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Abstract

We apply the technique of spinfoam to study the space-time which, classically, contains a curva-

ture singularity. We derive from the full covariant Loop Quantum Gravity (LQG) that the region

near curvature singularity has to be of strong quantum gravity effect. We show that the spinfoam

configuration describing the near-singularity region has to be of small spins j, in order that its

contribution to the full spinfoam amplitude is nontrivial. The spinfoams in low and high curvature

regions of the space-time may be viewed as in two different phases of covariant LQG. There should

be a phase transition as the space-time described by spinfoam becomes more and more curved. A

candidate of order parameter is proposed for understanding the phase transition. Moreover, we also

analyze the spin-spin correlation function of spinfoam, and show the correlation is of long-range in

the low curvature phase. This work is a first step toward understanding the physics of black hole

and early universe from the full covariant LQG theory.
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I. INTRODUCTION

The recent studies of spinfoam asymptotics have made a significant progress on under-

standing the semiclassical limit of Loop Quantum Gravity (LQG) (see e.g. [1–6])[7]. It has

been understood that at least at the discrete level, classical 4d geometry emerges from spin-

foam amplitude in the regime that the spins jf are uniformly large. The large-j asymptotics

of spinfoam amplitude reproduces the discrete Einstein-Hilbert action at the leading order.

In this work, we apply the semiclassical technique and result of spinfoam to the space-

time which, classically, contains a curvature singularity. Typical examples are black hole

space-times and Friedmann-Robertson-Walker (FRW) space-time of cosmology. The space-

time under consideration here has both the low curvature and high curvature regions. The

high curvature region encloses the classical singularity where the curvature blows up. The

purpose of this paper is to understand the (semiclassical and quantum) behavior of spinfoam

for both low curvature and high curvature regions, as well as the behavior when the spinfoam

transits from one region to the other.

The main results can be summarized as follows:

• The low curvature region far from the singularity is described by the large-j spinfoams.

In order that the large-j spinfoam has a non-suppress contribution to the full spinfoam

amplitude, the spinfoam configuration must be semiclassical and correspond to a 4d

simplicial geometry satisfying

`P � a� L (1)

where the mean lattice spacing of the simplicial geometry is denoted by a. L is the

mean curvature radius of the geometry. The LQG area spectrum implies a2 ∼ γj`2
P ,

where the Barbero-Immirzi parameter γ is set to be of O(1) throughout the paper.

Eq.(1) is consistent with large-j and low curvature (L is relatively large). Any large-j

spinfoam configuration violating Eq.(1) only gives a suppressed contribution to the

spinfoam amplitude.

• When the space-time curvature is high, Eq.(1) is violated by the small curvature radius.

It turns out that the large-j semiclassical approximation breaks down in the high

curvature region near singularity. The main contribution to the spinfoam amplitude

comes from the small-j configurations. The small-j regime of spinfoam amplitude is
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considered as the quantum regime of the theory, where the quantum gravity effect

is strong. Therefore the covariant theory of LQG indicates that the high curvature

region near singularity is a quantum region deviated far away from classical gravity.

It also indicates that the quantum region near singularity is made by a very large

number of 4-simplices. The spinfoam model becomes refined when approaching the

classical singularity. The physics near the singularity may be understood by the full

nonperturbative theory of LQG, which is well-defined.

• The large-j and small-j spinfoams in low and high curvature regions may be viewed

as two different phases of covariant LQG. The result suggests that there should be a

phase transition of LQG, when the space-time described by spinfoam becomes more

and more curved. Although it is not clear where precisely in the space-time the

phase transition occurs, the analysis suggests that the transition between large-j and

small-j phases may happen at certain place where the curvature is still much lower

than the Planckian curvature, i.e. at L � `P . So the small-j phase may not only

cover the Planckian curvature region, but also cover a much larger domain. This

effect is resulting from the large number of spinfoam degrees of freedom on the refined

triangulation, which accumulates and produces a strong quantum effect. It might

relate to the recent proposal in [8], where the proposed quantum region of space-time

is even slightly outside the black hole event horizon. It is also likely that there should

be a domain-wall located at the place where the phase transition occurs. The domain-

wall separates the low and high curvature regions of the space-time as two phases of

spinfoam. It might relate to the proposal of firewall for black hole (see e.g. [9]).

The analysis of spinfoam amplitude of low curvature region is carried out in Sections II

and III. The low curvature region of the spacetime corresponds to the semiclassical regime

of spinfoam amplitude, whose contribution comes from the large-j spinfoam critical configu-

ration. The studies of large-j spinfoam asymptotics shows that each simplicial geometry in

4d corresponds uniquely to a critical configuration of spinfoam amplitude[10] [2, 3, 11]. The

contribution of a simplicial geometry to the spinfoam amplitude is obtained by performing

the spinfoam state-sum within a neighborhood at the corresponding critical point in the

space of spinfoam configurations.

It is particularly interesting to understand the role played by the sum over spins j in
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the semiclassical spinfoam amplitude. Although there has been earlier semiclassical analysis

taking into account of the spin-sum (e.g.[4, 6, 12]), it seems to us that a sufficient under-

standing of the spin-sum in spinfoam amplitude still hasn’t been achieved yet. One of the

mysteries of the spin-sum comes from the dual role played by the spin j in the spinfoam

amplitude. On one hand, j is a scale of the theory since the minimal spacing a the trian-

gulation is given by a2 ∼ γj`2
P . The semiclassical limit of the theory relates to the large-j

behavior of the spinfoam amplitude. On the other hand, the spin j is also a dynamical

variable of spinfoam, since it is summed in the spinfoam amplitude. The fact that j is a

dynamical scale is a consequence of background independence of LQG, (See e.g.[13]).

Because of the dual role played by the spin j, we propose the following prescription of

the spin-sum: In order to study the physics at a given (energy) scale corresponding to j0,

we should essentially perform the spin-sum within a neighborhood at j0. The summed spins

shouldn’t go much beyond the given scale j0. To implement this idea, we regularize the sum

over j by introducing a decaying factor in the summand to suppress the contributions from

the j’s far from j0. The regularized spin-sum can be performed explicitly in the spinfoam

amplitude. The consequence may be viewed as an analog of Feynman iε-regularization in

quantum field theory (QFT). The suppression regulator δ is sent to be small, in order to

recover the large fluctuation of spins.

The regularized spin-sum results in a distribution Dδ inserted in the spinfoam ampli-

tude. Semiclassically, the distribution Dδ is supported at the critical configurations whose

corresponding simplicial geometries have small deficit angles Θ � 1. The smallness of Θf

is controlled by the small regulator δ regularizing the spin-sum. The contribution from any

critical configurations violating Θ � 1 is suppressed by Dδ in spinfoam amplitude. The

deficit angle relates to the curvature of the geometry by Θ ∼ a2/L2. So the distribution Dδ

resulting from the spin-sum forces the simplicial geometries emerging from spinfoam ampli-

tude to satisfy a� L, i.e. the simplicial geometries approximates the smooth geometries of

relatively low curvatures.

The discussion in Section IV is toward a description of classical curvature singularity in

covariant LQG. We consider a classical space-time containing both the low curvature and

high curvature regions. The high curvature region encloses a curvature singularity. The low

curvature region is emerging from the spinfoam amplitude as a large-j critical configuration

satisfying Eq.(1). We want to understand how the spinfoam configuration continues from
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the low curvature region to the high curvature region, in order to describe the high curvature

region and the singularity using spinfoam.

It is not hard to see that Eq.(1), in particular a � L, is going to be violated, when

we approach the singularity in the high curvature region. The reason is that L becomes

smaller and even L ∼ `P in the high curvature region. If the high curvature space-time

still admitted a large-j semiclassical description, the violation of a � L would lead to a

large deficit angle. Then its contribution to the spinfoam amplitude would be suppressed

by the distribution Dδ. Therefore in the high curvature region of the space-time, the large-j

semiclassical approximation breaks down. The main contribution of the spinfoam amplitude

comes from the small-j configurations. The quantum gravity effect becomes strong.

In LQG, the idea of quantum region near singularity has been proposed in e.g. [14–18]

for loop quantum cosmology and e.g. [19–22] for black holes (including the proposals of

singularity resolution). However a derivation of this idea from the full LQG theory has

been missing. Here we fill this gap and provide a derivation to show that the quantum

region near singularity is indeed predicted by the full LQG. This work is a first step toward

understanding the physics of black hole and early universe from full LQG theory.

It is clear that the distribution Dδ from spin-sum plays a crucial role in the derivation.

Interestingly, the non-regularized version of Dδ (δ → 0) has been pointed out in the literature

[12, 23, 24]. Its support at small deficit angle leads to the so called, flatness of spinfoam

model. The flatness has been suspected to be a bad property since it seemed to imply

that the semiclassical geometries from spinfoam amplitude was always flat. However the

analysis here shows that the flatness property is actually a good property of spinfoam model.

Regularizing the spin-sum leads to Dδ which gives a good control of the small deficit angle.

The “regularized flatness” frees the curvature in the low curvature region and makes the

simplicial geometries approximate the smooth geometries. In the high curvature region, the

flatness property guarantees the strong quantum effect near curvature singularity, such that

the physics is deviated away from classical gravity.

The large-j spinfoam and small-j spinfoam of low and high curvature regions may be

viewed as two phases of spinfoam model. The continuation of spinfoam from low to high

curvature regions may be understood as the phase transition from large-j phase to small-j

phase. The spinfoam model behaves differently in two different phases. In large-j phase,

the vacua of spinfoam are the semiclassical 4d simplicial geometries, on which the spinfoam
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degrees of freedom are the excitations producing 1/j-corrections. In small-j phase, the

vacuum of spinfoam is the state with vanishing spin everywhere (no-geometry state or the

so called Ashtekar-Lewandowski vacuum). The spinfoam degrees of freedom on this vacuum

are the spin and intertwiner excitations. The phases proposed here might have the relation

with the recent works [25, 26].

It is useful to find an order parameter in order to understand the phase transition between

large-j and small-j phases. In Section V, we proposes a candidate of order parameter, being

the imaginary part Im〈j〉 of the expectation value of the spin j. The discussion in Section V

suggests that Im〈j〉 � 1 in the large-j phase while it should be finite in the small-j phase.

In Section VI, we analyze the correlation function of two spins located at different triangles.

We find that in the large-j phase, the pair of spins has a strong and long-range correlation.

The correlation function doesn’t decay even for a pair of spins located far away.

In this paper, the understanding of the phase and their transition is qualitative. Given

a space-time with curvature singularity, it is not clear at the moment where precisely the

phase transition occurs in the space-time. However the analysis suggests that the transition

between large-j and small-j phases may happen at certain place where the curvature is

still much lower than the Planckian curvature, i.e. at L � `P . So the small-j phase

may not only cover the Planckian curvature region, but also cover a much larger domain.

This effect may be resulting from the large number of spinfoam degrees of freedom on the

refined triangulation, which accumulates and produces a strong quantum effect. A more

quantitative understanding of the phase transition is a research undergoing currently, whose

result will be reported elsewhere.

II. LORENTZIAN SPINFOAM AMPLITUDE AND LARGE SPIN ASYMPTOTICS

Our analysis here is based on the Lorentzian spinfoam amplitude proposed by Engle-

Pereira-Rovelli-Livine (EPRL) [27]. The spinfoam amplitude defined on a simplicial complex

K can be written in an integral representation [11]

Z(K) =
∑
jf

∏
f

dim(jf )Ajf (K)

=
∑
jf

∏
f

dim(jf )

∫
SL(2,C)

∏
(v,e)

dgve

∫
CP1

∏
v∈∂f

dzvf eS[jf ,gve,zvf ] (2)
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The labels v, e and f are 4-simplices, tetrahedra and triangles in the complex K, or vertices,

dual edges and dual faces in the dual 2-complex K∗, respectively. Spin jf labels SU(2) irreps

associated to each triangle f . gve is an SL(2,C) element associated to each half-edge (v, e).

zvf is a 2-component spinor (modulo complex scaling) associated to each vertex v at the

boundary of the dual face f . The spinfoam action S[jf , gve, zvf ] is written as

S[jf , gve, zvf ] ≡
∑
(ef)

jf

(
ln

〈Zvef , Zv′ef〉2

〈Zvef , Zvef〉〈Zv′ef , Zv′ef〉
+ iγ ln

〈Zvef , Zvef〉
〈Zv′ef , Zv′ef〉

)
(3)

where Zvef ≡ g†vezvf , 〈, 〉 is an SU(2) invariant Hermitian inner product between spinors,

and γ ∈ R is the Barbero-Immirzi parameter.

The asymptotic behavior of the partial amplitude Ajf (K) has been studied in the large-j

regime [1–3, 11, 28]. The spins jf ≡ Jkf scales uniformly large for all triangles f as J � 1.

Here J is introduced as the mean value of spins on K. The stationary phase analysis can be

employed to study the asymptotic behavior of Ajf (K) since S is linear to jf . The leading

contribution of Ajf (K) in large-j comes from the critical configurations, i.e. the solutions of

ReS = 0 and δgS = δzS = 0. It turns out that generically once a critical configuration is

given, a Lorentzian simpicial geometry can be reconstructed on K (we assume the geometry

is non-degenerate), described by the edge lengths together with some signs labelling the

orientations. Here the orientations include both the 4d spacetime orientation and time

orientation [3, 11].

In the following discussion, we consider the Lorentzian geometries reconstructed from

the spinfoam critical configurations, which are globally oriented and time-oriented. The

leading contribution to Ajf (K), coming from a spinfoam critical configuration, gives the

Regge action (discrete Einstein-Hilbert action) of 4d gravity, i.e.

Ajf (K) ∼ exp

(
iJ
∑
f

γkfΘf + · · ·
)

= exp

(
i

`2
P

SRegge + · · ·
)

(4)

by the relation between triangle area and spin af ∼ γjf`
2
P . Θf is the deficit angle of the

simplicial geometry determined by the critical configuration, which encodes the curvature

of the reconstructed spacetime.

“· · · ” in the above asymptotic formula stands for the ln J and 1/J corrections. ln J

correction relates to the determinant of Hessian matrix Hij(x) = ∂i∂jS(x) (xi denotes the

spinfoam variables gve, zvf ). For an integral of type
∫

dnxu(x) eJS(x) (u(x) is a smooth
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function, and corresponds to the integration measure in Z(K)), the correction of order 1/Js

is given by

i−s
∑
l−m=s

∑
2l≥3m

2−l

l!m!

[
n∑

i,j=1

H−1
ij (x0)

∂2

∂xi∂xj

]l (
gmx0u

)
(x0) (5)

where the function gx0(x) is given by gx0(x) = S(x) − S(x0) − 1
2
Hij(x0)(x − x0)i(x − x0)j.

When the triangulation is refined, the number of spinfoam variables gve, zvf increases. Then

there will be a large number of terms contributing the above sum
∑n

i,j=1. It is likely that

the above 1/Js correction becomes large when the triangulation is refined. So J should also

increase while the triangulation is refined, in order to suppress the 1/Js correction and keep

the Regge action as the leading term.

III. SPIN-SUM, iε-REGULARIZATION, AND SMALL DEFICIT ANGLE

The semiclassical analysis of the full spinfoam amplitude Z(K) is more subtle once the

sum of j is taken into account. A naive semiclassical analysis leads to the so called the

“flatness” of the spinfoam amplitude. Let us consider the sum of spins only in the large spin

regime. We may approximate the spin-sum in Z(K) as an integral

Z(K) ∼ 4NfJ2Nf

∫ ∏
f

kfdkf

∫
SL(2,C)

∏
(v,e)

dgve

∫
CP1

∏
v∈∂f

dzvf eJ
∑

f kfFf [gve,zvf ] (6)

where the spinfoam action S is rewritten as J
∑

f kfFf [gve, zvf ]. When J � 1, if the

stationary phase approximation was employed, the amplitude would be controlled by the

data (j0
f , g

0
ve, z

0
vf ) which were the solutions of ReS = 0 and δkS = δgS = δzS = 0. The

solutions turn out to give the simplicial geometries with γΘf = 0 [29], which seem to all

correspond to the flat geometry. It seems to imply that semiclassically the amplitude would

be dominated by flat geometry in 4d. This property is usually refered to as the flatness of

spinfoam amplitude [12, 23, 30, 31].

However at the solutions corresponding to flat geometry, the Hessian matrices are de-

generate, which means that the stationary phase approximation based on Gaussian type

integral becomes obscure for treating the spin-sum in Eq.(6). The solutions are degenerate

critical points because a flat geometry admits too many triangulations with flat 4-simplices.

A pair of triangulations can be arbitrarily close to each other (according to a certain norm

on the parameter space), e.g. a vertex in the triangulation can move continuously while the
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simplicial geometries are always flat. Each triangulation of flat geometry is a critical point

for Eq.(6). When there are two arbitrarily closed critical points, the critical points are in

general degenerate.

In order to overcome the incapability of the stationary phase analysis, we have to explicitly

perform the spin-sum in the spinfoam amplitude. Now we focus on a neighborhood of a

large-j critical configuration (j0
f , g

0
ve, z

0
vf ) which corresponds to a globally oriented and time-

oriented Lorentzian geometry. We not only consider the integration of gve, zvf , but also take

into account of the sum over the spins in the neighborhood at j0
f � 1. Schematically, we

compute

Z(j0f ,g
0
ve,z

0
vf )(K) =

∫
N(g0ve,z

0
vf )

∏
(v,e)

dgve
∏
v∈∂f

dzvf e
∑

f j
0
fFf

∏
f

∑
sf

(
2j0
f + 1 + 2sf

)
esfFf (7)

where N(g0
ve, z

0
vf ) is the neighborhood at (g0

ve, z
0
vf ). sf = jf − j0

f is the fluctuations of spins

at the large spins j0
f .

It is interesting to understand the sum
∑

sf
of the perturbations. It has to be essentially

a finite sum by the following reason: The magnitude of {jf} introduces an energy scale

to the system. Because of the LQG area spectrum, γjf`
2
P is the area of each plaquette in

the simplicial lattice. When we study the physics at a given energy scale, the energy scale

relates to the size of the lattice plaquette, and relates to a certain magnitude of jf . We

only consider the fluctuation of jf which doesn’t go much beyond the given scale j0
f . In

particular, we don’t consider the deviation of jf which goes much below j0
f and touches the

small-j regime. The small-j makes the LQG area closes to the Planck scale, thus is a deep

quantum regime.

The situation of spinfoam model is very different from the usual context of renormalization

group in QFT. In QFT, one often integrates out the high energy modes to understand the

low energy physics. But here the sum of jf is not a sum over high/low energy modes, but

rather a sum over energy scales themselves. The appearance of summing over scales in the

theory essentially because the theory sums all the geometries in a background independent

manner. Therefore we wouldn’t expect the physical theory defined at a given energy scale

came from a sum over all other energy scales (because here it is not a sum over modes at

scales but a sum of scales themselves). We also wouldn’t expect the physical theory at a

certain scale dominating the contribution in nature. So in our opinion, it doesn’t make sense

to ask whether the contribution from large-j or any scale of j should dominate the spinfoam

10



amplitude. Here when we analyze the physics at a given energy scale (corresponding to

j0
f ), we focus on a regime of spin-sum within a neighborhood at this scale, and ignore the

contribution in Z(K) from other scales.

However it is not completely clear how much should be the size of the neighborhood at

j0
f . It is difficult to make a precise cut-off of the sum over jf , to decide whether the scales are

much beyond j0
f or not. Therefore instead of making a cut-off, we introduce two decaying

regulators e−δ
(1,2)
f sf in the sum to suppress the large fluctuations, and we define a regulated

distribution:

Dδ(Ff ) ≡
∞∑
sf=0

(
2j0
f + 1 + 2sf

)
esf (Ff−δ

(1)
f ) +

−1/2∑
sf=−∞

(
2j0
f + 1 + 2sf

)
esf (Ff+δ

(2)
f ) (8)

where δ
(1,2)
f > 0. Suppose the real part of ReFf ∈ [−δf , 0] in the neighborhood N(g0

ve, z
0
vf ),

then δ
(2)
f > δf such that exp[sf (Ff + δ

(2)
f )] is suppressed while sf goes to −∞ [32].

Recall that we focus on the neighborhood N(g0
ve, z

0
vf ) in Eq.(7) because we are in the

regime of large jf . We can estimate the relation between δf or δ
(2)
f and the scale of j0

f . Let’s

consider a compact neighborhood K in (gve, zvf )-space, which is away from the submanifold

defined by ReFf = 0. Recall that the real part of Ff is non-positive ReFf ≤ 0 for all f .

Then there exists a δf > 0 such that in K, ReFf ≤ −δf at least for one f . It is clear that

K doesn’t contain any critical point. Given an oscillatory integral
∫
K
eJSdµ with ReS ≤ 0

on K, if there is no critical point of S in the integration domain K [33],∣∣∣∣∫
K

eJS(x)dµ(x)

∣∣∣∣ ≤ C

(
1

J

)k
sup
K

1

(|S ′|2 − ReS)k
(9)

the integral decays faster than (1/λ)k for all k ∈ Z+, provided that sup([|S ′|2 + ReS]−k) is

finite (i.e. doesn’t cancel the (1/λ)k behavior in front). Here because in K, ReFf ≤ −δf at

least for one f ,

|S ′|2 − ReS ≥ |S ′|2 + kfδf ≥ kfδf ⇒ 1

Jk
sup
K

1

(|S ′|2 − ReS)k
≤ 1

(jfδf )k
. (10)

where kf = jf/J . So the integration on K suppresses when

jfδf > 1. (11)

It means that we can ignore the contribution from K in (gve, zvf )-space in Eq.(7). Therefore

as j0
f � 1, we restrict our attention to N(g0

ve, z
0
vf ) with ReFf ∈ [−δf , 0], when Eq.(11) is

satisfied[34]. In the following we set δ
(1,2)
f ∼ δf ∼ 1/J , while δ

(2)
f > δf > 1/J .
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Perform the sum of sf , Dδ(Ff ) becomes

Dδ(Ff ) =
2j0
f + 1− 2j0

fe
(Ff−δ

(1)
f )/2[

1− e(Ff−δ
(1)
f )/2

]2 −
2j0
f + 1− 2j0

fe
(Ff+δ

(2)
f )/2[

1− e(Ff+δ
(2)
f )/2

]2 (12)

It is obvious that Dδ(Ff ) has two series of 2nd order poles which are purely imaginary

Ff − δ(1)
f = 4πiZ, Ff + δ

(2)
f = 4πiZ (13)

Since ReFf ∈ [−δf , 0] in the neighborhood N(g0
ve, z

0
vf ), and δ

(2)
f > δf , we have ReFf − δ(1)

f ≤

−δ(1)
f < 0 and ReFf + δ

(2)
f ≥ δ

(2)
f − δf > 0. The real parts of Ff − δ(1)

f and Ff + δ
(2)
f are not

zero, which means that the poles of Dδ(Ff ) are all falling outside of N(g0
ve, z

0
vf ). Dδ(Ff ) is a

smooth function in the domain of N(g0
ve, z

0
vf ). The implementation of δ

(1,2)
f might be viewed

as an analog of the iε-regularization of Feynman propagator in QFT.

The regularized contribution Z
(δ)

(j0f ,g
0
ve,z

0
vf )

(K) is defined from Eq.(7) by regularizing the

sum over sf

Z
(δ)

(j0f ,g
0
ve,z

0
vf )

(K) =

∫
N(g0ve,z

0
vf )

dgvedzvf e
∑

f j
0
fFf [gve,zvf ]

∏
f

Dδ (Ff [gve, zvf ]) . (14)

Since Dδ(Ff ) is a smooth function on N(g0
ve, z

0
vf ) and j0

f � 1, the above integral can be

analyzed by the standard stationary phase approximation. There is a singe critical point

(j0
f , g

0
ve, z

0
vf ) inside N(g0

ve, z
0
vf ). We have the asymptotic formula with the Regge action as

the leading effective action

Z
(δ)

(j0f ,g
0
ve,z

0
vf )

(K) ∼ ei
∑

f γj
0
fΘ0

f

∏
f

Dδ

(
iγΘ0

f

) [
1 +O

(
J−1
)]

(15)

where Θ0
f is the deficit angle reconstructed from the critical configuration.

At the critical point (j0
f , g

0
ve, z

0
vf ), Ff takes purely imaginary value Ff = iγΘ0

f where Θ0
f

is the deficit angle at f . From the expression of Dδ(Ff ), it is clear that Dδ(iγΘ0
f ) becomes

large when iγΘ0
f approach close to one of the poles Ff = 4πiZ ± δ(1,2)

f , although the poles

have been regularized away from the purely imaginary axis. Here we are not interested in

the poles Ff = 4πinf ± δ
(1,2)
f with nf 6= 0, because the critical points (j0

f , g
0
ve, z

0
vf ) close

to these poles doesn’t correspond to a proper simplicial geometry, in the sense that γΘ0
f

close to 4πnf (kf 6= 0) implies a conical singularity located at f , whose physical meaning is

unclear. We expect that the appearance of 4πnf poles (nf 6= 0) is an artifact of Z(K) being

12



a discrete theory from starting point. For example, unphysical poles of momenta in principle

also appear in lattice-field-theory propagators, which is an analog to 4πnf poles (nf 6= 0)

here. But the integration of momenta in lattice field theory is only over the Brillouin zone

where only the physical pole is relevant.

Now we focus on the neighborhoods at the poles Ff = ±δ(1,2)
f . Dδ(iγΘ0

f ) in the asymptotic

formula Eq.(15) implies that the critical points (j0
f , g

0
ve, z

0
vf ) with small deficit angle Θ0

f � 1

contribute much greater than other critical points. The deficit angle relates the lattice

spacing a and the mean curvature radius L of the geometry by [35]

Θ0
f ∼

a2

L2

[
1 + o

(
a2

L2

)]
(16)

Therefore when L is fixed, the simplicial geometries close to the continuum limit contribute

to Z(K) much more than other simplicial geometries. Dδ coming from spin-sum forces

(j0
f , g

0
ve, z

0
vf ) to satisfy

a2 � L2, (17)

in order to have nontrivial contribution to the spinfoam amplitude. The explicit behavior

of Dδ

(
iγΘ0

f

)
as Θ0

f � 1 is

Dδ

(
iγΘ0

f

)
=

4j0
f

(
δ

(1)
f + δ

(2)
f

)
(
γΘ0

f + iδ
(1)
f

)(
γΘ0

f − iδ
(2)
f

) +
8iγΘ0

f

(
δ

(1)
f + δ

(2)
f

)
+ 4

[
(δ

(1)
f )2 + (δ

(2)
f )2

]
(
γΘ0

f + iδ
(1)
f

)2 (
γΘ0

f − iδ
(2)
f

)2

+regular in Θ0
f . (18)

where we see Dδ is much greater when Θ0
f � 1 than when Θ0

f is finite.

The set-up δ
(2)
f > δf implies that the removal of regulator δ

(2)
f has to be done together

with large-j limit, by Eq.(11). As δ
(1,2)
f become small, the nontrivial contribution of Dδ

comes from small deficit angle |γΘ0
f | ≤ δ

(1,2)
f , and Dδ behaves as

Dδ ∼
4j0
f

δ
(1,2)
f

+
2iγ + 1/2

(δ
(1,2)
f )2

. (19)

The relation j0
fδf > 1 is now equivalent to

a4

`2
PL

2
∼ |γj0

fΘ
0
f | > 1, (20)

if we identify a2 ∼ γj0
f`

2
P and a2/L2 ∼ Θ0

f ∼ γ−1δf . In this regime, when the number of f

is large in K, the effective action in Eq.(15)∑
f

γj0
fΘ

0
f =

1

`2
P

∑
f

a0
fΘ

0
f � 1, (21)

13



and gives a rapid oscillating exponential, unless the Regge equation of motion is satisfied

such that Regge action
∑

f a
0
fΘ

0
f vanishes.

Here we see that the effect of Dδ in the asymptotics Eq.(15) is to suppress the contribu-

tions from the critical points (j0
f , g

0
ve, z

0
vf ) whose deficit angles Θ0

f are not small. We know

that a (j0
f , g

0
ve, z

0
vf ) with non-small Θ0

f corresponds to a simplicial geometry which doesn’t

approximate any smooth geometry because of Eq.(16). By summing over jf , the appearance

of Dδ in the asymptotics selects only the simplicial geometries which are good approxima-

tion to the smooth geometries and suppresses the rest. As a result, only those (j0
f , g

0
ve, z

0
vf )’s

with Θ0
f � 1 being good approximation of smooth geometries essentially make the con-

tributions to the semiclassical asymptotics of Z(K). As δ
(1,2)
f → 0, Dδ pushes the critical

points (j0
f , g

0
ve, z

0
vf ) contributing Z(K) to approach the smooth geometries (approximate the

smooth geometries arbitrarily well), when the simplicial complex is also refined accordingly

at the same time. At each Z(j0f ,g
0
ve,z

0
vf )(K)

Z(j0f ,g
0
ve,z

0
vf )(K) ∼ ei

∑
f γj

0
fΘ0

f ' e
i

`2
P

∫
d4x
√
−g0R0

(22)

where the Regge action approaches the Einstein-Hilbert action evaluated at the correspond-

ing smooth geometry. Because of Eq.(11), δ
(1,2)
f → 0 has to be combined with j0

f →∞, i.e.

the continuum limit and large-j limit are taken at the same time.

Note that even if the requirement Eq.(11) is alleviated (e.g. in the Chern-Simons formal-

ism [36]), one may still need to increase jf at the same time as refining the triangulation.

The reason is that when the triangulation is refined, the 1/jf quantum corrections may

become larger, since more degrees of freedom are summed. Then jf may have to increased

to suppress the quantum corrections, as mentioned at the end of Section II.

It is important to emphasize that when we set the scale of the theory to be in the large-j

regime, the (regularized) spin-sum of the spinfoam amplitude forces the spinfoam critical

configurations to correspond to simplicial geometries with small deficit angle Θ0
f � 1, i.e.

the resulting simplicial geometries have to satisfy

`2
P � a2 � L2, (23)

in order to have the nontrivial contribution to the spinfoam amplitude.

14



IV. HIGH CURVATURE LEADS TO SMALL SPINS

The previous discussion focuses on the large-j regime of spinfoam amplitude. Eq.(23)

means that the spinfoam configuration (j0
f , g

0
ve, z

0
vf ), which contributes nontrivially to Z(K),

is a semiclassical space-time with a relatively low curvature. In this section, we consider the

behavior of spinfoam for a space-time containing a high curvature region. A typical example

is the space-time with curvature singularity.

In the following we consider the spinfoam configuration (j0
f , g

0
ve, z

0
vf ) have the following

properties: (1) It has a subset of data (j̄0
f , ḡ

0
ve, z̄

0
vf ) ⊂ (j0

f , g
0
ve, z

0
vf ) being large-j and critical.

The subset of data correspond to a low curvature region of a space-time geometry satisfying

Eq.(23) and Einstein equation; (2) In addition to the low curvature region, the space-time

geometry relating to (j̄0
f , ḡ

0
ve, z̄

0
vf ) (in its low curvature region) also has a high curvature re-

gion; and (3) (j0
f , g

0
ve, z

0
vf ) should have nontrivial contribution to the full spinfoam amplitude

Z(K) (its contribution is not suppressed). We ask the following question: how does the rest

of data (j0
f , g

0
ve, z

0
vf ) \ (j̄0

f , ḡ
0
ve, z̄

0
vf ) behave in the high curvature region?

As an example, we may consider a Schwarzschild black hole, where the large-j critical

configuration (j̄0
f , ḡ

0
ve, z̄

0
vf ) describes the low curvature geometry outside the event horizon.

We are interested in how the data (j̄0
f , ḡ

0
ve, z̄

0
vf ) continues to the high curvature region inside

the event horizon, especially near the singularity.

As a quick answer, the spinfoam data (j0
f , g

0
ve, z

0
vf ) describing a high curvature space-time

(near classical singularity) must have small j0
f , i.e. the spinfoam cannot be semiclassical in

high curvature region. There are two steps of explanation:

• Firstly, in the high curvature region, a spinfoam data (j0
f , g

0
ve, z

0
vf ) cannot satisfy both

`2
P � a2 and a2 � L2. Suppose we keep the data (j0

f , g
0
ve, z

0
vf ) satisfying a2 � L2

in high curvature region (small L2), when the curvature becomes almost Planckian

L2 ∼ `2
P , the lattice spacing a has to approach the Planck scale `P , violating `2

P � a2.

Considering a2 ∼ γjf`
2
P , the spin jf has to be small (we always assume γ ∼ o(1)).

Another way to conclude, if (j0
f , g

0
ve, z

0
vf ) was a large-j critical configuration in high

curvature region, the deficit angle would violate Θ0
f � 1.

• Secondly, now let’s assume (j0
f , g

0
ve, z

0
vf ) to be a large-j critical configuration and Θ0

f

is not small. We apply the analysis in the last section to perform the sum over spins
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at the given scale. The regularized spin-sum results in the distribution Dδ(iγΘ0
f )

in Eq.(15). Therefore the large-j critical configuration (j0
f , g

0
ve, z

0
vf ) only gives a tiny

contribution when Θ0
f is not small. So it contradicts to our requirement that the

contribution from (j0
f , g

0
ve, z

0
vf ) to Z(K) is nontrivial. Therefore the only possibility is

that a spinfoam data (j0
f , g

0
ve, z

0
vf ) describing the high curvature space-time region near

a classical singularity is of small-j and is not semiclassical.

Therefore we conclude that approaching the high curvature region near a classical sin-

gularity, the spinfoam amplitude forces the spins jf to become small, in order that the

contribution to the spinfoam amplitude is not suppressed. Thus the spinfoam amplitude

are dominated by small-j contributions in this region. Because of small jf , the region near

a classical singularity is highly quantum, and is referred to as the quantum gravity region.

Here “small-j” means that 1/J correction in Eq.(15) is not negligible, so that the semiclas-

sical approximation breaks down. Small-j may not necessarily mean that jf ∼ O(1). When

the triangulation is sufficiently refined, a not-so-large jf may not suppress the 1/J correc-

tion due to an increased number of spinfoam degrees of freedom, thus is still understood as

small-j.

It is clear that the large-j approximation breaks down in the Planckian curvature region,

where L ∼ `P , by the above argument. So the Planckian curvature region is necessary inside

the small-j regime of spinfoam. However, it is not clear where precisely in the spacetime,

the large-j turns to be small. If the small-j region was precisely the Planckian curvature

region, then jf would have to be of O(1) in the small-j region, by Eq.(23) which should

hold outside the small-j region. But it is likely that the region where jf are small is much

larger than the Planckian curvature region, due to the large number of spinfoam degrees of

freedom. Indeed if we travel toward a classical curvature singularity, the above argument

implies that jf decreases from the low curvature region to the high curvature region. But

when we consider a refined triangulation, it corresponds to a large number of spinfoam

degrees of freedom. A slight decreasing of jf may not anymore capable to suppress the 1/J

correction. It is likely that we arrive the small-j region far before we approach the Planckian

curvature region. This phenomena may relate to the results in [8], where the author expect

the quantum effect may even appear slightly outside the event horizon.

In the small-j regime of spinfoam, the semiclassical relation between spinfoam config-
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uration and discrete geometry is broken down. From spinfoam point of view, the notion

of space-time geometry becomes invalid and corrected by large quantum fluctuations (1/J

corrections). To understand the dynamics of this regime, one should study the full non-

perturbative behavior of the spinfoam amplitude Z(K) in Eq.(2). The nonperturbative

spinfoam amplitude is well-defined and of nice properties [5, 37–41].

We again consider a Schwarzschild black hole space-time. The space-time corresponds to

a spinfoam critical configuration (j̄0
f , ḡ

0
ve, z̄

0
vf ) in the low curvature region, satisfying Eq.(23).

As shown in fig.(1), the Schwarzschild space-time is naturally divided into three regions:

black hole singularity (Planckian curvature region), region inside and near the (event) hori-

zon, region outside and far from the horizon. If we pick up a point and its neighborhood

in the region far away from the horizon, the curvature in this sub-region (denoted by Re-

gion A) is small, as we learned from the Schwarzschild metric, when radius coordinate r is

much larger than the Schwarzschild radius rs = 2GM/c2, the Schwarzschild metric becomes

Minkowski metric with an order (rs/r) correction. So in this Region A, the mean curvature

radius LA is large, and thus the average deficit angle |Θo| � 1. This region corresponds to

a large-j spinfoam critical configuration (j̄0
f , ḡ

0
ve, z̄

0
vf ) satisfying Eq.(23). Because of large-j

the triangle areas of the triangulation can be relatively large but still satisfy Eq.(23).

Black Hole Singularity
(Quantum gravity region)

(Event) Horizon

Region A
(far from horizon)

Region B
(inside horizon)

AB

B'

FIG. 1. A Schwarzschild space-time. Region A is a sub-space-time which is far from the horizon.

Region B is a sub-space-time which is inside the horizon. Region B′ is a sub-space-time which is

near the quantum region of the black hole singularity.
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Region B denotes a sub-region inside the horizon (approaching the near-singularity re-

gion), where the background mean curvature becomes larger. The Kretschmann invariant

for Schwarzschild metric at coordinate radius r is RµνρσRµνρσ = 12r2
s/r

6, where Rµνρσ is

Riemann curvature tensor. Since Riemann curvature is scaling as the inverse of the square

of the mean curvature radius LB of Region B, i.e. Rµνρσ ∼ L−2
B , L2

B behaves as

LB ∼ r

√
r

rs
, r < rs (24)

The background deficit angle Θ0 in Region B scales as |Θ0| ∼ a2r2
s/r

6.

The quantum effect (organized by 1/J corrections) cannot be neglected when the curva-

ture approaches Planckian in Region B′, i.e. the mean curvature radius is of order of Planck

length L ∼ `p. The spins jf become small in this region. However it is likely that the small-j

region may not only cover Region B′, but also cover a part of Region B or possibly even

entire Region B, because of the large number of degrees of freedom on a refined triangula-

tion. Traveling from Region A to Region B and B′, the quantum area jf becomes smaller.

So the size of each 4-simplex in the triangulation shrinks while approaching the Planckian

curvature region.

We can estimate the radius of the Planckian curvature region where the quantum gravity

effect is clearly strong. By Eq.(24), the minimal radius is

rp ∼ 3

√
rs
`p
`p =

3

√
2~G2M

c5
(25)

When M is the mass of the sun M�, then rp is

rp ∼
3

√
2~G2M�

c5
∼ 10−22m� `p. (26)

We may consider an extreme case where the small jf are of O(1) in the Planckian curvature

region. The average area a2 of the triangle is of order γ−1/3`2
p. The ratio between r2

p and a2

is
r2
p

a2
∼
(
γr2

s

`2
p

) 1
3

∼ γ
1
3 × 1025 (27)

Taking γ ∼ o(1), we then get

r2
p

a2
∼ 1025, J ∼ o(1), # of Simplices = 1050 (28)

It means that the minimal size of the quantum gravity region with the mass of the sun may

be of the order 1050 bigger than the average size of the simplicies that construct Region B′.
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It means that the quantum regions is made by a large number of small quantum simplicies.

So the spinfoam is highly refined in the region where quantum gravity effect is strong.

Note that in [20] there has been two estimations for the radius of the quantum region

(Planck star) by different argument, our estimation coincides with the rough one there.

Here we still keep the Schwarzschild metric as the background space-time for high curvature

region. However, in the quantum gravity region, the notion of metric is actually ill-defined.

Schwarzschild metric needs to be corrected in the Region B′. The above discussion about

Schwarzschild is a rough estimation. The numbers computed above should be corrected when

it is derived in a more rigorous way, which involves a better computation using spinfoam

model in small-j regime.

V. ON LARGE SPIN AND SMALL SPIN PHASES, AND ORDER PARAMETER

As it has been shown in the above, the physics of space-time near the curvature singularity

is described by the spinfoams whose spins are small. Far away from the singularity, the space-

time is semi-classical and of low curvature. The corresponding spinfoam configurations are

of large spins. It is clear that the spins jf are summed in spinfoam amplitude Z(K). So

the small or large spin mentioned above means the spin-sum is effectively carried out in the

small or large spin regime.

It is intuitive to consider the high curvature and low curvature regions as two different

phases of small-j and large-j. The different phases relate to the different vacua of spinfoam

model. The low curvature region is the vacuum of spinfoam being the large-j critical config-

uration (j̄0
f , ḡ

0
ve, z̄

0
vf ) satisfying Eq.(23). The spinfoam degrees of freedom are the excitations

on (j̄0
f , ḡ

0
ve, z̄

0
vf ) producing 1/J-corrections of spinfoam amplitude. The high curvature region

has the vacuum state with vanishing spin everywhere (no-geometry state or the so called

Ashtekar-Lewandowski vacuum). The spinfoam degrees of freedom on this vacuum are the

spin and intertwiner excitations.

Finding an order parameter is usually helpful to understand the phases, as well as the

transition between them. Here we find a candidate of order parameter to be the imaginary

part of jf expectation value, Im〈jf〉, which is expected to behave differently in difference

phases. Firstly we consider the large-j phase. Instead of perform the sum over spins as

showing in Section 2, we integrate the group elements gve and spinors zvf in the first place.
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Because the computation is in the large-j regime, the integration of gve and zvf can be

performed by using the saddle point approximation in the large-j limit. As shown in [30],

the spinfoam amplitude expanding at a low curvature critical configuration (j0
f , g

0
ve, z

0
vf ) can

be written as an effective partition function of a spin system. The amplitude is

Z(j0f ,g
0
ve,z

0
vf )(K) =

∑
{jf}

(2jf + 1) exp IK[jf ] (29)

where IK[jf ] = IK[Jkf ] is the effective action. Define new variables κf ≡ kf −k0
f and expand

IK[Jkf ] around κf = 0, then the effective action is obtained as

IK[Jkf ] = J
(
I0 + If1 κf + Iff

′

2 κfκf ′ +O
(
κ3
))

(30)

The first three coefficients are computed in [30] to the leading order in 1/J :

I0 = iγk0
fΘ

0
f , If1 = iγΘ0

f − δ
1,2
f , Iff

′

2 =
2(1 + 2iγ − 3γ2 − 2iγ3)

5 + 2iγ
nTefX

−1
e nef ′ (31)

where Θ0
f is the deficit angle given by the critical configuration; nef is the unit 3-vector

normal determined by (j0
f , g

0
ve, z

0
vf ) which is the normal vector of the triangle f in the frame

of tetrahedron e [42]. The matrix Xe is X ij
e ≡

∑
f kf (−δij +niefn

j
ef ). The expectation value

of 〈jf〉 = j0
f + 〈κf〉 to the leading order in 1/J can be obtain by the equation of motion of

IK [30].

〈κf〉 ∼
1

2

∑
f ′

(
I−1

2

)
ff ′

(
iγΘ0

f ′ − δ
1,2
f ′

)
+O

(
(iγΘ0

f − δ
1,2
f )2

)
. (32)

The above is an expansion in the low curvature regime, where γΘ0
f ′ ∼ δ1,2

f ′ ∼ 1/J . Therefore

in the low curvature regime,

Im〈jf〉 = Im〈κf〉 ∼ 1/J (33)

is suppressed by large-J . In particular if we consider a black hole spacetime with asymptot-

ically flat region, we can set both Θ0
f and δ1,2

f to be very small, corresponding J being very

large. Then Im〈jf〉 is very small in the region.

When we approach the high curvature regime, jf becomes small so that the 1/J correc-

tions are not negligible. Then Im〈jf〉 cannot be suppressed by 1/J , and likely becomes a

finite number. In the small-j phase, we insert jf of a triangle f into the integration formula

Eq.(2) of Z(K). The sum of jf is carried out in the small-j regime. The expectation value

of jf is written as

〈jf〉 =
1

Z(K)

∑
{jf ′}

∏
f ′

dim(jf ′) jf

∫
SL(2,C)

∏
(v,e)

dgve

∫
CP1

∏
v∈∂f ′

dzvf ′ eS[jf ′ ,gve,zvf ′ ]. (34)
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The integrand is a complex function, and the large-j approximation breaks down in this

phase. The large 1/J corrections suggests that Im〈jf〉 should be generically nonzero and

finite, although a mathematically rigorous proof of Im〈jf〉 being finite (i.e. a lower bound

of Im〈jf〉) is still lacking for the small-j phase.

Therefore the above argument suggests that the quantity Im〈jf〉 should have two different

behavior in the large-j and small-j phases:

Im〈jf〉 ∼ 1/J � 1 in large-j phase (low curvature)

Im〈jf〉 = finite in small-j phase (high curvature). (35)

Im〈jf〉 � 1 is consistent with the large-j interpretation of jf as semiclassical triangle area,

while the finite Im〈jf〉 in small-j phase means that the semiclassical approximation breaks

down.

It should be noted that the above argument toward the order parameter is still at the

qualitative level. The more detailed investigation is postponed in the future research.

VI. CORRELATION OF SPINS IN THE LARGE SPIN PHASE

The behavior of correlation functions is usually useful to understand the phases and their

transition. Here we view the spinfoam amplitude as a “statistical system”, and we study

the correlation function of a pair of spins jf , jf ′ at different locations. We find that in the

large-j phase (low curvature region), the correlation between spins is of long-range, i.e. no

matter how “far” away the two different spins are separated, their correlation hardly decays.

Recall Eq.(29), the spinfoam amplitude can be written perturbatively in the large spin

regime with effective action IK[Jkf ], where κf is the perturbation of jf at j0
f :

Z(j0f ,g
0
ve,z

0
vf )(K) = (2J)Nf eJI0

∑
{κf}

(
k0
f + κf +

1

2J

)
e
J
(
If1 κf+Iff

′
2 κfκf ′+O(κ3)

)
(36)

We keep the effective action to the quadratic order in the perturbation κf , and approximate

the sum
∑
{κf} by an integral. The amplitude Z(j0f ,g

0
ve,z

0
vf )(K) looks like a path integral over

κf with an external source JIf1 .

The (connected) correlations between two spins jf and jf ′ is computed at the leading
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order

〈(jf − j0
f )(jf ′ − j0

f ′)〉 = J2〈κfκf ′〉 =
∂If1

∂
If

′
1
Z(j0f ,g

0
ve,z

0
vf )(K)

Z(j0f ,g
0
ve,z

0
vf )(K)

∼ J2

4
If11 (I−1

2 )f1fIf21 (I−1
2 )f2f

′ − J

2
(I−1

2 )ff
′

(37)

Because in the low curvature regime, γΘ0
f ′ ∼ δ1,2

f ′ ∼ 1/J , i.e. If1 ∼ 1/J , the leading

contribution to the correlation function comes from the second term:

〈(jf − j0
f )(jf ′ − j0

f ′)〉 = −J
2

(I−1
2 )ff

′
(38)

The matrix elements of Iff
′

2 is non-zero only when triangles f and f ′ belong to the same

tetrahedron. The non-zero elements of Iff
′

2 are mainly next to the diagonal. However the

matrix is not a block-diagonal matrix. Then its inverse (I−1
2 )ff

′
is also not block-diagonal.

Moreover, the matrix elements (I−1
2 )ff

′
are generically nonvanishing for an arbitrary pair of

f, f ′. The correlation between two spins are of long-range and strong. The magnitude of

correlation function scales linearly in J .

Indeed, to illustrate the inverse of Iff
′

2 , we consider a tridiagonal matrix (analog of Iff
′

2 )

and its inverse (analog of (I−1
2 )ff

′
)

I =



a1 b1

c1 a2 b2

c2
. . . . . .

. . . . . . bn−1

cn−1 an


and (I−1)ij =

(−1)i+jbi · · · bj−1θi−1φj+1/θn if i ≤ j

(−1)i+jcj · · · ci−1θj−1φi+1/θn if i > j

(39)

where {θi}i satisfy the recurrence relation θi = aiθi−1 − bi−1ci−1θi−2 for i = 2, 3, . . . , n with

initial conditions θ0 = 1, θ1 = a1. {φi}i satisfy φi = aiφi+1−biciφi+2 for i = n−1, . . . , 1 with

the initial conditions φn+1 = 1 and φn = an (see [43] for examples of symmetric tridiagonal

matrix). Generically, all the matrix elements of I−1 are nonvanishing.

The correlation function in small-j phase (high curvature region) is more difficult to

compute, due to the lack of approximation scheme. However we do believe the spin-spin

correlation function in small-j phase should be of dramatically different behavior from it is

in the large-j phase, because the 1/J correction becomes non-negligible in small-j phase.

The further investigation of correlation function is postponed to the future research.
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