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Abstract

In a recently proposed theory, the cosmological constant (CC) does not curve space-
time in our universe, but instead gets absorbed into another universe endowed with its
own dynamical metric, nonlocally coupled to ours. Thus, one achieves a long standing
goal of removing entirely any cosmological constant from our universe. Dark energy
then cannot be due to a cosmological constant, but must be obtained via other mech-
anisms. Here we focus on the scenario in which dark energy is due to massive gravity
and its extensions. We show how the metric of the other universe, that absorbs our
CC, also gives rise to the fiducial metric known to be necessary for the diffeomorphism
invariant formulation of massive gravity. This is achieved in a framework where the
other universe is described by 5D AdS gravity, while our universe lives on its bound-
ary and is endowed with dynamical massive gravity. A non-dynamical pullback of the
bulk AdS metric acts as the fiducial metric for massive gravity on the boundary. This
framework also removes a difficulty caused by the quantum strongly coupled behavior
of massive gravity at the Λ3 scale: in the present approach, the massive gravity action
does not receive any loop-induced counterterms, despite being strongly coupled.
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1 An Unconventional Path

The importance of the cosmological constant (CC) problem is well-known, so are the difficul-
ties in solving it (see [1, 2], and references therein). It is clear that unconventional approaches
are needed. Along these lines, Tseytlin [3] had made an interesting proposal building on an
earlier idea of [4], and inspirations from T-duality of string theory. He suggested to apply
the least action principle to the “volume normalized action,” S̄:

S̄ ≡ S

Vg
=

∫

d4x
√

|g|(R + 2LSM)
∫

d4x
√

|g|
, (1.1)

instead of that principle being applied to S. Here, Vg =
∫

d4x
√

|g| is the invariant space-time
volume in the 16πGN = 1 units (it is assumed that Vg is regularized, as in Section 5). The
above modified action should be thought as a certain low energy effective action, hopefully
emerging from more conventional high energy physics [3]. Since the CC problem is a low
energy problem, it is reasonable to expect that its solution will not be influenced by an exact
form of the high energy completion of (1.1).

Furthermore, LSM in (1.1) denotes a Lagrangian of all the fields of nature but gravity,
coupled to gravity. As argued in [5], for consistency with the empirical data the Lagrangian
LSM needs to be regarded as a quantum effective Lagrangian coupled to classical gravity.
This classical gravity will be subsequently quantized using (1.1). Such an unconventional
procedure of quantization will be reviewed in Section 6, where earlier works that made this
procedure more precise will be referenced. Till then we will not use any specific form of LSM,
but discuss only its constant part.

It is straightforward to see that a cosmological constant is an unphysical parameter in
(1.1): a shift of LSM by any constant changes S̄ by an additive constant, and the latter does
not affect the equations of motion obtained by varying S̄.

While this appears to be an efficient way to get rid of an arbitrary CC irrespective of
its origin, the equations of motion obtained from S̄ reveal the high cost of the proposed
solution: in the equations, the local Ricci curvatures are determined by spacetime averages
over past and future volumes, when these volumes are well-defined [3]. This seems to be a
dramatic departure away from the conventional local field theory paradigm.

Such spacetime nonlocality (and therefore, acausality [6]) is however operative only for a
cosmological constant, while all the local interactions that can be measured in a laboratory
– even if in one with the size of the observed universe – are not affected. One may wonder
how the mechanism could distinguish between a cosmological constant and, say, a very flat
scalar potential. It does so by being nonlocal in time, and hence being able to target and
eliminate only the cosmic fluid that does not red-shift in future infinity [6]. As a result, a
CC is eliminated, while the slow roll inflation, radiation, and matter dominated epochs of
cosmology remain intact.1

What about non-cosmological solutions of Einstein’s gravity? Since the spatial nonlo-
cality of the proposed equations is operative only for sources that have an infinite spatial

1The mechanism is applicable to a single vacuum universe [3, 4]. Its generalization to the case that
adopts chaotic inflation with multiple vacua is not known to the authors. Throughout the paper we focus
on a scenario in which our 4D universe evolves in a single vacuum state.
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support, then intact remain also all spatially local solutions of Einstein’s gravity. Thus, the
high cost incurred by the solution of the CC problem, while somewhat bothersome, remains
undemanding, at least until inconsistencies of the proposal are found.

We add that the action (1.1) can readily be used to obtain the classical Hamiltonian of
the theory: The multiplier, 1/Vg, does not contain any derivatives of the metric, and affects
the determination of the canonical momenta only by rescaling them with a multiplicative
numerical factor of 1/Vg.

To summarize, in the context of classical gravity and conventionally quantized particle
physics, if S̄ is used as a gravitational action for a single vacuum state in which the universe
is presumed to evolve, then the CC is removed, without any apparent contradiction with
observations (see also [7], for further independent work on the proposal of [3]2).

However, the trouble comes with the graviton quantum loops [3]. This problem emerges
in the low energy theory, even before we ask the question of the existence of a full-fledged
UV complete quantum theory of gravity, from which the action (1.1) might originate. To
see this, we recall that the quantization of (1.1) would use the path integral with the kernel

exp

(

i
S̄

~

)

≡
∫ +∞

−∞

dλ dτ exp

{

i

~

[

1

τ
S + λ(Vg − τ)

]}

, (1.2)

where we have introduced integrations w.r.t. τ and λ, which are real parameters.3 It is
clear from (1.2) that the new Planck constant that governs the loop expansion for gravity
is ~τ . This quantity is infinite (or at least very large in units of the Planck length), since
τ = Vg is infinite (or at least as large and old as the present-day universe); therefore, the
loop expansion in ~τ would diverge and ruin the aforementioned classical solution of the big
CC problem [3]. Even if a resummation of the loop expansion were found, the result would
significantly differ from (1.1), and one would have to work anew for a solution of the CC
problem. There is no reason to expect that the would-be resummed quantum action would
retain the property of (1.1) which made a CC unphysical.

2 Beyond the Unconventional Path

A proposal was put forward in [5] that appears to retain the good part of Tseytlin’s approach,
but gets rid of the difficulty with the gravity loops. This is achieved by introducing a second
universe, endowed with its own metric f , that interacts with our universe only globally via
the following action:

A = Vf S̄ + Sf . (2.1)

Here, S̄ is defined in (1.1), and is a functional of the metric g and the SM fields. The action
Sf contains the Einstein-Hilbert (EH) term for f , but is independent of the metric of our
universe, g. From the point of view of the f -universe, the term Vf S̄ represents an addition
to a CC in that universe, since Vf is its invariant volume.

2The name used for such theories in [7], the Normalized General Relativity (NGR), is better reflecting
the fact that the non-locality of such theories is of a different nature from the ones ordinarily considered; for
instance, equations of motion are only amended by a constant-valued functional.

3The λ integration is needed to determine τ , while the τ integration determines λ; the latter enters the
metric equations of motion.
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Thus, it is straightforward to see from (2.1) that an arbitrary cosmological constant
introduced in S – the numerator in (1.1) – becomes a cosmological constant of the f -universe.
Therefore, there is no big CC problem in the g-universe – the CC of the g-universe gets
entirely absorbed into the f -universe [5].

We note that the action (2.1) can be readily used to obtain the Hamiltonians for both g-
and f - universes. The unusual feature of (2.1) is the multiplier Vf/Vg. The latter contains
no derivatives of the metrics. Thus, this multiplier affects the determination of the canonical
momenta of the g-universe only by a factor of Vf/Vg. This however does not represent an
impediment for writing down the classical Hamiltonian of the theory.

How about quantum corrections? From the arguments presented after (1.2), it should be
evident that the quantum loop effects will be small as long as Vg/Vf ∼< 1. Let us elaborate
on this. The kernel of the path integral for (2.1) can be written as follows,

exp

(

i
A
~

)

=

∫

dλ dq exp

{

i

~

[

1

q
S + λ

(

Vg
Vf

− q

)

+ Sf

]}

. (2.2)

Then, the new Planck constant for quantization of g-gravity is ~q, which is now equal to
~(Vg/Vf). As long as there are self-consistent classical solutions for g- and f - metrics such
that Vg/Vf ≪ 1, the quantum loop corrections to the classical action will be negligible.4

Hence, the main remaining task is to arrange for the dynamics of the f -universe to satisfy
Vg/Vf ≪ 1, in a technically natural way. This was achieved in [5] by postulating that Sf is
the action of 4D Einstein’s gravity with a negative cosmological constant, which is somewhat
larger than the CC generated in the g-universe. If so, then the CC of the g-universe gets
entirely absorbed into the f -universe, and since its magnitude is smaller than that of the
CC in the f -universe, it only modifies the f -metric slightly. As a result, there is a classical
solution for which the metric of the f -universe is AdS4, while the metric of the g-universe is
flat!

However, we cannot stop here since we need to describe the cosmic acceleration. This
should be done by means other than using a CC. There could be a few options here.5 We
choose to introduce dark energy via massive gravity [8, 9], or its extensions.6 This theory
postulates a small graviton mass, m ∼ 10−33 eV. Albeit the small parameter put in by
hand, this is a technically natural way of introducing dark energy, since the graviton mass,
unlike a CC, does not receive the additive power-divergent quantum corrections, and its
renormalizations are multiplicative [13].

Once the dark energy is introduced, the g-metric would turn into that of a dS4 spacetime
with a tiny observable curvature. Our mechanism will then be at work since the invariant
volume of the universal cover of AdS4 is infinitely larger than the infinite volume of dS4.
Thus, we have the desired result, Vg/Vf → 0, and the classical solutions described above
remain self-consistent even after the quantum gravity loops are taken into account [5].

We note that the above proposal does not eliminate the motivation for quantum gravity.
The latter would be needed to obtain the action A from more fundamental theory, and

4One should also worry about: (a) new nonlocal corrections that would arise in (2.1), and (b) new loop-
generated terms containing polynomials of λ and q in (2.2). Neither (a) nor (b) will cause problems, as to
be addressed in Section 6.

5For instance, a 4D quintessence model can be used to get dark energy in the framework described in
Sections 3 and 4 of the present paper.

6See reviews [10, 11, 12] on theory and phenomenology of massive gravity and its extensions.
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also to quantize the action Sf in (2.1). Furthermore, the mechanism does not exclude higher
powers of the curvature terms and their derivatives in S, if they arise due to the α′ expansion
of a putative completion into string theory. In fact, an infinite number of such terms in S
would be welcome in the present framework – the black hole and cosmological singularities
could hopefully be resolved by these α′ terms (see more in Section 6).

3 A New Embedding

The construction of [5] invoked two assumptions: (I) the CC in the f -universe was assumed
to be large and negative, without tunings of any kind; (II) dark energy in the g-universe
was postulated to be due to massive gravity. Both assumptions seem to be of a provisional
character, as one could come up with other scenarios giving Vg/Vf ≪ 1, with dark energy
produced by a different technically natural mechanism.

Having said this, however, we note that assumption (I) may have a strong justification:
the f -universe with its negative CC could be supersymmetric, and broken supersymmetry in
the g-universe needs not be communicated to the f -universe, since f and g are only globally
connected [5].

How about assumption (II)? It is not necessary, but could there be advantages in using
massive gravity, as opposed to other forms of dark energy (CC excluded)? Are there specific
features of massive gravity that naturally fit into the above proposal for solving the big CC
problem? If the answers to these questions were positive, then the proposed mechanism for
the CC problem would be connected to the mechanism for dark energy.

In the present work, we claim partial success in this quest. In particular, we will show
how the fiducial metric written by means of the Stückelberg fields – that are necessary for the
diffeomorphism invariant formulation of massive gravity – can be related to the embedding
and metric of the 5D f -universe, introduced to solve the big CC problem. Our construction
unveils a higher dimensional origin of the fiducial metric in massive gravity, and gives more
appeal to the scenario in which dark energy is due to massive gravity and its extensions.

As a by-product, we will show that embedding of massive gravity into the action S in (2.1)
helps deal with a well-known difficulty of this theory related to its quantum strong coupling
behavior at the scale Λ3 = (MPlm

2)1/3: the quantum loop corrections to the massive gravity
action (and those in its extensions) are now controlled by ~q → 0. Therefore, the loop
diagrams do not generate any counterterms, beyond the terms already present in the tree-
level action. This does not eliminate the scale Λ3, and the theory is still strongly coupled
at that scale. However, the effective action receives no loop-generated counterterms.7 Thus,
the full quantum effective action has as few terms as the tree-level action, and calculations
done in this theory – albeit strongly coupled at Λ3 – are exact, modulo the high derivative
curvature terms that presumably appear at the Planck scale (MPl ≫ Λ3) as part of the
completion at that scale. This is unlike a generic non-renormalizable theory that would
generate an infinite number of new counterterms at the scale Λ3.

The main idea of the present work is to regard the action of the “other” universe as the
EH action of 5D gravity, described by the metric F on AdS5. Hence, we use the notation
SF , instead of Sf used previously, to indicate that the “other” universe is five-dimensional;

7For detailed discussions of the loops and optical theorem in this framework, see Section 6.
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we denote its invariant volume by VF . We then endow a hypersurface at the AdS5 boundary
with the dynamical metric g, and couple g to the pullback of the bulk metric, γ, in such a
way that the latter acts as the fiducial metric of 4D massive gravity described by g.

The pullback γ can be expressed via the four Stückelberg scalars of massive gravity
ϕa(x), γµν = ∂µϕ

a∂νϕ
aηab (a, b, ... = 0, 1, 2, 3). These scalars then end up parametrizing the

4D hypersurface at the boundary of the AdS5 bulk. The detailed construction is worked out
in Section 4, where a simple local model without the VF/Vg factor is considered. Besides
its illustrative purpose, this model also delineates a method of introducing gravity, albeit
massive, on the boundary of AdS5. The full model (2.1) is examined in Section 5, where
we show how the fiducial metric of massive gravity emerges from the pullback of the bulk
metric in AdS5. The discussions of the quantum loop effects and the strong coupling problem
of massive gravity in this approach are given in Sections 6 and 7, respectively. Section 8
contains comments and outlook.

4 Massive Gravity On Top of the Boundary of AdS5

Our bottom-up construction begins with postulating a dynamical 4D metric, gµν , on top of
the boundary of AdS5. The metric g is not related to a pullback of the bulk gravity. Hence,
such a boundary has more structure than the conventional conformal boundary of AdS5, and
may be thought as some geometric hypersurface, that is endowed with g and is placed right
at the boundary of AdS5.

To set the conventions, xµ (with µ, ν, ... = 0, 1, 2, 3) denote the coordinates of 4D space-
time of the hypersurface that is endowed with the dynamical metric gµν(x). The massive
gravity action defined via g on the world-volume of the boundary hypersurface reads as
follows,

S =M2
Pl

∫

d4x
√

|g|
[

R(g)− 2Λ + 2m2U (K)
]

, (4.1)

where the diff-invariant potential U was built in [8, 9], as a function of the inverse metric g−1,
and the fiducial Minkowski metric, γµν = ∂µϕ

a∂νϕ
aηab (a, b, ... = 0, 1, 2, 3), in an arbitrary

coordinate system; this potential can be written in the following form:

U(K) = det
2
(K) + α3 det

3
(K) + α4 det

4
(K), (4.2)

where the matrix K = 1 − A, with A being defined as one of the roots of, Aµ
αA

α
ν = gµαγαν ,

so that K = 1−
√

g−1γ [9].
The fiducial Minkowski metric, γ, is not dynamical, and its origin is unknown in massive

gravity, because the dynamical origin of the fields ϕa is not known. In the high energy limit,
these fields parametrize the helicity ±1 and helicity 0 degrees of freedom of a massive gravi-
ton. Geometrically, they can be regarded as coordinates of a certain fiducial 4D Minkowski
space, that is postulated as ”pre-geometry” in pure massive gravity (see discussions in [14]).8

8Note that the origin of the fields ϕa is not elucidated in conventional 4D bigravity theories either for
the following reasons: these theories have two dynamical metrics, g(x) and γ̃(x), however only one common
diffeomorphism for the two; to restore the second diffeomorphism in bigravity, one has to introduce the four
fields, ϕa, and postulate that the second metric is a function of these fields, γ̃(ϕ). While the diff invariance,
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While this work does not provide the Higgs mechanism for gravity, it supplies geometric
meaning for the fields ϕa. This is done in the present approach by relating the fiducial metric
to the pullback of the bulk metric, where ϕa’s get related to 5D coordinates. To see this
relation we denote the bulk coordinates in AdS5 as Y A’s with A,B, ... = 0, 1, 2, 3, 5, and
relate the 5D and 4D coordinates as follows,

Y A = {ϕa(x), z}. (4.3)

In this coordinate system, the 4D boundary hypersurface is located at z = 0, while the
fields ϕa(x) (with a, b, ... = 0, 1, 2, 3) give different parametrizations of the hypersurface. In
other words, these fields map the 4D spacetime on which the g(x) metric lives, onto the 4D
hypersurface in 5D AdS spacetime.

As to the bulk action, it is the 5D EH action with the negative CC and the Gibbons-
Hawking term and boundary counterterm included (see, e.g., [22]),

SF =

∫

M

d5Y
√

|F |
(

R(F ) +
12

l2

)

+ 2

∫

∂M

d4Y
√

|γ̃|K − 6

l

∫

∂M

d4Y
√

|γ̃|. (4.4)

Here, the 5D Planck massM5 is set to unity, γ̃ is the induced metric on the boundary, and K
is the trace of the boundary extrinsic curvature. Our ultimate goal is to study the functional

A5 =
VF
Vg

S + SF , (4.5)

but in this section, as a warm-up exercise, we study (4.5) without the VF/Vg factor in front
of S. Thus, the total action of the theory considered in this section is

Stot = S + SF . (4.6)

The action (4.4) contains a negative cosmological constant, − 6
l2
, and thus generates an AdS5

as any local gauge symmetry, is a redundancy of description, it is a helpful redundancy, and in the case
of massive gravity and bigravity, it calls for understanding of the dynamical origin of the helicity ±1 and
helicity 0 degrees of freedom that are encoded in ϕa. The lack of this understanding is the reason why both
massive gravity and bigravity in the existing formulation are strongly coupled theories at an energy scale
that is much lower than the Planck scale. The above comments can be briefly summarized as follows: the
analog of the Lorentz-invariant Higgs mechanism for gravity or bigravity – from which ϕa’s would originate
– is not known at present.
Before we proceed, we make a few comments on the literature: A partial list of the earlier bigravity theories

is in [15, 16]. That the problem, now referred as the Boulware-Deser (BD) ghost problem, potentially applies
to all massive gravity and bigravity theories was shown in Ref. [17] . After the terms (4.2) were proposed in
Ref. [9] as ghost free terms, proven to be free of the BD ghost up to the fourth order in nonlinearities [9],
and proven to be BD ghost free to all orders in [18], these terms were invoked by Ref. [19] into the earlier
bigravity theories [16] and it was shown that the resulting theories are free of the BD ghost [19]. This prove,
and the results of works [20] and [21] that reformulated these theories in the vierbein formalism, imply that
the earlier versions of bigravity [15, 16] – except two bigravity models by Wess and Zumino (WZ) in [15] –
suffer from the BD ghost. Two out of the four WZ models introduced the subset of terms (4.2), written in
the first order formalism for two tetrads, albeit the WZ work does not address the nonlinear consistency and
the BD problem, since it precedes the BD work by two years or so.
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solution to the respective Einstein equations,

ds2 = F
(0)
ABdY

AdY B

=
l2

z2
(

ηabdϕ
adϕb + dz2

)

(4.7)

=
l2

z2
(

ηab∂µϕ
a∂νϕ

bdxµdxν + dz2
)

.

The interval in the last line is written in terms of the boundary massive gravity coordinates.
We are now in a position to relate the induced metric on the boundary, γ̃, to the fiducial

metric of massive gravity, γ. Our choice for this relation reads as

γµν(x) = lim
z→0

z2

l2
γ̃ab(z, ϕ(x))

∂ϕa

∂xµ
∂ϕb

∂xν
. (4.8)

This identifies the Stükelberg fields used in the massive gravity potential as the coordinates
of the boundary in the AdS5 bulk. The variational procedure for the total action is defined
as follows: SF is varied w.r.t. F . The boundary action, S, on the other hand, is varied
w.r.t. g, but no variation is taken w.r.t. F . The induced bulk metric on the boundary, γ̃,
and the fiducial metric, γ, are then related to each other via the boundary condition (4.8).
This procedure is compatible with the variational principle in AdS/CFT, since varying the
boundary fields does not affect the bulk dynamics. Under this premise, the linearized theory
with Dirichlet boundary data is studied next.9

The derivation of the on-shell boundary effective action from the bulk action, SF , is a
well-known calculation in standard AdS/CFT. Here we give an outline of this procedure
adapted to our action (4.6). For details, we refer the readers to Appendix A.

In the following, we will work at the regularized boundary z = ǫ, and the limit ǫ→ 0 will
be taken only at the end of the calculations. In the linearized theory, the full bulk metric is
FAB = F

(0)
AB + hAB, where hAB denote the components of 5D metric fluctuations. We work

in the gauge h0B = 0 and introduce hab(z, ϕ) = z2hABδ
A
a δ

B
b /l

2. Then we can write

ds2 =
l2

z2
[

(ηab + hab)dϕ
adϕb + dz2

]

. (4.9)

By (4.8), the fiducial metric on the boundary receives corrections from the 5D fluctuations,

γµν(x) = ηab∂µϕ
a∂νϕ

b + δγµν(x), (4.10)

where
δγµν(x) = lim

ǫ→0
hab (ǫ, ϕ(x)) ∂µϕ

a∂νϕ
b. (4.11)

Thus, δγµν represent the induced fluctuations. We also define the related metric γab(ϕ(x)) =
ηab + hab(ǫ, ϕ(x))|ǫ→0, so that γµν(x) = γab(ϕ(x))∂µϕ

a∂νϕ
b. The resulting effective boundary

action can be written as a sum of various terms

S[hab] = S∂2 + S∂4 + Snonlocal, (4.12)

9We use SF as the bulk action even though it contains the Gibbons-Hawking boundary term and the
classical counter-term, the role of which are to guarantee the right bulk Einstein equations. In contrast,
the action S, referred here as the boundary action, gives rise to the dynamical equations of motion on the
boundary. We hope this nomenclature will not cause any serious confusion.
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where the respective parts of the total action are defined as follows:

S∂2 ∼ 1

ǫ2

∫

d4̺ h∂2h, S∂4 ∼ ln ǫ

∫

d4̺ h∂4h, (4.13)

Snonlocal ∼
∫

d4̺d4ς
h(ǫ, ̺)h(ǫ, ς)

|̺− ς|8 . (4.14)

The exact formulae and tensor structures can be found in (A.21) – (A.24). In particular,
the nonlocal terms give the two-point function for the boundary CFT stress-tensor,

Snonlocal = −1

2

∫

d4̺d4ς hab(ǫ, ̺)hcd(ǫ, ς)
〈

T ab(̺)T cd(ς)
〉

, (4.15)

〈

T ab(̺)T cd(ς)
〉

≡ 20

π2

1

|̺− ς|8

×
[

1

2
Jad(̺− ς)J bc(̺− ς) +

1

2
Jac(̺− ς)J bd(̺− ς)− 1

4
ηabηcd

]

,

Jab(̺) =ηab − 2
̺a̺b

|̺|2 . (4.16)

As a consistency check, the S∂2 terms comprise the standard kinetic terms for linearized
Einstein gravity,

Skin[hab] =
1

2ǫ2

∫

d4̺

[

1

4
hab�h

ab − 1

2
hab∂

a∂ch
bc − 1

4
h�h +

1

2
hab∂

a∂bh

]

. (4.17)

The local terms in (4.13) with divergent powers of ǫ are cancelled by appropriate counter-
terms introduced as part of the renormalization procedure. This procedure deprives the fields
hab(ǫ, ϕ) of any dynamics. As a result, one regards them as the Dirichlet data supplied by
boundary sources. We highlight this fact by using the notation h0ab(ϕ(x)) = hab(ǫ, ϕ(x))|ǫ→0,
so that γab(ϕ(x)) = ηab + h0ab(ϕ(x)). Then the total effective boundary action is

Seff
tot[g, γ] =M

2
Pl

∫

d4x
√

|g|
[

R(g)− 2Λ + 2m2U (K)
]

− 1

2

∫

d4̺d4ς h0ab(̺)h
0
cd(ς)

〈

T ab(̺)T cd(ς)
〉

+O
(

(h0)3
)

, (4.18)

where K = 1−
√

g−1γab(ϕ(x))∂µϕa∂νϕb, contains a general fiducial metric [19, 23]; formally,
the theory with h0 6= 0 differs from massive gravity with a general fiducial metric discussed
in [19, 23] by an infinite number of new polynomial terms in h0, and can be regarded as a
theory in some external background field set by h0. However, these new polynomial terms
do not enter the massive gravity equations of motion since they do not depend on either g or
ϕa. Hence, when viewed as a 4D theory, the obtained model is nothing but massive gravity
with an arbitrary fiducial metric parametrized by h0 [19, 23]. However, this is a limited view
since the terms containing higher powers in h0 encode additional useful information: h0 can
be regarded as as external source for a dual 4D field theory of the 5D AdS gravity, and if
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so, the polynomials in h0 define dual CFT correlators: nth variation of the action (4.18)
w.r.t. h0, with the subsequent substitution h0 = 0, calculates the CFT n-point correlation
function, modified by the terms that are proportional to powers of the graviton mass. Thus,
for a small graviton mass, one would arrive at a softly broken CFT. To summarize, our
prescription is to put h0 = 0 after all the calculations are done. On the gravity side of the
dual pair, this condition is a choice of the boundary values. On the CFT side, this choice –
imposed after all the variations are done – enables us to get the CFT correlation functions.

Likewise, the corrections to the fiducial metric can be identified, up to diffeomorphisms,
with the Dirichlet boundary data,

δγµν(x) = h0ab(ϕ(x))∂µϕ
a∂νϕ

b. (4.19)

Thus, both the CFT and the massive gravity sectors are sourced by the same boundary
fields. If the standard AdS/CFT prescription is applied to the above action, (4.18), the
CFT correlation functions will be modified by terms that are proportional to powers of the
graviton mass. Thus, for a small graviton mass, one would arrive at a softly broken CFT,
but this is not our research topic for the time being.

5 Removing CC and Introducing Dark Energy

We now turn to the action functional that in the present context can remove an arbitrary
4D CC from the dynamical 4D boundary of 5D AdS gravity. In the spirit of (2.1), we look
at the action (4.5),

A5 =
VF
Vg
S + SF . (5.1)

Here, VF =
∫

d5Y
√

|F | and Vg =
∫

d4x
√

|g|. All the conventions are the same as in the
previous sections. To avoid ambiguity in the equations of motion due to ratios of infinite
volumes, we regularize all integrals in (5.1),

∫

d4x = lim
x̄0,...,x̄3→∞

(

3
∏

µ=0

∫ x̄µ

−x̄µ

)

d4x ≡ lim
x̄→∞

∫

reg

d4x,

∫

d5Y =

∫

dz d4ϕ = lim
ϕ̄0,...,ϕ̄3→∞

lim
ǫ→0

∫

∞

ǫ

dz

(

3
∏

A=0

∫ ϕ̄A

−ϕ̄A

)

d4ϕ ≡ lim
Ȳ→∞

lim
ǫ→0

∫

reg

d5Y, (5.2)

so (5.1) is actually

A5 = lim
x̄,Ȳ→∞

lim
ǫ→0

[

VF
Vg
S + SF

]

reg

. (5.3)

The order of the limits is carefully arranged: ǫ → 0 is taken before x̄, Ȳ → ∞. This
regularization first restricts the theory to a 5D “box,” then extends the z direction to include
the conformal boundary, before taking the remaining limits. For conciseness, we will always
treat the volumes as regularized, but will not write the regularizations explicitly.

It is clear that in the action (5.1), the 4D CC does not curve the 4D spacetime, but
instead gets absorbed into the 5D CC. If the magnitude of the 5D CC is greater than that of
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the 4D CC, then this leads to an obvious modification of the curvature of the AdS bulk, while
all the conclusions of the previous section remain valid. An order-of-magnitude hierarchy
between the scales of the 5D and 4D CC’s is straightforward to arrange, since 5D theory
can be exactly supersymmetric, while the broken SUSY in 4D could guarantee its scale to
be lower.10 Moreover, since VF now is the five-volume of the 5D AdS spacetime, and Vg is
going to be the four-volume of the 4D dS spacetime, the ratio Vg/VF → 0, in Planck units.
This guarantees that the outlined classical solution is stable w.r.t. quantum loops.

What remains to be seen is how the fiducial metric arises in the boundary massive gravity,
and how the theory gives rise to dark energy. To this end, we just repeat, step by step, the
procedure of “integrating out” the AdS bulk described in the preceding section. The result,
in the quadratic order in the bulk, reads as follows:

Seff
tot[g, γ] =

VF
Vg
M2

Pl

∫

d4x
√

|g|
[

R(g) + 2m2U (K)
]

− 1

2

∫

d4̺d4ς h0ab(̺)h
0
cd(ς)

〈

T ab(̺)T cd(ς)
〉

+O
(

(h0)3
)

. (5.4)

The potential U appearing in the above action was defined in (4.2), and, as before, K =
1 −

√

g−1γab(ϕ(x))∂µϕa∂νϕb. Both the CFT and the massive gravity sectors essentially
stay the same (for further comments, see Section 8), despite the global modification. The
difference is that the 4D cosmological constant, Λ, is removed from the g dynamics, and the
volume factor VF is taken on the bulk solution for F .

To make things clearer, we emphasize a subtlety in how the effective boundary action (5.4)
is obtained. Upon varying A5 w.r.t. F the equations of motion are, GAB = (Λ̃− S̄/2)FAB,
where Λ̃ is a constant, S̄ is a constant-valued functional, and GAB is the Einstein tensor for
F . Thus S̄ contributes to the bulk CC, and this renormalizes the CC of the F -universe, as
discussed in detail in [5]. We’ve already moved the 4D CC from the g-universe into the F -
universe, but the g-universe can also produce a self-accelerated background with curvature
∼ m2, that would also contribute to the bulk CC.11 Then, one integrates out F , as in
AdS/CFT, and thus one naively seems to be able to reduce A5 to a boundary action dual
to a pure, unbroken CFT corresponding to the second line of (5.4). However, this is false:
there ought to be an additional contribution to the boundary effective action due to the
g-metric. To see this, we note that variation of A5 w.r.t. g gives rise to 4D equations of
motion for dynamical gravity described by the metric g. In order for the effective boundary
action (5.4) to capture this, it has to include the first line. As a result, the g-metric couples
to a fiducial metric, η + h0, obtained from the bulk metric and boundary conditions. The
fiducial metric at this point is not yet specified and the theory looks like bigravity [19], but
with a different action for h0 given in (5.4) in the lowest order in h0. As we’ve already
noted at the end of Section 4, the CFT correlators obtained by varying (5.4) w.r.t. h0, and
subsequently putting h0 = 0, will contain local pieces proportional to the graviton mass.

10For similar arguments, see [5].
11We note however, that the latter is many orders of magnitude smaller compared to a typical curvature in

the F -universe [5], and can be ignored for all “practical purposes” of the bulk physics as we’ve done above.
However, one could be more general and retain this addition to the bulk CC. In that case the boundary
counterterm eliminating the bulk-induced classical divergencies should also be adjusted accordingly. This
would not change our result for the remaining 4D effective action.
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Thus CFT correlation functions are amended by local terms proportional to the graviton
mass. On the other hand, the resulting gravity equations will be those of massive gravity
with Minkowski fiducial metric [8, 9], since h0 = 0 should be used in the end to comply with
the AdS/CFT prescription.

From (5.4), the relevant part of the action is

Sg =
VF
Vg
M2

Pl

∫

d4x
√

|g|
[

R(g) + 2m2U (K)
]

, (5.5)

with the fiducial metric γµν = [ηab + h0ab(ϕ(x))] ∂µϕ
a∂νϕ

b, determined by the Dirichlet bound-
ary data h0ab, and the volume factor VF taken on the bulk solution for F . Setting MPl to 1,
the g-metric Einstein equations can then be written as nine traceless and one trace equations
[5],

Rµν −
1

4
gµνR = Tµν −

1

4
gµνT, (5.6)

R + T = 〈T 〉 − 2m2

〈

gµν
∂U
∂gµν

〉

, (5.7)

Tµν =
−2
√

|g|
δ

δgµν

∫

d4x
√

|g|m2U = m2

(

gµνU − 2
∂U
∂gµν

)

, (5.8)

where 〈· · · 〉 denotes the spacetime average,

〈· · · 〉 ≡
∫

d4x
√

|g|(· · · )
Vg

. (5.9)

Note that on self-accelerated solutions, R, T ∼ m2 are equal to constants, thus R = 〈R〉
and T = 〈T 〉 should be used in (5.7). Also, gµν∂U/∂gµν = C(α3, α4) is a constant on the
self-accelerated solutions, with α3 and α4 being the free parameters in (4.2). Its spacetime
average yields the same constant, and therefore (5.7) is reduced to

R = −2m2C(α3, α4). (5.10)

Hence, for some reasonable choices of parameters, we may get m2 ∼ H2
0 in a technically

natural way, with H0 being the Hubble constant.12 This conclusion is not changed by intro-
ducing quasidilaton [24], which only affects and improves the dynamics of small perturbations
by removing unstable and superluminal modes [25]. Furthermore, instead of massive grav-
ity or quasidilaton, one can straightforwardly use any of their known extensions, see, e.g.,
[19, 23, 26] – the key point is for the theory to have a fiducial metric and for the dark energy
to be given by the stress-energy tensor associated with graviton mass. As such, our approach
establishes a theory on the AdS5 boundary that removes the big cosmological constant and
generates a small curvature given by the graviton mass. Meanwhile, it also ascribes natu-
ral meanings to the fiducial metric and the diffeomorphism Stükelberg fields in the massive
gravity.

12Note that in massive gravity one would have gotten a similar equation, R = −2m2C̃(α3, α4), but with a
different function of the parameters, C̃; this is because equation (5.7) differs from the corresponding massive
gravity equation, R + T = 0. How this difference affects the faith of fluctuations on the self-accelerated
solution needs to be investigated.
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6 The Loop Expansion

In this section, we briefly review the quantization algorithm in which the SM fields are
quantized with the Planck constant ~, whereas gravity with the rescaled Planck constant,
~q, where q is a functional whose magnitude is determined by classical equations of motion
[5]. In particular, the classical solutions that we consider as relevant for our purposes all
give q → 0. Therefore, our theory reduces to one in which all the fields but gravity are
quantized in a conventional manner, while gravity is kept classical, al least at low energies,
since ~q → 0.

Proposals to quantize the SM, and couple it to classical gravity, have been extensively
discussed in the past, see works [27, 28, 29] and references therein. That such a scheme should
exist at least as an approximation – to describe our empirical experience with quantized SM
and classical gravity so far observed in our universe – is undeniable. More subtle is the
question that whether the observed gravity in our universe can be classical as a matter
of principle, and be consistently coupled to quantized SM; this is the question addressed
affirmatively in [27, 28, 29] and references therein. While in our approach we will not need
to assume that a fundamental theory of gravity is not quantized, we will nevertheless consider
a case where at low energies the effective Planck’s constant for gravity, ~q, tends to zero,
and in that respect, the present section describes a straightforward application of some of
the techniques of [27, 28, 29] to our approach. In particular, we will use the method of Ref.
[29] (we could use equally well the in-in formalism and its earlier versions reviewed in [28]).
While the approach of Ref. [29] corresponds to our case ~q = 0, we argue that the limiting
procedure, ~q → 0, can also be well defined and meaningful.

We then apply this algorithm to massive gravity, and argue that this procedure simply
removes the problem of otherwise unmanageable counterterms at the strong coupling scale
of that theory.

6.1 Non-gravitational Loops

We assume that classical gravity should be completed into a full-fledged quantum theory
with good UV behavior at a certain energy scale, MQG (the Planck scale, or string scale),
that is higher, by at least an order of magnitude, than the particle physics UV scale, MSM.
The latter is assumed to be a scale at which the particle physics interactions themselves
(with gravity switched off) become UV complete, for instance, in an asymptotically free
grand unified theory (GUT). Then, it is not unnatural to expect a hierarchy between MQG

and MSM of two orders of magnitude. For definiteness, we will assume that MQG is of order
the Planck scale, MQG ∼ 1018 GeV, while MSM is of order the GUT scale, MSM ∼ 1016 GeV,
but our discussion does not really depend on these concrete values.

Owing to this hierarchy, gravity should be well approximated by a classical field theory
at and below the energy scale MSM. In this low energy approximation, the path integral
can be defined for all the SM fields quantized with ~, while gravity can be regarded as a
classical field. For self-consistency, subsequent quantization of gravity should only give rise
to negligible corrections to the quantized SM results. Since the corresponding formalism is
well know (see [28, 29] and references therein) our discussions in this section will be brief
and schematic.
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Thus, the Feynman integral for the quantized SM interactions at and below MSM reads

Z(g, Jn) = const×
∫

dµ(ψ̃n)exp

(

i

~

∫

d4x
√

|g|
(

L(g, ψ̃n) + Jnψ̃n

)

)

, (6.1)

where dµ(ψ̃n) is the measure for all the SM fields, ψ̃n.
13

As we have emphasized, the metric g is regarded as an external field for now, and so are
the sources, Jn, introduced for every SM field. The 1PI effective action can be defined via a
Legendre transform of W (g, Jn) = −i lnZ(g, Jn) as follows,

Γ1PI ≡ W (g, Jn)−
∫

d4x
√

|g|Jnψn, (6.2)

where
√

|g|ψn ≡ −iδ lnZ(g, Jn)/δJn is
√

|g| times the expectation value of the SM field ψ̃n in
the presence of the source Jn. These expectation values, upon which the 1PI action depends,
are referred to as “classical fields,” to emphasize that in the conventional approach they are
not to be quantized further, since all the quantum corrections due to the SM interactions
are already taken into account in Γ1PI and LSM.

The “classical fields” Ψn, as well as the 1PI action, Γ1PI, are not real in general even for
a subset of the original fields, Ψ̃n, that could be real. On the other hand, one does need a
real effective action to couple to gravity in a conventional manner in (1.1). As shown in Ref.
[29] the real part of the 1PI action,

Γeff ≡ ReΓ1PI ≡
∫

d4x
√

|g|LSM(g, ψn), (6.3)

can consistently be constructed and used as a quantum effective action to which classical
gravity can couple [29]. Hence, the classical gravity equation would read as follows:

Rµν −
1

2
gµνR = − 2√

g

δ

δgµν
Γeff . (6.4)

What follows in the next subsection is just a straightforward application of this procedure of
coupling classical gravity to the quantized SM fields to our case. It amounts to an insertion
of the effective action (6.3) into (1.1), to account for dynamical gravity. While for small but
nonzero q this procedure would require more careful study, for q → 0 it reduces to the known
one [29]; this is enough for our purposes.14

13Gauge fixing and the Faddeev-Popov determinant are included in this measure.
14While we use the technical tool developed in Ref. [29], we also note here a conceptual difference of our

framework. In the approach of [29] Einstein’s gravity is considered to be a fundamental classical theory
and quantum matter fields are coupled to it. Due to the matter loop corrections, one generates the terms
that are quadratic in curvature invariants, R2

µν .... No higher powers of curvature get generated since with
the quadratic curvature counterterms the theory is shown to be renormalizable [29]. However, it is also
not causal since the quadratic curvature invariant terms – when stand alone – generate the Ostrogradsky
ghosts, whose removal leads to acausalities. In contrast with this, our approach assumes that gravity is to
be completed at some high scale by new physics (such as string theory). Thus there should be an infinite
number of curvature terms in the classical action in addition to the Einstein-Hilbert term. These terms do
not result from loops, but from a tree-level expansion (say, the α′ expansion in string theory). Moreover,
we argue that there are no low energy loop corrections in the gravity sector since ~q → 0. Thus, the SM
loops will just renormalize already pre-existing R2 and higher terms, but the series in curvature invariants
should not be truncated at any finite order when it comes to the discussion of the Ostrogradsky ghost; hence,
neither the existence of such ghosts, nor the acausality can be established in our case.
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6.2 Gravity Loops

A quantum theory of gravity is likely to come with new degrees of freedom at the energy
scale MQG, as does string theory. However, even before the full quantum theory of gravity
is explored, there is a more immediate issue within the low energy effective theory: the
quantum gravity corrections should be small at momentum/energy scales below MQG for
a classical treatment to be sensible. For instance, if Einstein’s gravity is regarded as part
of a low energy quantum effective field theory, the loops only generate higher dimensional
operators that make small contributions at momenta/energies below MQG. Hence, all the
classical predictions of the Einstein theory at length/time scales well above M−1

QG are intact,
to a good approximation. We should then strive to make sure that the quantum corrections
are small at large length/time scales in the proposed framework. Given that the classical
action has an unusual form in the present case, one first needs to set the rules of calculation
for the gravity loops, no matter how small their value could be. These rules were outlined
in [5]; we discuss them in more detail here, especially in the context of Ref. [29].

Following [5], we consider the path integral for gravity,

Zg = const×
∫

dµ(g)dµ(F )dλ dq exp

{

i

~

(

1

q
(SmGR + Γeff) + λ((Vg/VF )− q) + SF

)}

,

(6.5)
where SmGR is the massive gravity action for the g-universe, the two measures dµ(g) and
dµ(F ) include the gauge fixing conditions and the Faddeev-Popov determinants for both g
and F , and Γeff is the real part of the 1PI effective action for the SM fields discussed in the
previous subsection. Γeff contains real parts of all possible Green’s functions of the SM fields,
with gravity treated as an external field. The imaginary parts for these Green’s functions
can be restored from the real parts of the lower order Green’s functions, by using the optical
theorem [29]. Thus, Γeff contains in principle all the information about the quantized SM in
classical gravitational field.

The above path integral defines an algorithm, albeit unconventional and a bit cumber-
some, for calculating quantum loops: to reiterate, the SM loops are done in a conventional
way using ~ while treating g and F as external classical fields; this gives rise to Γeff defined
in the previous subsection. Then, the gravity loops are done using (6.5); these loops would
contain only real parts of the SM Green’s functions since Γeff = Re Γ1PI. The respective
imaginary parts can be obtained from the optical theorem for the SM loops; in our case they
should be added to the real parts of the SM Green’s functions that would appear in the
order-by-order expansion in (6.5) (one can of course get both the real and imaginary parts of
those Green’s functions if one calculates Γ1PI; it’s also well know that the solutions obtained
from Γ1PI are gauge independent).

In this scheme, the parameter ~q may be regarded as a second Planck constant that
governs the gravity loops at low energies. Since the classical solutions in our case are such
that ~q → 0, and hence no gravity loop contributions survive, it is then self-consistent to
use classical gravity equations (6.4).15

15The obtained action, Sgravity +Γeff , can be used to develop a tree-level nonlinear perturbation theory to
account for all the known classical gravity, astrophysics, and cosmology effects. One can try to go further
and address a more ambitious program of defining the theory for q 6= 0, q 6= 1. This is not our goal here,
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With the quantization process defined as above, one needs to worry about two types
of quantum corrections that may potentially ruin the classical solution of the cosmological
constant problem in the g-universe: (A) The action (1.1) and (2.1) appear to suggest that
there should be novel nonlocal interactions in the g-universe, arising due to the product
of two integrals in V −1

g SmGR; (B) The form of the effective action in (2.2) and (6.5) raises
the question of whether new polynomial terms of λ and q may be generated by quantum
corrections, and whether these new terms can spoil the classical solutions.

To address the point (A), let us decompose the metric as a background, gb, and its
fluctuation, schematically g = gb+h. The inverse volume factor, V −1

g , multiplying the action

SmGR , can then be expanded as follows: V −1
g = V −1

b − V −2
b Hh + ..., where Vb =

∫

d4x
√

|gb|
and Hh =

∫

d4x
√

|gb|h/2. The term, −V −2
b HhSmGR, as well as the other terms containing

higher powers of h, will produce new unconventional interaction vertices at both the tree
level and in the loops. When sandwiched between various states, the tree-level terms either
give trivially zero, or are suppressed by extra powers of the inverse volume, V −1

b as long as
all the fields involved decay at spatial/time infinity; they can also give rise to amplitudes
that do not correspond to any scattering process.16 As to the loops arising from these novel
vertices, they will be suppressed by powers of V −1

b , in addition to being governed by the
vanishing effective Planck constant, ~q.

To address the point (B), let us rewrite the partition function in a slightly different form:

∫

dµ(g)dµ(F ) dλ dp exp

{

i

~

(

VF
p
(SmGR + Γeff) + λ(Vg − p) + SF

)}

, (6.6)

where we integrate with respect to p and λ. Since there is no Wick contraction between g
and F , the multiplier VF in front of SmGR + Γeff does not produce any new vertices in the

but we make a few comments on such a prospect: In that case, the mixed gravity-SM quantum loops can be
done by integrating in (6.5) further with respect to the SM “classical fields” upon which Γeff depends. This
integration leads to a “double” quantization of the SM fields – the primary quantization of the SM fields
being done with ~, and the secondary quantization of the “classical” SM fields appearing in the effective
action, being done with the rescaled constant ~q. As long as ~q → 0, the secondary quantization does
not modify the results of the primary quantization of the SM fields. However, the procedure may lead to
unconventional results if q 6= 0, q 6= 1, and this needs to be studied further. All we can say here is that in
the limit ~q → 0 the optical theorem is valid even for gravity and mixed loops order by order in ~q, given
that one incorporates the optical theorem for the SM Green’s functions to restore their respective imaginary
parts as discussed above; the optical theorem for the gravity and mixed loops would relate tree amplitudes
to the respective loop amplitudes, even though the loop-generated counterterms to the effective action tend
to zero as ~q → 0. For instance, consider a one-loop diagram that describes a self-energy correction due
to a graviton to one of the “classical” SM fields appearing in Γeff . This diagram has two vertices, each
proportional to 1/~q, and two propagators, each proportional to ~q, hence the diagram is O(1), if we choose
to normalize the one-particle states so that the external lines in the diagram carry no powers of ~q. The
imaginary part of this diagram, which is also O(1), describes a classical process of emission of a graviton by a
SM particle. This amplitude is certainly nonzero in the ~q → 0 limit. However, the loop diagram itself does
not introduce any counterterms in the partition function – being O(1), it is suppressed by ~q, as compared
to the leading tree-level terms in the path integral that are of the order 1/~q. We will not pursue here these
arguments further, and will restrict to the limit ~q → 0 for the reminder of the paper. We thank V.P. Nair
for useful discussions of the above issues.

16Similar amplitudes are also present in ordinary theories at higher orders in 1/~. For instance, in a
theory of a massive scalar φ, the tree amplitude obtained by sandwiching the operator ~−2

∫

d4xm2φ2(x)×
∫

d4ym2φ2(y) between two two-particle states does not correspond to any scattering process.
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g-universe. Hence, this multiplier can be regarded as a pure number from the point of view
of the g-universe. The new nonlocal vertices described in question (A) are now encoded in
the conventional-looking term λVg. These new vertices will modify the calculations, but the
modifications are straightforward to take into account. To do so, let us further rewrite the
partition function,

∫

dµ(g)dµ(F ) dλ dp exp

{

i

~̃

(

SmGR + Γeff + λ̃(Vg − p)
)

+
i

~
SF

}

, (6.7)

where ~̃ = ~p/VF , and λ̃ = λp/VF . Then, we consider loop corrections about a flat g-
background, which is a solution for arbitrary CC in the g-universe. Due to these corrections
there will be additional terms proportional to positive powers of ~̃, which need to be included
in the effective action for gravity. The most dangerous of these terms would be proportional
to

~̃
k+1λ̃l+2 , k, l = 0, 1, 2, 3, ... (6.8)

However, it is straightforward to see that on the classical solutions of the original theory, all
these terms vanish when Vg/VF → 0.

We end this section by commenting on another type of corrections that are likely to
exist in the theory. The action SmGR contains the Einstein-Hilbert term, but it may also
contain higher derivative terms, such as higher powers of curvature invariants, that are not
necessarily induced by quantum loops. These terms can arise in a putative UV completion of
gravity. In string theory, for instance, these terms would be due to the α′ corrections. Such
terms will not spoil any of our arguments as long as we are considering energies and momenta
below the scale by which these higher dimensional operators are suppressed in comparison
with the EH term. Since the latter scale should be expected to be of orderMQG, the effects of
these higher dimensional operators are then negligible for the SM fields at and below MSM.
On the other hand, the higher dimensional operators will be relevant for physics at very
short distances. One can hope that these operators will smooth out the short length/time
singularities of certain classical solutions, e.g., black holes, or cosmological solutions. Similar
considerations apply to higher dimensional operators that are also expected to appear in SF .

7 On Strong Coupling in Massive Gravity

The diffeomorphism invariant action for massive gravity was built in [8, 9], and was presented
in (4.1). The specific structure of the potential guarantees that the theory propagates only
5 degrees of freedom [8, 9, 18, 30, 31, 32, 33]. It is not guaranteed, however, that the above
structure is preserved by loop corrections. We note that the coefficients α3,4 in (4.1) get
renormalized only multiplicatively [13], i.e. if set to zero they remain zero, but the loops
would in general induce other terms such as det3(K)2 or det3(K)× det4(K), etc., that would
reintroduce the sixth ghostly degree of freedom at a certain energy scale.

To see this more explicitly, we take the so-called decoupling limit MPl → ∞, m → 0,
with Λ3 = (MPlm

2)1/3 fixed [34]. In this limit, the five polarizations of the massive graviton
acquire their individual identities as the helicity ±2, helicity ±1 and helicity 0 states. For
simplicity, we focus on the helicity-0 state, which we denote by π. The massive gravity action
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in the decoupling limit contains the following terms for the π field:

Sπ =

∫

d4x

(

−1

2
(∂π)2 + α

(∂π)2�π

Λ3
3

+
2α2

3

(∂π)2((∂∂π)2 − (�π)2)

Λ6
3

+ ...

)

. (7.1)

These are the so-called Galileon terms [35]; they are special since they don’t generate higher
than two derivatives in the equation of motion, thus retaining only one degree of freedom in
the π theory on an arbitrary background.

On the other hand, it is evident from the above action that interactions of the π field
are described by irrelevant operators, that become strong at the scale Λ3. If this theory
is quantized in a conventional way, the renormalized Lagrangian would include an infinite
number of counterterms with higher derivatives, such as higher powers of ∂∂π.

These new terms, if present, would introduce a ghost at the scale Λ3. One way to deal
with this problem is to regard the action (7.1) as an effective action valid below the scale Λ3,
above which it needs to be completed by some unknown new physics. The effects of the new
physics in the low energy theory would manifest themselves as an infinite series of higher
derivative operators suppressed by Λ3. The appearance of the ghost at that scale could then
be attributed to the artificial truncation of the series at a finite order. Such an approach
is possible, and has so far been often adopted. It calls for an answer to the question as to
what is the completion of massive gravity at the scale Λ3, especially given that the latter is
so much smaller than MPl (see [10, 11], and references therein).

In our approach, however, such a question does not arise. This is because the massive
gravity Lagrangian is not quantized with ~, but instead with ~q. The appropriate part of
the path integral reads schematically as

exp

(

i

~q
Sπ

)

. (7.2)

Thus, every π propagator will be proportional to ~q and every π vertex, be it cubic or quartic,
to 1/~q. If we normalize one-particle states in a way that the standard loop expansion
is an expansion in powers of the respective Planck constant, then all the loop-generated
counterterms will be proportional to positive powers of ~q, and would vanish in the setup
considered here.

We note that this does not obviate the strong coupling scale Λ3, but only renders the
full quantum theory with a finite number of tree-level terms, so the theory is still strongly
coupled. While there are no quantum mechanical constraints imposed on the amplitudes,
since ~q → 0, a resummation of the classical nonlinear diagrams would be needed to account
for the Vainshtein effect [36] (see also [37]). It is also relevant to note that the tree amplitudes
define loop level amplitudes via the optical theorem which remains valid order-by-order, but
the effective action receives no loop-generated counterterms. This statement is trivial if we
restrict ourselves to the π-sector only – that sector has only one effective Planck’s constant,
~q, hence the reason for validity of the optical theorem is identical to that in a conventional
theory.17 To see how this works in more detail, consider the 2 → 2 scattering amplitude at

17However, the situation changes when one couples the π-sector with the SM fields that are now quantized
with a different Planck’s constant, ~q. The validity of the optical theorem for q 6= 0, q 6= 1 is plausible, but
has not been demonstrated, as discussed in Footnote 14.

18



the one-loop level that is due to the Wick contraction of two quartic Galileon terms. We
recall that every propagator will be proportional to ~q, and every tree level vertex will be
proportional to 1/~q. Moreover, if we normalize one-particle states in a way that the external
lines in Feynman diagrams carry no factors of ~q, then, the one loop diagram for the 2 → 2
scattering amplitude that comes from a contraction of two quartic Galileons would be O(1).
The imaginary part of this diagram is also of order O(1), and this is equated to a square of
the tree-level diagram, times two powers of ~q coming from the insertion of the intermediate
states, ensuring the validity of the optical theorem. While the imaginary part of this one-
loop diagram would satisfy the optical theorem, the diagram itself would not give rise to a
counterterm in the exponent of the path integral, since this counterterm would be of order
O(1), while the existing tree-level terms in the exponent are of order 1/~q. As to the 2 → 2
amplitude itself, it also receives a dominant tree-level contribution from the contraction of
two qubic Galileon terms, and the corresponding amplitude – with the normalization chosen
here for the external state – is of order, ~q × (1/~q)2 = 1/~q.

Thus, the full quantum effective action for the π field has as few terms as the classical
action. All the calculations done in this theory – although nonperturbative – are exact. In
other words, all the Feynman diagrams are defined just by the tree-level action. For external
classical sources, the Vainshtein mechanism [36] will postpone the strongly coupled regime
to energy/momentum scales higher than Λ3 (see [38] for a review) .

8 Comments and Outlook

This section consists of a few comments on topics that are somewhat disconnected from each
other, but might be helpful to further explore the present proposal.

First we note that since ~q → 0, low energy gravity is essentially classical, and therefore,
there will be no tensor modes generated by quantum fluctuations during inflation. The
scalar mode will still be generated since the inflaton is quantized in a conventional way,
and even though the scalar fluctuation is a mixture of inflaton and metric fluctuations, one
could choose a gauge in which the scalar perturbation is due entirely to an inflaton18; thus,
our framework would not change the inflationary predictions for the scalar perturbations.
However, if the primordial quantum tensor modes are discovered this would rule out our
proposal with ~q → 0.

In the context of the present work, we argued that it could be advantageous to consider
massive gravity as an agent driving the accelerated expansion of the universe. However, as we
have mentioned, massive gravity is not the only way. One could easily imagine a quintessence
field protected by symmetries, as in the pseudo-Nambu-Goldstone boson (PNGB) scenario
of [39], to give rise to dark energy. It is straightforward to see that all our requirements
would remain intact if we assumed that the PNGB gave rise to dark energy in the g-universe
on the boundary of AdS5. While the g-universe in that case would tend to 4D Minkowski
space in the infinite future, the ratio Vg/VF would still tend to zero since VF (= volume of
AdS5) is infinitely larger than the volume of infinite 4D Minkowski space. While the PNGB
model would give a redshift dependent equation of state for dark energy, massive gravity

18One could see this also without choosing a gauge but by diagonalizing and rescaling the system of inflaton
and metric perturbations in the scalar sector.
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and its extensions give the redshift-independent equation, p = −ρ.
It is worth noting that the action (5.1) allows for straightforward Euclidean extensions,

since the standard rotation to Euclidean times, tE = it, done in both universes simultane-
ously, amounts to the usual Euclidean transition in the generating functional. Thus, the
solutions that have real Euclidean counterparts (say, maximally symmetric spaces) can be
discussed using the Euclidean path integral. One could study in more detail the AdS/CFT
algorithm in Euclidean space, and see how it is affected when the VF/Vg factor is intro-
duced.19

We’d like to comment on the RS2 model [40], where induced 4D gravity exists on the
RS brane (set z = ǫ > 0 and impose Z2 across the hypersurface in Sections 4 and 5).
This scenario would allow the boundary metric γab to be truly dynamical. For instance,
its linearized Einstein kinetic term is given in (4.17), from which it is clear that a mass
scale proportional to 1/ǫ acts as the effective Planck mass for γab. Then, the braneworld
will contain a ghost-free bi-gravity theory in the framework of Section 4 [19], or a globally
connected bi-metric theory in that of Section 5. However, the value of the CC would need
to be fine-tuned in order to fulfill a set of junction conditions that maintain the consistency
of the RS2 picture, in which case our solution to the big CC problem would be lost. In
retrospect, the fine-tuning that precludes the proposed solution of the CC problem to be
applicable in the RS2 scenario, is not required on the conformal boundary of AdS5 (i.e.,
when ǫ→ 0) because there is no F -metric dynamics in the ǫ→ 0 limit.

Last but not least, it would be interesting to look into the vierbein formulation of massive
gravity [41, 42] in this scenario: besides the Stückelberg fields ϕa, the vierbein formulation
requires a two-index field λaā [42]. It would be fascinating if one were able to understand the
origin of this field from a broader context.

Acknowledgments

We are grateful to A. Kobakhidze and V.P. Nair for useful discussions. Both GG and SY are
supported by NASA grant NNX12AF86G S06, and GG also by NSF grant PHY-1316452.
GG acknowledges a membership at the NYU-ECNU Joint Physics Research Institute in
Shanghai.

A Boundary Fields in AdS/CFT

In this section, we switch to the Euclidean signature, in tandem with the standard language
of AdS/CFT. We present how to find the dual boundary CFT action for bulk graviton. As
a precursor, we discuss the massless scalar case first, which is simpler but very similar to the
graviton case.

19Without this factor, the only novelty in our case is that the full boundary action would become
SmGR[g, γ] + SCFT.
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A.1 Massless Scalar

The Euclidean AdS5 metric is

ds2 = FABdx
AdxB =

l2

z2
(dz2 + d~x2). (A.1)

We set l = 1 in the following discussion and only restore it when necessary. The scalar action
is

S =
1

2

∫

d4xdz
√
FFAB∂AΦ∂BΦ, (A.2)

whose variation gives the equation of motion

(

∂2z −
3

z
∂z +�

)

Φ(z, x) = 0. (A.3)

The general solution that decays at the horizon z = ∞ is Φ ∼ z2K2(z
√
−�)φ0(x). Integrat-

ing by parts and using equation of motion,

S =
1

2

∫

d4x
√

γ̃Φn̂ · ∇Φ, (A.4)

where γ̃ij is the induced metric on the boundary and n̂ · ∇ = −z ∂
∂z
. To obtain the effective

boundary action, we set z = ǫ and take ǫ → 0 in the end. We call the boundary condition
Φ(ǫ, x) = φ0(x), so that

Φ(z, p) =
z2K2(pz)

ǫ2K2(pǫ)
φ0(p) (A.5)

in the Fourier space.
Plugging this into (A.4),

S = −1

2
ǫ−4

∫

d4xd4y φ0(x)φ0(y)

∫

d4p

(2π)4
eip(x−y)u

∂

∂u
ln(u2K2(u)), (A.6)

where u = pǫ. We then expand the integrand in series,

u
∂

∂u
ln(u2K2(u)) = −u

2

2
+
u4

4
(ln 2− γ − ln u) + · · · . (A.7)

Here, γ = 0.5772... is the Euler-Mascheroni constant. The higher order terms in the series
can be ignored because they contain more than four powers of ǫ and drop out when ǫ→ 0.

After performing the Fourier transform, we have20

S[φ0] =− ǫ−2

4

∫

d4x φ0(x)�φ0(x)

+
1

32π2

∫

d4xd4y φ0(x)φ0(y)�
3
x

[

ln(|x− y|/ǫ)
|x− y|

]

. (A.8)

20The relevant formulae are given in [43, 44], where the nonlocal expressions are “differentially regularized”
to give well-defined Fourier transform.
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The content of the second line can be clarified by introducing an arbitrary and finite mass
scale µ,

�
3
x

[

ln(|x− y|/ǫ)
|x− y|2

]

=
1

2
�

3
x

[

ln(|x− y|2µ2)

|x− y|2
]

−�
3
x

[

ln(µǫ)

|x− y|2
]

=
1

2
�

3
x

[

ln(|x− y|2µ2)

|x− y|2
]

+ 4π2 ln(µǫ)�2
xδ(x− y). (A.9)

The first term is the “differentially regularized” two-point correlator for the boundary scalar
CFT operator, up to a constant multiple:21

π2

24
〈O(x)O(y)〉reg = − 1

27 · 6�
3
x

[

ln(|x− y|2µ2)

|x− y|2
]

(A.10)

= lim
κ→0

{

1

|x− y|8+2κ
+
µ2κ

κ

π2

25 · 6�
2
xδ(x− y)

}

, (A.11)

so the well-known ∼ |x − y|−8 two-point function is recovered [45]. The total boundary
action is

S[φ0] = −1

2

∫

d4x φ0(x)

(

ǫ−2

2
�− ln(µǫ)

4
�

2

)

φ0(x)−
1

2

∫

d4xd4y φ0(x)φ0(y) 〈O(x)O(y)〉reg .
(A.12)

In the AdS/CFT context, the local terms that diverge in the ǫ→ 0 limit are unphysical
and should be removed through holographic renormalization [46]. Since the regularized
correlator only differs from the unregularized one by local terms, specific renormalization
schemes can be constructed to yield either form of the correlator. Still, we note that the
differentially regularized expression of the two-point function emerges automatically in the
calculation.

A.2 Graviton

Now we can look at the boundary theory induced by a free graviton from the AdS5 bulk.
The complete action is [22, 47]

S = −
∫

M

d4xdz
√
F (R + 12)− 2

∫

∂M

d4x
√

γ̃K + 6

∫

∂M

d4x
√

γ̃, (A.13)

up to a functional of γ̃ij . We set the Planck scale M5 to unity for convenience, and use

i, j, ... = 1, 2, 3, 4 to denote the coordinates transverse to z, which are raised by γ̃ij on the
boundary.

The graviton is defined perturbatively by FAB = F
(0)
AB + hAB with background solution

F
(0)
AB. We work in the gauge h0B = 0. In the equations of motion, we use hij = γ̃ikhkj as the

dynamical field, since it is related to the boundary condition in a simple way, hij |z=ǫ ≡ χi
j =

h0ab, where h
0
ab is the Dirichlet boundary data.22 This allows the latin indices to be raised

21See Appendix B of [43]. Our formulae are obtained by setting k = 2 there.
22Here, a, b, ... = 1, 2, 3, 4 are raised with δab. In the case that the boundary condition is related to the

fiducial metric of massive gravity, the fiducial metric is fµν = (ηab + h0
ab)∂µϕ

a∂νϕ
b.
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and contracted with δij on the boundary, which we will do from now on. The equations of
motion are [47, 48]

∂2zh
i
j +�hij −

3

z
∂zh

i
j −

1

z
∂zhδ

i
j + ∂i∂jh− ∂i∂lh

l
j − ∂j∂

lhil = 0, (A.14)

with constraints

�h− ∂i∂
jhij −

3

z
∂zh = 0, (A.15)

∂z(∂ih− ∂jh
j
i ) = 0. (A.16)

(A.14) implies that the transverse-traceless component of hij satisfies the free massless
scalar equation of motion. We can then write the solution of hij in Fourier components [47],

hij(z, x) =

∫

d4p

(2π)4
eipx

[

¯̂
hij
z2K2(pz)

ǫ2K2(pǫ)
− z2 − ǫ2

6

(

pipj ĥ−
pipjp

kpl
p2

ĥlk

)

+
pjp

l

p2
ĥil +

pipl
p2

ĥlj −
pipjp

kpl
p4

ĥlk +
1

3

(

δij −
pipj
p2

)(

ĥ− pkpl
p2

ĥlk

)]

, (A.17)

where ĥij(p) is the Fourier transform of hij |z=ǫ = χi
j, and

¯̂
hij = ĥij −

pjp
l

p2
ĥil −

pipl
p2

ĥlj +
pipjp

kpl
p4

ĥlk −
1

3

(

δij −
pipj
p2

)(

ĥ− pkpl
p2

ĥlk

)

. (A.18)

Using equation of motion and integrating by parts, the action becomes [22, 47, 48]

S = −1

4
ǫ−3

∫

d4x(hji∂zh
i
j − h∂zh)|z=ǫ. (A.19)

We can substitute (A.17) and (A.18) into this expression to obtain an effective action for
χi
j . The nonlocal terms from this action are worked out in [22, 47]. Here, we give the local

terms and the differentially regularized two-point function. The total effective action is

S[χ] = S∂2 + S∂4 + Snonlocal, (A.20)

analogous to the massless scalar case. To obtain the results below, 4D integration by parts
is used when necessary.

S∂2 receives contribution from both terms in (A.19):

S∂2 =
ǫ−2

2

∫

d4x

[

−1

4
χj
i�χ

i
j +

1

2
χj
i∂j∂

lχi
l +

1

4
χ�χ− 1

2
χj
i∂

i∂jχ

]

, (A.21)

which has the structure of the kinetic terms in linearized Einstein gravity, as expected.
Both S∂4 and Snonlocal come from the first term in (A.19) only. Like the massless scalar

case, the arbitrary mass scale µ is introduced to the separate these terms. In particular,

S∂4 =
ln(µǫ)

16

∫

d4x χj
iD

ik
jlχ

l
k, (A.22)
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where the fully symmetrized differential operator Dik
jl is

Dik
jl =

1

2

(

δilδ
k
j + δikδjl −

2

3
δijδ

k
l

)

�
2 +

2

3
∂i∂j∂

k∂l

− 1

2

(

δil∂j∂
k + δik∂j∂l + δkj ∂

i∂l + δjl∂
i∂k − 2

3
δkl ∂

i∂j −
2

3
δij∂

k∂l

)

�. (A.23)

Also,

Snonlocal =
1

128π2

∫

d4xd4y χj
i (x)χ

l
k(y)�xD

ik
jl (x)

[

ln(|x− y|2µ2)

|x− y|2
]

. (A.24)

We can extract from this the regularized two-point function for the graviton CFT operator,

〈

T i
j (x)T k

l (y)
〉

reg
= − 1

64π2
�xD

ik
jl (x)

[

ln(|x− y|2µ2)

|x− y|2
]

. (A.25)

We must show that this is consistent with the well-known unregularized expression [22,
47],

〈

T i
j (x)T k

l (y)
〉

=
20

π2

1

|x− y|8

×
[

1

2
J i
l (x− y)Jk

j (x− y) +
1

2
J ik(x− y)Jjl(x− y)− 1

4
δijδ

k
l

]

, (A.26)

where J i
j(x) = δij − 2

xixj

x2 . It is straightforward to do so. From Appendix B of [43] (also
Appendix A of [44]), we have the identities

lim
κ→0

{

1

|x− y|4+2κ
+ π2µ

2κ

κ
δ(x− y)

}

= −1

4
�x

[

ln(|x− y|2µ2)

|x− y|2
]

, (A.27)

lim
κ→0

{

1

|x− y|6+2κ
+
π2

8

µ2κ

κ
�xδ(x− y)

}

= − 1

32
�

2
x

[

ln(|x− y|2µ2)

|x− y|2
]

. (A.28)

Plugging the non-divergent nonlocal parts of these and (A.10) (terms with negative powers
of |x − y|) into (A.25) gives (A.26) after some work. We note that this is a more rigorous
calculation than the result in [47], which arrives at the same expression but does not address
the subtlety of regularizing Fourier transform near poles.
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