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The Instanton-Dyon Liquid Model V:
Twisted Light Quarks

Yizhuang Liu,∗ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

We discuss an extension of the instanton-dyon liquid model that includes twisted light quarks in
the fundamental representation with explicit ZNc symmetry for the case with equal number of colors
Nc and flavors Nf . We map the model on a 3-dimensional quantum effective theory, and analyze
it in the mean-field approximation. The effective potential and the vacuum chiral condensates are
made explicit for Nf = Nc = 2, 3. The low temperature phase is center symmetric but breaks
spontaneously flavor symmetry with Nf − 1 massless pions. The high temperature phase breaks
center symmetry but supports finite and unequal quark condensates.

PACS numbers: 11.15.Kc, 11.30.Rd, 12.38.Lg

I. INTRODUCTION

In the QCD ground state confinement and chiral sym-
metry breaking are intertwined as lattice simulations
have now established [1]. The loss of confinement with
increasing temperature as described by a jump in the
Polyakov line is followed by a rapid cross-over in the
chiral condensate for 2 + 1 flavors. When the quarks
are in the adjoint representation, the cross over occurs
much later than the deconfinement transition. There is
increasing lattice evidence that the topological nature of
the underlying gauge configurations maybe key in under-
standing some aspects of these results [2].

This work is a continuation of our earlier studies [3–
6] of the gauge topology using the instanton-dyon liquid
model. The starting point of the model are the KvBLL
instantons threaded by finite holonomies and their split-
ting into instanton-dyon constituents [7], with strong
semi-classical interactions [8–10]. At low temperature,
the phase preserves center symmetry but breaks spon-
taneously chiral symmetry. At sufficiently high temper-
ature, the phase restores both symmetries as the con-
stituent instanton-dyons regroup into topologically neu-
tral instanton-anti-instanton molecules. The importance
of fractional topological constituents for confinement was
initially suggested through instanton-quarks in [11], and
more recently using bions in [12].

The instanton-dyons carry fractional topological
charge 1/Nc and are able to localize chiral quarks into
zero modes. For quarks in the fundamental representa-
tion, as the KvBLL fractionate, the zero-mode migrates
to the heavier instanton-dyon constituent [13]. The ran-
dom hopping of these zero modes in the instanton-dyon
liquid is at the origin of the spontaneous breaking of chi-
ral symmetry as has been shown both numerically [14, 15]
and using mean-field methods [4]. In supersymmetric
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QCD some arguments were presented in [16].

At finite temperature the light quarks are subject to
anti-periodic boundary conditions on S1 to develop the
correct occupation statistics in bulk. General twisted
fermionic boundary conditions on S1 amounts to ther-
mal QCD with Bohm-Aharanov phases that alter funda-
mentally the nature of the light quarks [17, 18]. A par-
ticularly interesting proposal consists of a class of ZNc
twisted QCD boundary conditions with Nc = Nf result-
ing in a manifestly ZNc symmetric QCD dubbed ZNc-
QCD [19]. The confined phase is both center and chiral
symmetric eventhough the boundary conditions are fla-
vor breaking. The deconfined phase is center and chiral
symmetry broken [19, 20].

The purpose of this paper is to address some aspects of
twisted fermionic boundary conditions in the context of
the instanton-dyon liquid model. Since the localization of
the zero-modes on a given instanton species is very sensi-
tive to the nature of the the twist on S1, this deformation
offers an insightful tool for the possible understanding
of the fundamental aspects of the spontaneous breaking
of chiral symmetry through the underlying topological
constituents. Similar issues were addressed using PNJL
models [19] and more recently monopole-dyons and with-
out anti-monopole-dyons for small S1 [21]. A numeri-
cal analysis in the the instanton-dyon liquid model with
Nf = Nc = 2 was recently presented in [22].

In section 2 we briefly review the model and discuss the
general case of Nc = Nf twisted boundary conditions.
The special cases of Nc = Nf = 2, 3 are given and the
corresponding normalizable zero-modes around the cen-
ter symmetric point constructed. We derive explicitly the
pertinent hopping matrices between the instanton-dyons
and the instanton-anti-dyons for the case of Nc = Nf =
2, 3 which are central to the quantitative study of the
spontaneous breaking of chiral symmetry. In section 3
we use a series of fermionization and bosonization trans-
formations to map the instanton-dyon partition function
on a 3-dimensional effective theory. For Nf > 2, addi-
tional discrete symmetries combining charge conjugation
and exchange between conjugate flavor pairs are identi-
fied, with the same chiral condensates at high tempera-
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ture. In section 4 we derive the effective potential for the
ground state of the 3-dimensional effective theory. We
explicitly show that it supports a center symmetric state
with spontaneously broken chiral symmetry. The center
asymmetric phase at high temperature supports unequal
chiral condensates. Our conclusions are in section 5.

II. EFFECTIVE ACTION WITH TWISTED
FERMIONS

A. General setting

For simplicity we detail here the general setting for
Nc = 2. The pertinent changes for any Nc will be
quoted when appropriate. For a fixed holonomy with
A4(∞)/2ω0 = ντ3/2 and ω0 = πT , the SU(2) KvBLL
instanton [7] is composed of a pair of instanton-dyons
labeled by L, M (instanton-anti-dyons by L,M). In gen-
eral, there are are Nc − 1 BPS instanton-dyons and only
one twisted instanton-dyon. As a result the global gauge
symmetry is reduced through SU(Nc)→ U(1)Nc−1.

For example, the grand-partition function for dissoci-
ated Nc = 2 KvBLL instantons and anti-instantons and
Nf massless flavors is

Z1[T ] ≡
∑
[K]

KL∏
iL=1

KM∏
iM=1

KL̄∏
iL̄=1

KM̄∏
iM̄=1

×
∫

fLd
3xLiL
KL!

fMd
3xMiM

KM !

fLd
3yL̄iL̄
KL̄!

fMd
3yM̄iM̄

KM̄ !

×det(G[x]) det(G[y])
∣∣∣det T̃(x, y)

∣∣∣Nf e−VDD(x−y)

(1)

Here xmi and ynj are the 3-dimensional coordinate of the
i-dyon of m-kind and j-anti-dyon of n-kind. Here G[x] a
(KL+KM )2 matrix and G[y] a (KL̄+KM̄ )2 matrix whose
explicit form are given in [8, 9]. VDD̄ is the streamline
interaction between D = L,M dyons and D̄ = L̄, M̄ an-
tidyons as numerically discussed in [10]. For the SU(2)
case it is Coulombic asymptotically with a core at short
distances [3]. We will follow our original discussion with
light quarks in [4], with the determinantal interactions in
(1) providing for an effective core repulsion on average.
We omit the explicit repulsion between the cores as in [6],
for simplicity. The fugacities fi are related to the overall
instanton-dyon density, and can be estimated using lat-
tice simulations [2]. Here they are external parameters,
with a dimensionless density

n =
4π
√
fLfM
ω2

0

≈ Ce−
S(T )

2 (2)

For definiteness, the KvBLL instanton action to one-loop
is

S(T ) ≡ 2π

αs(T )
=

(
11
Nc
3
− 2

Nf
3

)
ln

(
T

0.36TD

)
(3)

The fermionic determinant det T̃(x, y) with twisted
quarks will be detailed below. In many ways (1) re-
sembles the partition function for the instanton-anti-
instanton ensemble [24].

B. Twisted boundary conditions and normalizable
zero modes

Consider Nf = Nc QCD on S1×R3 with the following
anti-periodic boundary conditions modulo a flavor twist
in the center of SU(Nc)

ψf (β, ~x) = −zf−1ψf (0, ~x) (4)

with z = ei2π/Nc and f = 1, 2, 3, ... = u, d, s, ... respec-
tively. Under a ZNc twisted gauge transformation of the
type

Ω(β, ~x) = zkΩ(0, ~x) (5)

(4) is ZNC+Nf symmetric following the flavour relabeling
f + k → f . As a result the theory is usually referred to
as ZNc -QCD [19]. In contrast, (4) breaks explicitly chiral
flavor symmetry through

UL(Nf )× UR(Nf )→ U
Nf
L (1)× UNfR (1) (6)

To construct explicitly the fermionic zero modes in a
BPS or KK dyon with the twisted boundary conditions
(4), we consider the generic boundary condition

ψ(x4 + β, ~x) = −eiφψ(x4, ~x) (7)

and redefine the quark field through ψ = eiTφx4 ψ̃. The
latter satisfies a modified Dirac equation with an imagi-
nary chemical potential −φT [17],

(iγ ·D − γ4Tφ)ψ̃ = 0 (8)

In a BPS dyon with periodic boundary conditions, the
solution to (8) asymptote

ψ̃ → e−πTνr±φTr (9)

which is normalizable for |φ| < πν. For anti-periodic
boundary condition, the requirement for the existence of
a normalizable zero mode in a BPS dyon is |φ−π| < πν.
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C. Case: Nc = Nf = 3

For Nc = Nf = 3, the flavor twisted boundary condi-
tion (4) takes the explicit form

u(β) = −u(0)

d(β) = e−iπ/3d(0)

s(β) = e+iπ/3s(0) (10)

The d,s boundary conditions in (10) admit a discrete
symmetry under the combined charge conjugation and
the flavor exchange d↔ s.

The normalizability condition for the quark zero modes
following from the flavor twisted boundary conditions in
(8-9) shows that f = 1 = u always support a normaliz-
able KK zero mode, while f = 2, 3 = d, s support BPS
zero modes that are at the edge of the normalizability
domain in the symmetric phase with ν = 1/3. The BPS

modes carry a time dependence of the form e±
iω0
3 x4 as

ν → 1/3, while the KK mode carries a time dependence
of the form eiω0x4 . In both cases, we are restricting the
modes to the lowest frequencies in Euclidean x4-time,
for simplicity. This means a moderatly large tempera-
ture ranging from the center symmetric to asymmetric
phase.

The explicit form of the twisted zero modes in a BPS
dyon and satisfying the twisted boundary condition (7)
can be obtained in closed form in the hedgehog gauge,

ψ̃∓,Aα(r) = (α1(r)ε+ α2(r)σ · r̂ε)Aα (11)

in color-spin, with εAα = −εαA and

α1,2(r) =
χ1,2(r)√

2πνTr sinh(2πνTr)

χ1(r) = − φ̃

πν
sinh(φ̃T r) + tanh(πTνr) cosh(φ̃T r)

χ2(r) = ∓

(
φ̃

πν
cosh(φ̃T r)− coth(πTνr) sinh(φ̃T r)

)
(12)

Here φ̃ ≡ φ − π and ∓ refers to M,M̄ respectively.
Asymptotically, the BPS zero modes take the compact
form in the hedgehog gauge

(ψ̃M ε)(r)→
1 + sgn(φ̃)σ · r̂√

2πTνr sinh(2πTνr)
e|φ̃|Tr

(ψ̃M̄ ε)(r)→
1− sgn(φ̃)σ · r̂√

2πTνr sinh(2πTνr)
e|φ̃|Tr (13)

For the KK instanton-dyon, we recall the additional
time-dependent gauge transformation from the BPS

instanton-dyon. The explicit form of the zero modes are
also similar (11-13) with now φ̃ = φ. We note that for
the flavor twisted boundary condition (4), f = d, s cor-

responds to φ̃ = ∓π/3 (mod 2π) in (13) which are not
normalizable BPS zero modes at exactly ν = 1/3. Fol-
lowing our analysis in [6], we choose to regulate the zero
modes by approaching the holonomies in the center sym-
metric phase as follows (ε1,2 → +0)

νM1 =
1

3
+ ε1

νM2 =
1

3
− ε2

νL =
1

3
+ ε2 − ε1 (14)

As a result, the M1-instanton-dyon carries 2 zero modes
(d,s), the M2-instanton-dyon carries none, and the L-
dyon carries 1 zero mode (u). This regularization en-
forces the Nye-Singer index theorem for fundamental
quarks [23] and the discrete symmetry noted earlier.

D. Case: Nc = Nf = 2

For the case of Nf = Nc = 2, a more general set of
twisted boundary conditions will be analyzed with

u(β) = eiθ(−u(0))

d(β) = eiθ(−eiπd(0)) (15)

which is (4) for θ = 0. (15) is seen to have the additional
discrete symmetry when θ → π−θ and u↔ d at ν = 1/2.
Thus, only the range θ < π/2 will be considered. In this
case, the M-instanton-dyon carries 1 zero-mode (d), while
the L-instanton-dyon carries 1 zero-mode (u). For (15)
the normalizable zero modes are asymptotically of the
form (13) with φ = θ.

For completeness we note the Roberge-Weiss boundary
condition [17]

u(β) = eiθu(0)

d(β) = eiθd(0) (16)

In the range 0 < θ < π/2, the M-instanton-dyon carries
2 zero modes with none on the L-instanton-dyon. In the
range π

2 < θ < 3π
2 , the 2 zero modes jump onto the L-

instanton-dyon. In the range 0 < 3π
2 < θ < 2π they

jump back on the M-instanton-dyon. We note that for
θ = θ0 +π/2 with 0 < θ0 < π/2, the M-zero mode moves
to be an L-zero mode with the asymptotic

(1− σ · r̂)√
r sinh(πTr)

e(π/2−θ0)Trei(θ0−π/2)Tx4eiπTx4 (17)
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This is to be compared to the case with θ = π
2 − θ0 with

the asymptotic

(1 + σ · r̂)√
r sinh(πTr)

e(π/2−θ0)Trei(
π
2−θ0)Tx4 (18)

E. Twisted fermionic determinant

The fermionic determinant can be viewed as a sum of
closed fermionic loops connecting all instanton-dyons and
instanton-antidyons. Each link – or hopping – between
an instanton-dyon and L̄-anti-instanton-dyon is described
by the hopping chiral matrix

T̃(x, y) ≡
(

0 iTij

iTji 0

)
(19)

Each of the entries in Tij is a “hopping amplitude” of
a fermionic zero-mode ϕD from an instanton-dyon to a
zero-mode ϕD̄ (of opposite chirality) of an instanton-anti-
dyon

TLR(xLR) =

∫
d4xϕ†L(x− xL)i(∂4 − iσ · ∇)ϕR(x− xR)

TRL(xLR) =

∫
d4xϕ†R(x− xL)i(∂4 + iσ · ∇)ϕL(x− xR)

(20)

with xLR ≡ xL − xR, and similarly for the other com-
ponents. In the hedgehog gauge, these matrix elements
can be made explicit in momentum space. Their Fourier
transform is

TLR(p) = Tr
(
ϕ†L(p)(−ΦT − iσ · p)ϕR(p)

)
(21)

with ΦT the contribution from the lowest Matubara
mode retained. We recall that the use of the zero-modes
in the string gauge to assess the hopping matrix elements,
introduces only minor changes in the overall estimates as
we discussed in [4] (see Appendix A).

1. Case Nc = Nf = 3

For general ν, we use the Fourier transform of the zero
modes (11) in (21) to obtain

Ti(p) = ΦiT (F 2
2i(p)− F 2

1i(p)) + sgn(φ̃i)2pF1i(p)F2i(p)

(22)

The key physics in the Fourier transforms F1,2(p) is cap-
tured by retaining only the flux-induced mass-like in the
otherwise massless asymptotics, i.e.

F1i(p) ≈
1

3
F2i(p) ≈

ω0

(p2 + ((ν − |φ̃i|/π)ω0)2)
5
4

(23)

The i-assignments are respectively given by

i ≡ (L̄L, M̄1M1, M̄2M2)

{φ̃i=(0,−π3 ,+
π
3 )

Φi=(π,−π3 ,+
π
3 )

(24)

In the center symmetric phase with ν = 1/3, (22) are
long-ranged for the M-instanton-dyons,

T3(p) = −T2(p) ≈ ΦT
8C2

p5
+ sgn(φ̃)

6C2

p4
(25)

Here C is a normalization constant fixed by the regular-
ization detailed in (14).

2. Case Nc = Nf = 2

For Nc = Nf = 2, the Fourier transform of the lowest
Matsubara zero-mode for both boundaries (15-16) is

ψM (p) = f1(p)− isgn(θ)f2(p)σ · p̂ (26)

The correponding hopping matrix is (0 ≤ θ < π/2)

TLR(p) = θ̃T (f2
2 (p)− f2

1 (p)) + sgn(θ)2pf1(p)f2(p) (27)

with the assignments

θ̃ =

{θ−π :u

θ :d

(28)

and

f1(p) ≈ 1

3
f2(p) ≈ ω0

(p2 + ((νi − θ/π)ω0)2)
5
4

(29)

It follows that

TLR(p) ≈ f1(p)2(8θ̃T + 6 sgn(θ) p) (30)

Using (17-18) we note that the hopping matrix element
(30) satisfies the anti-periodicity condition

TLR(p, θ0 + π/2) = −TLR(p, θ0 − π/2) (31)

with the θ-argument exhibited for clarity.
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III. SU(Nc) ENSEMBLE

Following [3, 4, 8] the moduli determinants in (1) can
be fermionized using 2Nc pairs of ghost fields χm, χ

†
m

for the instanton-dyons and 2Nc for the instanton-anti-
dyons. The ensuing Coulomb factors from the determi-
nants are then bosonized using 2Nc boson fields vm, wm
for the instanton-dyons and similarly for the instanton-
anti-dyons. The result is

S1F [χ, v, w] = − T

4π

∫
d3x

Nc∑
m=1

(
|∇χm|2 +∇vm · ∇wm

)
+

Nc∑
m̄=1

(
|∇χm̄|2 +∇vm̄ · ∇wm̄

)
(32)

For the streamline interaction part VDD̄, we note that as
a pair interaction in (1) between the instanton-dyons and
instanton-anti-dyons, it can be bosonized using standard

methods [25, 26] in terms of ~σ and ~b fields. As a result
each dyon species acquire additional fugacity factors of
the form

M : e−~αi·
~b+i~αi·~σ M̄ : e−~αi·

~b−i~αi·~σ (33)

with ~αi and i = 1, 2, ...Nc− 1 the ith root of the SU(Nc)
Lie generator, and i = Nc its affine root due to its com-
pacteness. Therefore, there is an additional contribution
to the free part (32)

S2F [σ, b] =
T

8

∫
d3x

(
∇~b · ∇~b+∇~σ · ∇~σ

)
(34)

where for simplicity we approximated the streamline by
a Coulomb interaction, and the interaction part is now

SI [v, w, b, σ, χ] = −
∫
d3x(

Nc∑
i=1

e−~αi·
~b+i~αi·~σfi

×
(
4πvi + |χi − χi+1|2 + vi − vi+1

)
ewi−wi+1

+

Nc∑
ī=1

e−~αī·
~b−i~αī·~σfī

×
(
4πvi + |χī − χī+1|2 + vī − vī+1

)
ewī−wī+1

)
(35)

without the fermions. We now show the minimal modi-
fications to (35) when the fermionic determinantal inter-
action is included.

A. Fermionic fields

To fermionize the determinant in (1) and for simplic-
ity, consider first the case of Nf = 1 fermionic zero-modes
attached to the kth instanton-dyon, and define the addi-
tional Grassmanians χ = (χi1, χ

j
2)T with i, j = 1, ..,Kk,k̄

so that

∣∣∣det T̃
∣∣∣ =

∫
D[χ] eχ

†T̃χ (36)

We can re-arrange the exponent in (36) by defining a
Grassmanian source J(x) = (J1(x), J2(x))T with

J1(x) =

KL∑
i=1

χi1δ
3(x− xki)

J2(x) =

KL̄∑
j=1

χj2δ
3(x− yk̄j) (37)

and by introducing 2 additional fermionic fields ψk(x) =
(ψk1(x), ψk2(x))T . Thus

eχ
†T̃χ =

∫
D[ψ] exp (−

∫
ψ†kG̃ψk +

∫
J†ψk +

∫
ψ†kJ)∫

dD[ψ] exp (−
∫
ψ†kG̃ψk)

(38)

with G̃ a 2× 2 chiral block matrix

G̃ =

(
0 −iG(x, y)

−iG(x, y) 0

)
(39)

with entries TG = 1. The Grassmanian source contribu-
tions in (38) generates a string of independent exponents
for the L-instanton-dyons and L̄-instanton-anti-dyons

Kk∏
i=1

eχ
i
1†ψk1(xki)+ψ

†
k1(xki)χ

i
1

×
Kk̄∏
j=1

eχ
j
2†ψk2(yk̄j)+ψ

†
k2(yk̄j)χ

j
2 (40)

The Grassmanian integration over the χi in each factor
in (40) is now readily done to yield

∏
i

[−ψ†k1ψk1(xki)]
∏
j

[−ψ†k2ψk2(yk̄j)] (41)

for the k-instanton-dyon and k̄-instanton-anti-dyon. The
net effect of the additional fermionic determinant in (1) is
to shift the k-instanton-dyon and k̄-instanton-anti-dyon
fugacities in (35) as follows
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fk → −fkψ†k1ψk1 ≡ −fLψ†kγ+ψk

fk̄ → −fk̄ψ
†
k2ψk2 ≡ −fk̄ψ

†
kγ−ψk (42)

where we have now identified the chiralities with γ± =
(1 ± γ5)/2. Note that for the instanton-dyons and
instanton-anti-dyons with no zero-mode attached, the fu-
gacities remain unchanged.

B. Resolving the constraints

In terms of (32-35) and the substitution (42), the
instanton-dyon partition function (1) for finite Nf can
be exactly re-written as an interacting effective field the-
ory in 3-dimensions,

Z1[T ] ≡
∫
D[ψ]D[χ]D[v]D[w]D[σ]D[b]

×e−S1F−S2F−SI−Sψ (43)

with the additional chiral fermionic contribution Sψ =

ψ†G̃ψ. Since the effective action in (43) is linear in the
vM,L,M̄,L̄, the latters integrate to give the following con-
straints

− T

4π
∇2wk + fke

~αk·(−~b+i~σ)
∏
f

ψ†kfγ+ψkfe
wk−wk+1

−fk−1e
~αk−1·(−~b+i~σ)

∏
f

ψ†k−1fγ+ψk−1f ewk−1−wk = 0

(44)

and similarly for the anti-dyons.
To proceed further the formal classical solutions to the

constraint equations or w[σ, b] should be inserted back
into the 3-dimensional effective action. The result is

Z1[T ] =

∫
D[ψ]D[σ]D[b] e−S (45)

with the 3-dimensional effective action

S = SF [σ, b] +

∫
d3x

∑
f

ψ†fG̃fψf

+

Nc∑
k=1

4πfkvk

∫
d3x

∏
f

ψ†kfγ+ψkf e
wk−wk+1+~αk·(−~b+~iσ)

+

Nc∑
k̄=1

4πfk̄vk̄

∫
d3x

∏
f

ψ†
k̄f
γ−ψk̄f e

wk̄−wk̄+1+~αk̄·(−~b+~iσ)

(46)

Here SF is S2F in (34) plus additional contributions re-
sulting from the w(σ, b) solutions to the constraint equa-
tions (44) after their insertion back. This procedure for
the linearized approximation of the constraint was dis-
cussed in [3, 4].

For the general case with

G̃1 6= G̃2 6= ... 6= G̃Nf (47)

these contributions in (46) are only U
Nf
L (1) × U

Nf
R (1)

symmetric, which is commensurate with (6). The deter-
minantal interactions preserve the individual UL+R(1k)
vector flavor symmetries, but upset the individual
UL−R(1k) axial flavor symmetries. However, the latters
induce the shifts

ψ†kfγ±ψkf → e2ξkψ†kfγ±ψkf (48)

which can be re-absorbed by shifting back the constant
magnetic contributions

~αk̄ · (−~b+~iσ)→ ~αk̄ · (−~b+~iσ)− 2ξk (49)

thanks to the free form in (34). This observation is un-
affected by the screening of the magnetic-like field, since

a constant shift ~b → ~b + 2ξk can always be reset by a
field redefinition. This hidden symmetry was noted re-
cently in [21]. We note that this observation holds for
the general form of the streamline interaction used in [4]
as well, due to its vanishing form in momentum space.
From (49) it follows that

∑
k ξk = 0, so that only the

axial flavor singlet UL−R(1) is explicitly broken by the
determinantal contributions in (46) as expected in the
instanton-dyon-anti-dyon ensemble. As a result, (46) is

explicitly U(1)
Nf
L × U

Nf
R (1)/UL−R(1) symmetric.

C. Special cases: Nc = Nf = 2, 3

For the case Nc = Nf = 3 with the twisted boundary
condition (10), the fermionic terms in the effective action
(46) are explicitly

ψ†uG̃1ψu + ψ†dG̃2ψd + ψ†sG̃3ψs

+4πf1ν1ψ
†
uγ+ψue

w1−w2

+4πf2ν2ψ
†
dγ+ψdψ

†
sγ+ψse

w2−w3 + 4πf3ν3e
w3−w1

+4πf1̄ν̄1ψ
†
uγ−ψue

w̄1−w̄2

+4πf2̄ν̄2ψ
†
dγ−ψdψ

†
sγ−ψse

w̄2−w̄3 + 4πf3̄ν̄3e
w̄3−w̄1

(50)

following the regulartization (14) around the center sym-
metric point. As noted earlier, (50) is explicitly symmet-
ric under the combined charge conjugation and the fla-
vor exchange d↔ s since G̃2 = −G̃3 6= G̃1. With this in
mind, (50) is symmetric under (U3

L(1)×U3
R(1))/UL−R(1).
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For the case Nc = Nf = 2 with the twisted boundary
condition (15), the fermionic terms in the effective action
(46) are now

fMvMψ
†
dγ+ψde

wM−wL + fLvLψ
†
uγ+ψue

wL−wM

+fM̄vM̄ψ
†
dγ−ψde

wM̄−wL̄ + fL̄vL̄ψ
†
uγ−ψue

wL̄−wM̄

(51)

while for the Roberge-Weiss boundary condition (16)
they are

fMvMψ
†
uγ+ψuψ

†
dγ+ψde

wM−wL + fLvLe
wL−wM

+fM̄vM̄ψ
†
uγ−ψuψ

†
dγ−ψde

wM̄−wL̄ + fL̄vL̄e
wL̄−wM̄

(52)

IV. EQUILIBRIUM STATE

To analyze the ground state and the fermionic fluctua-
tions we bosonize the fermions in (45-46) by introducing
the identities

∫
D[Σk] δ

(
ψ†k(x)ψk(x) + 2Σk(x)

)
= 1 (53)

and by re-exponentiating them to obtain

Z1[T ] =

∫
D[ψ]D[σ]D[b]D[~Σ]D[~λ] e−S−SC

(54)

with

−SC =

∫
d3x iΛk(x)(ψ†f (x)ψk(x) + 2Σk(x)) (55)

The ground state is parity even so that fL,M = fL̄,M̄ . By
translational invariance, the ground state corresponds to

constant σ, b, ~Σ, ~Λ. We will seek the extrema of (54) with
finite condensates in the mean-field approximation, i.e.

〈
ψ†k(x)ψl(x)

〉
= −2δklΣk (56)

With this in mind, the classical solutions to the con-
straint equations (44) are also constant

fk

〈∏
f

ψ†kfγ+ψkf

〉
ewk−wk+1

= fk+1

〈∏
f

ψ†k+1fγ+ψk+1f

〉
ewk+1−wk+1 (57)

with

〈∏
f

ψ†kfγ+ψkf

〉
=
∏
f

Σkf (58)

and similarly for the anti-dyons. The expectation values
in (57-58) are carried in (54) in the mean-field approxi-
mation through Wick contractions. We now proceed to
determine the pressure by imposing the succesive con-
straints (57) only after varying and eliminating the w′s.

A. Nc = Nf = 3 in symmetric phase

In the center-symmetric phase, with all holonomies be-
ing equal ν1,2,3 = 1/3, the pressure simplifies to

Puds − Pper = 8π(f1f2f3)
1
3 (ΣuΣdΣs)

1
3 − 2~Λ · ~Σ

+

3∑
i=1

∫
d3p

(2π)3
ln(1 + Λ2

i |Ti|2(p))

(59)

with the individual fermionic terms being

Pi ≡
∫

d3p

(2π)3
ln(1 + Λ2

i |Ti|2(p))

≡ ω3
0

∫
d3p̃

(2π)3
ln

1 +
Λ̃2
i

p̃8

(
1 +

4|φ̃i|
3πp̃

)2
 (60)

Here p̃ = p/ω0 and Λ̃i = Λ/ω2
0 are dimensionless.

From (24), we recall the assignment of quark phases

(φ̃1, φ̃2, φ̃3) = (π,−π/3,+π/3), for (u, d, s) respectively.
The center symmetric phase breaks spontaneously chiral
symmetry, as the gap equations have nonzero solutions.
Each of the flavor chiral condensate is found to be

〈q̄q〉φ̃i
T 3

= 2π2Λ̃i

∫
d3p̃

(2π)3

5
3p̃5

1 +
Λ̃2
i

p̃8

(
1 + 4|φ̃i|

3πp̃

)2 (61)

We now note that at asymptotically low temperatures,
the 1/p4 contribution in the hopping matrix element (25)
is dominant.

B. Nc=Nf = 3 in general asymmetric phase

In general asymmetric phase the holonomies have val-
ues away from the center

ν1 =
1

3
+ ε1

ν2 =
1

3
− ε2

ν3 = 1− ν1 − ν2 (62)
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Note that in general, the parameters ε1,2 are not small.
With these choices for the holonomies (62) , the u-flavor
rides the L-instanton-dyon, and the ds-flavors ride the
M1,M2-instanton-dyons. For the ds-flavors, the hopping
matrix elements between the instanton-dyon and anti-
instanton-dyon are given by

Td(p) = −Ts(p) =

πT

3
(F 2

2 (p)− F 2
1 (p)) + 2ipF1(p)F2(p) (63)

with

F1(p) ≈ 1

3
F2(p) ≈ ω0

(p2 + ((ν1 − 1/3)ω0)2)
5
4

(64)

while for the u-quarks it is

Tu(p) = πT (f2
2 (p)− f2

1 (p)) + 2ipf2(p)f1(p) (65)

with

f1(p) ≈ 1

3
f2(p) ≈ ω0

(p2 + (ν3ω0)2)
5
4

(66)

In the mean-field approximation, the modification of
the effective pressure is

Puds − Pper = +24π(f1f2f3ν1ν2ν3Σ2
dΣu)

1
3

−4ΣdΛd − 2ΣuΛu

+

∫
d3p

(2π)3
ln
(
(1 + Λ2

d|Td|2)2(1 + Λ2
u|Tu|2)

)
(67)

where Pper is the perturbative contribution with twisted
quark boundary conditions [17]. For ν1 → 1/3 the holon-
omy induced mass-like contribution in (64) becomes ar-
bitrarily small. As we noted earlier, we use it to reg-
ulate the infrared sensitivity of the ds-contributions in
(67) through a suitable redefinition of the fugacities f2,3

as in [6]. With this in mind, the extrema of (67) with
respect to Σ,Λ yield the respective gap equations

Λd = 4πf(ν1ν2ν3)
1
3

(
Σu
Σd

) 1
3

Λu = 4πf(ν1ν2ν3)
1
3

(
Σd
Σu

) 2
3

Σi =

∫
d3p

(2π)3

Λi|Ti(p)|2

1 + Λ2
i |Ti(p)|2

(68)

Using (68) in (67) results in the shifted pressure at the
saddle point

Puds − Pper =∫
d3p

(2π)3
ln

[
(1 + Λ2

d|Td|2)2(1 + (
Λ̃3

0

Λ2
d

)2|Tu|2)

]
(69)

with Λ̃0 = 4πf(ν1ν2ν3)
1
3 . We note that the gap equation

follows from dP/dΛd = 0. The chiral condensates follow
from standard arguments as

〈
d̄d
〉

= 〈s̄s〉 = 2ΛdT

∫
d3p

(2π)3

F 2
1 (p) + F 2

2 (p)

1 + Λ2
d|Td(p)|2

〈ūu〉 = 2ΛuT

∫
d3p

(2π)3

f2
1 (p) + f2

2 (p)

1 + Λ2
u|Tu(p)|2

(70)

In contrast and at asymptotically high temperatures,
the 1/p5 contribution in the hopping matrix element (25)
is dominant. Therefore the u-hopping is different from
the d- and s-hoppings with T1(p) ≈ 3T2(p). The extrema
of the pressure in Λ1,2,3 are now found to be

3Λ1 = Λ2 = Λ3 =
4πT

3
(3ν1ν2ν3f1f2f3)

1
3 (71)

with distinct chiral condensates

3 〈ūu〉 ≈
〈
d̄d
〉
≈ 〈s̄s〉 ≈ 0.78T 3(Λ̃2)

3
5 (72)

The high temperature phase breaks flavor symmetry but
preserves the discrete combined charge conjugation sym-
metry and the exchange d ↔ s. As a check on these
observations, we note that for Λ̃ ≈ 1, the chiral conden-
sates in (61) are numerically close

〈q̄q〉φ̃=π ≈ 0.61T 3

〈q̄q〉φ̃=π
3
≈ 0.76T 3 (73)

The remaining task is to solve the gap equations for the
four remaining parameters Λd,Λu, ε1, ε2. The numerical
analysis of those equations will be presented elsewhere.

C. Nc = Nf = 2 in symmetric phase

The analysis of the Nf = Nc = 2 follows similar ar-
guments using the twisted boundary conditions (15) for
πν > θ. In this case the u-flavor rides the L-dyon, and
the d-flavor rides the M-dyon with the hopping matrices

Tu(p) = (π − θ)T (f̃2
2 (p)− f̃2

1 (p)) + 2ipf̃1(p)f̃2(p)

Td(p) = θT (f2(p)2 − f2
1 (p)) + 2ipf1(p)f2(p) (74)

with
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f1(p) ≈ 1

3
f2(p) ≈ ω0

(p2 + ((ν − θ/π)ω0)2)
5
4

(75)

f̃1,2 follows from f1,2 using the substitution θ → −π+ θ.
We note that for θ = 0, the first contribution in Td van-
ishes, since the d-boundary is periodic with zero Mat-
subara frequency. It is proportional to the Matsubara
frequency in Tu, since the u-boundary is anti-periodic.
This difference is in addition to the different mass-like
contributions induced by the holonomy (d: νω0 and u:
ν̃ω0), which regulate the small-momenta (large distance)
behavior of the hopping amplitudes and causes the flavor
condensates to be relatively different.

In the mean-field limit, the non-perturbative pressure
is

Pud − Pper = 16πf(ν1ν2Σ1Σ2)
1
2 − 2Λ1Σ1 − 2Λ2Σ2

+
∑
i=1,2

∫
d3p

(2π)3
ln(1 + Λ2

i |Ti(p)|2) (76)

while the perturbative one (with our twisted boundary
conditions) is given by

Pper = −4π2T 3

3
(ν1ν2)

2

−4T 3

π2

∑
f

∞∑
n=1

(−1)neiθfn

n4
TrfL

n

(77)

The first contribution comes from the gluons, while the
second contribution comes from the twisted quarks. The
Polyakov line L is in the fundamental representation,
with the flavor twist explicitly factored out. The domi-
nant contribution in the sum stems from the n = 1 term.
Note that for θ1 = 0 and θ2 = π, the fermionic contribu-
tion almost cancels.

The gap equations related to the parameters Λi,Σi are

Λ1 = 4πf(ν1ν2)
1
2

(
Σ2

Σ1

) 1
2

Λ2 = 4πf(ν1ν2)
1
2

(
Σ1

Σ2

) 1
2

Σi =

∫
d3p

(2π)3

Λi|Ti|2

1 + Λ2
i |Ti(p)|2

(78)

The chiral condensates are readily obtained as

〈q̄iqi〉 = 2ΛiT

∫
d3p

(2π)3

f2
1 (p) + f2

2 (p)

1 + Λ2
i |Ti(p)|2

(79)

We note that for large Λ or asymptotically small tem-
peratures, the second term in (30) proportional to p is

dominant. In this case, the hopping matrix elements for
M,L are equal. It follows that the extrema of the pres-
sure (76) are also equal,

Λ ≡ Λ1 = Λ2 = 2π(fLfM )
1
2 (80)

In this limit, the chiral condensates are also the same

〈ūu〉 ≈
〈
d̄d
〉
≈ 2ΛT

∫
d3p

(2π)3

f2
1 (p) + f2

2 (p)

1 + Λ2|T1,2(p)|2
(81)

with f1,2(p) given in (29).
Before we discuss the general asymmetric case, let us

make the following comments on the so called Roberge-
Weiss symmetry [17]. Since the hopping matrix elements
satisfy the anti-periodicity condition (31), the pressure
(76) satisfies the so called half -periodicity condition

P(θ + π/2) = P(θ − π/2) (82)

in the center symmetric phase. Using the explicit form
(30), we find that

(
dP
dθ

)
θ→π/2

= 0 (83)

which is cusp free despite the switching of the zero-mode
from the M- to L-instanton-dyon. These observations
are in agreement with those put forth by Roberge and
Weiss [17] at low temperatures. At high temperature
(83) develops a cusp in the center asymmetric phase [17].
We have checked that these properties hold also for the
twisted boundary condition (15).

D. Nc = Nf = 2: general asymmetric case

To proceed, we first note that the gap equations (78)
can be simplified by noting that Λ1Λ2 = n2 and that
Λ2Σ2 = Λ1Σ1. We have set n = 4πf(ν1ν2)

1
2 with ν1 = ν

and ν2 = 1 − ν. With this in mind, (78) reduces to a
single gap equation,

∫
d3p̃

|T̃1|2

1/Λ̃2
1 + |T̃1|2

=

∫
d3p̃

|T̃2|2

Λ̃2
1/ñ

4 + |T̃2|2
(84)

After rescaling of all variables p̃ = p/ω0, Λ̃1,2 = Λ1,2/ω
2
0

and ñ = n/ω2
0 with ω0 = πT , the hopping matrices (74)

simplify

|T̃1|2 ≈
(6p̃)2

(p̃2 + ν2
1)5

|T̃2|2 ≈
64 + (6p̃)2

(p̃2 + ν2
2)5

(85)
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After using the gap equations (78) and the rescaling, the
pressure (76) becomes

Pud
ω3

0

=

∫
d3p̃

(2π)3
ln

[
(1 + Λ̃2

1|T̃1|2)(1 + (
ñ2

Λ̃1

)2|T̃2|2)

]
−4π2

3

T 3

ω3
0

(ν1ν2)2 (86)

Its extremum in Λ is the gap equation ∂Pud/∂Λ̃1 = 0,
which is (84). Similarly, there is the gap equation for
the holonomy ν. The task is to solve them together.
We found that (86) leads to the momentum-dependent
constituent masses for the d-, u-quarks

Md(p)

ω0
≡ (1 + p̃2)

1
2 Λ̃1|T̃1(p)|

Mu(p)

ω0
≡ (1 + p̃2)

1
2
ñ2

Λ̃1

|T̃2(p)| (87)

The u-quark is subtantially heavier than the d-quark
at low momentum because of its anti-periodic bound-
ary condition, with the d-quark turning massless at zero
momentum owing to its periodic boundary condition.

The results for the numerical solution of the gap equa-
tions are shown in Fig. 1 and Fig. 2 . In Fig. 1, we show
the dependence of the Polyakov line L = cos(πν[n]) on
the input parameter n = 4πf/ω2

0 (square-blue) in the
lower line. For comparison we also show the behavior
of the same Polyakov line (circle-red) in the upper line,
for the untwisted (QCD) theory with both u-, d-quarks
being anti-periodic fermions. The input parameter n is a
definite monotonously decreasing function of the temper-
ature as defined in (2). The rightmost part of the plot
corresponds to the dense low-T case, in which we find
a confining or L → 0 behaviour. The main conclusion
from this plot is that confinement (or restoration of cen-
ter symmetry) occurs at a lower density n for the twisted
theory, as compared to the QCD-like one.

In Fig. 2 we show the behavior of the flavor con-
densates |

〈
d̄d
〉
|/T 3 (upper-diamond-blue), | 〈ūu〉 |/T 3

(lower-square-green) for the twisted u-, d-quarks versus
n = 4πf/ω2

0 . For comparison, we also show the value
of | 〈ūu〉 |/T 3 = |

〈
d̄d
〉
|/T 3 (middle-triangle-magenta) for

the untwisted (anti-periodic) bounday conditions. It fol-
lows closely the line for the anti-periodic d-quark in the
twisted case. The value of the Polyakov line for the
twisted quarks is shown also (circle-red), to indicate the
transition region. At moderatly high densities or low
temperatures, center symmetry is restored but the quark
condensates are still distinct for the twisted boundary
condition. The induced effective masses in (87) show that
the d-quark is much lighter than the u-quark, resulting
in a much larger chiral condensate. Only at vanishingly
small temperatures, the relation (81) is recovered as both
hoppings become identical. The nature of the boundary
condition becomes irrelevant at zero temperature. How-
ever, as the temperature decreases the truncation of our

analysis of the zero modes to their lowest Matsubara fre-
quencies is no longer valid, as higher mode contributions
become significant. As noted earlier in section IIC, the
results in Fig. 2 for the various condensates cannot be
extrapolated reliably to zero temperature or very high
densities. At low densities or high temperatures, center
symmetry is broken and the chiral condensate |

〈
d̄d
〉
| is

still substantially larger than | 〈ūu〉 |.
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FIG. 1: Polyakov line versus the dimensionless density n =
4πf/ω2

0 for Nf = Nc = 2. The lower (square-blue) line is for
the Z2 twisted quarks, while the upper (circle-red) line is for
the usual anti-periodic quarks.
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FIG. 2: Dimensionless condensates |
〈
d̄d

〉
|/T 3 (diamond-

blue), | 〈ūu〉 |/T 3 (square green) for twisted boundary condi-
tions, with increasing dimensionless density or lower temper-
atures 4πf/ω2

0 . For comparison we show | 〈ūu〉 |/T 3 (triangle-
magenta) for the anti-periodic quarks. The Polyakov line
(square-red) shows a rapid crossing from a center broken to a
center symmetric phase for the twisted quarks.

E. Comparison to simulations

Our mean-field results are in qualitative but not quan-
titative agreement with recent simulations carried in [22].
In particular, we found that Nc = Nf = 2 Z2 twisted
QCD has two two distinct phases, the center symmetric
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and center asymmetric ones. However, the simulation
in [22] observes a significant jump in the Polyakov line,
concluding that the deconfinement transition is first or-
der. Our numerical mean-field solution of the gap equa-
tions as shown in (1-2) do not find a jump. They suggest
that the transition is perhaps second order.

We find that the chiral condensates ūu and d̄d are dif-
ferent from each other in both phases. In the asymmetric
phase this result is in agreement with the one obtained in
[22]. However, this agreement does not carry to the sym-
metric phase where in [22] the chiral condensates appear
to be the same within error bars. Also, in our mean-field
analysis, the smallest of the condensates induced by the
L-dyons in twisted Z2 QCD and ordinary QCD are very
close. In [22] both condensates are found to be much
larger than in ordinary QCD. In agreement with [22], we
observe that in the interval of densities studied none
of the chiral condensates vanishes. Both results see no
chiral restoration transitions in Z2 QCD.

Unfortunately, a qualitative comparison between our
analysis and that of [22] is not yet possible. One rea-
son for this is that in [22] the simulations were carried
using a simplified hopping matrix element (in coordi-
nate representation) for numerical convenience, as op-
posed to the one derived above directly from the exact
zero modes. But even if all the setting would be made
identical, the agreement perhaps can only be expected
in the very dense regime. As the ensemble of dyons and
anti-dyons become dilute, clustering is expected with a
breakdown of the mean-field assumption. This behavior
is better studied using numerical simulations, where one
can easily enforce randomization of the positions of the
instanton-dyons.

F. Mesonic spectrum

The excitation spectrum with twisted boundary condi-
tions can be calculated following the analysis in [4]. For
the Nc = Nf = 2 case, this follows by substituting

Λ(ψ†γ±ψ + 2Σ±)→
∑
fg

Λ±fg(ψ
†
fγ±ψg + 2Σ±fg) (88)

in (55) with

Λ± ≡ Λ0 ± iπps + πs = diag(Λ1,Λ2)± iπps + πs (89)

Here πs,ps refer to the scalar and pseudo-scalar U(2)-
valued mesonic fields.

For the chargeless chiral partners σ3, π0, the effective
actions to quadratic order are respectively given by

S(π3
ps) =

1

2f2
π

∫
d3p

(2π)3
π3
ps(p)∆

3
−(p)π3

ps(−p)

S(π3
s) =

1

2f2
π

∫
d3p

(2π)3
π3
s(p)∆3

+(p)π3
s(−p) (90)

with the corresponding propagators (p± = q ± p/2)

∆3
±(p) =

1

2

∫
d3q

(2π)3

(T1(p+)± T1(p−))2

(1 + Λ2
1|T1(p+)|2)(1 + Λ2

1|T1(p−)|2)

+
1

2

∫
d3q

(2π)3

(T2(p+)± T2(p−))2

(1 + Λ2
2|T2(p+)|2)(1 + Λ2

2|T2(p−)|2)

(91)

with the hopping matrices T1,2 labeled as 1 ≡ d and
2 ≡ u. In deriving (90-91) we made explicit use of the
gap equations (78). We note that ∆3

−(0) = 0 translates
to a massless π0 = π3

ps, while ∆3
+(0) 6= 0 translates to

a massive σ, for both the center symmetric and broken
phases. The masslessness of π0 is ensured by the hid-
den symmetry displayed in (48-49), and reflects on the
remaining spontaneously broken symmetry for Nf = 2.

The charged mesons π±s , π
±
ps, follow a similar analysis

with now the propagators for the quadratic contributions
given by

∆1,2
± (p) =

(Σ1Σ2)
1
2

πf
− 2

∫
d3q

(2π)3
F∓(p, q) (92)

Here ∆1,2
− refer to the charged scalars π±s , while ∆1,2

+ refer
to their charged chiral partners π±ps, with

F±(p, q) =
T1(p+)T2(p−)(Λ1Λ2T1(p+)T2(p−)± 1)

(1 + Λ2
1|T1(p+)|2)(1 + Λ2

2|T2(p−)|2)
(93)

In the exactly center symmetric phase, with Λ1 = Λ2, the
charged pions π±ps are also massless. But in general, in

the asymmetric phase Λ1 6= Λ2, and both π± are massive
(but degenerate).

The singlet mesons σ = πs0, η = πps,0 propagators
follow similarly

2∆σ(p) =
nD
2

+ ∆3
+(p)

2∆η(p) =
nD
2

+ ∆3
−(p) (94)

with nD the mean instanton-dyon density defined
through the gap equation

nD
4

=
1

2

2∑
i=1

∫
d3p

(2π)3

Λ2
i |Ti|2

1 + Λ2
i |Ti|2

(95)

V. CONCLUSIONS

We have constructed the partition function for the
instanton-dyon liquid model with twisted flavor bound-
ary conditions, and derived and solved the resulting gap
equations in the mean-field approximation. In addition
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to manifest UNF (1) × UNf (1))/UL−R(1) flavor symme-
tries, for ZNc-QCD some discrete charge conjugation plus
flavor exchange symmetries were identified .

The central constructs are the so called hopping ma-
trix elements between instanton-dyon and anti-instanton-
dyon zero modes. One technical point is to note that
some of these hoppings may become singular at large dis-
tances (small momenta) when the contribution from the
ZNc -twists and the holonomies cancel the exponentially
decreasing asymptotics. These singularities are readily
regulated through a suitable redefinition of the pertinent
fugacities [6].

The low temperature phase is center symmetric with
zero Polyakov line. It also breaks chiral symmetry, with
still sizably different chiral condensates in our mean-field
analysis. The latters are about equal at very small tem-
peratures. The high temperature phase is center asym-
metric with always unequal chiral condensates. Our re-
sults are qualitatively consistent with the lattice results
reported recently in [20], although with a more pro-
nounced difference between the flavor chiral condensates

across the transition region caused mostly by the differ-
ences in the leading (twisted) Matsubara modes in the
center symmetric phase. In the symmetric ground state
we observe the emergence of one massless pion π0 (2-
flavor case).

The instanton-dyon model offers a very concise frame-
work for discussing the interplay of twisted boundary
conditions (also known as flavor holonomies) with center
symmetry and chiral symmetry in the QCD-like models.
A further comparison between the mean field results de-
rived in this paper, with the direct simulations [22] of the
instanton-dyon model and lattice results [20], is obviously
of great interest.
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