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Light Adjoint Quarks in the Instanton-Dyon Liquid Model IV

Yizhuang Liu,∗ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

We discuss the instanton-dyon liquid model with Nf Majorana quark flavors in the adjoint rep-
resentation of color SUc(2) at finite temperature. We briefly recall the index theorem on S1 × R3

for twisted adjoint fermions in a BPS dyon background of arbitrary holonomy, and use the ADHM
construction to explicit the adjoint anti-periodic zero modes. We use these results to derive the
partition function of an interacting instanton-dyon ensemble with Nf light and anti-periodic ad-
joint quarks. We develop the model in details by mapping the theory on a 3-dimensional quantum
effective theory with adjoint quarks with manifest SU(Nf ) × Z4Nf symmetry. Using a mean-field
analysis at weak coupling and strong screening, we show that center symmetry requires the sponta-
neous breaking of chiral symmetry, which is shown to only take place for Nf = 1. For a sufficiently
dense liquid, we find that the ground state is center symmetric and breaks spontaneously flavor
symmetry through SU(Nf ) × Z4Nf → O(Nf ). As the liquid dilutes with increasing temperature,
center symmetry and chiral symmetry are restored. We present numerical and analytical estimates
for the transition temperatures.

PACS numbers: 11.15.Kc, 11.30.Rd, 12.38.Lg

I. INTRODUCTION

This work is a continuation of our earlier studies [1–3]
of the gauge topology in the confining phase of a theory
with the simplest gauge group SU(2). We suggested that
the confining phase below the transition temperature is
an “instanton dyon” (and anti-dyon) plasma which is
dense enough to generate strong screening. The dense
plasma is amenable to standard mean field methods.

The key ingredients in the instanton-dyon liquid model
are the so called KVBLL instantons threaded by fi-
nite holonomies [4] splitted into their constituents, the
instanton-dyons. Diakonov and Petrov [5, 6] have shown
that the KvBLL instantons dissociate in the confined
phase and recombine in the deconfined phase, using
solely the BPS protected moduli space. The inclusion of
the non-BPS induced interactions, through the so called
streamline set of configuration, is important numerically,
but it does not alter this observation [7]. The dissociation
of instantons into constituents was advocated originally
by Zhitnitsky and others [8].

Unsal and collaborators [9] proposed a specially
tuned setting in which instanton constituents (they call
instanton-monopoles) induced confinement even at ex-
ponentially small densities, at which the semi-classical
approximations is parametrically accurate. Key fea-
ture of this setting is cancellation of the perturbative
Gross-Pisarski-Yaffe holonomy potential. More specifi-
cally, in [9] the non-trivial center symmetic phase emerges
in the dilute vacuum at weak coupling for periodic bound-
ary conditions of adjoint quarks where the instanton-
dyons combine into pairs of ′′bions′′. However in the
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present work as we detail below, and also the work pre-
sented in [5, 6], the non-trivial center symmetric phase
at low temperatures, emerges for anti-periodic boundary
conditions for adjoint quarks where the instanton-dyons
form a dense liquid.

The KvBLL instantons fractionate into constituents
with fractional topological charge 1/Nc. Their fermionic
zero modes do not fractionate but rather migrate be-
tween various constituents [10]. This interplay between
the zero modes and the constituents is captured precisely
by the Nye-Singer index theorem [11]. For fundamental
fermions, we have recently shown in the mean-field ap-
proximation that the center symmetry and chiral sym-
metry breaking are intertwined in this model [2]. The
broken and restored chiral symmetry correspond to a cen-
ter symmetric or center asymmetric phases, respectively.
Similar studies were developed earlier in [12–14].

In this work we would like to address this interplay be-
tween confinement and chiral symmetry breaking using
Nf massless quarks in the adjoint representation of color
SUc(2). We will detail the nature of the flavor symme-
try group of the effective action induced by dissociated
KvBLL calorons in the confined phase, and investigate
its change into an asymmetric phase at increasing tem-
perature. Throughout, we will use the words ′′center-
symmetric phase ′′ and ′′confining phase′′ interchangebly
although their meanings convey different requirements.
The former is a weaker form of confinement as it requires
only that the the vev of the Polyakov line to be zero.
Whenever used below, these words would mostly refer to
the former.

Lattice simulations with adjoint quarks [15] have
shown that the deconfinement and restoration of cen-
ter symmetry occurs well before the restoration of chiral
symmetry. These lattice results show that the ratio of
the chiral to deconfinement temperatures is large and
decrease with the number of adjoint flavors. More re-
cent lattice simulations have suggested instead a rapid
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transition to a conformal phase [16]. Effective PNJL
models with adjoint fermions have also been discussed
recently [17, 18].

The organization of the paper is as follows: In sec-
tion 2 we briefly review the index theorem on S1 × R3

for an adjoint fermion with twisted boundary condition.
In section 3, we detail the ADHM construction and use
it to derive the anti-periodic adjoint fermion in self-dual
BPS dyons. In section 4, we develop the partition func-
tion of an instanton-dyon ensemble with one light light
quark in the adjoint representation of SUc(2). By using a
series of fermionization and bosonization techniques we
construct the 3-dimensional effective action, accommo-
dating light adjoint quarks with explicit SU(Nf )×Z4Nf

flavor symmetry. In section 5, we discuss the nature of
the confinement-deconfinement in the quenched sector
(Nf = 0) of the induced effective action. In section 6,
we show that for a sufficiently dense instanton-dyon liq-
uid with light adjoint quarks, the 3-dimensional ground
state is still center symmetric and breaks spontaneously
SU(Nf )×Z4Nf → O(Nf ) flavor symmetry. Center sym-
metry is broken and chiral symmetry is restored only
in a more dilute instanton-dyon liquid, corresponding to
higher temperatures. Our conclusions are summarized
in section 6. In Appendix A we check that our ADHM
construct reproduces the expected periodic zero modes
for BPS dyons. In Appendix B we derive the perti-
nent equations for the anti-periodic adjoint fermions in
a BPS monopole without using the ADHM method. In
Appendix C we explicit the ADHM construction for the
anti-periodic zero modes in a KvBLL caloron. In Ap-
pendix D we detail the Fock correction to the mean-field
analysis. In Appendix E we briefly outline the 1-loop
analysis for completeness. In Appendix F we quote the
general result for the 1-loop contribution to the holonomy
potential with Nf adjoint massless quarks.

II. INDEX THEOREM FOR TWISTED QUARKS

In this section we revisit the general Nye-Singer index
theorem for fermions on a finite temperature Euclidean
manifold S1 × R3 for a general fermion representation.
For periodic fermions a very transparent analysis was
provided by Popitz and Unsal [19]. We will extend it
to fermions with arbitrary “twist” (phase), which is the
used for our case of anti-periodic fermions in the adjoint
representation.

A. Index

Consider chiral Dirac fermions on S1 ×R3 interacting
with an anti-self-dual gauge field A through

(
D ≡ γµDµ ≡ γµ(∂µ + igT aAaµ)

)
Ψ(x) = 0 (1)

with twisted fermion boundary conditions (β = 1/T )

Ψ(x4 + β,x) = eiϕΨ(x4,x) (2)

Here D satisfies

D†D = −DµDµ + 2σmBm = DD† + 2σmBm (3)

For monopoles, the difference between the zero modes of
different chiralities in arbitrary R-representation is cap-
tured by Calias index [20]

IR = lim
M→0

M Tr
〈
Ψ†γ5Ψ

〉
= lim
M→0

Tr

(
γ5

M

−D +M

)
(4)

with the Trace carried over spin-color-flavor and space-
time. Using the local chiral anomaly condition for the
iso-singlet axial current J5

µ = Ψ†γ5γµΨ in Euclidean 4-
dimensional space

∂µJ
5
µ = −2MΨ†γ5Ψ− TR

8π2
F aµν F̃

a
µν (5)

we can re-write the index in the following form

IR = −1

2

∫
S1×S2

dσ2
k

〈
J5
k

〉
− TR

16π2

∫
S1×R3

F aµν F̃
a
µν (6)

with TR the Casimir operator in the R-representation.
The second contribution (I2) in (6) depends only on the
gauge-field, but the first contribution (I1) in (6) depends
on the nature of the fermion field.

B. L, M Dyons

To evaluate (6) for twisted SUc(2) adjoint fermions in
the background of an anti-self-dual or M dyon, we follow
Popitz and Unsal [19] and write

〈
J5
k

〉
≡ Tr

〈
x

∣∣∣∣γkγ5D
1

−D2 +M2

∣∣∣∣x〉 = (7)

Tr

〈
x

∣∣∣∣iσkD4

(
1

−D2 +M2 + 2σ ·B −
1

−D2 +M2

)∣∣∣∣x〉
In the M anti-dyon background, we have at asymptotic
spatial infinity

−D2 → −∇2 +

(
〈A4〉+

π(2p+ ϕ
π )

β

)2

Bm → −rm
r3

(8)

The compact character of A4 on S1 breaks SUc(2) →
Ab(SUc(2)). After expanding the ratio with B in (7),
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only the first term carries a non-vanishing net flux in (6)
on S2 thanks to the asymptotic in (8). If we recall that
the Trace now carries a summation over the windings
along S1 labeled by p, and using the identity

∞∑
p=−∞

sgn(x+ p) = 1− 2x+ 2[x] (9)

we have

I1 = −
m=1∑
m=−1

m

∞∑
p=−∞

sgn

(
−2πν

β
m+

π(2p+ ϕ
π )

β

)
= −4ν + 2

[
ν +

ϕ

2π

]
− 2

[
−ν +

ϕ

2π

]
(10)

For color SUc(2), TR = 1/2 in the fundamental represen-
tation and TR = 2 in the adjoint representation. For the
latter,

I2 = − 2

16π2

∫
S1×R3

F aµν F̃
a
µν = 4ν (11)

it follows that

IM = I1 + I2 = 2
[
ν +

ϕ

2π

]
− 2

[
−ν +

ϕ

2π

]
(12)

We note that (12) was originally derived in [18].
For the L-dyon we note that the surface contributions

satisfy I1L = −I1M since the asymptotics at spatial infin-
ity have the same A4 with Bm of opposite sign. Therefore
we obtain

IL = 4− IM (13)

whatever the twist ϕ as expected. For anti-periodic
fermions with ϕ = π, we find that for ν < 1

2 , the L-
dyon carries 4 anti-periodic zero modes and the M-dyon
carries 0 zero mode. For 1

2 < ν < 1, the M-dyon car-
ries 4 zero modes and the L-dyon carries 0 zero mode.
The confining holonomy with ν = 1

2 is special as the zero
modes are shared equally between the L- and M -dyon, 2
on each.

III. ADHM CONSTRUCTION OF ADJOINT
ZERO MODES

In this section we first remind the general framework
for the ADHM [4, 6, 21, 22] construction for adjoint
fermions, and then apply it to to the special case of
adjoint fermions in the background field of BPS dyons.
A concise presentation of this approach can be found
in [6, 22] whose notations we will use below. Through-
out this section we will set the circle circumference

β = 1/T → 1, unless specified otherwise. We note that
our construction is similar in spirit to the one presented
in [23] for adjoint fermions in calorons, but is different
in some details. In particular, it does not rely on the
replica trick and therefore does not double the size of the
ADHM data.

A. ADHM construction

The basic building block in the ADHM construction is
the asymmetric matrix of data ∆(x) of dimension [N +
2k]×[2k] for an SU(N) gauge configuration of topological
charge k. The null vectors of ∆(x) can be assembled
into a matrix-valued complex matrix U(x) of dimension
[N + 2k]× [N ], satisfying ∆̄U = 0 or specifically

∆̄α̇λ
i Uλu = 0 (14)

with the ADHM label λ = u+iα running over 1 ≤ u ≤ N ,
0 ≤ i ≤ k and α, α̇ = 1, 2 referring to the Weyl-Dirac
indices which are raised by ε2. They are orthonormalized
by ŪU = 1N . In terms of (14) the classical ADHM gauge
field Am with 1 ≤ m ≤ 4 reads

Am = Ū i∂m U (15)

For k = 0 it is a pure gauge transformation with a
field strength Amn that satisfies the self-duality condition
Amn = ∗Amn. For k 6= 0 it still satisfies the self-duality
condition provided that [22]

∆̄β̇λ
i ∆λjα̇ = δβ̇α̇f

−1
ij (16)

with f† = f a positive matrix of dimension [k]× [k]. The
matrix of data is taken to be linear in the space-time
variable xn

∆λiα̇ = aλiα̇ + bαλixαα̇

∆̄α̇λ
i = āα̇λi + x̄α̇αb̄λαi (17)

with the quaternionic notation xαα̇ = xn(σn)αα̇ and
σn = (12, i~σ).

B. Anti-periodic adjoint fermion in general

Given the matrix of ADHM data as detailed above, the
adjoint fermion zero mode in a self-dual gauge configu-
ration of topological charge k reads [22]

λα = ŪMfb̄αU − ŪbαfM̄U (18)

which can be checked to satisfy the Weyl-Dirac equation
provided that the Gassmanian matrix M ≡ Mλi of di-
mension [N + 2k]× [k] satisfies the constraint condition
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∆̄α̇M + M̄∆α̇ = 0 (19)

To unravel the constraints (16) and (19) it is con-
venient to re-write the ADHM matrix of data ∆(x) in
quaternionic blocks through a pertinent choice of the
complex matrices a, b, i.e.

∆(x) =

(
ξ

B − x12

)
(20)

with

ξ ≡ ξuiα̇ ≡ (ξα̇)ui

B ≡ (Bαα̇)ij (21)

In quaternionic blocks, the null vectors (14) are

U(x) ≡ 1√
φ(x)

(
−12

u(x)

)
=

1√
φ(x)

(
−12

(B† − x†12)−1ξ†

)
(22)

with the normalization φ(x) = 1 + u†(x)u(x). To solve
the constraint condition (19) we also define

M ≡
(

cuj
Mαij

)
(23)

and its conjugate M̄ ≡ (c̄ju, M̄
α
ji) . Therefore the solu-

tion to (19) satisfies Mα = M̄α and the new constraint
between the Grassmanians

[Mα, Bαα̇] + c̄ξα̇ + ξ̄α̇c = 0 (24)

finally, for periodic gauge configurations on S1 × R3

such as the KvBLL calorons or BPS dyons, the index k
is extended to all charges in Z. It is then more convenient
to use the Fourier representations

f(z) =

∞∑
k=−∞

fke
i2πkz

B(z, z′) =

∞∑
k,l=−∞

Bkle
2πi(kz−lz′) (25)

which are z-periodic of period 1.

C. Anti-periodic adjoint fermion in a BPS Dyon

For BPS dyons the previous arguments apply [24]. In
particular, for the SU(2) M-dyon on S1 × R3, the pre-
ceding construct simplifies. In particular, the quaternion
blocks in the ADHM matrix of data in (20) are simply

ξ = 0

B(z, z′) = δ(z − z′) 1

2πiν

∂

∂z
(26)

The normalized null vector is readily found in the form

U =

(
0

u(x, z)

)
(27)

with

u(x, z) =

(
2πvr

sinh(2πvr)

) 1
2

ei2πzv(x4−iσ·x) (28)

with the vev v = ν/β.
The constraint (16) following from the self-duality con-

dition translates to the equation for the resolvent

(
i
∂

∂z
+ 2πνx4

)2

f(z, z′) + (2πνr)2f(z, z′) = δ(z − z′)

(29)

The solution is

f(z, z′) = −e
2πivx4(z−z′)

8πvr
(sinh(2πvr|z − z′|)

+coth(πvr) sinh(2πvrz) sinh(2πvrz′)

−tanh(πvr) cosh(2πvrz) cosh(2πvz′))

(30)

We have explicitly checked that (30) satisfies the identi-
ties used in the ADHM construction as noted in [22]. In
our case these identities read

2

∫ 1
2

− 1
2

dz1f̃(z, z1)

(
∂

∂z1

)
f̃(z1, z

′) = −(z − z′)f̃(z, z′)

− ∂

∂xi
f̃(z, z′) = 2xi(2πν)2

∫ 1
2

− 1
2

dz1f̃(z, z1)f̃(z1, z
′)

(31)

with the definition f/f̃ = e2πix4(z−z′), and

δ(z − z′)− ∂2

∂z∂z′
f(z, z′)

−2πνrσ · r̂
(
∂

∂z
+

∂

∂z′

)
f(z, z′)− (2πνr)2f(z, z′)

=
2νπr

sinh(2πνr)
(cosh(2πνr(z + z′))

+σ · r̂ sinh(2πνr(z + z′))) (32)
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We note that the periodicity on S1 translates to the
quasi-periodicities

u(x4 + β, ~x, z) = e2πiνzu(x4, ~x, z)

f(x4 + β, ~x, z, z′) = e2πiν(z−z′)f(x4, ~x, z, z
′) (33)

For the adjoint fermion zero-mode, the Grassmanian
matrix also simplifies

M(z − z′) = M(z′) δ

(
z − z′ ± 1

2ν

)
(34)

Inserting (34) in the contraint equation (24) and noting
that now ξ = 0, yield

d

dz
M(z) = 0→M(z) = M± (35)

with normalized constant spinors M±. This allows to
re-write (34) in the explicit form

M(z − z′) = M+δ

(
z − z′ + 1

2ν

)
+M−δ

(
z − z′ − 1

2ν

)
(36)

With the above in mind, the adjoint zero-mode solu-
tion (18) in the SUc(2) BPS M-dyon simplifies to

λ±α (x) = −
∫ + 1

2

− 1
2

dzdz′

×u†(x, z)εM±f
(
z ∓ 1

2ν
, z′
)
uα(x, z′)

−
∫ + 1

2

− 1
2

dzdz′

×u†α(x, z)f(z, z′)M±,Tu

(
x, z′ ∓ 1

2ν

)
(37)

For ν > 1/2 the integrations can be undone. For that we
translate the vectors in (37) to spinors using the quater-
nionic form λ±m = λ±αabσmba, and make (37) more explicit.
The result is

λ±m(x) = (f1(r)σm + f2(r)σ · r̂σmσ · r̂
±f3(r)σmσ · r̂ ± f4(r)σ · r̂σm)χ (38)

with f1,2,3,4 defined as

−16s2 sinh(s) cosh(s/2) sinh(s/2)f1 =

s2
(
−
(
x2 − 1

))
cosh(s(x− 1)) + s2x2 cosh(s(x+ 1))

+2s2x cosh(sx)− 2s2 cosh(sx)− 2s2x cosh(s(x+ 1)) +

s2 cosh(s(x+ 1))− sx sinh(s(x− 2))

+2s sinh(s(x− 1)) + sx sinh(sx)− 2s sinh(sx)

+ cosh(s(x− 2))− cosh(sx)

16s2 sinh(s) cosh(s/2) sinh(s/2)f2 =

(1− 2s2(x− 1)) cosh(sx) + s(−s(x2 − 1) cosh(s− sx)

+x sinh(s(x− 2))− x sinh(sx) + 2 sinh(sx)

−2 sinh(s− sx) + s(x− 1)2 cosh(s(x+ 1)))

− cosh(s(x− 2))

−16s sinh(s) cosh(s/2) sinh(s/2)f3 =

x cosh(s(x− 2)) + x(2s(x− 1) sinh(s)− 1) cosh(sx)

−2s(x− 1)(cosh(s)− 1) sinh(sx)

8s sinh(s) cosh(s/2) sinh(s/2)f4 =

sinh(sx)(s(−x) + cosh(s)(s(−x) + x sinh(s) + s) + s)

−x sinh(s)(s(−x) + s+ sinh(s)) cosh(sx)

(39)

where we have set s = 2νω0r and x = 1/2ν. Asymptoti-
cally, the zero modes (39) simplify to

f1 ≈ −f2 ≈ f3 ≈ −f4 → (2ν − 1)2eω0(1−2ν)r (40)

and therefore (38) is asymptotically (r →∞)

λ±m(x) ≈ (1∓ σ · r)σm(1± σ · r)eω0(1−2ν)rχ (41)

We will use this approximation to carry explicitly the
analysis below. The 4 zero modes (41) are localized on
the M-dyon for ν > 1/2, and by duality on the L-dyon for
ν < 1/2, in agreement with the index theorem reviewed
above.For ν < 1/2 the integration vanishes with λ+ ≡ 0.

For ν > 1/2 we note that the 4 adjoint zero modes are
normalizable as they fall asymptotically with eω0(1−2ν)r.
(37) can be explicitly checked to be normalized as

∫
R3

d3xTr
(
λ±αλ

′∓
β εαβ

)
=

1

8(2νω2
0)

∫
S2

×d~S · ~∇Trz(M̄(P + 1)M ′f + M̄ ′(P + 1)Mf) =

π2(1− 1
2ν )

2(νω0)3
M̄ ′εM̄ (42)

We note that at ν = 1/2 the normalization vanishes.
This is precisely where the zero modes re-organize equally
between the L- and M-instanton-dyon, a pair on each.
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D. Anti-periodic adjoint fermion in a BPS Dyon
with ν = 1

2

The case ν = 1/2 for the adjoint zero mode is more
subtle. The preceding arguments show that the exponent
in it asymptotic decay disapperin this case: eω0(1−1)r =
1. In this limit, the index theorem states that 2 zero
modes are localized on the M-dyon and 2 zero-modes on
the L-dyon. In this section, we show that the reduction
of the result (37) for ν = 1/2 simplifies. Specifically,

(λ±α )ab(r) =
1

sinh(ω0r)
(43)((

cosh
(ω0r

2

)
± σ · r̂ sinh

(ω0r

2

))
aβ

×(εM)β (f(ω0r)± g(ω0r)σ · r̂)αb
−εαβ(f(ω0r)∓ g(ω0r)σ · r̂)aβMγ

×
(

cosh
(ω0r

2

)
∓ σ · r̂ sinh

(ω0r

2

))
γb

)
with

f(ω0r) =
1

4 cosh
(
ω0r
2

) (−ω0r − sinh(ω0r))

g(ω0r) =
1

4 sinh
(
ω0r
2

) (−ω0r + sinh(ω0r)) (44)

(43) can be written in a more concise form by translating
the vectors to spinors using the quaternionic form

λ±m = λ±αabσmba (45)

with

(λ±α )(r) =
1

sinh(ω0r)

×(f(ω0r)± g(ω0r)σ · r̂)σm
×
(

cosh
(ω0r

2

)
± σ · r̂ sinh

(ω0r

2

))
εM

−ε
(
MT

(
cosh

(ω0r

2

)
∓ σ · r̂ sinh

(ω0r

2

))
×σm (f(ω0r)± g(ω0r)σ · r̂))T (46)

Using σTm = εσmε, the transposed of the second term in
(46) can be reduced. The result is

(λ±α )(r) =
2

sinh(ω0r)

×(f(ω0r)± g(ω0r)σ · r̂)σm
×
(

cosh
(ω0r

2

)
± σ · r̂ sinh

(ω0r

2

))
χ (47)

with the identified spinor χ = εM . The (color) invariant
group norm of (47) is finite. Specifically, if we set λ±m,α =

Bm±αβ χβ , then

Tr
(
λ±αλ

±
β εαβ

)
= χT

∑
m

BmT εBmχ

= −3χT εχ
(f2(ω0r)− g2(ω0r))

sh2(ω0r)
(48)

which is convergent in R3. Note the difference between
the Matsubara arrangements in (48) and (42). For com-
pleteness, we note that (48) is the analogue of the gluino
condensate using the anti-periodic zero modes. The pe-
riodic zero modes are briefly discussed in Appendix A
using the same ADHM construct. In Appendix B, we
verify explicitly that the ADHM zero modes are consis-
tent with a direct reduction of the Dirac equation. For
completeness, we detail in Appendix C the ADHM con-
struct for the zero modes around KvBLL instantons.

IV. PARTITION FUNCTION WITH ADJOINT
FERMIONS

In this section we will use the adjoint zero modes
made explicit in (37-41), to construct the partition func-
tion for an ensemble of interacting dyons and anti-dyons
with adjoint fermions. We will show that the partition
function is amenable to a 3-dimensional effective theory.
The derivation will be for the non-symmetric case with
ν > 1/2, where all the 4 adjoint zero modes are local-
ized on the M -dyon (anti-dyon). The non-symmetric
case with ν < 1/2 with the adjoint zero modes local-
ized on the L-dyon (anti-dyon) is equivalent and follow
by duality L ↔ M and ν → ν̄ = 1 − ν. The symmetric
case with each L and M dyons carrying 2 of the 4 adjoint
zero modes, will be understood in the limit ν → 1/2.

A. Partition function

In the semi-classical approximation, the Yang-Mills
partition function is assumed to be dominated by an
interacting ensemble of instanton-dyons (anti-dyons).
They are constituents of KvBLL instantons (anti-
instantons) with fixed holonomy [4]. The SUc(2) grand-
partition function with Nf adjoint Majorana quarks is

Z1[T ] ≡
∑
[K]

KL∏
iL=1

KM∏
iM=1

KL̄∏
iL̄=1

KM̄∏
iM̄=1

×
∫

fLd
3xLiL
KL!

fMd
3xMiM

KM !

fLd
3yL̄iL̄
KL̄!

fMd
3yM̄iM̄

KM̄ !

×det(G[x]) det(G[y])
∣∣∣det T̃(x, y)

∣∣∣Nf2
×e−VDD(x−y)e−VL(x−y)e−VM (x−y)

(49)
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Here xmi and ynj are the 3-dimensional coordinate of the
i-dyon of m-kind and j-anti-dyon of n-kind. Here G[x]
a (KL + KM )2 matrix and G[y] a (KL̄ + KM̄ )2 matrix
whose explicit form are given in [5, 6]. The fugacities
fi are related to the overall dyon plus anti-dyon density
nD [26].
VDD̄ is the streamline interaction between D = L,M

dyons and D̄ = L̄, M̄ anti-dyons as numerically discussed
in [1, 7]. For the SU(2) case it is Coulombic asymptoti-
cally [1]

VDD(x− y)→ − CD
αs T

×
(

1

|xM − yM |
+

1

|xL − yL|
− 1

|xM − yL|
− 1

|xL − yM |

)
(50)

The strength of the Coulomb interaction in (50) is
CD = 2. Following [12], we define the core interactions
VL,M (x−y) between LL̄ and MM̄ respectively, which we
assume to be step functions of height V0 and range x0

VM (x− y) = TV0 θ(x0 − 2ω0ν|x− y|)
VL(x− y) = TV0 θ(x0 − 2ω0ν̄|x− y|) (51)

with x0/2 normalized to the dimensionless unit volume

(x0

2

)3

=
4π

3
(52)

We recall that the LM̄ and ML̄ channels are repulsive.
A sketch of the interaction potentials is given in Fig. 1.
Below the core value of aDD̄, the streamline configuration
annihilates into perturbative gluons.

VDD̄(r)

LL̄

MM̄

LM̄

ML̄

r r

�VDD̄(rC)

+VDD̄(rC)

VM,L(r)

V0

rc

FIG. 1: Schematic description for the streamline (left) and
core (right) potentials between a pair of SUc(2) instanton-
dyon and anti-instanton dyon.

B. The determinant of the adjoint fermions

The fermionic determinant in (49) is composed of all
the hoppings between the dyons and anti-dyons through
the adjoint fermionic zero modes. To explicit the hop-
ping, we consider in details the case Nf = 1, and only
quote at the end the generalization to arbitrary Nf . To
explicit the hopping for Nf = 1, we define

Ψ(x) ≡
∑
I,±

Ψ±(x− xI)χ±I

Ψ̄(x) ≡
∑
J̄,±

Ψ̄±(x− xJ̄)χ̄±J (53)

with the sum running over all dyons and anti-dyons, and
the 2 Matsubara frequencies ±ω0 subsumed in the zero
modes. The adjoint dyon and anti-dyon zero modes are
labelled by

λ±D(x) ≡ Ψ±(x− xD)χ±D (54)

Here χ±D is a 2-component Grassmanian spinor and Ψ±

a 2 × 2 valued matrix, both of which refer to a D-dyon
(anti-dyon). From (37-41) the Fourier transforms of Ψ±

read

ν̃−
3
2 Ψ+

m(p) = f1(p)σm + if2(p)[σm, σ · p̂] + f3(p)p̂mσ · p̂
(55)

with

f1(p) =
ν̃

(p2 + ν̃2)2
+

1

p3

(
ν̃p

(2p2 + ν̃2)

(p2 + ν̃2)2
− tan−1

(p
ν̃

))
f2(p) =

p

(p2 + ν̃2)2

f3(p) = − 1

p3

(
pν̃(5p̃2 + 3ν̃2)

(p2 + ν̃2)2
− 3 tan−1

(p
ν̃

))
(56)

Here p = |~p| and ν̃ = (2ν − 1)ω0.
In terms of (53-54) the hopping action for massive ad-

joint quarks takes the explicit form

i

∫
d4x(ΨT , Ψ̄T )

(
m εσ · ∂

−εσ̄ · ∂ m

)(
Ψ
Ψ̄

)
=
∑
±

(χT±I , χ̄T∓J )

(
im K̃(xII′) T±(xIJ)

−TT±(xIJ) −im K̃(xJJ ′)

)(
χ±I
χ̄∓J

)
(57)

with xIJ ≡ xI − xJ . We note that the matrix entries in
(57) are 2×2 valued or quaternionic, and that the matrix
overall is anti-symmetric under transposition. This ob-
servation is consistent with the observations made in [27].
The matrix entries in (57) satisfy
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T±(xIJ) = −εT̃±(xIJ)

TT±(xIJ) = −εT̃∓†(xIJ) (58)

K̃(xII′) = −εK(xII′) (59)

Using (58) we can rewrite (49) for massive fermions in
the basis (χ+, χ−, χ̄+, χ̄−)T as follows

∣∣∣det T̃(x, y)
∣∣∣ 1

2

≡

∣∣∣∣∣∣∣∣∣det


0 −εmKii′ 0 iεT̃+

ij

−mεKii′ 0 −iεT̃+†
ji 0

0 −iT̃+?
ij ε 0 mεKii′

iT̃+T
ji ε 0 mεKii′ 0


∣∣∣∣∣∣∣∣∣

1
2

(60)

with dimensionality 4(KI + KĪ)
2. Each of the quater-

nionic entry in T̃+
ij is a “hopping amplitude” for a fermion

between an instanton-dyon and an instanton-anti-dyon.
Each of the quaternion entry in Kii′ is an overlap between
two instanton-dyons or two instanton-anti-anti-dyons.

C. Hopping amplitudes

In momentum space the quaternionic entries are given
by

T±(p) = ΨT±(−p)εσ · p±Ψ̄∓(p) (61)

with again p± = (±ω0, ~p). Since

ΨT (p) = εΨ(p)ε (62)

we also have the identities

T±(p) = −εΨ±(−p)(±ω0 + iσ · p)Ψ̄∓(p)

TT±(p) = −εΨ̄∓(p)(∓ω0 + iσ · p)Ψ±(−p) (63)

We note the relations

Ψ±(p) = Ψ̄∓(p)

(Ψ±)†(−p) = Ψ∓(p) (64)

and therefore we have the additional identities

T±(p) = −εT̃±(p)

TT±(p) = −εT̃∓†(−p) (65)

Here, we have

T̃+(p) = Ψ+(−p)(ω0 + iσ · p)Ψ+(p) (66)

or more explicitly

ω3
0 ν̃
−3T̃+(p) =(

3f2
1 + f2

3 + 2f1f3 − 8f2
2 + 8f1f2

p

ω0

)
ω0

+iσ · p
(
−f2

1 + f2
3 + 2f1f3 + 8f2

2 + 8f1f2
ω0

p

)
(67)

We also have

K(p) = Ψ−(−p)Ψ+(p) = Ψ+†(p)Ψ+(p)

= ω−3
0 ν̃3

(
3f2

1 + f2
3 + 2f1f3 + 8f2

2

)
(68)

V. EFFECTIVE ACTION WITHOUT ADJOINT
FERMIONS

In this section we will derive the 3-dimensional effec-
tive action in the case without the adjoint fermions,to
be referred to as Nf = 0 case below. We will analyze it
in the limit of weak coupling and large densities across
the transition region. We will explicitly derive the in-
duced effective potential for the SUc(2) holonomies ν, ν̄
and show that for a critical density the ground state of
the 3-dimensional effective theory confines.

A. Bosonic fields

Following [1, 2, 5] the moduli determinants in (49) can

be fermionized using 4 pairs of ghost fields χ†L,M , χL,M

for the dyons and 4 pairs of ghost fields χ†
L̄,M̄

, χL̄,M̄ for

the anti-dyons. The ensuing Coulomb factors from the
determinants are then bosonized using 4 boson fields
vL,M , wL,M for the dyons and similarly for the anti-
dyons. The result is

S1F [χ, v, w] = − T

4π

∫
d3x(

|∇χL|2 + |∇χM |2 +∇vL · ∇wL +∇vM · ∇wM
)

+(
|∇χL̄|2 + |∇χM̄ |2 +∇vL̄ · ∇wL̄ +∇vM̄ · ∇wM̄

)
(69)

For the interaction part VDD̄, we note that the pair
Coulomb interaction in (49) between the dyons and anti-
dyons can also be bosonized using standard methods [28–
30] in terms of σ and b fields. As a result each dyon
species acquire additional fugacity factors such that

M : e−b−iσ L : eb+iσ M̄ : e−b+iσ L̄ : eb−iσ (70)
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with an additional contribution to the free part (69)

S2F [σ, b] = T

∫
d3x d3y (71)

×
(
b(x)V −1(x− y)b(y) + σ(x)V −1(x− y)σ(y)

)
The streamline interaction is asymptotically Coulombic
and attractive in the LL̄ and MM̄ channels with

V (r) ≈ −CD
αs

1

Tr
= − 2

αs

1

Tr
(72)

and repulsive in the L̄M and LM̄ channels as illustrated
in Fig. 1. At short distances, these 4-channels reduce to
perturbative gluons that should be subtracted. We fol-
low [14] and introduce a core interaction as illustrated in
Fig. 1 to achieve that. Specifically, for the core interac-
tions VL,M (r), we have

S3F [φ1, φ2] =

∫
d3x

(
φ†1V

−1
M φ1 + φ†2V

−1
L φ2

)
(73)

and the interaction part is now

SI [v, w, b, σ, χ] = −
∫
d3x

fM
(
4πvm + |χM − χL|2 + vM − vL

)
×e−b+iσ+iφ†1ewM−wL +

fL
(
4πvl + |χL − χM |2 + vL − vM

)
×e+b−iσ+iφ†2ewL−wM +

fM̄
(
4πvm̄ + |χM̄ − χL̄|2 + vM̄ − vL̄

)
×e−b−iσ+iφ1ewM̄−wL̄ +

fL̄
(
4πvl̄ + |χL̄ − χM̄ |2 + vL̄ − vM̄

)
×e−b−iσ+iφ2ewL̄−wM̄ (74)

without the fermions. The minimal modifications to (74)
due to the hopping fermions in the adjoint representation
will be detailed below.

In terms of (69-74) the instanton-dyon partition func-
tion (49) can be exactly re-written as an interacting ef-
fective field theory in 3-dimensions,

ZDD[T ] ≡
∫

D[χ]D[v]D[w]D[σ]D[b]D[φ]

×e−S1F−S2F−S3F−SI (75)

In the absence of the fields σ, b, φ (75) reduces to the 3-
dimensional effective field theory discussed in [5] which
was found to be integrable. In the presence of σ, b, φ the
integrability is lost as the dyon-anti-dyon screening up-
sets the hyper-Kahler nature of the moduli space. Since
the effective action in (75) is linear in the vM,L,M̄,L̄,

the latters are auxiliary fields that integrate into delta-
function constraints. However and for convenience, it is
best to shift away the b, σ fields from (74) through

wM − b+ iσ → wM

wM̄ − b− iσ → wM̄ (76)

which carries unit Jacobian and no anomalies, and re-
cover them in the pertinent arguments of the delta func-
tion constraints as

− T

4π
∇2wM + feiφ

†
1ew − feiφ†2e−w

=
T

4π
∇2(b− iσ)

− T

4π
∇2wL + feiφ

†
2e−w − few = 0 (77)

with w ≡ wM − wL, f ≡ √fMfL, and similarly for the
anti-dyons.

B. Effective action with Nf = 0

In [5] it was observed that the classical solutions to
(77) can be used to integrate the w′s in (75) to one loop.
The resulting bosonic determinant was shown to cancel
against the fermionic determinant after also integrating
over the χ′s in (75). This holds for our case as well. How-
ever, the presence of σ, b, φ makes the additional parts of
(75) still very involved in 3 dimensions. To proceed fur-
ther, we solve the constraint (77)

b− iσ = w +
8πf

T (−∇2 +M2
D)

(eiφ
†
1ew − eiφ†2e−w)

b+ iσ = w̄ +
8πf

T (−∇2 +M2
D)

(eiφ1ew̄ − eiφ2e−w̄)

(78)

with a screening mass MD to be fixed variationally. In
terms of (78), the effective action without the fermionic
contributions (Nf = 0) is,
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S = Sφ + Tw̄V −1w + (−4πfν(eweiφ
†
1 + ew̄eiφ1)

+8πf(eweiφ
†
1

V −1

M2
D +∇2

w̄ + eiφ1ew̄
V −1

−∇2 +M2
D

w))

+(−4πfν̄(e−weiφ
†
2 + e−w̄eiφ2)

−8πf(e−weiφ
†
2

V −1

−∇2 +M2
D

w̄ + e−w̄eiφ2
V −1

M2
D −∇2

w)

+
(8πf)2

T
(eiφ

†
1ew − eiφ†2e−w)

1

M2
D −∇2

V −1

× 1

M2
D −∇2

(eiφ1ew̄ − eiφ2e−w̄)

+Tr ln(1 +
8πf

T (M2
D −∇2)

(eiφ
†
1ew + eiφ

†
2e−w))

+Tr ln(1 +
8πf

T (M2
D −∇2)

(eiφ1ew̄ + eiφ2e
−w̄

)) (79)

with vl = vl̄ = ν and vm = vm̄ = ν̄ = 1 − ν. Thus, for
constant w we have

S = Sφ + V3CDαsw̄wM
2
D

+

∫
4πf(−ν(eiφ

†
1ew + eiφ1ew̄) +

+2CDαs(we
iφ1ew̄ + w̄eiφ

†
1ew))

+

∫
4πf(−ν̄(eiφ

†
2e−w + eiφ2e−w̄)

−2CDαs(we
iφ2e−w̄ + w̄eiφ

†
2e−w))

+
(8πf)2

T
(eiφ

†
1ew − eiφ†2e−w)

1

M2
D −∇2

V −1

× 1

M2
D −∇2

(eiφ1ew̄ − eiφ2e−w̄)

+Tr ln

(
1 +

8πf

T (M2
D −∇2)

(eiφ
†
1ew + eiφ

†
2e−w)

)
+Tr ln

(
1 +

8πf

T (M2
D −∇2)

(eiφ1ew̄ + eiφ2e−w̄)

)
(80)

To proceed further, we will treat the core interaction us-
ing the cumulant expansion. In leading order, only the
second cumulant is retained, and the result is

lnZ

V3
≈

+TαsCDM
2
D

(
w̄ +

16πf

TM2
D

sinh w̄

)
×
(
w +

16πf

TM2
D

sinhw

)
−4πf(ν(ew + ew̄) + ν̄(e−w + e−w̄))

+

∫
d3r(e−V1 − 1)F1 +

∫
d3r(e−V2 − 1)F2

+

∫
d3p

(2π)3
ln

(
1 +

8πf

T

ew + e−w

M2
D + p2

)
+

∫
d3p

(2π)3
ln

(
1 +

8πf

T

ew̄ + e−w̄

M2
D + p2

)
(81)

with F2 = F1(w → −w) and

F1 = 16π2f2ew+w̄

×
∣∣∣∣−ν + 2CDαsw̄ +

∫
2

T

d3p

(2π)3

1

p2 +M2
D

∣∣∣∣2
+

(8πf)2

T
ew+w̄

×
∫
d3r1d

3r2GMD
(r − r1)V −1(r1 − r2)GMD

(r2)

(82)

C. Effective potential with Nf = 0

For small αs and strong screening, we may neglect the
terms proportional to αs and drop the screening contri-
butions. Since w̄ = w†, the effective potential associated
to (81) and including the 1-loop perturbative contribu-
tion for finite holonomy is

− PD
8πf

= − cosσ (νeb + ν̄e−b)

+n

(
e2b

ν
+
e−2b

ν̄

)
+

4π2

3

T 3

8πf
ν2ν̄2 (83)

with b = Rew and

n =
2πf(1− e−V0)

(2πT/x0)3
≡ 2πf

T 3

32

3π2
(1− e−V0) (84)

The extremum in σ ≡ Imw in (83) occurs at σ = 0.
The minimum with respect to b is fixed by the quartic
equation for eb
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2n

(
e2b(ν)

ν
− e−2b(ν)

ν̄

)
= (νeb(ν) − ν̄e−b(ν)) (85)

with b(ν) as a solution. (85) admits always the symmet-
ric solution b(1/2) = 0 as an explicit solution for large n.
The quenched effective potential for the holonomy with
Nf = 0 follows in the form

− PD
8πf

→ −(νeb(ν) + ν̄e−b(ν))

+n

(
e2b(ν)

ν
+
e−2b(ν)

ν̄

)
+

4π2

3

T 3

8πf
ν2ν̄2 (86)

We note that (86) is similar but not identical to the
effective potential discussed in [12]) using an excluded
volume approach. (86) admits a critical instanton-dyon
density nC above which the minimum of the quenched
potential (86) occurs for ν = 1/2 or in the confined phase,
and below which two minima develop moving away from
ν = 1/2 towards the ν = 0, 1 or deconfined phase. To
proceed further, we fix V0 = ln2 with n ≈ πf/T 3. (86)
reduces to

− PD
8πf

→ n

(
e2b(ν)

ν
+
e−2b(ν)

ν̄

)
−
(
νeb(ν) + ν̄e−b(ν)

)
+
π2

6n
ν2ν̄2 (87)

as shown in the upper part (n = 1) and the lower part
(n = 0.4) of Fig. 2. The critical density is found numer-
ically to be nD ≈ 0.56 or 8πf/T 3 ≈ 4.48. For n < nC ,
(87) displays two minima at ν1 < 1/2 and ν2 = 1 − ν1.
For n > nC , we have a single minimum at ν = 1/2. The
alternative choice of the core V0 → νV0, yields a finite
effective potential at ν = 0, 1. For νV0 = 2ν, the critical
density occurs at a larger density with nC ≈ 3.7, and a
minimum at b = 0 for n > nC ,

−PDmin

8πf
= 4n− 1 +

π2

96n
(88)

D. Electric and magnetic masses with Nf = 0

In the center symmetric phase with ν = 1/2 with
Nf = 0, we may define a class of electric and mag-
netic masses as the curvatures of the induced potential
−PD [12]. Specifically, we have

0.0 0.2 0.4 0.6 0.8 1.0
ν

4

5

6

7

8

V(ν)

0.0 0.2 0.4 0.6 0.8 1.0
ν

0.8

0.9

1.0

1.1

1.2

1.3

1.4

V(ν)

FIG. 2: The holonomy potential (87) for the density n = 1,
in a “symmetric phase” (above), compared to its shape at
smaller density n = 0.4, in an “asymmetric phase” (below).

Tm2
E =

1

2CDαs

∂2(−PD)

∂2b

=
4nT 3

αsCD
(8n− 1)

Tm2
M =

1

2CDαs

∂2(−PD)

∂2σ

=
4nT 3

αsCD
(89)

We note that M2
E/M

2
M = 8n − 1 > 1 in the symmet-

ric phase since nD ≈ 0.56 > 1/4. These masses are
distinct from the electric and magnetic screening masses
ME,M following from the decorrelation of the electric and
magnetic fields in the instanton-dyon liquid as discussed
in [1]. The latters are space-like poles in suitably defined
propagators.

VI. EFFECTIVE ACTION WITH ADJOINT
FERMIONS

A. Fermionic fields with Nf = 1

To fermionize the determinant(60) and for simplicity,
consider first the case of Nf = 1 flavor an the lowest
2 Matsubara frequencies ±ω0. As we noted earlier, the
quaternionic matrix in (60) is real and anti-symmetric of
dimensionality 4(KI +KĪ)

2. Its fermionization will only
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require the use of a single species of Grassmanians with
no need for their conjugate. Specifically, we have

∣∣∣det T̃
∣∣∣ 1

2

=

∫
D[χ] eχ

T T̃χ (90)

with χ = (χ+, χ−, χ̄+, χ̄−). This is the analogue of
the Majorana-like representation for our hopping ma-
trix in Euclidean S1 × R3. We can re-arrange the ex-
ponent in (90) by defining a Grassmanian source J(x) =
(J+(x), J−(x), J̄+(x), J̄−(x))T with

J+
α (x) =

KL∑
I=1

χ+I
α δ3(x− xI)

J̄+β̇(x) =

KĪ∑
J=1

χ̄+β̇
2J δ

3(x− yJ) (91)

and by introducing 2 additional fermionic fields ψ(x) =
(ψ+(x), ψ−(x), ψ̄+, ψ̄−)T . Thus

eχ
T T̃χ =

∫
D[ψ] exp (−

∫
ψT G̃ψ + 2

∫
JTψ)∫

dD[ψ] exp (−
∫
ψT G̃ψ)

(92)

with G̃ a 4× 4 chiral block matrix defined by:

G̃T̃ = 1 (93)

Fo massless adjoint quarks, we have the explicit form


0 0 0 iεGT (y − x)
0 0 −iεG?(x− y) 0
0 −iG†(y − x)ε 0 0

iG(x− y)ε 0 0 0


(94)

with entries TG = 1. The Grassmanian source contribu-
tions in (92) generates a string of independent exponents
for the instanton-dyons and instanton-anti-dyons

KI∏
I=1

e2χ+T
I ψ+(xI)+2χ−TI ψ−(xI)

×
KĪ∏
J=1

e2χ̄+T
J ψ̄+(yJ )+2χ̄−TJ ψ̄−(yJ ) (95)

The Grassmanian integration over the χi in each factor
in (95) is now readily done to yield

∏
I

[
ψT+εψ+ψ

T
−εψ−

]∏
J

[
ψ̄T+εψ̄+ψ̄

T
−εψ̄−

]
=
∏
I

[
ψT+εψ−ψ

T
+εψ−

]∏
J

[
ψ̄T+εψ̄−ψ̄

T
+εψ̄−

]
(96)

for the instanton-dyons and instanton-anti-dyons. The
net effect of the additional fermionic determinant in (49)
is to shift the dyon and anti-dyon fugacities in (74)
through

fI → fI ψ
T
+εψ−(xI)ψ

T
+εψ−(xI)

fĪ → fĪ ψ̄
T
+εψ̄−(xĪ)ψ̄

T
+εψ̄−(xĪ) (97)

B. Resolving the constraints

In terms of (69-74) and the substitution (97), the dyon-
anti-dyon partition function (49) for finite Nf can be
exactly re-written as an interacting effective field theory
in 3-dimensions,

Z1[T ] ≡
∫
D[ψ]D[χ]D[v]D[w]D[σ]D[b]D[φ1]D[φ2]

×e−S1F−S2F−SI−Sψ−Sφ (98)

with the additional Nf = 1 chiral fermionic contribution

Sψ = ψT G̃ψ. Since the effective action in (98) is linear
in the vM,L,M̄,L̄, the latters integrate to give the following
constraints

− T

4π
∇2wM + (ψT+εψ−)2fMe

wM−wL+iφ†1

−fLewL−wM+iφ†2 =
T

4π
∇2(b− iσ)

− T

4π
∇2wL − (ψ̄T+εψ̄−)2fMe

wM−wL+iφ†1

+fLe
wL−wM+iφ†2 = 0 (99)

and similarly for the anti-dyons with M,L,ψ →M,L, ψ̄.
To proceed further the formal classical solutions to the
constraint equations or wM,L[σ, b] should be inserted
back into the 3-dimensional effective action. The result
is

Z1[T ] =

∫
D[ψ]D[σ]D[b]D[φ]e−S (100)

with the 3-dimensional effective action

S = SF [σ, b] + S[φ] +

∫
d3xψT G̃ψ (101)

−4πfMvm

∫
d3x (ψT+εψ−)2ewM−wL+iφ†1

−4πfMvm

∫
d3x (ψ̄T+εψ̄−)2ewM̄−wL̄+iφ1

−4πfLvl

∫
d3x (ewL−wM+iφ†2 + ewL̄−wM̄+iφ2)

(102)
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Here SF is S2F in (72) plus additional contributions re-
sulting from the wM,L(σ, b) solutions to the constraint
equations (99) after their insertion back. The fermionic
contributions in (102) are Z4 symmetric.

C. Ground state with Nf = 1

We first consider the massless case with m = 0. The
uniform ground state of the 3-dimensional effective the-
ory described by (98-102) corresponds to b, σ, w constant,
with a finite condensate with

〈
ψT+εψ−

〉
=
〈
ψT−εψ+

〉
= Σ〈

ψ̄T+εψ̄−
〉

=
〈
ψ̄T−εψ̄+

〉
= Σ (103)

that breaks the Z4 symmetry of (102). This is the mech-
anism by which the instanton-dyon liquid enforces the
anomalous UA(1) breaking with adjoint fermions. The
fermionic quadri-linears in (102) can be reduced by in-
troducing pertinent Lagrange multipliers Λ′s through the
identity as detailed in [2]. Assuming parity symmetry, in
the mean-field or Hartree approximation, (102) becomes

S → S +

∫
d3xψT G̃ψ

+
∑
±

∫
d3xΛ1(x)(ψT±εψ∓ − Σ)

+
∑
±

∫
d3xΛ2(x)(ψ̄T±εψ̄∓ − Σ) (104)

We observe that the mean-field constraints in (104) en-
force the substitution ψT εψ → Σ, and therefore the shift
for Σ 6= 0

ewM−wL →
√
fL
fM
|Σ|ewM−wL

ewL−wM →
√
fM
fL

1

|Σ|e
wL−wM (105)

For completeness, the exchange or Fock correction to the
mean-field approximation (103) is detailed in Appendix
D. Also, a 1-loop alternative approximation is presented
in Appendix E.

To insure a smooth limit for ν → 1/2, we will rede-
fine the magnetic fugacity fM (2ν − 1)6 → fM through-
out. As half the zero-modes jump when ν = 1/2, the
hopping is singular in the ensemble made of constituent
instanton-dyons and instanton-anti-dyons. This singular-
ity does not appear if the constituents are jumpng within
the KvBLL caloron as all infrared tails are tamed, as we
have shown in Appendix C. But again, the fact that the
delocalization of the zero-modes makes use of the hop-
ping between instanton-dyons and instanton-anti-dyons

because of the chirality flip, it is necessary to unlock the
constituents from their respective KvBLL calorons and
anti-calorons as we have detailed.

With the above in mind, a repeat of the quenched argu-
ments show that the unquenched pressure PD = −V/V3

with adjoint and massless fermions is now

PD+F

T 3
= − ñ

2
Σ

8

(
e2b

ν
+
e−2b

ν̄

)
+ ñΣ (νeb + ν̄e−b)

−4Σ̃Λ̃ + π

∫
p̃2dp̃ ln(1 + Λ̃2F) +

4π2

3
ν2ν̄2

(106)

with ñΣ = 8πfΣ/T 3 and Λ̃ = Λ/T 2. We have defined

π4F(p̃, 2ν − 1) = (3f2
1 + f2

3 + 2f1f3 − 8f2
2 + 8f1f2p̃)

2

+p̃2

(
−f2

1 + f2
3 + 2f1f3 + 8f2

2 + 8f1f2
1

p̃

)2

(107)

The fi are given in (56) after replacing p→ p̃ = p/ω0 and
ν̃ → ν̃/ω0, all of which are now dimensionless. We have
numerically checked that the momentum integration in
(106) does not change much if we were to simplify the fi
in (56) to

f1 ≈ −
f3

3
→ − 1

p̃3
tan−1

(
p̃

2ν − 1

)
f2 →

p̃

(p̃2 + (2ν − 1)2)2
(108)

so that

F(p̃, 2ν − 1) ≈ 1

π4
(6f2

1 − 8f2
2 − 8f1f2p̃)

2

+p̃2(2f2
1 + 8f2

2 − 8f1f2
1

p̃
)2 (109)

The integral contribution in (106) is that of a constituent
adjoint quark, with a momentum dependent mass MA(p̃)
given by

MA(p̃)

ω0Λ̃
=
(
(1 + p̃2)F

) 1
2 (110)

as shown in Fig. 3 for ν = 0.7.

D. Confining symmetric phase

The center-symmetric state with b = 0 and ν = 1/2
is an extremum of (106), provided that Σ 6= 0. This
means that the spontaneous breaking of chiral symmetry
is a necessary (but not sufficient) condition for center-
symmetry to take place in the instanton-dyon liquid
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FIG. 3: Adjoint constituent mass for ν = 0.7.

model with massless adjoint quarks. This is similar to the
observation made in [2] for massless fundamental quarks.

For fixed Λ̃, the fermionic contribution in (106) is maxi-
mal for ν = 1/2. The additional extremum with respect
to Σ yields the condition

4Λ̃Σ̃ = ñΣ(νeb + ν̄e−b)− ñ2
Σ

4

(
eb

ν
+
e−b

ν̄

)
(111)

with ñΣ = nΣ/T
3. (111) requires ñΣ < 1 so that Λ̃ 6= 0

and therefore a final quark condensate. We recall that
for Nf = 0, ñΣ > ñD = 0.56 is required for a center
symmetric state. With this in mind, and for 0.56 < ñΣ <
1, the extremum in the Λ̃ direction gives the gap equation

ñΣ − ñ2
Σ = 2π

∫
p̃2dp̃

Λ̃2F
1 + Λ̃2F

(112)

(112) yields a finite Λ̃ and thus a finite chiral condensate.
We note that a core strength V0 → 0 amounts to a vanish-
ingly small ñ2

Σ → 0 contribution. Note that in the center
symmetric phase phase with ñD ≈ 1/2, the core correc-
tion is about 50% of the free instanton-dyon contribution.
It decreases substantially in the center asymmetric phase
as the instanton-dyon liquid dilutes.

More explicitlly, for small Λ̃ the dominant contribu-
tions from the hopping fermions stem from the small
momentum sector of the p-integrals in (106) and (112)
with

F(p→ 0, 0) ≈ 0.47

p̃12
(113)

Inserting (113) into (112) allows for an explicit solution
to the gap equation in the form

Λ̃ ≈
(
ñΣ − ñ2

Σ

1.92

)2

(114)

E. The magnitude of the chiral condensate

For massive adjoint quarks, the fermionic part of (106)
is

π

∫
p̃2dp̃ ln

(
(1 + m̃tΛ̃)2 + Λ̃2F

)
(115)

where all contributions are dimensionless. We have de-
fined

t(p) =
ω3

0

π2
K(p)

m̃ =
m

ω0
(116)

The chiral condensate for massless adjoint fermions fol-
lows from the general relation

〈iTr(λλ)〉 =
1

TV3

(
∂ lnZ

∂m

)
m=0

= T 3

∫
p̃2dp̃

2t Λ̃

1 + Λ̃2F
(117)

Again, the integration in (117) is dominated by small

momenta for small Λ̃. In the confined state with ν = 1/2,
we can use (113) and the small momentum limit of (116)

t(p→ 0) ≈ 2.31

p̃6
(118)

to obtain

〈iTr(λλ)〉
T 3

≈ 2
√

Λ̃ ≈ (ñΣ − ñ2
Σ) (119)

Again we note that for a vanishingly small core with
V0 → 0, the contribution n2

Σ → 0 in (114) with a chi-
ral condensate for adjoint fermions of order ñ which is
the rescaled instanton dyon density. This result is to-
tally consistent with the result derived in [2] for massless
fundamental quarks with no core. The transition from
a symmetric state with ν = 1/2 to an asymmetric state
with ν < 1/2 takes place nΣ < nD as the instanton-
dyon liquid dilutes, and the chiral condensate (119) also
vanishes (see below).

Finally, we note that the case of Nf = 1 adjoint
quarks at zero temperature corresponds to N = 1 su-
persymmetric theory with a non-vanishing gluino con-
densate [35]. While our finite temperature analysis of
Nf = 1 breaks explicitly supersymmetry, (119) can be
viewed as the remnant of the gluino condensate at finite
temperature. Since (119) was derived under the condi-
tion that 0.56 < ñΣ < 1, the zero temperature limit
cannot be reached in our case.

F. General case with Nf ≥ 1

The preceding analysis generalizes to Nc = 2 and Nf ≥
1 adjoint fermions through the substitution
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ψT+εψ− →
1

Nf !
det
fg

ψT+f εψ−g (120)

in (102) with all other labels unchanged. As a result
the fermionic terms are SU(Nf ) × Z4Nf flavor symmet-
ric. The UA(1) symmetry for adjoint QCD is explicitly
broken by the instanton-dyon liquid model. The fla-
vor symmetry is further broken spontaneously through
SU(Nf )×Z4Nf → O(Nf ) with the appearance of a con-
densate

〈
ψT+f εψ−g

〉
= Σδfg (121)

the dual of the chiral condensate. (121) is explicitly sym-
metric under the transformations ψ±f → Ofgψ±g and
ψ̄±f → ψ̄±gO

T
gf .

A rerun of the preceding arguments yield the
instanton-dyon plus adjoint fermions pressure for arbi-
trary Nf

PD+F = −8π2f2Σ2Nf

T 3

(
e2b

ν
+
e−2b

ν̄

)
+8πfΣNf (νeb + ν̄e−b)− 4NfΛΣ

+Nf

∫
d3p

(2π)3
ln(1 + Λ2T̃+2) + Ploop(Nf )

(122)

The last contribution is briefly detailed in Appendix F
and is seen to be dominated by the first term in the
expansion. If we were to define ñΣf = 8πfΣNf /T 3 then
the results from (122) for arbitrary Nf map onto those
from (106) for Nf = 1, with now

PD+F

T 3
= −

ñ2
Σf

8

(
e2b

ν
+
e−2b

ν̄

)
+ ñΣf (νeb + ν̄e−b)

−4Nf Σ̃Λ̃ + πNf

∫
p̃2dp̃ ln(1 + Λ̃2F)

−4π2

3
(1 +Nf )ν2ν̄2 (123)

The ground state is center symmetric for a sufficiently
dense instanton-dyon liquid, provided that chiral symme-
try is spontaneously broken with Σ 6= 0, and symmetric
in the dilute limit. Here Λ̃, Σ̃ follow from the extrema of
(123) as coupled gap equations,

Σ̃ =
π

2

∫
p̃2dp̃

Λ̃F
1 + Λ̃2F

Λ̃Σ̃ = −
ñ2

Σf

16

(
e2b

ν
+
e−2b

ν̄

)
+
ñΣf

4
(νeb + ν̄e−b)

(124)

The solutions Σ̃(b, ν) and Λ̃(b, ν) to (124) should be in-
serted back in (123) to maximize numerically the pressure
in the parameter space ν,b.

In Fig. 4 we show the numerical results for the di-
mensionless pressure (dotted middle line), Polyakov line
(solid line) and chiral condensate (dotted upper line) with
increasing 8πf/T 2 (decreasing temperature), for Nf = 1
in the symmetric phase. The breaking of chiral symmetry
is lost for 8πf/T 2 < 2.6, which causes all topological ef-
fects to vanish in the chiral limit. For Nf > 2, (123-124)
do not support a solution that breaks chiral symmetry.

Finally, the restoration of chiral symmetry can be es-
timated analytically from (123-124), by dropping the
first or core contribution, and noting that the resulting
expression maps onto the one derived for fundamental
quarks in [2] (see Eq. (80) there) with NcNf . This map-
ping shows that (123-124) does not sustain a chiral con-
densate for NcNf/Nc ≥ 2, or Nf ≥ 2 Majorana quarks.

2.8 3.0 3.2 3.4 3.6 3.8 4.0

8 πf

T2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4: Dimensionless pressure (middle dotted line),
Polyakov line (solid line) and chiral condensate (upper dotted
line) versus 8πf/T 2 (decreasing temperature) for Nf = 1.

G. Critical temperature estimates

For general Nf , we can estimate the critical temper-
ature for the restoration of center symmetry TD, by ne-
glecting both the core and fermionic contributions in
(123), i.e.

PD+F

T 3
→ ñΣf (νeb + ν̄e−b)− 4π2

3
(1 +Nf )ν2ν̄2 (125)

An estimate of the deconfining temperature TD follows by
balancing the first contribution in the center symmetric
phase with b = 0 and ν = ν̄ = 1/2, against the last 1-
loop contribution stemming from the adjoint free gluons
and quarks. The result is

nΣf

T 3
D

≈ π2

12
(1 +Nf ) (126)

In the presence of adjoint quarks, the fundamental string
tension does not vanish, σ/T 2 = nΣf/T

3. For Nc = 2
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QCD with Nf adjoint Majorana quarks, the ratio of the
critical temperature for center symmetry loss normalized
by the fundamental string tension decreases with Nf as

TD√
σ
≈ 2

π

(
3

1 +Nf

) 1
2

(127)

It would be useful to check (127) against current lattice
simulations with adjoint quarks.

The estimate of the chiral symmetry restoration tem-
perature for the chirally broken phase with Nf < 2, is
more subtle. For that we recall, that the delocalization
of the adjoint zero modes generates the so-called zero-
mode-zone with a finite eigenvalue density ρ(λ) normal-
ized to the 4-volume V3/T . The details of the interactions
in the small virtuality λ limit do not matter [33], as the
distribution follows Wigner semi-circle

ρ(λ) =
4nΣf

(λmax(T )/T )

(
1− λ2

λ2
max(T )

) 1
2

(128)

The normalization is fixed by the overall number of zero
modes in the instanton-dyon liquid. Here 2λmax(T ) is the
size of the zero-mode-zone at finite T . Combining (119)
with the Banks-Casher relation [34] we have

|ñΣf − ñ2
Σf | ≈ πρ(0) (129)

which fixes x(T ) = λmax(T )/(πT ) as

ñΣf ≈ 1− 2

x(T )
(130)

The chiral transition temperature TC is fixed by the
quarks turning massless or Σ→ 0 which implies that the
instanton-dyon density ñΣf → 0, as all topological con-
tributions are suppressed. From (130) this occurs when

TC =
λmax(TC)

2π
(131)

We now note that at the chiral transition tempera-
ture, the quark hopping stalls into topologically neu-
tral molecules. As a result T̃ in (49) becomes banded,
and λ+(TC) is comparable to the strength of the nearest
neighbor hopping (67)

λmax(TC) =
∣∣T+(xIJ = 0)

∣∣
=

∣∣∣∣∫ d3p

(2π)3
T+(p)

∣∣∣∣ = κπTC |2νC − 1|

(132)

with κ = 0.557. Using (131-132), it follows that chi-
ral restoration occurs when the holonomy reaches νC =
1/2 + 1/κ = 0.3 (mod 1), and in general TC > TD.

Using the quenched effective potential discussed earlier
for an estimate, this corresponds to an instanton-dyon
density for chiral restoration ñC = 0.48, which is surpris-
ingly close to the quenched instanton-dyon density for
the breaking of center symmetry ñD = 0.56. Using the
instanton-dyon density for Nc = 2 and Nf = 1 Majorana
quark

ñ(T ) ≈ Ce−π/αs(T ) ≈ C
(

0.36TD
T

) 21
6

(133)

we find that

(
TC
TD

)
≈
(

0.56

0.48

) 6
21

≈ 1 (134)

which is much smaller than the ratio reported in lattice
simulations [15].

VII. CONCLUSIONS

We have presented a mean-field analysis of key char-
acteristics of the instanton-dyon liquid with adjoint light
quarks. The index theorem on S1×R3 shows that dissoci-
ated instanton-dyons support 4 anti-periodic zero modes,
that localize on the M-instanton-dyon in the center asym-
metric phase with ν > 1/2, or alternatively, on the L-
instanton-dyon for ν < 1/2. These two cases are dual to
each other, so only one can be considered. In the sym-
metric phase, the 4 anti-periodic zero modes are shared
equally (two on each) by the L- and M-instanton-dyons.
We have used the ADHM construction to derive explicit
form of these zero modes.

We have detailed the construction of the partition func-
tion for the dissociated KvBLL calorons with Nf light
adjoint quarks, including the classical streamline inter-
actions and the quantum Coulomb interactions induced
by the coset manifold. We have retained a core inter-
action between the like instanton-dyon-antidyons to dis-
tinguish them from perturbative fluctuations. By a se-
ries of fermionization and bosonization techniques, we
have mapped this interacting many-body system on a 3-
dimensional effective theory. We have presented a mean-
field analysis of the dense phase, that exhibits both con-
finement with center symmetry, and spontaneously bro-
ken chiral symmetry.

We have shown that in such an approximation the de-
confinement with breaking of center symmetry, and the
restoration of chiral symmetry occur about simultane-
ously. Furthermore, the latter is always unbroken for
Nf ≥ 2. In contrast, exploratory lattice simulations [15]
have shown that SUc(2) gauge theory with Nf = 0, 1, 4
adjoint Majorana fermions still support chiral symmetry,
which may point to a major shortcoming of the mean-
field analysis. A numerical simulation of the dyon-liquid
model would be welcome.
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The mean-field analysis we have presented has also
a major shortcoming as the instanton-dyon liquid di-
lutes. It does not account for the molecular pairing
of the instanton-dyon-anti-dyon configurations through
light adjoint pairs. We have presented a qualitative ar-
gument for the chiral transition using the assumption of
pairing, but a more reliable analysis is likely numerical as
the analysis goes beyond the mean-field results presented
here.
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IX. APPENDIX A: PERIODIC ZERO-MODES

In this Appendix we briefly detail the ADHM construct
as applied to the periodic adjoint zero modes. This is
partly a check on our general ADHM construction. For
that we note that the Grassmanian matrix for periodic
adjoint fermions simplifies to

M(z, z′) = δ(z − z′)M (135)

A rerun of the preceding arguments yields the periodic
zero modes

λm(r) =
1

sh(ω0r)

× (a(ω0r)σm + b(ω0r)σ · r̂σmσ · r̂)εM
−ε(MTa(ω0r)σm +MT b(ω0r)σ · r̂σmσ · r̂)T

)
(136)

For ω0r → ∞, we have a ≈ b ≈ −sinh(ω0r)/(ω0r)
2, so

that

λm(r →∞) =
1

r2
(σm + σ · r̂σmσ · r̂)χ

=
2

r2
rmσ · r̂χ (137)

with χ = εM . (137) are in agreement with the known
periodic zero modes in the hedgehog gauge [6, 22].

X. APPENDIX B: ZERO-MODES IN A BPS
DYON WITHOUT ADHM

In this Appendix we explicitly derive the Dirac equa-
tion for anti-periodic adjoint fermions in the state of low-
est total angular momentum, without using the ADHM
construction. We will use the equations to investigate
the nature of the fermionic zero mode at the origin and

asymptotically. Without the ADHM construct, the equa-
tions are only solvable numerically.

Without loss of generality, we will consider the M -dyon
gauge configuration given by

(Aa4 , A
a
i ) = (r̂aφ(r), εaij r̂jA(r)) (138)

with the boundary values

A(r → 0) = 0 A(r →∞) = −1

r
φ(r → 0) = 0 φ(r →∞) = 2πTν (139)

In the adjoint representation of SUc(2) the color matrices
are T amn = iεamn. In the chiral basis, the adjoint Dirac
fermions will be sought in the form

Ψ ≡
(

Ψ+
m

Ψ−m

)
(140)

The Dirac equation (1) for the 2 lowest Matsubara fre-
quencies ±ω0 is given by

(iσ · ∇δnm + i(σnr̂m − σmr̂n)A(r)

±εnamr̂aφ(r)) Ψ±m = iω0Ψ±n (141)

To solve (141) explicitly, we decompose the vector-
valued chiral components in (140) using the independent
vector basis [25]

(1, ~σ · r̂) (r̂, (~r × ~p), (~r × ~p)× r̂) (142)

which is seen to commute with the total angular momen-

tum ~J = ~l + ~s. We seek the zero modes in the state of
zero orbital angular momentum or J = 1/2. Therefore,

Ψ±m(~r) ≡ r̂m Θ±3 + (~r × ~p)m (σ · r̂) Θ±4
+r̂m σ · r̂Θ±1 + i((~r × ~p)× r̂)m(σ · r̂) Θ±2 (143)

with the scalar radial spinor-functions

Θ±i ≡
∑
s=±

F±i (r, s) |s〉 (144)

Inserting (143-144) into (141) yield

(
d

dr
+

2

r

)
F±1 − 2ρF±2 = ω0F

±
3(

d

dr
+

1

r
± φ

)
F±2 − ρF±1 = ω0F

±
4

d

dr
F±3 + 2ρF±4 = ω0F

±
1(

d

dr
+

1

r
± φ

)
F±4 + ρF±3 = ω0F

±
2 (145)
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Here ρ ≡ 〈A4〉 + 1/r, with the label s subsumed. Using
the asymptotics, it is readily found at infinity that

F±1,3(r →∞) = c1e
−ω0r + c2e

+ω0r

F±2,4(r →∞) = c3e
−ω0(1±2ν)r + c4e

+ω0(1∓2ν)r

(146)

while at the origin we have

F±3,4(r → 0) = b3r + b4
1

r2
→ b3r

F±1,2(r → 0) = b1 + b2
1

r3
+ b3r

2 + b4
1

r
→ b1 + b3r

2

(147)

For F+ with fixed s = ±, we always have 2 (b1,3) out
of 4 (b1,2,3,4) total dimension of solutions which are nor-
malizable at 0. We have 2 (c1,3) out of 4 (c1,2,3,4) total
dimension of solutions which are normalizable at infinity
for ν ≤ 1

2 , and 3 (c1,3,4) for ν > 1/2 . We conclude that

for ν > 1
2 , there exists at least one zero mode. For ν < 1

2 ,
the existence cannot be proved on general grounds and a
numerical analysis is required. However, their existence
is supported by the index theorem reviewed earlier. For
ν > 1/2, the dominant contribution at large distances
stem from the asymptotic in (146) or c4e

−(2ν−1)ω0r. As
ν → 1/2, it asymptotes a constant which is not square
integrable. This analysis for ν = 1/2 requires more care,
as we discussed earlier in the ADHM construction.

XI. APPENDIX C: ADJOINT FERMIONS IN A
KVBLL CALORON

The adjoint fermions in the classical background of
KvBLL calorons can be constructed using the general
ADHM construct presented above. For an alternative
derivation using the replica trick for adjoint fermions in
calorons we refer to [23]. We recall that the BPS dyon
results follow by taking various limits. The matrix of
ADHM data is more involved in a KvBLL caloron. For
the SU(2) KvBLL caloron with a holonomy P∞ = ei2πω·σ

and ω = ν/2β → ν/2, we have for the quaternionic blocks

λ(z) = (P+δ(z − ω) + P−δ(z + ω))q

B(z, z′) = δ(z − z′)
(

1

2πi

∂

∂z′
+A(z′)

)
(148)

with P± as projectors and

A(z) = χ[−ω,ω](z) + q̄ω · σq (χ[−ω,ω](z)− 2ω) (149)

The periodicity of the gauge fieldAm(x4+β) = Am(x4)
(modulo a gauge transformation) and the anti-periodicity
of the adjoint fermions yield

cm = −e2πiω·σcm−1

c̄m = −c̄me−2πiω·σ

Mmn = −Mm−1,n−1 (150)

Their Fourier transforms are

c(z) =

(
P+δ

(
z − ω +

1

2

)
+P−δ

(
z + ω +

1

2

))
c

c̄(z) = c̄

(
P+δ

(
−z − ω +

1

2

)
+P−δ

(
−z + ω +

1

2

))
M(z, z′) = δ

(
z − z′ + 1

2

)
M(z′) (151)

Inserting (151) in the adjoint zero mode constraint gives

1

2πi

d

dz
M(z) +

(
AT (z)−AT

(
z +

1

2

))
M(z)

−ε2 q̄P+c δ

(
z + ω +

1

2

)
− ε2 q̄P−c δ

(
z − ω +

1

2

)
−qTPT+ c̄T δ(z + ω)− qTPT− c̄T δ(z − ω) = 0

(152)

The explicit form of the zero modes are

(λα)ab φ(x) =

∫ + 1
2

− 1
2

dzdz′ (153)

×((−ca(−z) + u†aβ(z + 1/2)(εM)β(z))f(z, z′)uαb(z
′)

−u†aβ(z)εαβf(z, z′)(−c̄b(z′ + 1/2) +Mγ(z′)uγb(z
′)))

λm φ(x) =

∫ + 1
2

− 1
2

dzdz′ (154)

×((u(z′)f?(z′, z)σm(−c(−z) + u†(z + 1/2)(εM)(z))

−ε((−c̄(z′ + 1/2) +MT (z′)u(z′))σmf(z, z′)u†(z))T )

with φ(x) = 1 + u†(x)u(x). Here the m-summation and
z-integration are subsumed. The x-argument in u(x, z)
has been omitted for convenience.

A. Special case ν = 1
2

For the center symmetric case with ω = 1/2ν = 1/4,
we set ω · σ = τ3/4 and q = iρτ3, and identify the coor-
dinates of the constituents M,L of the KvBLL caloron
as
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r = x · σ + πρ2τ3/2

s = x · σ − πρ2τ3/2 (155)

in terms of which

A(z)− x = −isχ[−1/4,1/4](z)− irχ[1/4,3/4](z) ≡ −iR(z)

(156)

In this case, the equation for M simplifies

εM = eπρ
2τ3zM0 −1/4 < z < 1/4

εM = e−πρ
2(z−1/2)M0 +1/4 < z < 3/4 (157)

and c̄T = −εc. The C-zero-mode and M-zero-mode de-
couple, with respectively

λCmφ(x) =

∫ + 1
2

− 1
2

dzf (3/4, z)u(x, z)σmP+c

+

∫ + 1
2

− 1
2

dzf (1/4, z)u(x, z)σmP−c (158)

and

λMmφ(x) =

∫ + 1
2

− 1
2

f(z1, z2)u(x, z2)σmu
†(x, z1 + 1/2)

×ε(M(z1) +M(−z1 − 1/2))dz1dz2 (159)

Here u(z) is solution to the inhomogeneous and linear
differential equation with piece-wise potential

(
1

2πi

∂

∂z
+ iR(z)− x4

)
u(x, z)

= −iτ3ρ(P+δ(−z + 1/4) + P−δ(−z − 1/4))(160)

with the projectors P± = (1 ± τ3)/2. The explicit solu-
tions are

u(x, z) = e2πix4ze2πszB1(x) −1/4 < z < 1/4

u(x, z) = e2πix4(z−1/2)e2πr(z−1/2)B2(x) +1/4 < z < 3/4

(161)

and satisfy the completeness relations

e−πix4/2e−πr/4B2(x)− eπix4/2eπs/4B1(x) = +2πρP+

e−πix4/2e−πs/4B1(x)− eπix4/2eπr/4B2(x) = −2πρP−

(162)

Here B1,2(x) are defined in Appendix C. The solutions
obey the quasi-periodicity conditions

u(x4 + 1,x, z) = e2πizu(x4,x, z)e
−πτ3/2

B1(x4 + 1,x) = B1(x4,x)e−πτ3/2

B2(x4 + 1,x) = −B2(x4,x)e−πτ3/2 (163)

With the above in mind, the explicit form of the C-zero
mode is

λCmφ(x) = (164)

(f1 + ŝ · σf2)B1σmP+c+ (f̃1 + ŝ · σf̃2)B1σmP−c

+(g1 + r̂ · σg2)B2σmP+c+ (g̃1 + r̂ · σg̃2)B2σmP−c

where we have set s ≡ ω0|~s| and r = ω0|~r|. Also, we have

srψ(s, r, x4)f1(x4, r, s) =
e−

1
2 iπx4

4s
(s+ sinh(s))

×
(

sinh
(s

2

) (
d sinh(r) + re2iπx4 + r cosh(r)

)
+s sinh(r) cosh

(s
2

))
(165)

with ψ given below, d = πρ2 and

srψ(s, r, x4)f2(x4, r, s) = −e
− 1

2 iπx4

4s
(s− sinh(s))

×
(
− cosh

(s
2

) (
d sinh(r) + r

(
−e2iπx4

)
+ r cosh(r)

)
−s sinh(r) sinh

(s
2

))
(166)

with the following identities among the f, f̃ , g, g̃ functions

f̃1 ≡ f1(−x4,x), f̃2 ≡ −f2(−x4,x)

g1 ≡ f̃1(x4, s, r), g2 ≡ f̃2(x4, s, r)

g̃1 ≡ g1(−x4,x), g̃2 ≡ −g2(−x4,x) (167)

B. Adjoint zero mode for Dyon from KvBLL
caloron

To isolate the adjoint zero modes on the constituents
of the KvBLL caloron we take the limit d, |~r| → ∞ but
fixed s fixed, which means that r →∞ as shown in Fig. 5.
Most of the expressions simplify. Specifically, we have

f1(x) =
e−

1
2 iπx4

2s2

(s+ sinh(s)) sinh( s2 )

(cosh(s) + cos θsinh(s))

f2(x) =
e−

1
2 iπx4

2s2

(s− sinh(s)) cosh( s2 )

(cosh(s) + cos θ sinh(s))
(168)

with s ≡ ω0|~s|, cos θ = ~s · ẑ, and



20

FIG. 5: L-M-dyon at a distance d = πρ2 in a KvBLL caloron.

B1 = 4πρ(− cos(πx4))

×
(

cosh
(s

2

)
τ3 + sinh

(s
2

)
ŝ
)

+ieπix4τ3− iπ2 τ3x4 sin(πx4)

× (cosh( s2 ) + sinh( s2 )ŝτ3))

cosh(s) + cos θ sinh(s)

B2 → 0 (169)

with also

ψ = er(cosh(s) + cos θ sinh(s))

φ =
2d cosh(s)

s(cosh(s) + cos θ sinh(s))
(170)

Inserting (168-170) into (164) yields the asymptotic zero
mode on the localized instanton-dyon

s cosh(s)(cosh(s) + cos θ sinh(s))λCm

= e−
iπx4

2 (sB+ + sinh(s)B−)e−
πiτ3x4

2 BσmP+c

+e
iπx4

2 (sB− + sinh(s)B+)e−
πiτ3x4

2 BσmP+c (171)

with

B± = sinh
(s

2

)
± ŝ · σ cosh

(s
2

)
B = cosh

(s
2

)
τ3 + sinh

(s
2

)
ŝ · σ (172)

C. String gauge

The dyon reduced zero-mode from the KvBLL caloron
(171) carries a θ-dependence contrary to (47). (171) is
expressed in the quasi-string gauge, while (47) is in the
hedgehog gauge. To express (171) in the string gauge,
we first gauge transform it using g = ei2πω·τ , to obtain

s sinh(s)(cosh(s) + cos θ sinh(s))λb =

e−iω0x4(P+c)a(sB+B + sinh(s)B−B)αb

+eiω0x4(P−c)a(sB−B + sinh(s)B+B)αb (173)

In the same gauge, the dyon gauge field reads

A4 = τ3∂3 lnκ+ κτ⊥ · ∂⊥ζ + 2ωτ3

Ai = τ3εij3∂3 lnκ+ κτ⊥ · ε⊥ij∂jζ
+4πωθκ(δi1τ2 − δi2τ1) (174)

with

ζ =
4πωr

sinh(4πωr)

ζκ =
1

cosh(4πωr) + cos(θ) sinh(4πωr)
(175)

which is still not in the string gauge. To bring the con-
figuration (94) to the string gauge, we make use of

U =
cosh(s/2)τ3 + sinh(s/2)σ · s√

cosh(s) + cos(θ) sinh(s)
(176)

which is unitary.

D. Definitions

The matrices B1,2 and the function ψ are in agreement
with those used in [6]. We quote them here for complete-
ness. Specifically

B1 = b12b11 e
−i2πx+4ωτ3U†/ψ

B1 = b22b21 e
−i2πx+4ωτ3U†/ψ (177)

with U a unitary color rotation and
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b11 = i2πρ
(

cosh 1
2

+ r̂τ3sinh 1
2

)
eiπx4τ3

b21 = i2πρ
(

cosh 1
2

+ ŝτ3sinh 1
2

)
eiπx4τ3

b12 =
(
− cos(πx4)(cosh 1

2
sinh 1

2
r̂ + cosh 1

2
sinh 1

2
r̂s)

+i sin(πx4)(cosh 1
2

cosh 1
2

+ ŝr̂ sinh 1
2

sinh 1
2
)
)

b22 =
(
− cos(πx4)(cosh 1

2
sinh 1

2
r̂ + cosh 1

2
sinh 1

2
r̂s)

+i sin(πx4)(cosh 1
2

cosh 1
2

+ r̂ŝ sinh 1
2

sinh 1
2
)
)

(178)

and

ψ ≡ − cos(2πx4) + cosh cosh +
~s · ~r
sr

sinh sinh

(179)

with the short notation

sinh 1
2

= sinh(ω0νs)

cosh 1
2

= cosh(ω0νs)

sinh 1
2

= sinh(ω0(1− ν)r)

cosh 1
2

= cosh(ω0(1− ν)r) (180)

XII. APPENDIX D: FOCK CONTRIBUTION

In the main text, the mean-field analysis was presented
using the so-called Hartree approximation. Here we show
how the Fock or exchange terms can be included. We first
that omitted crossed contractions in

〈
ψT εψ(x)ψ̄T εψ̄(y)

〉
eiφ
†
1(x)+iφ1(y) (181)

can be retained by defining the 2× 2 propagator

〈
(ψ(x), ψ̄(x))(εψT (y),−εψ̄T (y))T

〉
= S(x− y) (182)

in terms of which the effective action S is a functional of
(182)

−S[S,b, ν] = Tr
(
S−1

0 S
)
− Tr lnS

+8πfM

(
TrS

2

)2

νeb + 8πfLν̄e
−b

−16π2f2
M

T 3

(
TrS

2

)4
1− e−V0

ν
e2b − 16π2f2

L

T 3

1− e−V0

ν̄
e−2b

+
16π2f2

M

T 3
e−V0e2b

×
∫ x0

2ω0ν

0

d3xTr(S+
12(x)S+

21(−x))Tr(S−12(x)S−21(−x))

(183)

Here Sij are the pertinent entries in (182). The two gap
equations are now extrema of δS/δSij = 0. If we were to
approximate the term Tr(SS) with free propagators, then
the gap equations simplify and we have for the dyonic
part of the pressure

PD → 8πfMνΣ2e2b + 8πfLν̄e
−b

−16π2f2
M

T 3
Σ4 1− e−V0

ν
e2b − 16π2f2

L

T 3

1− e−V0

ν̄
e−2b

+
16π2f2

M

T 3
e−V0e2b

∫ x0
2ω0ν

0

d3rTr(T(r)T(−r))− 4ΛΣ

(184)

XIII. APPENDIX E: 1-LOOP APPROXIMATION

An alternative to the mean-field analysis is based on
the use of the 1-loop fermionic contribution only. The
1-loop result is then used to compute the contractions
induced by the second cumulant contribution stemming
from the core. The result for the constraint equation is

Λ(b, ν) = 2π
√
fLfM (νeb + ν̄e−b) (185)

and the gap equation is

2Σ̃(Λ) = π

∫
p̃2dp̃

Λ̃F
1 + Λ̃2F

(186)

To 1-loop the dressed fermionic propagator is

S−1 = G̃−1 + Λ(b, ν)ε

 0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (187)

(185-187) can be used to reduce the contractions stem-
ming from the second cumulant of the core, as we de-
tailed in section Vb. The result is an effective action
solely dependent on b, ν, that is readily analyzed in the
weak coupling and strong screening limits. The results
of this analysis will be reported elsewhere.

XIV. APPENDIX F: HOLONOMY POTENTIAL

For completeness, the instanton-dyon pressure with
hopping fermions has to be supplemented with the 1-
loop perturbative contributions from the adjoint periodic
gluons and anti-periodic fermions for a finite holonomy
ν [17]. The result for Nf massless adjoint quarks is

P1loop(Nf ) =
4T 3

π2

∞∑
n=1

(1−Nf (−1)n)
TrAL

n

n4

P1loop(1) =
16T 3

π2

∑
n=0

cos(4n+ 2)πν

(2n+ 1)4
(188)
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with L = ei2πνT3 . The first contribution is from the
adjoint gluons while the second contribution is from the
anti-periodic adjoint fermions. The perturbative minima
of (188) at ν = 0, 1 yields a finite Polyakov line or an
asymmetric (non-confining) ground state. Note that for
Nf = 1 periodic adjoint fermions (−1)n → 1 in (188)
and the bosonic and fermionic contributions cancel out.
This result is expected from supersymmetry.

0.6 0.7 0.8 0.9 1.0
ν

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

P/T3

FIG. 6: Pressure (189) versus ν for n = 0.50, 0.53, 0.56 or
lower-blue, middle-orange, upper-green curves respectively.
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n

1.8
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2.6

2.8

3.0

qq/T3

FIG. 7: Chiral condensate versus n = 2πf/T 2 for Nf = 1.

XV. APPENDIX G: CORE INTERACTION
REVISITED

All of our analyses so far were carried out using the core
interactions VM,L in (51). If we were to remove them by
setting b = 0, and consider only the induced repulsive
interactions from the determinantal interactions in (49),
a rerun of our preceding arguments yield (123) in the
form

PD+F

T 3
= +(1−Nf )Λ̃

(
Λ̃

n(νν̄)
1
2

) 1
Nf−1

+πNf

∫
p̃2dp̃ ln(1 + Λ̃2F)

−4π2

3
(1 +Nf )ν2ν̄2 (189)

with n = 2πfTNf /T 3. We note that in deriving (189) we
have enforced the constraints (99) only after eliminating
the w′ s by variation. For Nf = 1 the first contribution

in (189) is absent and Λ̃ = n(νν̄)
1
2 . For Nf > 1, Λ̃ is

fixed by the extremum of (189).

In Fig. 6 we display (189) for Nf = 1, which shows a
first order transition from a center symmetric for n > 0.5
(low temperature) to a center asymmetric for n < 0.5
(high temperature). The center symmetric phase breaks
spontaneously chiral symmetry with the chiral conden-
sate shown in Fig. 7. Chiral symmetry is restored when
center symmetry is lost. We have checked that this be-
havior persists for all Nf > 1, in contrast to the case
with the core interaction discussed above which does not
support a chiral condensate for Nf > 1.
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