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Basis Tensor Gauge Theory

Daniel J. H. Chung∗ and Ran Lu†

Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

We reformulate gauge theories in analogy with the vierbein formalism of general

relativity. More specifically, we reformulate gauge theories such that their gauge

dynamical degrees of freedom are local fields that transform linearly under the dual

representation of the charged matter field. These local fields, which naively have

the interpretation of non-local operators similar to Wilson lines, satisfy constraint

equations. A set of basis tensor fields are used to solve these constraint equations,

and their field theory is constructed. A new local symmetry in terms of the basis

tensor fields is used to make this field theory local and maintain a Hamiltonian that

is bounded from below. The field theory of the basis tensor fields is what we call the

basis tensor gauge theory.

1. INTRODUCTION

Gauge theories (see e.g. [1–8]) are extremely robust and successful in describing funda-

mental interactions of nature such as in the Standard Model (SM) of particle physics [8–17].

In the usual gauge theoretic formulation, the gauge field is a connection on principal bun-

dles (see e.g. [18, 19]). In the usual formulation of general relativity, Christoffel symbols are

connections on the tangent bundle and can be expressed nonlinearly in terms of the metric.

Another widely used formulation of general relativity that is particularly useful when spinors

need to be defined in curved spacetime is the vierbein formalism. In this formalism, N basis

vector fields are introduced as a way of taking the square root of the metric, in which N is

the dimension of spacetime. However, in the case of gauge theories, there is no widely known

analogous vierbein formulation, presumably because there is no obvious nontrivial metric

analog that carries the gauge field information. In this work, we construct a vierbein-like
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field theory of a U(1) gauge theory coupled to complex scalars.

Our approach is to construct an explicit representation of the matter field direction in the

group representation space as a local Lorentz tensor field that is subject to constraints that

arise from matching to the ordinary gauge field connection. This tensor transforms as a dual

to the matter representation and the constraint equation is reminiscent of the relationship

between the spacetime vierbein field and the Christoffel symbol. In this sense, this tensor

field is the analog of the general relativistic vierbein for our construction. We then solve this

constraint equation by decomposing the log of this tensor in terms of N fields that we call

basis tensor fields. These fields effectively span the Lie algebra that generates the tensor

field. The field theory of these basis tensor fields is local and has new local symmetries that

allow this theory to perturbatively match to ordinary gauge theories.

More explicitly, the vierbein-like field is taken to be a Lorentz tensor G(x) that satisfies a

constraint equation. Since G(x) transforms in the gauge group representation space as a dual

to the matter field, if a matter field φ is charged under U(1) with charge 1, G(x) transforms

with a charge -1 and the object φ(x)G(x) is gauge invariant. We show that the minimal

Lorentz tensor rank of G(x) that has this desired dual property and can accommodate the

local gauge field degrees of freedom is 2: i.e. Gα
β(x). The constraint equation of Gα

β(x)

can be solved in terms of another set of unconstrained fields {θa(x)(Ha)µ ν |a ∈ {0, ...N−1}}

(similarly in spirit to sigma model constructions), which are the basis tensor fields. The field

theory of θa(x) is what we will call basis tensor gauge theory (BTGT) and is an alternate

to the gauge theory description in terms of Aµ(x). It is the theory of θa that will exhibit

a new local symmetry to maintain the (perturbative) isomorphism between the usual gauge

theory and BTGT.

Giving a vierbein expression of gauge fields in this work makes gauge theories look more

like general relativity, which in some sense is similar in philosophy to Kaluza-Klein theories

[20], but the approach here is different in that we try to minimize the disturbance to the

theory. More precisely, instead of trying to unify the gauge theory with spacetime dynamics,

the theory is merely rewritten such that the gauge fields more closely resemble the matter

fields. In the usual model building description of gauge theories, the gauge fields are put

on a different footing than the matter fields in that the gauge fields do not form a linear

representation of the gauge group while the matter fields typically do. In our approach, the

Gα
β(x) fields, which have the same information as the gauge fields, form a linear represen-
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tation. The most interesting result arising from this is the emergence of a local symmetry

that is independent of the ordinary gauge symmetry.

To our knowledge, the previous work that most closely resembles our approach is that of

Mandelstam [21], in which the group space linear representation is given as an object similar

to a Wilson line (for several examples of the vast literature on this topic, see e.g. [22–28]

and references therein). In some sense, this object can be viewed as the analog of Gα
β.

1

However, in addition to the fact that Wilson lines are manifestly non-local, the purpose of

Mandelstam’s work was to formulate gauge theories without any gauge fields. In contrast,

the purpose of our work is to explicitly construct a gauge group representation direction as

a local spacetime Lorentz tensor field, not to hide the group representation space.

The order of presentation is as follows. In Sec. 2, we derive the relationship between

Gα
β(x) and Aµ(x) using an ansatz analogous to the equivalence principle. This relationship

serves as a constraint equation. We then solve this constraint equation using the basis

tensors θaHa. In Sec. 4, we show how the integral over Aµ is related to the θa field. The

naive non-locality will be eliminated by the symmetries imposed when defining the partition

function in Sec. 5. In Sec. 6, we go through the exercise of constructing a BTGT model based

on the recipe in Sec. 5. We give Feynman rules and apply them to a a simple scattering

computation. Sec. 7 lists some of the peculiarities of the model: a) each charged elementary

field has its own group direction field (that are all related to each other through the same

θa) and the covariant derivative can be written as a peculiar divergence of a composite

field; b) the Hamiltonian is bounded from below despite the fact that the θa theory is a

higher derivative theory; c) BTGT gives a novel way of computing non-local correlators. We

conclude by speculating on future research directions. The Appendices present explanations

of the minimal rank of the Lorentz tensor for BTGT as well as the relationship of the new

local symmetry to translational symmetry. The last appendix section explicitly displays the

analogy between Gα
β(x) and the general relativistic vierbein.

1 A Wilson line transforms as a non-local adjoint. If one views one end of the Wilson line to be at infinity

and demands that the gauge transformations vanish there, then it looks as if the Wilson line transforms

as a fundamental.
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2. A GROUP SPACE MATTER DIRECTION FIELD

The purpose of this work is to construct an alternate description to the usual gauge field

that puts matter fields and the gauge fields on a more similar mathematical categorization.

Because relativistic quantum field theory naturally partitions into relativistic tensor field

degrees of freedom, any alternate local description of the gauge field has a natural description

in terms of Lorentz tensors. We therefore define a local Lorentz tensor field in the dual

representation of the matter field which describes the “direction” of the matter field in the

group representation space. For simplicity, we focus here on the U(1) group, although we

foresee no insurmountable obstacles to generalize this to non-Abelian theories.

Given a field φ that is a complex scalar charged under U(1) as

φ(x) → eiθ(x)φ(x), (1)

we wish to construct a Lorentz tensor object Gαβ and its field theory that exhibits the U(1)

gauge group transformation property

Gα
β(x) → Gα

β(x)e
−iθ(x), (2)

such that φGα
β is gauge invariant. We note that we can view Gα

β as the direction in gauge

group linear representation space. We discuss in Appendix A that a rank 2 Lorentz tensor is

the smallest rank for which such a local description alternate to the gauge field is possible.

We also show in Appendix C how Gα
β(x) is analogous to the general relativistic vierbein.

To construct the theory of Gα
β, we will match to the known Aµ gauge theory. To this end,

we need to find a relationship between Gα
β and the ordinary gauge field Aµ.

Some degree of rigidity in the construction can be attained and the spirit of making gauge

theories look more like general relativity can be followed if we use an analog of the equivalence

principle approach (see e.g. [29]) of making a general coordinate transformation away from

the freely falling frame of the matter to define the Christoffel symbol (the connection on

the tangent bundle).2 Here the analog of the freely falling frame can be defined to be the

frame in which the U(1) connection Aµ(x) vanishes at a spacetime point x1, since Aµ enters

2 Of course, this is simply an ansatz for defining the representation since there is no universality of charge

to mass ratio in gauge theories.
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without any derivatives in the matter Lagrangian:

Lφ = (∂µ + iAµ)φ(∂
µ − iAµ)φ∗. (3)

(Note that this definition is in contrast with the gravitational equivalence principle which

relies on the equation of motion rather than the Lagrangian.) In this frame, the Lagrangian

at point x1 looks like there is no gauge field (just as locally, the Christoffel symbol vanishes

in the freely falling frame):

Lφ(x1) = ∂µφ̃∂
µφ̃∗(x1). (4)

We demand in this special gauge frame that the vierbein-like tensor field has the following

value at point x1:

G̃αβ(x1) = Sαβ(x1). (5)

Upon making a gauge transformation to move to the general frame, we have

φ(x) = φ̃(x)eiθ(x), (6)

which gives

Lφ(x1) = (∂µ − i∂µθ)φ(∂
µ + i∂µθ)φ∗. (7)

Comparing this to the usual definition of the connection covariant derivative

Dµ = ∂µ + iAµ (8)

that appears in Eq. (3), we identify the connection as

Aµ(x1) = −∂µθ(x1). (9)

Note that this does not mean Aµ(x) is a pure gauge configuration everywhere, as this

equation applies at only one point x1. Since Gαβ is defined to obey the transformation

rule of Eq. (2), we have

Gαβ(x1) = Sαβ(x1)e
−iθ(x1). (10)

Because of Eq. (9), we want to solve for ∂µθ(x1) in terms of G evaluated at x1. To achieve

this, we take derivatives of the general gauge-transformed object

eiθ(G−1)αβ∂α(Gβµe
−iθ) = (G−1)αβ∂αGβµ(x)− i∂µθ(x) (11)
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and evaluate this general expression at x1 in the special gauge frame:

eiθ(G̃−1)αβ∂α(G̃βµe
−iθ)|x1 = (G̃−1)αβ∂αG̃βµ(x1)− i∂µθ(x1). (12)

Because of Eq. (9), we conclude

Aµ(x1) = −i
[

(G−1)αβ(∂αGβµ)|x1 − (G̃−1)αβ(∂αG̃βµ)|x1

]

, (13)

in which

Gαβ(x) ≡ G̃αβ(x)e
−iθ(x) (14)

is the general gauge field.

We can now simplify Eq. (13) further by noting that Eq. (13) has an additional set of

Ũ(1) symmetry transformations:

Gαβ → Gαβe
−iΛβ(x) G̃αβ → G̃αβe

−iΛβ(x) (15)

that leaves Eq. (13) invariant. This means we can use it to choose ∂αG̃βµ = 0 as follows.

First, we execute a Ũ(1) transform to go to the barred frame:

(G−1)αβ(∂αGβµ) = (Ḡ−1)αβ(∂αḠβµ)− i∂µΛµ no sum over µ (16)

(G̃−1)αβ(∂αG̃βµ) = ( ¯̃G−1)αβ(∂α
¯̃Gβµ)− i∂µΛµ no sum over µ (17)

where the yet-to-be-determined Λµ(x) parametrizes the transformation to the barred frame.

We can then impose the condition

( ¯̃G−1)αβ(∂α
¯̃Gβµ) = 0 (18)

to solve for Λµ. This implies that

(Ḡ−1)αβ(∂αḠβµ) = (G−1)αβ(∂αGβµ)− (G̃−1)αβ(∂αG̃βµ). (19)

In this Ũ(1) fixed system, we have

Aµ(x) = −i(Ḡ−1)αβ(∂αḠβµ), (20)

in which the bar indicates that we have fixed the Ũ(1) gauge through Eq. (18). For notational

convenience, we can simply drop the bar: i.e., we then have

Aµ = −i(G−1)αβ∂αG
β
µ . (21)
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This equation gives the relationship between the vierbein-like field Gα
β and the gauge field

Aµ. We note that because of the way the Lorentz tensor indices are contracted, this is

not a pure gauge configuration. As explained in Appendix A, this is in contrast with the

situation with lower rank tensors. It is also here that we see how Eq. (21) is reminiscent of

the relationship between the Christoffel symbol and the vierbein. In the next section, we

will introduce new basis fields to decompose Gα
β.

3. DECOMPOSING THE VIERBEIN

In this section, we will show that demanding (a) the reality condition implied by Eq. (21),

(b) that Gα
β transform like a (1 1) Lorentz tensor, and (c) Gα

β → ηαβ in the vacuum limit,

“uniquely” fixes

Gα
β ∈

N
⊕

n=1

U(1) (22)

where N = 4 for four spacetime dimensions and each U(1) in the sum means a 1 dimensional

representation. Each ofN phase fields are what we will call θaHa, which are the basis tensors.

Since the Gα
β constrained by Eq. (21) are difficult to work with, we will solve this

constraint equation here in terms of the unconstrained fields. Consider the representation

(just as in sigma model constructions)

Gβ
µ =

(

eiθ
a(x)Ha)β

µ
(23)

(G−1)α β =
(

e−iθ
a(x)Ha)α

β
, (24)

in which θa is real without loss of generality, Ha is a general set of constant matrices

(maximally 2N2 such matrices exist where N = 4 for 4 spacetime dimensions), and the

repeated indices here are summed. We note that Eq. (23) contains an assumption about

going to a manifestly Lorentz-invariant vacuum in the limit of θ(x) → 0; i.e., in the limit

θ(x) → 0, Gα
β becomes an identity matrix, which is Lorentz invariant. To satisfy Eq. (21),

we expand for small θ:

Aµ = ∂αθ
a(Ha)α µ +O(θ2). (25)

This says that Ha should be a real matrix.
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If we keep the entire power series, we have

Gβ
µ =

(

∞
∑

n=0

1

n!
[iθa(x)Ha]n

)β

µ

. (26)

We can take any generic m power term in this series as follows:

θa1θa2 ...θamHa1Ha2 ...Ham . (27)

We define each Ha to transform like a rank 2 tensor under Lorentz transformations. Hence,

each such term transforms as

θa1θa2 ...θamΛHa1Λ−1ΛHa2Λ−1...ΛHamΛ−1, (28)

which means that the matrix ansatz Eq. (23) does transform like a (1 1) tensor under Lorentz

transformations.

Let us now consider the reality condition on the rest of the terms in the power series.

First, we use the Baker-Campbell-Hausdorff formula to express the gauge field in terms of

a parametric integral:

∂αG
β
µ = i∂αθ

f

ˆ 1

0

dt
[

ei(1−t)θ
aHa

Hfeitθ
aHa]β

µ
(29)

Aµ = ∂αθ
f

ˆ 1

0

dt
[

e−itθ
aHa

Hfeitθ
aHa]α

µ
. (30)

Taking the complex conjugate of this yields

(

∂αθ
f

ˆ 1

0

dt
[

e−itθ
aHa

Hfeitθ
aHa]α

µ

)∗

= ∂αθ
f

ˆ 1

0

dt
[

eitθ
aHa

Hfe−itθ
aHa]α

µ
. (31)

Next, using the identity

eABe−A =

∞
∑

n=0

1

n!
[A, [A, [...[A,B]]...]], (32)

we split even and odd powers

∂αθ
f

ˆ 1

0

dt
[

eitθ
aHa

Hfe−itθ
aHa]α

µ
= ∂αθ

f

ˆ 1

0

dt
∞
∑

n=odd

1

n!

[

itθanHan ,
[

...
[

itθa1Ha1 , Hf
]

...
]]α

µ

+ ∂αθ
f

ˆ 1

0

dt

∞
∑

n=even

1

n!

[

itθanHan,
[

...
[

itθa1Ha1 , Hf
]

...
]]α

µ

(33)
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to separate the sign dependence. Although the even power terms do not depend on the sign

in front of itθaHa, the odd power terms are odd under the sign change. Since θa(x) and

∂αθ
f (x) can have any value, we conclude that the only representation for which Aµ can be

represented this way is

∂αθ
f
[

θa2m+1Ha2m+1 ,
[

...
[

θa1Ha1 , Hf
]]

...
]α

µ
= 0 (34)

for every integer m ≥ 0. Hence, we conclude that the only matrices Hf that can satisfy this

are (1 1) Lorentz tensors that satisfy

[

Ha, Hb
]

= 0 (35)

These form a reducible representation of U(1) given by Eq. (22).

One explicit representation of Ha is furnished by the following real polarization vectors:

(Ha)µ ν = ψµ(a)ψ(a)ν , (36)

in which

ψµ(a) = Λµ a (37)

are components of the Lorentz transformation matrix Λ (the fundamental representation of

SO(N − 1, 1)). The N fields

θa (x) (Ha)µ ν no sum on a (38)

appearing in Eq. (23) span the spacetime tensor space and can be used to expand the

vierbein-like field Gα
β(x). On the other hand, they span the Lie algebra of the gauge group

instead of the group representation itself. This makes them more like gauge fields. The fact

that Ha is a complete basis is manifest in the identities

∑

a

Ha = I (39)

Tr
(

HaHb
)

= δab. (40)

We can summarize this section with the statement that the vierbein-like field which

transforms as a dual of the U(1) matter representation is given by Eq. (23), in which the

Ha are real, commuting N ×N matrices that transform like a (1 1) Lorentz tensor.
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4. θa AS AN INTEGRAL OVER Aµ

To gain intuition regarding the variable θa, it is instructive to express θa in terms of Aµ.

Since the Ha are commuting matrices, Eq. (21) gives

Aµ =
∑

a

∂αθ
a(Ha)αµ . (41)

This equation can be solved for θa:

θa(y) =

ˆ y

Y0

dzµ(Ha)λ µAλ(x(z, y)) + Za(y) (42)

xλ(z, y) ≡ (Ha)λ µz
µ +

∑

b6=a

(Hb)λ νy
ν, (43)

in which the dzµ integral is over a straight path connecting Y0 and y, and the Za(x) are the

zero modes of the derivative operator in Eq. (41) and satisfy

(Ha)αµ
∂

∂xα
Za(x) = 0 no sum over a. (44)

This means Za is a function that depends on a 3-dimensional subspace of the 4-dimensional

space. Another way of saying this is that Za(x) is translationally invariant:

Za(y + Taψ(a)) = Za(y) (45)

for any constant Ta. Hence, Za(x) occupies similar amount of functional volume as the

residual U(1) gauge symmetry associated with Lorentz gauge fixing: ∂µA
µ = 0. Eq. (41)

states that the theory of the local field θa(x) is related to the theory of a non-local operator

if viewed from the Aµ(x) perspective. On the other hand, the exact nature of the relationship

depends on how the data {Za(y), Y0} are handled in the partition function. This will be

discussed in Sec. 5

The substitution of Eq. (42) into Eq. (23) gives us explicitly the relationship between Aµ

and Gα
γ :

Gα
β(y) = exp

[

i
N
∑

a=1

(
ˆ y

Y0

dzµ(Ha)λ µAλ (x (z, y)) + Za (y)

)

Ha

]α

β

. (46)

Hence, when expressed in terms of Aµ(x), this theory looks manifestly like a non-local theory

just as in the case of the Wilson line field. However, when expressed in terms of θa(y) without
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reference to Aµ, the theory is manifestly local. The two seemingly conflicting viewpoints

will be reconciled later, where we will see that symmetries of the theory in terms of θa(y)

will cause the theory to be insensitive to Y0 and Za, eliminating most of the non-locality.

At the same time, it is interesting that field operators formed out of θa(y) exist which are

multilocal at finite number of discrete points, do not depend on Y0 or Za, but represent a

sum of infinite number of Aµ operators (i.e., an integral over Aµ):

Oa(y, Ta) ≡

ˆ y+Taψ(a)

y

dzµ(Ha)λ µAλ(x(z, y + Taψ(a))) (47)

= θa(y + Taψ(a))− θa(y) no sum over a (48)

Hence, it is interesting that BTGT allows us to collapse an integral of local fields into

evaluation of local fields at two points. It is beyond the scope of this paper to see if this

feature lends itself to an interesting description of holography (see e.g. [30, 31]).

5. PARTITION FUNCTION

Now that we have identified the field that we wish to use to describe the gauge theory,

we need to construct the partition function. What we can do to construct the partition

function is to start with the Aµ theory and make a change of variables to the θa theory.

After the construction, we can eliminate the starting point of the Aµ and give the path

integral construction rules just in terms of θa. However, we will see that we need to impose

a new symmetry to carry out this program.

The procedure to start from the Aµ theory is as follows:

1. Start with an ordinary gauge theory functional measure and ordinary ξ-gauge fixing:

Z1 = Nξ

ˆ

Dg| det�|

ˆ

DADφDφ∗ei(S+Sgf), (49)

in which

Sgf =
−1

2ξ

ˆ

d4x(∂µAµ)
2 (50)

and S contains the matter field and ordinary gauge invariant combination of Aµ.

2. Make a change of variables using Eq. (41):

Z1 = Nξ

ˆ

Dg| det�|J

ˆ

DθnzDφDφ
∗ei(S+Sgf), (51)
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in which

J =

∣

∣

∣

∣

det

[

δAµ(x)

δθanz(y)

]∣

∣

∣

∣

(52)

=

∣

∣

∣

∣

det

[

(Ha)α µ

∂

∂xα
δ(4)(x− y)

]∣

∣

∣

∣

, (53)

and θanz stands for functions which are not annihilated by

(Ha)α µ
∂

∂xα
. (54)

(Note that if we do not separate the zero modes out, then we would obtain J = 0.)

However, it is difficult to restrict the integration to θnz and it is worthwhile to find a

way to include the zero modes of Eq. (54). One way to do this is to multiply by Dθz

which integrates over zero modes:

Z2 =

ˆ

DθzZ1 (55)

= N

ˆ

DθDφDφ∗ei(S[θ,φ,φ
∗]+Sgf [θ]) (56)

N ≡ Nξ

ˆ

Dg| det�|J . (57)

This should be as harmless as multiplying by the residual gauge degrees of freedom in

the Feynman gauge. This is the main difference between the ordinary gauge theory

and the BTGT theory, and it most likely will not show up in perturbative computa-

tions, just as the residual gauge degree of freedom in Feynman gauge does not destroy

perturbation theory.

Hence, we now have the partition function Z2 describing the theory of θa and φ.

At this point, we can forget that we started with the Aµ theory and construct the theory

of θa and φ using the following procedure:

1. Define the partition function in ξ-gauge as

Z3 =

ˆ

DθDφDφ∗ exp



i



S[θ, φ, φ∗]−
1

2ξ

ˆ

d4x

[

∑

a

(Ha)α µ∂
µ∂αθ

a

]2






 (58)

2. Choose S such that it is invariant under the usual Lorentz-invariant local field theory

symmetry and the following two additional symmetries:
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(a) Gauge invariant under the U(1) transformations:

θa(x) → θa(x)− Λ(x) (59)

φ(x) → eiΛ(x)φ(x) φ∗(x) → e−iΛ(x)φ∗(x) (60)

(b) Invariant under a lower dimensional functional shift transformation:

θa(x) → θa(x) + Za(x) (61)

where

(Ha)αµ
∂

∂xα
Za(x) = 0 no sum over a. (62)

This is manifestly a local symmetry without gauge fields.

The gauge symmetry conditions Eqs. (59) and (60) in item 2 lead to the usual gauge couplings

(but in terms of θa) once one is guaranteed that θa only comes in the package of Aµ(θ
a(y), y)

(i.e., through Eq. (41)). As we explicitly check in the next section, this packaging is partly

enforced by the local symmetry Eq. (61). Furthermore, this local symmetry is very important

in that it eliminates gauge theory destabilizing terms ∆L1 of the form

∆L1 =
µ2

16
|φ|2 (trG)

(

trG−1
)

(63)

≈ µ2|φ|2

(

1−
3

16

∑

a

(θa)2 +
1

16

∑

b6=c

θbθc +O(θ4)

)

, (64)

which is gauge invariant in the sense of Eqs. (59) and (60), but not Eq. (61). Note that this

local symmetry also forbids global charge violating terms such as

∆L2 =
µ2

16

[

φ2 (trG)2 + h.c.
]

, (65)

which means that the theory inherits the global charge conservation as an accidental sym-

metry just as in ordinary gauge theories once the ordinary gauge symmetry condition is

imposed. We note that as long as the measure is chosen such that Dθ is integrated over an

unrestricted function space, Eq. (61) is not anomalous, at least in flat space.

Before closing this section, it is important to emphasize that Eq. (61) is a symmetry

that is new and intrinsic to BTGT. This symmetry’s origin is in the derivative operator

appearing in Eq. (41), which does not have an analog in ordinary gauge theories. As alluded

to in Eq. (45), this symmetry is the main reason why the integration origin Y0 and the
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arbitrary function Za(y) appearing in Eq. (42) are not meaningful. (More discussion of this

in terms of translational invariance is given in Appendix B). This in turn means that even

though naively Gα
β(x) when expressed in terms of the gauge field (i.e. Eq. (42)) seems to be

just as non-local as a Wilson line operator, it is not. At the same time, as shown in Eq. (48),

θa(x) has a different degree of locality when compared to the gauge field Aµ(x), since two

points are effectively mapped to an integral of Aµ(x) (i.e., a sum over an infinite number of

points). Incidentally, we call the shift function Za(x) a lower-dimensional function because

Eq. (62) implies Eq. (45).

One naive downside of this construction is that power-counting is more difficult because

θa is a dimensionless variable. Unlike a sigma model parameterization where the kinetic

term for the analog of θa is of the form (∂µθ)
2 which would allow θ to acquire dimension

upon canonical normalization, the θa kinetic term is quartic in derivatives. However, due

to the new local symmetry Eq. (61), θa always enters with derivatives. Hence, there does

not seem to be real harm done to bottom up model constructions by the loss of power

counting. Incidentally, we show in section 7.2 that even though the higher derivative nature

of the theory might seem to imply that we should worry about the stability of the theory

(Ostrogradsky instability[32]), the theory is stable as the Hamiltonian is bounded from

below. This stability is related to the fact that the additional local symmetry of Eq. (61)

makes the Hamiltonian identical to ordinary gauge theories.

6. ELEMENTARY COMPUTATION

Let us consider a simple example theory and compute a simple scattering process as a

basic check of the formalism. Consider a scalar field φ charged under a U(1) gauge charge

e. The quadratic term for the φ field that is invariant under the global U(1) subgroup is

∆Lk1 = |∂φ|2 −m2|φ|2. (66)

(We can of course add quartic self-interactions at the marginal operator level, but we will

omit it since we will not be using it.) As noted in Eqs. (67) and (68), we have to impose a

separate gauge invariance given by

eθa(x) → eθa(x)− eΛ(x) (67)

φ(x) → eieΛ(x)φ(x) φ∗(x) → e−ieΛ(x)φ∗(x). (68)
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as well as the new local symmetry (Eq. (61))

eθa(x) → eθa(x) + eZa(x). (69)

To consider the ramifications of Eq. (69) a bit more explicitly, consider the θa dependent

terms in the Lagrangian be a Lorentz invariant function combination F(θ, ∂µθ, ∂µ∂νθ, ...),

where we can truncate the “...” at a finite derivative order due to power counting, and

restrict the new local gauge invariance to imply the invariance of the Lagrangian instead of

the action. The variation in the action due to Eq. (69) is

δF(θ, ∂µθ, ∂µ∂νθ, ...) = Za(x)
∂F

∂θa
+ ∂µZ

a(x)
∂F

∂∂µθa
+ ∂µ∂νZ

a(x)
∂F

∂∂µ∂νθa
+ ... (70)

where the sum over a is implied. Since there are an infinite number of constraints imposed

on the finite number of terms, each of these terms must vanish independently. This implies

∂F

∂θa
= 0. (71)

The condition that the next term vanishes

∂µZ
a(x)

∂F

∂∂µθa(x)
= 0 (72)

can be solved by
∂F

∂∂µθa
= (Ha)µ δV

δ, (73)

in which Vδ is a (1 0) Lorentz tensor. This means that every ∂µθ
a dependence in F must

come in the form with (Ha)µ δ attached since if there were any other solutions, then Za

would have to satisfy other independent constraints.

Now, suppose the next term ∂µ∂νZ
a(x) ∂F

∂∂µ∂νθa
vanishes without ∂F

∂∂µ∂νθa
being proportional

to (Ha)µ δ or (Ha)ν δ. Then we must impose a new constraint on Za:

Fµν

(b)∂µ∂νZ
b(x) = 0 no sum over b (74)

where Fµν

(b) is a tensor. Since we do not want to contradict the fact that the only constraint on

Za is Eq. (62) and it is otherwise arbitrary, Eq. (74) can be possible if Fµν

(b) is antisymmetric.

However, that would imply
∂F

∂∂µ∂νθa
(75)

is antisymmetric in µ ↔ ν, which is impossible for the smooth θa relevant for perturbation

theory. Similar arguments apply for higher derivatives.
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Hence, we conclude we can only write θa in the combination of Eq. (41) for the Lorentz-

invariant local Lagrangian satisfying the invariance of Eq. (69). The renormalizable dimen-

sion coupling between θa and φ that obeys Eq. (69) is

LI = −ig1φ
∗∂µφ∂αθ

a(Ha)α µ + h.c.

+g2|φ|
2∂αθ

a(Ha)αµ∂βθ
b(Hb)βµ. (76)

In addition, the renormalizable kinetic terms would be

Lk2 = c2
(

∂αθ
a(Ha)α µ

) (

∂βθ
b(Hb)βµ

)

+ c41∂µ (∂αθ
a(Ha)α ν) ∂

µ
(

∂βθ
b(Hb)βν

)

+c42∂µ (∂αθ
a(Ha)α ν) ∂

ν
(

∂βθ
b(Hb)βµ

)

, (77)

in which the repeated indices are summed. Imposing Eqs. (67) and (68) on L = Lk1+Lk2+LI

results in setting c2 = 0, c41 = −c42 = 2c (where c is a constant determined by Coulomb

scattering), g1 = e, and g2 = e2. We note that after imposing the invariance of Eq. (69), the

rest of the invariances fixing these coefficients are identical to ordinary gauge invariance.

To simplify the computations, it is useful to go to a Lorentz frame in which θaHa is

diagonal:
∑

a

θa(Ha)µ ν =
∑

a

θ̄aδµ(a)δ(a)ν . (78)

In this gauge, the 〈θβθλ〉 analog of the 〈AµAν〉 propagator giving the Feynman rule

iηµν/(4ck
2) = −iηµν/k2 (where ηµν = diag(1,−1,−1,−1)) is

ˆ

d4xeik·(x−y)〈θ̄β(x)θ̄λ(y)〉 =
i η

βλ

kβkλ

4ck2
no sum (79)

where one can count the minus signs as (i)2 coming from kβkλ and an extra minus sign

from integrating by parts one of the factors ∂δθ̄
δ to obtain the quartic differential operator

to invert. The cubic and quartic vertices are

∂

∂φ

∂

∂φ∗

∂

∂θ̄γ
iLI | = [p+ k]γ qγe no sum (80)

∂

∂φ

∂

∂φ∗

∂

∂θ̄γ
∂

∂θ̄λ
iLI | = −2iqλr

λδλγe
2 no sum (81)

according to the usual prescription. The noncovariant notation here comes from having made

a frame choice that Ha are diagonal matrices. For example, a more manifestly covariant

tree-level propagator is
ˆ

d4xeik·(x−y)〈θb(x)θa(y)〉 =
i

4c

δb a
(Hb)µ δkµkν(H

a)ν γη
δγ

1

k2
(82)
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which reverts to Eq. (79) when

(Ha)α β = δα(a)δ(a)β . no sum over a. (83)

The t-channel tree-level Coulomb scattering gives the amplitude

iM = −ie2
1

4c(k1 − p1)2
[p1 + k1] · [p2 + k2] (84)

which matches the usual scalar field theory result with c = −1/4 as expected.

7. PECULIARITIES OF THE FORMALISM

7.1. Charge dependent axes

It is interesting to note that we can rewrite the covariant derivative as an ordinary

divergence acting on a composite field consisting of Gα
β and a matter field φ1:

(

∂

∂xµ
+ iq1Aµ(x)

)

φ1(x) =
∂

∂yα(q1)
Ψα

(q1) µ(x) (85)

in which

dyα(q1) = Gα
(q1) µ(x)dx

µ (86)

and

Ψα
(q1) µ(x) ≡ φ1(x)G

α
(q1) µ(x), (87)

where there is a mismatch between the derivative variable y(q1) on the right hand side of

Eq. (85) and the argument of Ψλ
(q1) δ(x). We note that since Ψλ

(q1) δ is a covariant tensor,

the tensor components in the y coordinate system is different from that in the x coordinate

system. Furthermore, unlike before, we have displayed the charge assignment of the gauge

group explicitly. Hence, if the G tensor is treated as a spacetime axis, then there are as

many axes in spacetime as there are number of different charges. On the other hand, there is

only one set of basis tensor fields θa that decomposes all of the axes, at least when matching

to standard gauge theories.

7.2. Hamiltonian is bounded from below

It is well known that higher derivative theories generally exhibit an instability associated

with the Hamiltonian being unbounded from below (for a review, see e.g. [33–37]). This
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instability is sometimes referred to as the Ostrogradsky instability. Here, we will show that

although BTGT is a higher derivative theory, it has a Hamiltonian that is bounded from

below. This can be partially explained by the novel local symmetry Eq. (61) which effectively

eliminates the θa degree of freedom from the action in favor of (Ha)µ ν∂µθ
a.

The energy density for a gauged massive scalar field is

T00 = T
(φ)
00 + T

(θ)
00 (88)

where

T
(φ)
00 = |∂0φ+ iA0(θ)φ|2 +

3
∑

i=1

|∂iφ− iAi(θ)φ|2 +m2|φ|2 (89)

T
(θ)
00 =

1

2

3
∑

i=1

(

∂0A
i(θ) + ∂iA

0(θ)
)2

+
1

2

3
∑

l=1

(

3
∑

m,n=1

ǫlmn∂mA
n(θ)

)2

(90)

Aδ(θ) =
∑

a

∂µθ
a(Ha)µ δ, (91)

which is positive definite. Hence, we do not expect the Ostrogradsky instability to arise in

this theory. Again, this protection partly comes from the novel local symmetry Eq. (61). As

discussed around Eq. (70), other ingredients include locality and Lorentz invariance, which

all play a role in having θa come in the form of Eq. (91).

7.3. Computing non-local correlators

We can in principle use the new formalism to compute non-local correlators in novel ways.

For example, consider the correlator

Ga1a2 ≡ 〈Oa1(x1, Ta1)Oa2(x2, Ta2)〉, (92)

in which Oa are the operators defined in Eq. (48). Note that Ga1a2 is invariant under the local

transformations of Eq. (61). This correlator is easy to compute in the BTGT formalism. At

tree level, it is given by

Ga1a2 = −i

ˆ

d4k

(2π)4
e−ik·(x1−x2)δa1a2

(k2 + iǫ) (Ha1)µ δkµkν(H
a2)ν γη

δγ

(

eiTa1k·ψ(a1) − 1
) (

e−iTa2k·ψ(a2) − 1
)

,

(93)
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in which we have used Eq. (82). This result in the usual Aµ formalism corresponds to

Ga1a2 =

ˆ x1+Ta1ψ(a1)

x1

dzµ1 (H
a1)λ µ

ˆ x2+Ta2ψ(a2)

x2

dzν2 (H
a2)β ν ×

〈Aλ(x(z1, x1 + Ta1ψ(a1)))Aβ(x(z2, x2 + Ta2ψ(a2)))〉. (94)

Hence, this offers a novel way to compute correlators. In the limit Ta1 = Ta2 = T → 0,

Eq. (93) becomes

Ga1a2 = −iT 2

ˆ

d4k

(2π)4
e−ik·(x1−x2)ηa1a2

k2 + iǫ
, (95)

recovering the photon propagator information. Hence, Ga1a2 is a non-local object that in

the local limit gives back the photon propagator. It is interesting that the local limit of the

fundamental non-local Green’s function3 of BTGT is the ordinary photon Green’s function.

8. CONCLUSIONS

In this paper, we have constructed a novel formulation for gauge theories based on analo-

gies with the vierbein formulation of general relativity. For simplicity, we have focused

on a simple U(1) theory in this work. This has led us to introduce a vierbein-like field

Gα
β(x) (indicating the direction in the gauge group representation space) that can be fur-

ther decomposed (to solve constraint equations) in terms of another set of basis tensor fields

θa(x)(Ha)µ ν . Unlike the Wilson line, θa(x) is a local field. The basis tensor field θa(x) has

new local symmetries given by Eq. (61) that are important for preserving translational in-

variance as discussed in Sec. B and maintaining stability as discussed in Sec. 7.2. Intuitively,

the field theory of θa contains the gauge theory information by way of Eq. (94).

There are many future research directions that are suggested by this work. Perhaps

most obviously, BTGT should be generalizable to non-Abelian theories.4 It would also be

interesting to find practical applications for this theory in computing non-local correlators

similar to Eq. (93). The novelty in part is related to the different degree of locality due

to the higher derivative nature of this theory as noted around Eq. (48). Loop corrections,

3 It is fundamental since it is invariant under the new local symmetry of Eq. (61) defining BTGT.
4 There are also certain technical details of the construction in this paper that can be improved. For

example, although the argument surrounding Eq. (70) is sufficient for constructing an action only in

terms of Aµ(θ), it does not address the possibility of the action having variations of a total derivative

term.
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BRST invariance, Ward identities associated with the new local symmetry of Eq. (61) may

be interesting to explore. Instantons, sphalerons, and other non-perturbative excitations in

BTGT may be a bit different in ordinary gauge theories since the gauge theory has been

non-perturbatively modified through the measure (see Eq. (55)). This formalism should also

be tested by embedding it into curved spacetime.

It is interesting that matter fields and gauge fields in this formalism can be packaged in

the same category of mutually dual objects in group representation space. However, one

satisfies a constraint equation and the other does not. If there can be a way to spontaneously

generate this asymmetry starting from a even more symmetric framework, that would open

up new avenues for constructing physics beyond the SM.
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Appendix A: Lower rank tensor

Instead of a rank 2 tensor as in Eq. (10), suppose we postulated a Lorentz scalar trans-

forming under U(1) as a matter dual field representing the matter direction in representation

space. There are then not enough local functional degrees of freedom to replace an N -vector

field.5

The next smallest rank to consider is 1. Suppose we choose

Gγ(x1) = Sγe
−iθ(x1). (A1)

Because of Eq. (9), we want to solve for ∂µθ(x1) in terms of G evaluated at x1. To this end,

we can take derivatives of the general gauge transformed object:

eiθ(G−1)γ∂µ(Gγe
−iθ) = (G−1)γ∂µGγ − i∂µθ (A2)

5 We note that the approach of [21] effectively has a non-local function that is a scalar: i.e. hP (x, xi) =
´ x

xi,P
dXµAµ(X) where P is a path. The manifest nature of the non-locality can be seen by the fact that it

is a path dependent functional and the field strength is derived from hP through hP+δP (x, xi)−hP (x, xi) =

Fµνσ
µν , where σµν represents the area of the path difference δP .
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in which (G−1)γGγ ≡ 1 defines the inverse. Evaluating this general expression at x1 in the

special gauge frame yields

(G−1)γ∂µGγ|x1 = (G̃−1)γ∂µG̃γ(x1)− i∂µθ(x1). (A3)

Because of Eq. (9), we conclude

Aµ(x1) = −i
[

(G−1)γ(∂µGγ)|x1 − (G̃−1)γ(∂µG̃γ)|x1

]

, (A4)

in which

Gα(x) ≡ G̃α(x)e
−iθ(x) (A5)

is the general gauge field.

We can now simplify Eq. (A4) further by noting that Eq. (A4) has an additional Ũ(1)

symmetry transformation

Gγ → Gγe
−iθ2(x) (A6)

G̃γ → G̃γe
−iθ2(x) (A7)

that leaves Eq. (A4) invariant. This means we can use it to choose ∂µG̃γ = 0 as follows.

First, we execute a Ũ(1) transform

(G−1)γ(∂µGγ) = (Ḡ−1)γ(∂µḠγ)− i∂µθ2 no sum (A8)

(G̃−1)µγ(∂µG̃γδ) = ( ¯̃G−1)µγ(∂µ
¯̃Gγδ)− i∂µθ2 no sum (A9)

parametrized by a yet-to-be-determined θ2. We then impose the condition

( ¯̃G−1)γ(∂µ
¯̃Gγ) = 0 (A10)

to solve for θ2. This implies

(Ḡ−1)γ(∂µḠγ) = (G−1)γ(∂µGγ)− (G̃−1)γ(∂µG̃γ). (A11)

In this Ũ(1) gauge fixed system, we have

Aµ(x) = −i(Ḡ−1)γ(∂µḠγ) (A12)

where the bar indicates that we have fixed the Ũ(1) gauge through Eq. (A10). For notational

convenience, we can simply drop the bar: i.e.

Aµ = −i(G−1)γ∂µGγ (A13)

= −i
Gγ

GγGγ

∂µGγ (A14)

=
−i

2
∂µ lnG

γGγ (A15)
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which is a pure gauge configuration.

Hence, we must go to higher rank tensors for a basis tensor. The next rank tensor is rank

2, and this is what we present in this work.

Appendix B: Spacetime translation symmetry

Here we discuss one way to motivate the requirement of local symmetry as given in

Eq. (61). Suppose we start with a theory S[A] of local Aµ(x) and in view of making a

change of variables to θa starting from S[A], suppose we add a non-local interaction ∆S

involving θa(Aµ) in the form of Eq. (42)

∆S = ∆S(θa(Aµ)) (B1)

which is ordinary U(1) gauge invariant (e.g. see Eq. (63)) but not invariant under Eq. (61).

This means that the partition function

Z0 =

ˆ

DAµDφDφ
∗ei(S+∆S) (B2)

is sensitive to Y0 in Eq. (42). However, this breaks spacetime translational invariance, since

the interactions have a preferred point. Hence, one way to eliminate ∆S from the theory is

to impose the local symmetry Eq. (61).

One cannot for example try to use Oa(y, Ta) defined in Eq. (48) as a substitute for

the θa(x) field in making a change of variables from Aµ(x) to obtain a local field theory

because Oa(y, Ta) is manifestly non-local (although translationally invariant in y). The local

symmetry Eq. (61) also has the advantage of helping to protect against the Ostrogradsky

instability.

Appendix C: Vierbein analogy

In this appendix, we explicitly list the analogy between Gα
β(x) formalism and the general

relativistic vierbein (ea)µ formalism, where the index a is the fictitious Minkowski space index

and µ is the spacetime coordinate index. As a start, the vierbein-like field correspondence

is

Gα
β ↔ (ea)µ, (C1)
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where effectively the real and imaginary elements of Gα
β (i.e., the real and imaginary

elements of U(1) maps to SO(2)) are analogs of the label µ, and (α, β) labels are the analogs

of a. The analogy of the constraint equation is

Aλ = −i(G−1)αβ∂αG
β
λ ↔ Γγλβ = (ea)γ∂(λ(ea)β) + gǫγ(ec)(β∂λ)(ec)ǫ − gǫγ(ec)(β∂|ǫ|(ec)λ) (C2)

gαβ ≡ (ea)α(eb)βη
ab. (C3)

The reason why Gα
β(x) cannot be considered to be analogous to an ordinary dual basis

element such as a coordinate basis object ∂µ is because such objects do not carry metric

information by themselves.
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