion provides a robust arena for the study of physical

phenomena of quantum field theories in cosmological spacetimes, particularly for cases where

the quantum dynamics and the interaction with the background geometry play a prominent

role, as happens with the evolution of quantum perturbations and anisotropies. As a first

step towards the analysis of the Fock quantization of perturbations in Bianchi I spacetimes,

in this manuscript we will deal with the quantization of a test scalar field minimally coupled

to a background of this kind. We will show that, by imposing vacuum invariance under the

spatial symmetries and requiring unitary implementability of the quantum dynamics, we can

select a unique Fock representation for the canonical commutation relations, up to unitary

equivalence. Moreover, as expected, these conditions determine also a unique splitting of

the time variation of the scalar field into an explicit time dependence and a genuine and

nontrivial quantum evolution. Our analysis then extends to the anisotropic case the study

of scalar fields in a homogeneous and isotropic universe with flat spatial sections [27, 30],

proving that the proposed uniqueness criterion works perfectly well in spacetimes without

conformal symmetry.

Our discussion will follow closely the strategy that was recently introduced for fermion

fields in Refs. [33–36]. This strategy generalizes the studies carried out so far in the literature

for scalar fields in isotropic scenarios inasmuch as it investigates simultaneously the freedom

in the choice of Fock representation and the freedom in extracting from the field evolution a

nontrivial part that is implemented quantum mechanically. This is achieved by considering

families of Fock representations with elements that are related dynamically, so that the

Bogoliubov transformations between the corresponding sets of annihilation and creation-

like variables associated with representations in different families are now allowed to be

time dependent. Indeed, this dependence can absorb part of the time variation of the

field variables and redefine the dynamical evolution that has to be represented as a unitary

endomorphism in Fock space.

More specifically, we will first determine the necessary and sufficient conditions that a

Fock representation must satisfy in order to have a vacuum invariant under translations in

the spatial directions (the Killing symmetries of Bianchi I spacetimes with compact sec-
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tions). In this class of invariant Fock representations, we will consider time-dependent fam-

ilies, obtained by combining the dynamical evolution of the canonical field variables with

a time-dependent choice of their linear combinations that define the basic annihilation and

creation operators. To simplify the analysis of the dynamics, we will introduce a convenient

time-dependent canonical transformation of the original field and momentum variables be-

fore pasing to the Fock description. It will not be local. However, in the isotropic limit,

it will coincide with the canonical transformation that is usually adopted for field theories

in isotropic cosmologies [26]. Then, we will characterize the families of representations in

which all elements are related by transformations that admit a unitary implementation. This

characterization will provide the admissible Fock representations and the viable choices of

nontrivial dynamics in the quantum theory. Finally, we will prove that all these representa-

tions are unitarily equivalent, and that the quantum dynamics is fixed up to terms that are

not only unitary, but subdominant in the ultraviolet limit.

The rest of the paper is organized as follows. In Sec. II we give a description of the

classical setting that we study in this manuscript, including an analysis of the classical field

dynamics. The Fock quantization is introduced at the beginning of Sec. III, and then we

characterize the conditions that Fock representations must satisfy in order to be compatible

with the criterion of symmetry invariance and unitary evolution. Choosing as reference

representation that of a massless scalar field case (the simplest one), we prove in Sec. IV

that all the previously characterized Fock representations are unitarily equivalent. Besides,

we show that the condition of unitary implementability indeed determines the quantum

evolution, up to ultraviolet subdominant terms. We conclude in Sec. V with a summary of

our results. We also include two appendices with further details on our derivations.

II. CLASSICAL TEST SCALAR FIELD IN A BIANCHI I BACKGROUND

Let us consider a Bianchi I spacetime with topology M = I× T
3, where T

3 is the three-

torus, with coordinates xi (i = 1, 2, 3) belonging to S1, and I is a connected interval of the

real line. The metric of this spacetime in its diagonal form can be written as

ds2 = gµνdx
µdxν = −N2(t)dt2 + hij(t)dx

idxj , hij(t) = a2i (t)δij , (2.1)
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where ai are the directional scale factors and N is the lapse function. In the expression of the

spatial metric hij , the repetition of indices does not mean summation. A particular case of

these cosmological spacetimes is the (compact) flat Friedmann-Lemâıtre-Robertson-Walker

(FLRW) universe, obtained when the three scale factors are equal. For later convenience we

introduce the average scale factor that characterizes the volume expansion,

a(t) ≡ [a1(t)a2(t)a3(t)]
1/3 . (2.2)

We now introduce a real test scalar field φ with mass m minimally coupled to this

geometry. The Lagrangian density of the field is given by

Lφ =
1

2

√

− det(g)(−gµν∇µφ∇νφ−m2φ2), (2.3)

where ∇µ means covariant derivative and det(g) is the determinant of the spacetime metric.

Given a foliation of the spacetime in spacelike hypersurfaces, let Σ denote a particular spatial

section with unit, future-directed, normal vector nµ. Then, the derivative of the field in the

normal direction is nµ∇µφ, the canonical momentum πφ is defined by

πφ =
δLφ

δ(∂tφ)
= a3nµ∇µφ, (2.4)

and the Hamiltonian density is

Hφ = πφ∂tφ− Lφ. (2.5)

In view of the foliation chosen in Eq. (2.1), adapted to homogeneity, we have

πφ =
a3

N
∂tφ. (2.6)

The Hamiltonian density is then

Hφ(N) =
1

2
Na3

(

π2
φ

a6
+ hij∂iφ∂jφ+m2φ2

)

, (2.7)

where we have used that, for the Bianchi I spacetime, ∇i = ∂i, since the spatial sections are

flat.

A. Mode expansion

In order to handle the spatial dependence of the problem, let us expand the field in a

basis of eigenmodes of the Laplace-Beltrami operator ∆ defined on the spatial sections. This
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operator captures the spatial derivatives that appear in the Klein-Gordon equation derived

from the Hamiltonian (2.7). In the current setup of cosmologies with flat spatial sections,

we have

∆(t) = hij(t)∂i∂j . (2.8)

Let S = {Φ} be the complexification of the vector space of solutions to the Klein-Gordon

equation. This space is naturally equipped with the product (which is not positive definite

on S)

〈Φ1,Φ2〉 = i

∫

Σ

V. (Φ
∗
1n

µ∇µΦ2 − Φ2n
µ∇µΦ

∗
1) , (2.9)

where V. =
√

det(h)d3~x is the volume element on a given spatial section Σ, and the symbol ∗
denotes complex conjugation. This product is preserved under the evolution of the solutions

to the Klein-Gordon equation, namely, it is independent of the choice of spatial section Σ.

In our case, the product simplifies to

〈Φ1,Φ2〉 = i
a3(t)

N(t)

∫

T3

d3~x (Φ∗
1∂tΦ2 − Φ2∂tΦ

∗
1) . (2.10)

On the other hand, since the Cauchy problem is well posed for the (complexified) Klein-

Gordon field in the considered Bianchi I cosmologies, the space of solutions S can be equiv-

alently regarded in our model as the complexified space of initial data for the Klein-Gordon

equation.

The operator ∆(t) is essentially self-adjoint on the space of square integrable functions

with respect to the measure V. , and it has a discrete spectrum, owing to the compactness

of the spatial sections. Its eigenspaces provide irreducible representations of the group

consisting of translations in T
3 (interpretable as compositions of rigid rotations in the three

principal spatial directions of the tori), which are Killing symmetries of the considered

homogeneous spacetimes. The corresponding eigenfunctions are the set of plane waves ei
~k·~x

in T
3, with ~k = (k1, k2, k3) ∈ Z

3, and its eigenvalues are time dependent. On each eigenspace

the corresponding eigenvalue can be written as

∆k(t) = −k2

3
∑

i=1

[

k̃i
ai(t)

]2

, (2.11)

with k =
√

k2
1 + k2

2 + k2
3 and k̃i = ki/k. We can think of k as the norm of the wavevector ~k,

and k̃i as the components of the unit vector ~̃k in the direction of this wavevector. Note that
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the spectrum is degenerate: there exist different wavevectors with the same eigenvalue. In

particular, the eigenmodes ei
~k·~x and e−i~k·~x, corresponding to wavevectors of opposite sign,

have both the same eigenvalue.

Since the physical scalar field is real, we consider a basis of real Fourier modes like the

one employed in Ref. [27]. Then, we adopt the decomposition

φ(t, ~x) =
1

(4π3)1/2

∑

~k∈L+

[

q
(1)
~k

(t) cos(~k · ~x) + q
(2)
~k

(t) sin(~k · ~x)
]

, (2.12)

πφ(t, ~x) =
1

(4π3)1/2

∑

~k∈L+

[

p
(1)
~k
(t) cos(~k · ~x) + p

(2)
~k
(t) sin(~k · ~x)

]

, (2.13)

where we have ignored the zero-mode, labeled by ~k = (0, 0, 0), and we have defined the

lattice

L+ = {~k; k1 > 0} ∪ {~k; k1 = 0, k2 > 0} ∪ {~k; k1 = 0 = k2, k3 > 0}.

Restriction to this lattice avoids duplication of the real modes in the Fourier expansion. On

the other hand, the exclusion of the (single) zero-mode has no influence in our discussion

about unitary implementability of the dynamics in the presence of an infinite number of

degrees of freedom. In any case, if we wanted to quantize this mode, we could deal with it

separately. Finally, our normalization is such that the introduced real modes provide pairs

of canonically conjugate variables,

{q(l)~k
, p

(l̃)
~k′
} = δl,l̃δ~k,~k′, (2.14)

where l, l̃ = 1, 2.

One can see that the expression of the Hamiltonian in terms of these modes is formed by

two identical contributions without interaction between them:

Hφ(N) =

2
∑

l=1

H
(l)
φ (N), (2.15)

H
(l)
φ (N) =

N

2a3

∑

~k∈L+

{

(

p
(l)
~k

)2

+ a6

[

3
∑

i=1

(

ki
ai

)2

+m2

]

(

q
(l)
~k

)2
}

. (2.16)

In order to alleviate the notation, in what follows we will use (q~k, p~k) to generically denote

any of the pairs (q
(1)
~k

, p
(1)
~k
) or (q

(2)
~k

, p
(2)
~k
) whenever is convenient.
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B. Classical canonical transformation

The case of the scalar field in homogeneous and isotropic cosmologies proved that the

discussion of the unitary implementability of the dynamics can be simplified with a judicious

choice of field variables. This choice involves a time-dependent canonical transformation

that extracts background functions from the Klein-Gordon field variables. Typically, the

new canonical variables for the modes behave dynamically like harmonic oscillators without

dissipative terms. Inspired by this isotropic case, we are also going to consider a time-

dependent transformation of the field canonical pairs in the current Bianchi I background.

However, owing to the lack of isotropy and in contrast to what happens in the mentioned

FLRW case, we are going to introduce a transformation that, instead of being just a time-

dependent scaling of the configuration field variable, now is also mode dependent. Therefore,

it is going to be nonlocal in the cosmological spacetime.

Let us introduce then the following canonical change, that is mode dependent as an-

nounced, but nevertheless respects the spatial Killing symmetries (which are symmetries of

the Laplace-Beltrami operator) inasmuch as it does not mix different modes:





q̃~k

p̃~k



 = P~k





q~k

p~k



 , P~k =





√

bk̃ 0

1
2

ḃ
k̃

b
k̃

√
b
k̃

1√
b
k̃



 . (2.17)

Here bk̃ is defined as

bk̃ = a3

√

√

√

√

3
∑

i=1

(

k̃i
ai

)2

, (2.18)

and the dot stands for the derivative with respect to the harmonic time τ , defined asN(t)dt =

a3(τ)dτ . The function bk̃ depends on the three scale factors (a1, a2, a3) and on the unit

wavevector
~̃
k = ~k/k, but not on the wavenumber k. Besides, in the limit of isotropy we have

bk̃ = a2, and we recover the usual scaling that is employed in the isotropic scenarios [27].

The canonical transformation induces the following change in the Lagrangian of the

system (before summing over l = 1, 2)

∑

~k∈L+

q̇
(l)
~k
p
(l)
~k

−H
(l)
φ =

∑

~k∈L+

˙̃q
(l)
~k
p̃
(l)
~k

− H̃
(l)
φ , (2.19)
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up to a total derivative, with the new Hamiltonian being given by

H̃
(l)
φ (N = a3) =

∑

~k∈L+

bk̃
2

{

(

p̃
(l)
~k

)2

+
[

k2 + sk̃(τ)
]

(

q̃
(l)
~k

)2
}

, (2.20)

where we have defined

sk̃(τ) =
a6m2

b2
k̃

+
3

4

(

ḃk̃
b2
k̃

)2

− 1

2

b̈k̃
b3
k̃

. (2.21)

We can see that H̃
(l)
φ (N = a3) is a sum of Hamiltonians of harmonic oscillator type, one for

each mode, up to the factor bk̃ in Eq. (2.20). The mass of each of these oscillators depends

on time, as well as on the unit wavevector
~̃
k. Note, nonetheless, that this mass sk̃ does not

depend on k, because bk̃ is independent of this quantity.

C. Classical dynamics

Given the Hamiltonian (2.20), Hamilton’s equations of motion for the different modes

read

˙̃q~k = bk̃p̃~k
˙̃p~k = −bk̃(k

2 + sk̃)q̃~k. (2.22)

Let us express their real solutions in the following general form:

q̃~k(τ) = Q~ke
iΘq

~k
(τ) +Q∗

~k
e−i[Θq

~k
(τ)]

∗

, (2.23)

p̃~k(τ) = k
(

P~ke
iΘp

~k
(τ) + P ∗

~k
e−i[Θp

~k
(τ)]

∗
)

, (2.24)

where Θq
~k
(τ) and Θp

~k
(τ) are complex functions, and the factor k in Eq. (2.24) is introduced

for later convenience.

We do not need to determine exactly the complex solutions eiΘ
q

~k and eiΘ
p

~k for our study.

Rather, it will be enough to know the asymptotic behavior of the functions Θq
~k
(τ) and

Θp
~k
(τ) in the ultraviolet limit k → ∞. This analysis is presented in Appendix A. With the

initial conditions Θx
~k
(τ0) := Θx

~k,0
= 0 and Θ̇x

~k
(τ)|τ0 := Θx

~k,1
= bk̃(τ0)k at an arbitrary initial

harmonic time τ0, where x denotes either q or p, we conclude that

Θx
~k
(τ) = kηk̃(τ) +O(k−1), (2.25)

with

ηk̃(τ) =

∫ τ

τ0

dτ̃bk̃(τ̃ ). (2.26)
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The symbol O stands for asymptotic order in the ultraviolet regime. To obtain this result

we have assumed that ṡk̃ exists and is integrable in every closed interval [τ0, τ ] of our time

domain, where the function sk̃ is defined in Eq. (2.21).

Using at τ0 the equations of motion (2.22), as well as the definitions (2.23) and (2.24),

we can express the constants Q~k and P~k in terms of the initial conditions q̃~k(τ0) and p̃~k(τ0),

once the initial values Θx
~k,0

= 0 and Θx
~k,1

= bk̃(τ0)k are given. Taking this into account, we

can easily derive the expression of the modes q̃~k and p̃~k, at any time τ , in terms of Θq
~k
, Θp

~k
,

and those initial conditions. In matrix form




q̃~k

p̃~k





τ

= V~k(τ, τ0)





q̃~k

p̃~k





τ0

, V~k(τ, τ0) =





ℜ
[

eiΘ
q

~k
(τ)
]

1
k
ℑ
[

eiΘ
q

~k
(τ)
]

−k2+s
k̃
(τ0)

k
ℑ
[

eiΘ
p

~k
(τ)
]

ℜ
[

eiΘ
p

~k
(τ)
]



 . (2.27)

The subindex τ in column-vectors means evaluation at that value of the harmonic time, and

the symbols ℜ and ℑ denote the real and imaginary parts, respectively.

III. FOCK QUANTIZATION

After discussing the classical canonical description of the system, now we can proceed to

analyze its Fock quantization. One can encode the freedom to select the Fock representation

in the choice of what is called a complex structure J [13]. The complex structure is a real

linear transformation in the complex vector space S such that J2 = −1. Moreover, J should

leave the product (2.10) invariant, i.e. 〈JΦ1|JΦ2〉 = 〈Φ1|Φ2〉. Every complex structure

induces a splitting of S into two mutually orthogonal subspaces, S = S+
J ⊕S−

J , where S
± are

the eigenspaces of J with respective eigenvalues given by ±i, namely S± = (S ∓ iJS)/2. In

the subspace S+ the product (2.10) is a positive definite inner product. The usual convention

is to assign the particle annihilation-like part of the solutionsA to S+. Its completion in

the considered inner product is the one-particle Hilbert space, from which the symmetric

Fock space is constructed. Therefore, different complex structures define different Fock

spaces, corresponding to different annihilation and creation operators. In general, these

different Fock representations are unitarily inequivalent and thus define physically distinct

quantum theories. To remove this ambiguity and pick out a unique class of equivalent

A For spacetimes with a time-like Killing vector and a natural concept of frequency, the subspace S+

corresponds to the positive frequency solutions, while S− corresponds to the negative frequency ones.
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Fock representations, one can try and appeal to criteria based on well-founded physical

motivations.

A. Invariant Fock representations

We will first make use of the symmetries of the system and focus our attention exclusively

on Fock representations in which the vacuum is left invariant by the action of the group of

Killing symmetries of the background corresponding to rigid rotations in T
3 (obtained from

the combination of individual rigid rotations in each of the diagonal directions). The com-

plex structure of every such invariant Fock representation commutes with the action of

these symmetries, guaranteeing the vacuum invariance. The most general form of a com-

plex structure compatible with the considered background symmetries was in fact deduced

in Refs. [27, 30]. Equivalently, the invariant Fock representations can be characterized by

specific properties of the corresponding choice of annihilation and creation-like variables (to

later be declared annihilation and creation operators on Fock space), a
(l)
~k

and a
(l),†
~k

:= (a
(l)
~k
)∗,

related through a linear combination with the mode variables (q̃
(l)
~k
, p̃

(l)
~k
). The admissible

linear combinations turn out not to mix modes with different wavevectors ~k ∈ L+ or dif-

ferent label l ∈ {1, 2}. A simple way to understand this result is the compatibility with

the symmetries of the equations of motion in our background, which decouple these modes.

On the other hand, the linear combinations that provide the annihilation and creation-like

variables may depend on the wavevector ~k. However, if we also respect the symmetry of

the dynamical equations that makes them independent of the consideration of cosine or sine

modes (corresponding to l = 1 and 2, respectively), the combinations cannot depend on

the label l [27, 30] (at the end of the day, this is so because the cosine and sine eigenfunc-

tions of the Laplace-Beltrami operator are combinations of exponentials related by complex

conjugation).

In summary, a symmetry invariant Fock representation is totally characterized by a linear

transformation F formed by 2× 2 blocks F~k such that





a
(l)
~k

a
(l),†
~k



 = F~k





q̃
(l)
~k

p̃
(l)
~k



 , F~k :=





f~k g~k

f ∗
~k

g∗~k



 . (3.1)
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The coefficients f~k and g~k satisfy

f~kg
∗
~k
− g~kf

∗
~k
= −i, (3.2)

in order to guarantee that the annihilation and creation-like variables verify the characteristic

Poisson relations

{a(l)~k
, a

(l̃),†
~k′

} = −iδl,l̃δ~k,~k′, (3.3)

following from (2.14).

B. Unitarity of the dynamics

We restrict our discussion to invariant Fock representations from now on. We will con-

sider families of representations connected by a nontrivial dynamics that is induced from the

evolution of the Klein-Gordon field. Moreover, we want that this dynamics can be imple-

mented as a unitary operator. These families of representations will correspond to choices

of annihilation and creation-like variables of the form (3.1), but allowing the blocks F~k that

define those variables to smoothly depend on the evolution parameter, identified with the

time τ . This explicit time dependence will be able to absorb part of the time variation of the

canonical field pairs (q̃
(l)
~k
, p̃

(l)
~k
), that evolve according to Eq. (2.27). In this way, we introduce

a procedure to split the time variation of the Klein-Gordon field and its momentum into an

explicit dependence on the time τ , defined (at least locally) by the background average scale

factor a(τ), and a dynamical evolution that is to be implemented quantum mechanically as

a unitary transformation.

Before continuing our analysis, it is worth clarifying the role of the dynamics in the

relation between the Fock representations that form each of the families that we are con-

sidering, representations that are determined by the sets of annihilation and creation-like

variables a
(l)
~k
(τ) and a

(l),†
~k

(τ), where τ runs in our time domain. We can always take a given

section of constant time, let’s say at initial time τ0, and specify a Fock representation for

our Klein-Gordon system by adopting as annihilation and creation-like variables the set

formed by a
(l)
~k
(τ0) and a

(l),†
~k

(τ0), regarded as coefficients in an expansion of the field in an

appropriate basis of solutions. Alternatively, we can also express the variables a
(l)
~k
(τ0) and

a
(l),†
~k

(τ0) in terms of their evolved values a
(l)
~k
(τ) and a

(l),†
~k

(τ) at any time τ . The relation
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between these alternative sets will be given by a Bogoliubov transformation. The linearity

of this transformation and of the space of solutions allows us to use these evolved values as

new annihilation and creation-like coefficients on the initial-time section. This new choice

determines then a different Fock representation of the system, obtained from the previous

one by the dynamical evolution of our annihilation and creation-like variables. The different

representations defined in this way will be equivalent if and only if the introduced dynamics

is implementable as a unitary operator on the Fock space associated with any of them (since

they are ultimately equivalent). In the rest of this section we will discuss the necessary and

sufficient conditions that a family of Fock representations has to fulfill in order to admit such

a unitarily implementable dynamics. We will ignore again the superscript l in our notation

to simplify the formulas.

As we have anticipated, the classical evolution (2.27) translates into a Bogoliubov trans-

formation B that implements the dynamics of the annihilation and creation-like variables

from the initial time τ0 to any time τ :




a~k

a†~k





τ

= B~k(τ, τ0)





a~k

a†~k





τ0

, B~k(τ, τ0) :=





α~k(τ, τ0) β~k(τ, τ0)

β∗
~k
(τ, τ0) α∗

~k
(τ, τ0)



 . (3.4)

Recall that the subindex τ denotes evaluation at that instant of time. Using Eqs. (2.27)

and (3.1), we can easily deduce the explicit form of this Bogoliubov transformation,

B~k(τ, τ0) = F~k(τ)V~k(τ, τ0)F−1
~k

(τ0). (3.5)

Let us notice that this transformation is in fact independent of the label l, since we have seen

that F~k is l-independent for symmetry invariant representations, and the evolution trans-

formation V~k is the same regardless of the value of l [for more details about this statement,

see Eq. (2.27) and Appendix A].

The resulting alpha and beta coefficients are given by

α~k(τ, τ0) = i

{

f~k(τ)g
∗
~k
(τ0)ℜ[eiΘ

q

~k
(τ)]− g~k(τ)f

∗
~k
(τ0)ℜ[eiΘ

p

~k
(τ)]

− 1

k
f~k(τ)f

∗
~k
(τ0)ℑ[eiΘ

q

~k
(τ)]− k2 + sk̃(τ0)

k
g~k(τ)g

∗
~k
(τ0)ℑ[eiΘ

p

~k
(τ)]

}

, (3.6)

β~k(τ, τ0) = −i

{

f~k(τ)g~k(τ0)ℜ[e
iΘq

~k
(τ)]− g~k(τ)f~k(τ0)ℜ[e

iΘp

~k
(τ)]

− 1

k
f~k(τ)f~k(τ0)ℑ[e

iΘq

~k
(τ)]− k2 + sk̃(τ0)

k
g~k(τ)g~k(τ0)ℑ[e

iΘp

~k
(τ)]

}

. (3.7)
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It is well known that such a Bogoliubov transformation is implementable as a unitary

operator on Fock space if and only if its antilinear part is Hilbert-Schmidt [37], which in

turn is true if and only if

∑

~k∈L+

|β~k(τ, τ0)|2 < ∞, (3.8)

for all times τ in the evolution. This last condition can be equivalently interpreted as

the requirement that the evolved vacuum, annihilated by the operators representing all the

variables a
(l)
~k
(τ) at time τ , have a finite particle content from the point of view of the vacuum

defined at the initial time τ0.

To prove under which conditions this is verified, we need the behavior of |β~k| for asymp-

totically large k, i.e., in the limit k → ∞. Taking into account Eq. (2.25), we obtain

|β~k(τ, τ0)| =
1

2k

∣

∣

∣

[

f~k(τ) + ikg~k(τ)
] [

f~k(τ0)− ikg~k(τ0)
] [

eikηk̃(τ) +O(k−1)
]

−
[

f~k(τ)− ikg~k(τ)
] [

f~k(τ0) + ikg~k(τ0)
] [

e−ikη
k̃
(τ) +O(k−1)

]

+ 2ig~k(τ)g~k(τ0)sk̃(τ0)
{

sin [kηk̃(τ)] +O(k−1)
}

∣

∣

∣
. (3.9)

Notice that the last term in this formula is subdominant with respect to the terms propor-

tional to g~k(τ)g~k(τ0) in the second and first lines.

Given the above expression of the beta coefficients, the unitarity condition (3.8) imposes

a specific behavior of the functions f~k(τ) and g~k(τ) in the limit k → ∞. If one recalls the

relation (3.2) between these functions, the condition restricts severely the asymptotic form

of, e.g., f~k(τ). We discard the possibility of compensating the contribution coming from

the first line of (3.9) with the contribution coming from the second line in order to arrive

to a square summable sequence of beta coefficients. This would imply a trivialization of

the dynamics, absorbing the dominant dynamical contribution of the Fourier modes of our

canonical variables by tuning in a specific and counter-balanced way the time dependence

of the functions f~k and g~k. Let us then look at the two lines of (3.9) separately, admitting

their functional independence as functions of time.

It is not hard to see that the only possibility to attain Eq. (3.8) in a consistent way with

restriction (3.2) is to require f~k = −ikg~k for all ~k ∈ L+, except perhaps a finite number of

wavevectors, and up to negligible terms in the ultraviolet regime. This condition, together

with Eq. (3.2), fixes completely the leading term (up to a phase) of both f~k and g~k in the
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asymptotic expansion for large k. Indeed, for all ~k ∈ L′
+, such that L′

+ differs from L+ in a

finite number of elements at most, we need to have

f~k(τ) =

√

k

2
eiF~k

(τ) + kθf~k (τ), g~k(τ) =
i√
2k

eiF~k
(τ) + θg~k(τ), (3.10)

where F~k is any phase, and kθf~k(τ) and θg~k(τ) are subdominant terms in the asymptotic limit

of infinite k. Furthermore, these subdominant contributions must satisfy

∑

~k∈L′

+

k|θf~k(τ) + iθg~k(τ)|
2 < ∞, (3.11)

for all τ . To arrive to this conclusion, we have used the fact that the sequence {sk̃(τ0)/k2}~k∈L+

is square summable. The function sk̃ does not depend on k and the sequence {1/k2}~k∈L+
is

square summable, as proven in Ref. [27].

It is worth recalling that the functions f~k(τ) and g~k(τ) are independent of the value of

the label l, and therefore the same applies to the functions appearing in their asymptotic

expansions. On the other hand, we note that, owing to relation (3.2), the subdominant

terms are not independent, but they satisfy the relation

ℜ
[

i
(

e−iF~k +
√
2k(θf~k)

∗
)

θg~k

]

= ℜ
[

θf~ke
−iF~k

]

. (3.12)

Calling θg~k = |θg~k|e
iG~k , this equation gives the expression of |θg~k| (at least for sufficiently large

k) in terms of F~k, θf~k , and the phase G~k, unless the latter is made to coincide with F~k

(modulo 2π) up to negligible terms when k → ∞. In all other cases, one can employ the

expression obtained for |θg~k| and demonstrate that condition (3.11) is satisfied if and only if

the sequence {
√
k|θf~k |}~k∈L′

+

is square summable.

One can convince oneself that the situation where f~k(τ) and g~k(τ) are time independent

can be addressed along the lines of our general discussion and that one arrives then to similar

conclusions.B In this case, the square summability of the beta coefficients, together with

relation (3.2), again imply that f~k = −ikg~k, up to terms that are negligible. One obtains

again the behavior shown in Eq. (3.10), particularized to phases F~k and subdominant

contributions θf~k and θg~k that are constant in time.

In conclusion, expressions (3.10), (3.11), and (3.12) are the necessary and sufficient condi-

tions that a time-dependent family of invariant Fock representations, characterized by F(τ),

B For details on an alternate proof concerning the time independent situation see e.g. Ref. [21].
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has to verify in order that its elements are related by a dynamical evolution that can be

implemented as a unitary endomorphism in Fock space. We would like to comment that,

thanks to the canonical transformation carried out in Sec. II B, the norms of the leading

terms of f~k and g~k are time independent (and therefore background independent), as well

as mass independent. The time and mass dependence may appear only in the phase F~k of

these leading terms, and in the subleading ones. In particular, this implies that the condi-

tion of unitary implementability is capable of fixing the dynamics of the annihilation and

creation-like variables at dominant order, up to an irrelevant phase, once one has imposed

the invariance of the vacuum under the background symmetries.

To conclude this section, let us emphasize that the analysis can be carried out equally

well without performing the canonical time-dependent transformation (2.17), expressing the

families of annihilation and creation-like variables corresponding to invariant representations

directly in terms of the original canonical field variables q~k and p~k. Obviously, the results

attained in that way and those presented here are the same, as we discuss in Appendix B.

C. Massless representation

Among all possible Fock representations verifying conditions (3.10)-(3.12), there is a

specially simple one, which is given by

f̆~k(η) =

√

k

2
, ğ~k(η) =

i√
2k

. (3.13)

As one can check by simple inspection of Eq. (3.9), in this representation we get that

|β~k| = |sk̃(τ0)O(k−2)|. It is the natural representation that one would adopt in a static

spacetime for a scalar field with configuration and momentum variables given by q̃~k and p̃~k

if not just the mass of the field, but the whole time-dependent mass term sk̃ were zero. We

will employ this representation as a reference representation in the next section. We denote

by ă~k and ă†~k the associated annihilation and creation-like variables.

IV. UNIQUENESS OF THE FOCK REPRESENTATION

We have characterized the Fock quantizations possessing vacua that are invariant under

the symmetries of the Bianchi I background, and a quantum dynamics that can be imple-

mented unitarily. In this section, we will prove that it is not only that the representations
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connected dynamically in each of these quantizations are unitarily equivalent (given the uni-

tary implementability of the quantum dynamics), but, furthermore, the representations of

any of these possible quantizations are all equivalent between them. In particular, they are

unitarily equivalent to our reference representation at any value of the time parameter. As

a consequence of this result, the criterion that we are putting forward indeed guarantees the

uniqueness of the choice of Fock representation for the scalar field, up to unitary equivalence,

in the considered cosmologies.

Let us consider the reference Fock representation, and any other representation with

annihilation and creation-like variables (a~k, a
†
~k
) selected by our criterion. These annihilation

and creation-like variables at generic time τ are related to the reference ones, (ă~k, ă
†

~k
), by

means of a Bogoliubov transformation:





a~k

a†~k





τ

= K~k(τ)





ă~k

ă†~k





τ

, K~k :=





κ~k λ~k

λ∗
~k
κ∗
~k



 . (4.1)

Note that, in general, K~k can be time dependent.

It is straightforward to show that K~k = F~k(F̆~k)
−1 (and hence it is independent of the

value of the label l). Using this relation, we obtain

κ~k(τ) = i
[

f~k(τ)ğ
∗
~k
(τ)− g~k(τ)f̆

∗
~k
(τ)
]

, (4.2)

λ~k(τ) = −i
[

f~k(τ)ğ~k(τ)− g~k(τ)f̆~k(τ)
]

. (4.3)

The two Fock representations considered at (an arbitrary value of the) time τ are unitarily

equivalent if and only if the above Bogoliubov transformation, formed by the sequence of

matrices K~k, can be implemented as a unitary operator in the quantum theory, namely if

and only if its antilinear part is Hilbert-Schmidt [37]. This in turn amounts to demand that

∑

~k∈L+

|λ~k(τ)|2 < ∞. (4.4)

Taking into account the asymptotic behavior of f~k and g~k, given in Eq. (3.10), we get from

expression (4.3) that

∑

~k∈L′

+

|λ~k(τ)|2 =
1

2

∑

~k∈L′

+

k|θf~k (τ) + iθg~k(τ)|
2. (4.5)
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The finiteness of this sum is just the necessary and sufficient condition (3.11) for a unitary

implementability of the dynamics, implementability that we are assuming for the quanti-

zation determined by (a~k(τ), a
†

~k
(τ)). Therefore, the considered quantizations are unitarily

equivalent, as we wanted to show.

In conclusion, the criterion of imposing symmetry invariance and unitarity of the dynam-

ics picks out a unique equivalence class of invariant Fock representations.

V. CONCLUSIONS

In this paper we have addressed the question of the uniqueness of the Fock quantization

of a minimally coupled test scalar field with mass m in a Bianchi I spacetime with com-

pact spatial slices. Extending to this anisotropic situation previous results obtained in flat

isotropic cosmologies [27, 30], we have proven that the requirements of i) invariance of the

vacuum under spatial Killing symmetries, and ii) a quantum dynamics that can be imple-

mented as a unitary endomorphism in Fock space, select a unique Fock representation, up

to unitary equivalence, removing the ambiguity inherent to quantum field theory in curved

backgrounds. Moreover, our requirements determine as well which part of the field evolution

must be dealt with as a background (or, equivalently, explicit time) dependence and which

part can be promoted to a quantum dynamics with the desired properties.

We have started by analyzing the field dynamics of the classical system. We have first

carried out a mode decomposition of the canonical field and its momentum in terms of the

eigenmodes of the Laplace-Beltrami operator defined on the spatial sections. Its eigenspaces

are spanned by plane-waves labeled with a wavevector of integers ~k and a dichotomic vari-

able l, corresponding either to cosine or to sine modes. Afterwards, we have introduced a

canonical transformation of the field variables that does not mix different modes (in conso-

nance with the realization that they are not dynamically coupled). Most importantly, this

canonical transformation is time dependent, so that it extracts part of the evolution of the

original variables, rendering the dynamics of the redefined field variables simpler. Indeed, the

resulting Hamiltonian is a sum of terms, one for each mode, that, up to a mode-dependent

global factor, resemble Hamiltonians of harmonic oscillators of wavenumber k equal to the

norm of the corresponding wavevector, but in the presence of a time-dependent potential

that is different for each mode. Then, we have been able to solve the resulting classical dy-
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namics to leading and first subleading orders in an asymptotic expansion for infinitely large

k. Moreover, the introduced canonical transformation is actually nonlocal, in the sense that

the change of configuration and momentum variables is mode dependent, and hence depends

on global features of the Laplace-Beltrami operator. In the case of the scalar field that we

are considering, this nonlocality can be traced back to the fact that the spatial sections of

the cosmology are anisotropic. In comparison, in isotropic situations, this canonical trans-

formation reduces to a local one, defined independently at each spacetime point (inasmuch

as we can regard the metric components as local spacetime functions). In particular, for

the configuration field variable this local transformation amounts to a rescaling by the scale

factor of the cosmology [27, 30].

We have then proceeded to discuss the issue of the choice of a Fock representation for

the quantization of the field. We have focused our attention in representations – or asso-

ciated complex structures – that are invariant under the spatial Killing symmetries of the

background and treat on an equal footing the cosine and sine modes, since the interchange

of these modes is a symmetry of the dynamics. The complex structures that are invari-

ant under these symmetries can be characterized by two coefficients for each wavevector ~k.

These coefficients, f~k and g~k, define for each mode the linear combinations of configuration

and momentum variables that determine the annihilation and creation-like variables of the

representation.

Among this type of Fock representations, our interest has been put on time-dependent

families, described by two sequences of functions f~k(τ) and g~k(τ), such that they can be

connected by means of a nontrivial dynamics that is unitarily implementable. Together with

the background dependence of the field and its momentum, this unitary dynamics has to

reproduce the evolution of the Klein-Gordon system. The requirement of a nontrivial unitary

implementation turns out to constrain not only this dynamics, but also the asymptotic

behavior of the functions f~k(τ) and g~k(τ) when k → ∞. Indeed, we have shown that, in

each of these functions, the dominant term in an asymptotic expansion for infinitely large

k is completely fixed. Thanks to the mode-dependent canonical transformation that we

performed on the field configuration and momentum variables, these dominant contributions

have norms that are mass and time independent, and depend on the wavevector ~k only

through the wavenumber k [see Eq. (3.10)]. Actually, the canonical transformation extracts

precisely the part of the Klein-Gordon dynamics that cannot be implemented unitarily in
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the quantum theory. The remaining dynamics can be promoted to a unitary quantum

mechanical transformation, and it is fixed up to subdominant contributions that, in any

case, respect the unitary equivalence of the Fock representations related by the evolution.

Finally, we have demonstrated that the different time-dependent families of invariant

Fock representations selected by our criterion of symmetry invariance and unitary dynamics

are in fact all equivalent. Therefore, our criterion fixes a unique Fock representation (up

to unitary equivalence) and essentially a unique nontrivial quantum dynamics (in the sense

explained above). One particularly simple representative within the class of admissible Fock

representations is the representation determined by relations (3.13), that one would naturally

choose for a massless field in a static spacetime.

It is worth emphasizing that our proof of uniqueness does not need that the time param-

eter be defined on the whole real line, not even in an unbounded subset of it. It suffices

that there exists a connected interval where our arguments can be applied. In particular,

this is so for the definition of the function bk̃ in Eq. (2.18) (which might blow up outside of

the considered interval, if a directional scale factor vanished there) and for the smoothness

requirements on the function sk̃(τ), that must have a derivative that is integrable in any

closed subinterval of the considered time domain (see Appendix A).

This is the first example where our uniqueness criterion, which has been typically studied

in the context of cosmological scenarios, is applied to a scalar field in a background that is

not conformally ultrastatic. Indeed, this particular example provides insights about how a

quantization compatible with spatial symmetries and a unitary dynamics can be extended to

quantum field theories in general homogeneous spacetimes, that can be anisotropic. Another

interesting example of anisotropic cosmologies is the case of Bianchi III spacetimes. For some

specific backgrounds of that type that are shear-free, the cosmological perturbations turn

out to fulfill equations of motion that, at least in certain regimes, are similar to those of

a Klein-Gordon field in a static isotropic spacetime with a time-dependent potential, as

shown in Ref. [38]. Therefore, in those cases and in such regimes, we expect that one may

define a local (i.e., mode-independent) canonical transformation capable to extract the part

of the field dynamics that is not unitarily implementable in the quantum theory, like in the

isotropic case.

As we mentioned in the introduction, our results are potentially applicable to the quan-

tization of cosmological perturbations in Bianchi I spacetimes. In this case, the coupling
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between tensor and scalar modes introduces subtleties that must be carefully analyzed, but

a preliminary study suggests that the coupling does not affect the relevant dominant terms

of the ultraviolet asymptotic expansion of the physical perturbations, supporting the ex-

pectation that our uniqueness results can de adapted to this framework. In addition, these

uniqueness results can also be applied in the context of quantum cosmology, where the

background is not treated as a classical spacetime but quantum mechanically. One of the

most interesting formalisms in these lines is loop quantum cosmology [39, 40]. In the case

of Bianchi I cosmologies, although their quantization is not completely understood within

this formalism yet, it is nonetheless possible to compute effective geometries. Then, one can

consider quantum field theories in those effective spacetimes. The uniqueness criterion put

forward here is expected to be valid in those situations as well.
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Appendix A: Asymptotic analysis of the dynamics

In this appendix, we study the asymptotic behavior for large wavevector k of the complex

solutions eiΘ
q

~k and keiΘ
p

~k to the equations of motion (2.22) for the canonical variables of

the Klein-Gordon field, q~k and p~k, respectively. Obviously, the complex conjugate functions

e−i(Θq

~k
)∗ and ke−i(Θp

~k
)∗ are also solutions to the considered dynamical equations, because those

differential equations have coefficients that are given by real functions of time. Using this

fact, we can choose freely the sign of the real part of Θq
~k
and Θp

~k
in the following discussion.
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1. Asymptotic analysis of q̃~k

Let us first focus on the function Θq
~k
that determines the solution for q̃~k. We follow the

analysis of Ref. [21]. For those readers familiar with this analysis, it is enough to realize that

the choice of time dηk̃ = bk̃dτ formally allows us to follow without further considerations the

calculations of Ref. [21], keeping in mind that at the end we should write all the expressions

in terms of the original time τ (or any other choice of global time, common to all modes).

Note that dηk̃ is proportional to the conformal time, with a proportionality factor that,

strictly speaking, would depend on the (unit) directional wavevector of the mode, though

not on its wavenumber. Here, we will show the calculations explicitly for the time τ .

Combining Hamilton’s equations of motion for (q̃~k, p̃~k), we obtain the following second-

order, ordinary differential equation for q̃~k:

1

bk̃

d

dτ

(

1

bk̃

d

dτ
q̃~k

)

+
(

k2 + sk̃
)

q̃~k = 0. (A1)

Let us look for the complex solution eiΘ
q

~k with the following expression for the phase Θq
~k
:

Θ̇q
~k
(τ) = bk̃(τ)

[

k + iW q
~k
(τ)
]

, (A2)

so that, taking the initial condition Θq
~k,0

= 0, we have

Θq
~k
(τ) =

∫ τ

τ0

dτ̃ bk̃(τ̃ )
[

k + iW q
~k
(τ̃ )
]

. (A3)

If we now substitute this expression into Eq. (A1), we can see that W q
k (τ) has to satisfy the

first-order differential equation

1

bk̃
Ẇ q

~k
= (W q

~k
)2 − 2ikW q

~k
+ sk̃, (A4)

Let us now assume that W q
~k
= O(k−1) in the ultraviolet regime k → ∞, so that it tends to

the solution W̃ q
~k
of

1

bk̃

˙̃W q
~k
= −2ikW̃ q

~k
+ sk̃. (A5)

This equation, with initial condition W̃ q
~k
(τ0) = 0, is solved by

W̃ q
~k
(τ) = e−2ikη

k̃
(τ)

∫ τ

τ0

dτ̃bk̃(τ̃)sk̃(τ̃ )e
2ikη

k̃
(τ̃ ). (A6)
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We recall that

ηk̃(τ) =

∫ τ

τ0

dτ̃bk̃(τ̃ ). (A7)

Integrating by parts, we obtain

W̃ q
~k
(τ) =− i

2k

{

sk̃(τ)− sk̃(τ0)e
−2ikη

k̃
(τ) − e−2ikη

k̃
(τ)

∫ τ

τ0

dτ̃ ṡk̃(τ̃)e
2ikη

k̃
(τ̃)

}

.

Since sk̃ does not depend on the wavenumber k, then, if ṡk̃ exists and is integrable in every

closed interval [τ0, τ ] of the considered time domain, there exists a non-negative function

C(τ) that is k-independent (but may depend on the unit wavevector) and such that

|W̃ q
~k
(τ)| ≤ C(τ)

k
. (A8)

We see then that the function W̃ q
~k
(τ) behaves as O(k−1) in the ultraviolet limit of large k

and, consistently with our assumptions, can be taken in fact as asymptotic solution of Eq.

(A4), up to higher-order corrections. Plugging this result into Eq. (A3), we conclude that,

in the ultraviolet regime,

Θq
~k
(τ) = kηk̃(τ) +O(k−1). (A9)

2. Asymptotic analysis of p̃~k

To obtain the solution keiΘ
p

~k for p̃~k, we use the first identity in Eq. (2.22), which relates

Θp
~k
to a complex solution of the equation of motion for q̃~k. Expressing the latter as a linear

combination of eiΘ
q

~k and its complex conjugate, with respective coefficients called A~k and

B~k, we get, employing also definition (A2):

eiΘ
p

~k = A~k

[

i−
W q

~k
(τ)

k

]

eiΘ
q

~k − B~k

[

i+
(W q

~k
)∗(τ)

k

]

e−i(Θq

~k
)∗ , (A10)

with Θq
~k
given in terms of W q

~k
in Eq. (A3). We choose initial conditions such that Θp

~k,0
= 0

and Θp
~k,1

= bk̃(τ0)k. Recalling that W q
~k
(τ0) = 0, and realizing that Eq. (A4) implies then

that

Ẇ q
~k
(τ0) = bk̃(τ0)sk̃(τ0), (A11)

our initial conditions select the following values for the coefficients A~k and B~k:

A~k =− i

2

2k2 + sk̃(τ0)

k2 + sk̃(τ0)
= −i+O(k−2), (A12)

B~k =
i

2

sk̃(τ0)

k2 + sk̃(τ0)
= O(k−2). (A13)
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Finally, taking into account that W q
~k
(τ) = O(k−1), as we have seen above, and that bk̃

and sk̃ are independent of the wavenumber k, it is straightforward to conclude from the

above formulas that

Θp
~k
(τ) = kηk̃(τ) +O(k−1). (A14)

Appendix B: Back to the original description of the field

In Sec. II B we introduced the time-dependent canonical transformation (2.17) before

performing our analysis of the unitarity of the dynamics. The reason is that the transformed

modes (q̃~k, p̃~k) verify a simpler dynamics than the original ones (q~k, p~k), and as a result the

analysis of the involved Bogoliubov transformations is much simpler. Nevertheless, we could

have carried out the whole discussion without introducing such canonical transformation,

defining directly the annihilation and creation-like variables (a~k, a
†
~k
) by means of a (possibly)

time-dependent linear transformation F̃(τ) of the original modes (q~k, p~k), namely





a~k

a†~k





τ

= F̃~k(τ)





q~k

p~k





τ

, F̃~k(τ) =





f̃~k(τ) g̃~k(τ)

f̃ ∗
~k
(τ) g̃∗~k(τ)



 , (B1)

with

f̃~kg̃
∗
~k
− g̃~kf̃

∗
~k
= −i (B2)

at all times.

Obviously, the time variation of the Klein-Gordon variables (q~k, p~k) extracted by the

linear transformation F̃~k(τ) includes the part that was already extracted by the canonical

transformation (2.17), since F̃~k(τ) = F~k(τ)P~k(τ), where we have used that our change of

canonical variables consists just in a linear transformation P~k(τ). Employing this identity

for F̃~k(τ), we get

f̃~k =
√

bk̃f~k +
1

2

ḃk̃
bk̃
√

bk̃
g~k, g̃~k =

1
√

bk̃
g~k. (B3)

Clearly, had we done the analysis using the characterization of the Fock representation

via Eq. (B1), we would have concluded that the necessary and sufficient conditions for

the dynamics to admit a unitary implementation is that the functions f̃~k and g̃~k have the
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following asymptotic expansion in the ultraviolet regime of infinitely large k:

f̃~k =
√

bk̃

[
√

k

2

(

1 + i
ḃk̃

2kb2
k̃

)

eiF~k + kθ̃f~k

]

, g̃~k =
1
√

bk̃

(

i√
2k

eiF~k + θ̃g~k

)

, (B4)

where F~k is any phase, while the subdominant terms θ̃f~k(τ) and θ̃g~k(τ) are related through

Eq. (B2) and must satisfy

∑

~k∈L′

+

k

∣

∣

∣

∣

∣

θ̃f~k +

(

i− ḃk̃(τ)

2kb2
k̃
(τ)

)

θ̃g~k(τ)

∣

∣

∣

∣

∣

2

< ∞. (B5)

In conclusion, the criterion of symmetry invariance and unitary implementability of the

quantum dynamics fixes, up to a global phase, the way in which the dominant terms in the

asymptotic expansion of both f̃~k and g̃~k can depend on the unit wavevector ~̃k of the mode

and on the time parameter (through the function bk̃, which depends in turn on the vector ~̃k

and on the Biachi I directional scale factors).
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