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The Instanton-Dyon Liquid Model III:
Finite Chemical Potential
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We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite
chemical potential in the center symmetric phase. We develop the model in details for the case of
SUc(2) × SUf (2) by mapping the theory on a 3-dimensional quantum effective theory. We analyze
the different phases in the mean-field approximation. We extend this analysis to the general case of
SUc(Nc) × SUf (Nf ) and note that the chiral and diquark pairings are always comparable.

PACS numbers: 11.15.Kc, 11.30.Rd, 12.38.Lg

I. INTRODUCTION

This work is a continuation of our earlier studies [1, 2]
of the gauge topology in the confining phase of a theory
with the simplest gauge group SU(2). We suggested that
the confining phase below the transition temperature is
an “instanton dyon” (and anti-dyon) plasma which is
dense enough to generate strong screening. The dense
plasma is amenable to standard mean field methods.

The treatment of the gauge topology near and be-
low Tc is based on the discovery of KvBLL instantons
threaded by finite holonomies [3] and their splitting into
the so called instanton-dyons (anti-dyons), also known
as instanton-monopoles or instanton-quarks. Diakonov
and Petrov and others [4, 5] suggested that the back re-
action of the dyons on the holonomy potential at low
temperature may be at the origin of the order-disorder
transition of the Polyakov line. Their model was based on
(parts of) the one-loop determinant providing the met-
ric of the moduli spaces in BPS-protected sectors, purely
selfdual or antiselfdual. The dyon-antidyon interaction is
not BPS protected and appears at the leading – classical
– level, related with the so called streamline configura-
tions [6].

The dissociation of instantons into constituents was
advocated by Zhitnitsky and others [7]. Using controlled
semi-classical techniques on S1 × R3, Unsal and his col-
laborators [8] have shown that the repulsive interactions
between pairs of dyon-anti-dyon (bions) drive the holon-
omy effective potential to its symmetric (confining) value.

Since the instanton-dyons carry topological charge,
they should have zero modes as well. On the other hand,
for an arbitrary number of colors Nc those topological
charges are fractional 1/Nc, while the number of zero
modes must be integers. Therefore only some instanton-
dyons may have zero modes [10]. For general Nc and gen-
eral periodicity angle of the fermions the answer is known
but a bit involved. For SU(2) colors and physically anti-
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periodic fermions the twisted L dyons have zero modes,
while the usual M -dyons do not. Preliminary studies
of the dyon-anti-dyon vacuum in the presence of light
quarks were developed in [11, 12]. In supersymmetric
QCD some arguments were presented in [13].

In this work we would like to follow up on our recent
studies in [1, 2] by switching a finite chemical potential
in the center symmetric phase of the instanton-dyon en-
semble with light quarks. We will make use of a mean-
field analysis to describe the interplay of the spontaneous
breaking of chiral symmetry with color superconductivity
through diquark pairing. One of the chief achievement
of this work is to show how the induced chiral effective
Lagrangian knows about confinement at finite µ. In par-
ticular, we detail the interplay between the spontaneous
breaking of chiral symmetry, the pairing of diquarks and
center symmetry.

Many model studies of QCD at finite density have
shown a competition between pairing of quarks [15], chi-
ral density waves [16] and crystals [17, 18] at interme-
diate quark chemical potentials µ. We recall that for
SUc(2) the diquarks are colorless baryons and massless
by the extended flavor SUf (4) symmetry [15]. Most of
the models lack a first principle description of center
symmetry at finite chemical potential. This concept is
usually parametrized through a given effective potential
for the Polyakov line as in the Polyakov-Nambu-Jona-
Lasinio models [19]. We recall that current and first prin-
ciple lattice simulations at finite chemical potential are
still plagued by the sign problem [20], with some progress
on the bulk thermodynamics [21].

In section 2 we detail the model for two colors. By us-
ing a series of fermionization and bosonization techniques
we show how the 3-dimensional effective action can be
constructed to accommodate for the light quarks at fi-
nite µ. In section 3, we show that the equilibrium state
at finite T, µ supports center symmetry but competing
quark-antiquark or quark-quark pairing. In section 4, we
generalize the results to arbitrary colors Nc. Our conclu-
sions are in section 5. In Appendix A we briefly discuss
the transition matrix in the string gauge at finite µ. In
Appendix B we estimate the transition matrix element
in the hedgehog gauge. In Appendix C we recall the key
steps for the bosonization and fermionization that helps
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streamline the logic and notations used at finite µ. In
Appendix D we give an alternative but equivalent mean-
field formulation with a more transparent diagrammatic
content. In Appendix E, we detail the construction of
the zero modes for arbitrary Matsubara frequencies.

II. EFFECTIVE ACTION WITH FERMIONS
AT FINITE µ

A. General setting

In the semi-classical approximation, the Yang-Mills
partition function is assumed to be dominated by an in-
teracting ensemble of instanton-dyons (anti-dyons). For
inter-particle distances large compared to their sizes – or
a very dilute ensemble – both the classical interactions
and the one-loop effects are Coulomb-like. At distances
of the order of the particle sizes the one-loop effects are
encoded in the geometry of the moduli space of the en-
semble. For multi-dyons a plausible moduli space was
argued starting from the KvBLL caloron [3] that has a
number of pertinent symmetries, among which permuta-
tion symmetry, overall charge neutrality, and clustering
to KvBLL.

Specifically and for a fixed holonomy A4(∞)/2ω0 =
ντ3/2 with ω0 = πT and τ3/2 being the only diago-
nal color algebra generator, the SU(2) KvBLL instanton
(anti-instanton) is composed of a pair of dyons labeled by
L, M (anti-dyons by L,M) in the notations of [4]. Gener-
ically there are Nc − 1 M-dyons and only one twisted
L-dyon type. The SU(2) grand-partition function is

Z1[T ] ≡
∑
[K]

KL∏
iL=1

KM∏
iM=1

KL̄∏
iL̄=1

KM̄∏
iM̄=1

×
∫

fLd
3xLiL
KL!

fMd
3xMiM

KM !

fLd
3yL̄iL̄
KL̄!

fMd
3yM̄iM̄

KM̄ !

×det(G[x]) det(G[y])
∣∣∣det T̃(x, y)

∣∣∣ e−VDD(x−y)

(1)

Here xmi and ynj are the 3-dimensional coordinate of the
i-dyon of m-kind and j-anti-dyon of n-kind. Here G[x] a
(KL+KM )2 matrix and G[y] a (KL̄+KM̄ )2 matrix whose
explicit form are given in [4, 5]. VDD̄ is the streamline
interaction between D = L,M dyons and D̄ = L̄, M̄ an-
tidyons as numerically discussed in [6]. For the SU(2)
case it is Coulombic asymptotically with a core at short
distances [1].

The fermionic det T̃(x, y) determinant at finite chem-
ical potential will be detailed below. The fugacities fi
are related to the overall dyon density. The dyon density
nD could be extracted from lattice measurements of the
caloron plus anti-caloron densities at finite temperature
in unquenched lattice simulations [22]. No such extrac-
tions are currently available at finite density. In many

ways, the partition function for the dyon-anti-dyon en-
semble resembles the partition function for the instanton-
anti-instanton ensemble [9].

B. Quark zero modes at finite µ

At finite µ the exact zero modes for the L-dyon (right)
and L-anti-dyon (left) in the hedgehog gauge are defined
as ϕAα = ηAβ εβα with indices A for color and α for spinors.
The normalizable M-dyon zero mode are periodic at fi-
nite µ. The L-dyon zero modes are anti-periodic at fi-
nite µ. At finite T, µ they play a dominant role in the
instanton-dyon model with light quarks. Keeping in the
time-dependence only the lowest Matsubara frequencies
±ω0, their explicit form is

ηR =
1

2

∑
ξ=±

αξ(r)S+(1− ξσ · r̂)eiξ(ω0x4+αR)

ηL =
1

2

∑
ξ=±

αξ(r)S−(1 + ξσ · r̂)eiξ(ω0x4+αL) (2)

with

α±(r) =
C e±iµr√

(vlω0r) sh(vlω0r)(
∓ 2iµ

vlω0
+

(
e∓2iµr − 2

evlω0r + 1

))
(3)

C is an overall normalization constant and the SU(2)
gauge rotation S± satisfies

S±(σ · r̂)S†± = ±σ3 (4)

translating from the hedgehog to the string gauge. In (2),
αL,R correspond to the rigid U(1) gauge rotations that
leave the dyon coset invariant. We have kept them as
they do not drop in the hopping matrix elements below.
The oscillating factors e±2iµr are Friedel type oscillations.
For µ = 0, we recover the zero modes in [2, 11]. We
have checked that the periodic M-dyon zero modes are in
agreement with those obtained in [23]. The restriction to
the lowest Matsubara frequencies makes the mean-field
analysis to follow reliable in the range µ/3ω0 < 1 and for
temperatures in the range of the critical temperature.
The instanton liquid model becomes increasingly dense
as T → 0, whereby our mean-field analysis becomes less
reliable in general, as detailed in [1, 2].

C. Fermionic determinant at finite µ

The fermionic determinant can be viewed as a sum
of closed fermionic loops connecting all dyons and an-
tidyons. Each link – or hopping – between L-dyons and



3

L̄-anti-dyons is described by the elements of the “hopping
chiral matrix” T̃

T̃(x, y) ≡
(

0 iTij

iTji 0

)
(5)

with dimensionality (KL + KL̄)2. Each of the entries in
Tij is a “hopping amplitude” for a fermion between an
L-dyon and an L̄-anti-dyon, defined via the zero mode ϕD
of the dyon and the zero mode ϕD̄ (of opposite chirality)
of the anti-dyon

TLR =

∫
d4xϕ†L(x)i(∂4 − µ− iσ · ∇)ϕR(x)

TRL =

∫
d4xϕ†R(x)i(∂4 − µ+ iσ · ∇)ϕL(x) (6)

And similarly for the other components. These matrix
elements can be made explicit in the hedgehog gauge,

TLR = ei(αL−αR) T(p)− e−i(αL−αR) T∗(p)

TRL = ei(αR−αL) T(p)− e−i(αR−αL) T∗(p)

(7)

with a complex T(p) at finite µ,

T(p) = −1

2
(ω0 + iµ)

(
|f1|2 − |f ′2|2

)
− Re (f1f

′ ∗
2 ) (8)

Here f1,2 ≡ f1,2(p) are the 3-dimensional Fourier trans-
forms of f1(r) = α−(r) and f2(r) = α−(r)/r. The tran-
sition matrix elements in the string gauge are more in-
volved. Their explicit form is discussed in Appendix A.
Throughout, we will make use of the hopping matrix ele-
ments in the hedgehog gauge as the numerical difference
between the two is small [2] on average as we show in
Appendix B.

III. EQUILIBRIUM STATE

The detailed fermionization and bosonization of the in-
stanton liquid model at zero µ was presented in [1, 2, 4].
To help set up the notations and understand the logical
flow of the new elements of the derivation at finite µ we
summarize the essential steps in Appendix C. With this
in mind, to analyze the ground state and the fermionic
fluctuations we bosonize the fermions in (65) by intro-
ducing the identities

∫
D[Σ1] δ

(
ψ†f (x)ψf (x) + 4Σ1(x)

)
= 1 (9)∫

D[Σ2] δ

(
1

2

(
εfgψ

T
f (x)ψg(x)− c.c.

)
+ 4iΣ2(x)

)
= 1

and re-exponentiating them to obtain

Z1[T ] =

∫
D[ψ]D[σ]D[b]D[~Σ]D[~λ] e−S−SC

(10)

with

−SC =

∫
d3x iλ1(x)(ψ†f (x)ψf (x) + 4Σ1(x)) (11)

+

∫
d3x iλ2(x)

(
1

2

(
εfgψ

T
f (x)ψg(x)− c.c.

)
+ 4iΣ2(x)

)
The ground state is parity even so that fL,M = fL̄,M̄ .
By translational invariance, the SU(2) ground state cor-

responds to constant σ, b, ~Σ, ~λ. We will seek the extrema
of (10) with finite condensates in the mean-field approci-
mation, i.e.

〈
ψ†f (x)ψg(x)

〉
= −2δfgΣ1〈

ψTf (x)ψg(x)
〉

= −2iεfgΣ2 (12)

The classical solutions to the constraint equations (64)
are also constant

fMe
wM−wL = fL

〈∏
f

ψ†fγ+ψf

〉
ewL−wM (13)

with

〈∏
f

ψ†fγ+ψf

〉
=
(
Σ2

1 + Σ2
2

)
≡ ~Σ2 (14)

and similarly for the anti-dyons. The expectation values
in (13-14) are carried in (10) in the mean-field approxima-
tion through Wick contractions. Here we note that both
the chiral pairing (Σ1) and diquark pairing (Σ2) are of
equal strength in the instanton-dyon liquid model. The
chief reason is that the pairing mechanism goes solely
through the KK- or L-zero modes which are restricted to
the affine root of the color group. With this in mind, the
solution to (13) is

ewM−wL = |~Σ|
(
fL
fM

) 1
2

(15)

and similarly for the anti-dyons.

A. Effective potential

The effective potential V for constant fields follows
from (10) by enforcing the delta-function constraint (67)
before variation (strong constraint) and parity
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−V/V3 = −4~λ · ~Σ
+4πfMvm (ewM−wL + ewM̄−wL̄)

+4πfLvl ~Σ
2 (ewL−wM + ewL̄−wM̄ ) (16)

after shifting λ1 → iλ1 for convenience, with V3 the 3-
volume. For fixed holonomies vm,l, the constant w′s are
real by (64) as all right hand sides vanish, and the ex-
trema of (16) occur for

ewM−wL = ±|~Σ|
√
fLvl/fMvm

ewM̄−wL̄ = ±|~Σ|
√
fLvl̄/fMvm̄ (17)

(17) are consistent with (13) only if vl = vm = 1/2 and
vl̄ = vm̄ = −1/2. That is for confining holonomies or a
center symmetric ground state. Thus

−V/V3 = α |~Σ| − 4~λ · ~Σ (18)

with α = 4π
√
fLfM . We note that for ~Σ = ~0 there

are no solutions to the extrema equations. Since ~Σ = ~0
means a zero chiral or quark condensate (see below), we
conclude that in this model of the dyon-anti-dyon liquid
with light quarks, center symmetry is restored only if
both the chiral and superconducting condensates vanish.

B. Gap equations

For the vacuum solution, the auxiliary field ~λ is also a
constant. The fermionic fields in (10) can be integrated
out. The result is a new contribution to the potential
(18)

−V/V3 → α |~Σ| − 4~λ · ~Σ

+2

∫
d3p

(2π)3
ln

((
1 + ~λ2|T(p)|2

)2

− 4λ2
1|ImT(p)|2

)
(19)

The saddle point of (19) in ~Σ is achieved for parallel
vectors

~λ =
α

4

~Σ

|~Σ|
≡ λ (cos θ, sin θ) (20)

Inserting (20) into the effective potential (19) yields

−V/V3 = 2

∫
d3p

(2π)3
(21)

×ln
((

1 + λ2|T(p)|2
)2 − 4λ2cos2θ |ImT(p)|2

)

with λ = α/4 now fixed. (21) admits 4 pairs of discrete
extrema satisfying δV/δθ = 0 with cos θ = 0, 1. The
extrema carry the pressure per 3-volume

−V0,1/V3 = 2

∫
d3p

(2π)3
(22)

×ln
((

1 + λ2|T(p)|2
)2 − 4λ2(0, 1)|ImT(p)|2

)
We note ImT = 0 in (19) for µ = 0. The effective

potential has manifest extended flavor SUf (4) symmetry
which is spontaneously broken by the saddle point (20).
Since zero µ cannot support the breaking of U(1)V , this
phase is characterized by a finite chiral condensate and a
zero diquark condensate. For µ 6= 0, we have ImT 6= 0 in
(19). The effective potential loses manifest SUf (4) sym-
metry. While the saddle point (20) indicates the possibil-
ity of either a chiral or diquark condensate, (22) shows
that the diquark phase is favored by a larger pressure
since V0 > V1. The µ > 0 is a superconducting phase of
confined and massless baryons.

The chiral and diquark condensates follow from the
definitions (12) and the saddle point (20), which are

(
〈q̄q〉
T

,−〈qq〉
T

)
= −2(λ1, λ2) (23)

For µ = 0 we have λ2 = 0 and 〈q̄q〉 /T = −α/2, while
for µ 6= 0 we have λ1 = 0 and 〈qq〉/T = α/2, with
α = 4π

√
fLfM which is independent of µ. This result

is in agreement with the general analysis for the QCD-
like theories given in [24] for zero pion mass (see Table
3).

C. Constituent quark mass and scalar gap

In the paired phase with λ1 = 0, the momentum-
dependent constituent quark mass M(p) can be defined
using the determinant (22) to be

M(p) = λ
(
ω2

0 + p2
) 1

2 |T(p)| (24)

In Fig. 1 we show the behavior of the dimensionless mass
ratio (M(p)/λ/ω0)2 as a function of p/ω0. The oscilla-
tory behavior is a remnant of the Friedel oscillation noted
earlier. We note that (24) through (11-12) satisfies

∫
d3p

(2π)3

M2(p)

ω2
0 + p2 +M2(p)

=
nD
8

(25)

with nD = 8π
√
fLfMΣ.

The superconducting mass gap ∆s(0)/2 can be ob-
tained by fluctuating along the modulus of the paired
quark qq. This is achieved through a small and local
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FIG. 1: The squared momentum dependent quark constituent
mass (ω0M(p)/λ)2 versus p̃ = p/ω0 for µ/ω0 = 1.

scalar deformation of the type λ2(x) ≈ λ(1 + is(x)), for
which the effective action to quadratic order is

S[s] =
2Nf
2fs

∫
d3p

(2π)3
s(p)

1

∆s(p)
s(−p) (26)

The scalar propagator is (p± = q ± p
2 )

1

∆s(p)
= 2

∫
d3q

(2π)3

M+M−(p+p− −M−M+)

(p2
+ +M2

+)(p2
− +M2

−)
(27)

Here we have defined M± ≡ λ|T(p±)|, and therefore
∆(0) = ∆s(0)/∆′s(0).

IV. GENERALIZATION TO SUc(Nc) × SUf (Nf )

For general Nc with x = Nf/Nc, the pairing in (12)
involves only those color indices commensurate with the
affine root of SUc(Nc) through their corresponding KK-
or L-zero modes. This leaves (Nc − 2) color directions
unbroken. As a result, the non-perurbative contribution
to the pressure per unit 3-volume (19) is now changed to

−V/V3 = α |~Σ|x − 4~λ · ~Σ

+Nf

∫
d3p

(2π)3
ln

((
1 + ~λ2|T(p)|2

)2

− 4λ2
1|ImT(p)|2

)
(28)

with now α = 4π(fLf
Nc−1
M )

1
Nc . Remarkably, the fermion

loop contribution in (28) is of order NfN
0
c as it should

for a confining theory with Nc fundamental quarks [14].

The extrema in ~Σ still yield parallel vectors

~λ = λ(cosθ, sinθ)

~Σ = Σ(cosθ, sinθ) (29)

for which (28) simplifies

−V/V3 = αΣx − 4λΣ

+Nf

∫
d3p

(2π)3
ln
((

1 + λ2|T(p)|2
)2 − 4λ2 cos2θ |ImT(p)|2

)
(30)

The saddle point in Σ gives

λ =
α

4
xΣx−1 (31)

while the saddle point in θ gives cos θ = 0, 1. The latter
yields the respective pressure per volume

−V0,1/V3 = α

(
4

αx

) x
x−1

(1− x)λ
x
x−1

+Nf ln
((

1 + λ2|T(p)|2
)2 − 4λ2(0, 1)|ImT(p)|2

)
For µ = 0, we have V0 = V1 and both the chiral and
diquark phase are degenerate. Since the µ = 0 phase
cannot break U(1)V , the chiral phase with a pion as a
Golstone mode is favored. For µ > 0, V0 > V1, the
diquark phase is favored by the largest pressure.

In the diquark phase and for Nc = 3, the baryonic ex-
citations carry zero triality on average since the phase
is still center symmetric. The lightest baryon excitation
with zero triality is composed of a massless diquark with
color (13) and a constituent quark of color (2) and mass
M(0). Here (13) refers to the Cartan generator support-
ing the KK-zero mode at finite µ. As a result, the super-
conducting phase forms only if

µ > µc =
1

3
mB = M(0) (32)

From (8) we have

M(0) = λω0 |T(0)| = 18π2λ

ω0

(1 + µ2/ω2
0)

1
2

(1 + 4µ2/ω2
0)

3
2

(33)

Combining (32-33) allows for a determination of the crit-
ical value λc in terms of µ̃c = µc/ω0,

λ̃c ≡
λc
ω2

0

=
µ̃c
6π2

(1 + 4µ̃2
c)

3
2

(1 + µ̃2
c)

1
2

(34)

Inserting (34) into (24-25), yields

nD
T 3

=

∫
d3x

(λ̃c ω
2
0 T(x))2

1 + (λ̃c ω2
0 T(x))2

(35)

with the hopping transition T(x) evaluated at µ̃c. We
have defined
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nD = 8π (f1..fNc)
1
Nc Σ

Nf
Nc (36)

where each of the Nc dyon carries a fugacity fi. Note that
(36) reduces to the value defined in (25) for Nc = Nf = 2.

In Fig. 2 we show the critical line for the chemical
potential (35), that is (T 3/nD)

1
4 ≈ T/Λ as a function of

µ̃ = µc/ω0. Here Λ ≈ 200 MeV is identified with the
typical QCD scale [4]. For T ≈ Λ we have µc/Λ ≈ 0.7π,
while for T/Λ ≈ 0.4 we have µc/Λ ≈ 2π, within the range
of validity noted earlier.

In Fig. 3 we sketch the phase diagram for the instanton-
dyon ensemble at finite temperature and quark chemical
potential for Nc = 3 and Nf = 2. Below the dashed
and lower solid line (blue) the phase is center symmetric
and breaks spontaneously chiral symmetry. The phase
between the two solid lines (red and blue) is center sym-
metric and superconducting. The upper (red) line is set
by the breaking condition of the superconducting gap,
i.e. T = ∆s(0) with

1

∆s(p)
=

x

1− x
nD
Nc

+

∫
d3q

(2π)3

(p−M+ + p+M−)2

(p2
+ +M2

+)(p2
− +M2

−)

(37)

which generalizes (27) to any Nc 6= Nf . All phase separa-
tions (blue) are second order in our mean-field analysis.

The finite µ analysis in the instanton-dyon
liquid model is analogous to the 2CS (2-color-
superconductivity) phase in the QCD-like theories [27],
as only two out of the three color directions associated
to the KK-mode (affine root of the Cartan group)
are broken. This observation extends to all Nc > 2.
The instanton-dyon liquid phase does not support a
CFL (color-flavor-locking) phase for Nc = 3, since the
affine root in SUc(3) is special and only involves two
fixed color directions, say (13). The higher Matsubara
modes contribute at the subleading order as we show in
Appendix D.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
μ
˜0.4

0.6

0.8

1.0

1.2

(T 3/nD)
1/4

FIG. 2: Critical line (T 3/nD)
1
4 ≈ T/Λ versus µ̃ = µc/ω0 for

SUc(3) × SUf (2) with nD defined in (36).

FIG. 3: Sketch of the phase diagram for the instanton-dyon
liquid for SUc(3) × SUf (2). See text.

V. CONCLUSIONS

We have extended the mean field treatment of the
SU(2) instanton-dyon model with light quarks in [1] to fi-
nite chemical potential µ. In Euclidean space, finite µ en-
ters through iµ in the Dirac equation. The anti-periodic
KK- or L-dyon zero modes are calculated for the low-
est Matsubara frequencies, with the higher modes con-
tributing a sub-leading order. The delocalization of the
zero modes occur only through the KK- or L-dyon zero
modes which implies that the diquark pairing and the
chiral pairing have equal strength whatever Nc. There-
fore, the instanton-dyon liquid may not support chiral
density waves [16]. The diquark phase is favored for
µ > (1− 2/Nc)M(0).
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VII. APPENDIX A: FERMIONIC HOPPING IN
THE STRING GAUGE AT FINITE µ

In this Appendix we detail the form of the hopping
matrix in the string gauge. We will show that the differ-
ence with the hopping matrix element in the hedgehog
gauge (8) used in the main text is (numerically) small.

We transform the L-zero modes in hedgehog gauge (2)
to the string gauge using the (θ, φ) polar parametrization
of S±,

ψa=1
L = e−iω0x4

(
−sin

θ

2
e−iφ,+cos

θ

2

)
α+(r)

ψa=2
L = e+iω0x4

(
−cos

θ

2
,−sin

θ

2
e+iφ

)
α−(r) (38)

and similarly for the L̄-dyon

ψa=1
L̄ = e−iω0x4

(
−cos

θ

2
,−sin

θ

2
e+iφ

)
α−(r)

ψa=2
L̄ = e+iω0x4

(
−sin

θ

2
e−iφ,+cos

θ

2

)
α+(r) (39)

with α±(r) defined in (3). In terms of (38-39) the hopping
matrix element (5) involves the relative angular orienta-
tion θ (not to be confused with θ used in the text). It is
in general numerically involved.

To gain further insights and simplify physically the
numerical analysis, let lxy be the line segment connect-
ing x to y in (5) and let z lies on it. Since the zero
modes decay exponentially, the dominant z-contribution
to the integral in (5) stems from those z with the small-
est |x − z| + |y − z| contribution. Using rotational sym-
metry, we can set x = 0 and y = (r, θ, 0) in sphe-
rial cordinates. The dominant contributions are from
θz−x = θ, φz−x = 0, and θz−y = π − θ, φz−y = −π which
can be viewed as constant in the integral. With this in
mind, (5) in string gauge reads

−T+
LR(x− y) =

ω0 + iµ

2

∫
d3z α∗+(|x− z|)α+(|y − z|)

−1

2

(
1 +

cos2θ − cosθ

2

)
×Re

∫
d3z α∗+(|x− z|)

α′+(|y − z|) + α+(|y − z|)
|y − z|

(40)

In a large ensemble of dyons and anti-dyons, we have on
average 〈cosθ〉 = 0 and

〈
cos2θ

〉
= 1

2 . Thus,

T+
LR(x− y) =

ω0

2

∫
d3z α∗+(|x− z|)α+(|y − z|)

−5

8
Re

∫
d3z α∗+(|x− z|)

α′+(|y − z|) + α+(|y − z|)
|y − z|)

(41)

in the string gauge. Its Fourier transform is

T(p) ≈ −1

2

(
(ω0 + iµ)|α+(p)|2 − 5

4
Re(α∗+(p)α̃+(p))

)
(42)

with α̃(r) = (rα+(r))′/r. (42) is to be compared to (8) in
the hedgehog gauge. The dominant contribution in (42)
is due to the first contribution |α+|2 which is common to
both gauge fixing. A similar observation was made in [2]
for the case of µ = 0.

VIII. APPENDIX B: ESTIMATE OF THE
FERMIONIC HOPPING IN THE HEDGEHOG

GAUGE AT FINITE µ

In this Appendix we we will estimate the fermionic
hopping matrix element (8) by using the asymptotic form
of the L-dyon zero mode at finite µ (2-3). Throughout
we will use the dimensionless redefinitions µ→ µ/ω0 and
p→ p/ω0. The normalization in (2) is fixed with

C = ω
3
2
0

(
8π(1 + 4µ2)

) 1
2 (43)

With this in mind, (8) reads

T(p) = − π

ω2
0

1

(1 + 4µ̃2)
((1 + iµ)F1(p) + F2(p)) (44)

with

F1(p) = a2
1(p)−A′21 (p) + a2

2(p)−A′22 (p)

F2(p) = 2p (a1(p)A′1(p) + a2(p)A′2(p)) (45)

a1(p) =
1

p

∫ ∞
0

√
x sin(px) (2µ sin(µx) + cos(µx))

a2(p) =
1

p

∫ ∞
0

√
x sin(px) (2µ cos(µx)− sin(µx))

A1(p) =
1

p

∫ ∞
0

1√
x

sin(px) (2µ sin(µx) + cos(µx))

A2(p) =
1

p

∫ ∞
0

1√
x

sin(px) (2µ cos(µx)− sin(µx)) (46)



8

More explicitly, define

a(p) =

√
2π sin

(
3
2 tan−1(2p)

)
(4p2 + 1)

3/4

b(p) =

√
2π cos

(
3
2 tan−1(2p)

)
(4p2 + 1)

3/4

A(p) =
2
√
πp√

4p2 + 1
√√

4p2 + 1 + 1

B(p) =

√
π
√√

4p2 + 1 + 1√
4p2 + 1

(47)

Then we have

a1(p) =
1

p
(µ(b(p− µ)− b(p+ µ))

−1

2
(a(p+ µ) + a(p− µ))

a2(p) =
1

p
(µ(a(p− µ) + a(p+ µ))

−1

2
(b(p+ µ)− b(p− µ))

A1(p) =
1

p
(µ(B(p− µ)−B(p+ µ))

−1

2
(A(p+ µ) +A(p− µ))

A2(p) =
1

p
(µ(A(p− µ) +A(p+ µ))

−1

2
(B(p+ µ)−B(p− µ))

(48)

We note the momentum averaged hopping strengths

µ = 0 :

∫
d3p

(2π)3
|T(p)|2 ≈ 4.86

ω0

µ = ω0 :

∫
d3p

(2π)3
|T(p)|2 ≈ 0.98

ω0
(49)

and the typical hopping strengths at zero momentum is

µ = 0 : |T(0)|2 ≈ 307.97

T 4

µ = ω0 : |T(0)|2 ≈ 0.20

T 4
(50)

We note the huge reduction in hopping at µ = ω0.

IX. APPENDIX C: BOSONIZATION AND
FERMIONIZATION

A. Bosonic fields

Following [1, 2, 4] the moduli determinants in (1) can

be fermionized using 4 pairs of ghost fields χ†L,M , χL,M

for the dyons and 4 pairs of ghost fields χ†
L̄,M̄

, χL̄,M̄ for

the anti-dyons. The ensuing Coulomb factors from the
determinants are then bosonized using 4 boson fields
vL,M , wL,M for the dyons and similarly for the anti-
dyons. The result is

S1F [χ, v, w] = − T

4π

∫
d3x(

|∇χL|2 + |∇χM |2 +∇vL · ∇wL +∇vM · ∇wM
)

+(
|∇χL̄|2 + |∇χM̄ |2 +∇vL̄ · ∇wL̄ +∇vM̄ · ∇wM̄

)
(51)

For the interaction part VDD̄, we note that the pair
Coulomb interaction in (1) between the dyons and
anti-dyons can also be bosonized using standard meth-
ods [25, 26] in terms of σ and b fields. As a result each
dyon species acquire additional fugacity factors such that

M : e−b−iσ L : eb+iσ M̄ : e−b+iσ L̄ : eb−iσ (52)

Therefore, there is an additional contribution to the free
part (51)

S2F [σ, b] =
T

8

∫
d3x (∇b · ∇b+∇σ · ∇σ) (53)

and the interaction part is now

SI [v, w, b, σ, χ] = −
∫
d3x

e−b+iσfM
(
4πvm + |χM − χL|2 + vM − vL

)
ewM−wL +

e+b−iσfL
(
4πvl + |χL − χM |2 + vL − vM

)
ewL−wM +

e−b−iσfM̄
(
4πvm̄ + |χM̄ − χL̄|2 + vM̄ − vL̄

)
ewM̄−wL̄ +

e+b+iσfL̄
(
4πvl̄ + |χL̄ − χM̄ |2 + vL̄ − vM̄

)
ewL̄−wM̄ (54)

without the fermions. We now show the minimal modi-
fications to (54) when the fermionic determinantal inter-
action is present.

B. Fermionic fields

To fermionize the determinant and for simplicity, con-
sider first the case of 1 flavor an 1 Matsubara frequency,
and define the additional Grassmanians χ = (χi1, χ

j
2)T

with i, j = 1, ..,KL,L̄ and



9

∣∣∣det T̃
∣∣∣ =

∫
D[χ] eχ

†T̃χ (55)

We can re-arrange the exponent in (55) by defining a
Grassmanian source J(x) = (J1(x), J2(x))T with

J1(x) =

KL∑
i=1

χi1δ
3(x− xLi)

J2(x) =

KL̄∑
j=1

χj2δ
3(x− yL̄j) (56)

and by introducing 2 additional fermionic fields ψ(x) =
(ψ1(x), ψ2(x))T . Thus

eχ
†T̃χ =

∫
D[ψ] exp (−

∫
ψ†G̃ψ +

∫
J†ψ +

∫
ψ†J)∫

dD[ψ] exp (−
∫
ψ†G̃ψ)

(57)

with G̃ a 2× 2 chiral block matrix

G̃ =

(
0 −iG(x, y)

−iG(x, y) 0

)
(58)

with entries TG = 1. The Grassmanian source contribu-
tions in (57) generates a string of independent exponents
for the L-dyons and L̄-anti-dyons

KL∏
i=1

eχ
i
1†ψ1(xLi)+ψ

†
1(xLi)χ

i
1

×
KL̄∏
j=1

eχ
j
2†ψ2(yL̄j)+ψ

†
2(yL̄j)χ

j
2 (59)

The Grassmanian integration over the χi in each factor
in (59) is now readily done to yield

∏
i

[−ψ†1ψ1(xLi)]
∏
j

[−ψ†2ψ2(yL̄j)] (60)

for the L-dyons and L̄-anti-dyons. The net effect of the
additional fermionic determinant in (1) is to shift the
L-dyon and L̄-anti-dyon fugacities in (54) through

fL → −fLψ†1ψ1 ≡ −fLψ†γ+ψ

fL̄ → −fL̄ψ
†
2ψ2 ≡ −fL̄ψ†γ−ψ (61)

where we have now identified the chiralities through γ± =
(1± γ5)/2. The fugacities fM,M̄ are left unchanged since
they do not develop zero modes.

The result (61) generalizes to arbitrary number of
flavors Nf and two Matsubara frequencies labeled by
i, j = ± through the substitution

fL →
Nf∏
f=1

∏
i,j=±

ψ†f (if )γ+ψf (jf ) δ

∑
f

(if + jf )


fL̄ →

Nf∏
f=1

∏
i,j=±

ψ†f (if )γ−ψf (jf ) δ

∑
f

(if + jf )

 (62)

C. Resolving the constraints

In terms of (51-54) and the substitution (61), the dyon-
anti-dyon partition function (1) for finite Nf can be ex-
actly re-written as an interacting effective field theory in
3-dimensions,

Z1[T ] ≡
∫
D[ψ]D[χ]D[v]D[w]D[σ]D[b]

×e−S1F−S2F−SI−Sψ (63)

with the additional Nf = 1 chiral fermionic contribution

Sψ = ψ†G̃ψ. Since the effective action in (63) is linear in
the vM,L,M̄,L̄, the latters integrate to give the following
constraints

− T

4π
∇2wM + fMe

wM−wL

−fL
∏
f

ψ†fγ+ψf ewL−wM =
T

4π
∇2(b− iσ)

− T

4π
∇2wL − fMewM−wL

+fL
∏
f

ψ†fγ+ψf ewL−wM = 0 (64)

and similarly for the anti-dyons with M,L, γ+ →
M,L, γ−. To proceed further the formal classical solu-
tions to the constraint equations or wM,L[σ, b] should be
inserted back into the 3-dimensional effective action. The
result is

Z1[T ] =

∫
D[ψ]D[σ]D[b] e−S (65)

with the 3-dimensional effective action

S = SF [σ, b] +

∫
d3x

∑
f

ψ†fG̃ψf (66)

−4πfMvm

∫
d3x (ewM−wL + ewM̄−wL̄)

+4πfLvl

∫
d3x

∏
f

ψ†fγ+ψf e
wL−wM

+4πfL̄vl

∫
d3x

∏
f

ψ†fγ−ψf e
wL̄−wM̄
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Here SF is S2F in (53) plus additional contributions re-
sulting from the wM,L(σ, b) solutions to the constraint
equations (64) after their insertion back. This procedure
for the linearized approximation of the constraint was
discussed in [1, 2] for the case without fermions.

X. APPENDIX D: ALTERNATIVE EFFECTIVE
ACTION AT FINITE µ

In this Appendix, we detail an alternative mean-field
analysis of the instanton-dyon ensemble at finite T, µ.
The construction is more transparent for a diagrammatic
interpretation and allows for the use of many-body tech-
niques beyond the mean-field limit. For that, we set
Nf = 2 and define

〈
ψf (p)ψ†g(−p)

〉
= δfgF1(p) (67)〈

ψf (p)ψTg (−p)
〉

= iεfgF2(p) (68)

with p = (~p,±ω0) subsumed. The averaging is assumed
over the instanton-dyon ensemble, with

Σ1,2 =
1

2
TrF1,2 (69)

The Trace is carried over the dummy spin indices and
momentum. The 3-dimensional effective action for the
momentum dependent spin matrices F1,2 in the mean-
field approximation takes the generic form

−Γ[F] = α

((
TrF1

2

)2

+

(
TrF2

2

)2
) 1
Nc

(70)

+2TrG̃F1 − Trln
(
F2

2 + F2F
T
1 F
−1
2 F1

)
The first contribution is the Hartree-Fock type contribu-
tion to the effective potential after minimizing with re-
spect to (wM −wL). The second and third contributions
are from the fermionic loop with the fermion propaga-
tor evaluated in the mean-field approximation. We note
that in the dyon ensemble both the quark-quark pair-
ing and the quark-anti-quark pairing carry equal weight
in the Hartree-Fock term. This is not the case for one-
gluon exchange or the instanton liquid model where the
quark-quark pairing is 1/Nc suppressed in comparison to
the quark-anti-quark pairing. We have checked that the
saddle point equations

δΓ[F]

δFi(p)
= 0 (71)

yield the saddle point results in the main text.

XI. APPENDIX D: ZERO MODES FOR
ARBITRARY MATSUBARA FREQUENCIES

To discuss the generalized structure of the zero modes
for higher Matsubara frequencies, we recall that for the
SUc(2) case, the Polyakov line is L = cosπν. In a
dyon with core size and asymptotic A4 controlled by
ν → νn = ν + n, there is a tower of zero modes with
higher Matsubara frequencies of which (2-3) are the low-
est ones. To construct them, we first note that each Mat-
subara mode ψ ≡ eiωmx4 ψ̃, contributes the following to
the Dirac equation for ψ̃

(γ ·D + γ4(−µ+ iωm))ψ̃ = 0 (72)

(72) shows that the zero modes in a BPS dyons follow
from the standard ones using the double substitution
µ → µ − iωm and ν → νn. Square integrability for
ωm = (2m + 1)ω0 requires |ωm| < |νnω0|. For all m
satisfying |2m + 1| < |ν + n|, the anti-periodic BPS or
M-dyon zero modes read explicitly

ψ̃m,n,Aα = (α1mn(r) + α2mn(r)σ · r̂ε)Aα (73)

with

α1,2mn =
χ1,2mn√

2πTνnr sinh(2πTνnr)

χ1,mn = − φm
πνn

sinh(φmTr) + tanh(πTνn) cosh(φmTr)

χ2,mn = ∓(
φm
πνn

cosh(φmTr)− coth(πTνn) sinh(φmTr))

(74)

Here φm = ωm + iµ/T , with −,+ referring to the anti-
periodic M- and M̄-dyon zero modes respectively.

For periodic BPS zero modes we still have (73-74) but
with the substitution ωm → 2mω0. Square integrabil-
ity now requires |2m| < |ν + n|. To construct the anti-
periodic KK or L-dyon zero modes at level n, we first
obtain the periodic BPS zero modes with ν → ν̄ and
n → −n as detailed above. We then gauge transform
them using e∓iπTx4σ·r̂ to obtain the anti-periodic KK or
L-dyon zero modes. Therefore, the condition for the exis-
tence of anti-periodic L-dyon zero modes at level n, with
time dependence e±iω0x4+i2πmTx4 is |2m| < |ν̄ − n|.

In sum, the asymptotics of the mode ψm,n is

ψm,n →
e−(ν+n−(2m+1))πTr

√
r

e−i(2m+1)πTx4 (75)

Also, for the L-dyon at level n the asymptotics reads

ψLm,n →
e−(ν̄+n−2m)πTr

√
r

e−i(2m+1)πTx4 (76)
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So, for n = 2m+ 1 or 2m we have

ψm,2m+1 →
e−νπTr√

r
e−i(2m+1)πTx4

ψLm,2m →
e−ν̄πTr√

r
e−i(2m+1)πTx4 (77)

For example, at n=1, all the M zero modes at ω0 decay as
e−πTνr/

√
r, which is the same as the L zero mode at n=0.

Thus, even though they carry higher Matsubara frequen-
cies, their asymptotics are the same compared with those
modes with n=0. However, since they are assiocated with
dyons with larger action or small fugacity, ther are always
suppresed. For example, the induced effective contribu-
tion to the action which include the modes at n = 1 and
m = 0 is

Nc−1∑
i=1

fi,n=0e
wi−wi+1 + fNc,n=0

∏
f

ψ†fψfe
wNc−w1

+

Nc−1∑
i=1

fi,n=1

∏
f

ψ†f,1ψf,1e
w1
i−w

1
i+1 (78)

The last contribution is due to the higher Matsubara
modes. However, this contribution is exponentially sup-
pressed compared to the first two contributions we have
retained in the text, since

fi,n=1/fi,n=0 = e
− 16π2

g2 (79)
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