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Abstract

At present, our notion of space is a classical concept. Taking the point of view that quantum
theory is more fundamental than classical physics, and that space should be given a purely
quantum definition, we revisit the notion of Euclidean space from the point of view of quan-
tum mechanics. Since space appears in physics in the form of labels on relativistic fields or
Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of
polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that
generically, such polarizations contain a fundamental length scale and that contrary to what is
implied by the Schrödinger polarization, they possess topologically distinct spectra. These are
the modular spaces. We show that they naturally come equipped with additional geometrical
structures usually encountered in the context of string theory or generalized geometry. More-
over, we show how modular space reconciles the presence of a fundamental scale with translation
and rotation invariance. We also discuss how the usual classical notion of space comes out as a
form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

The concept of classical space-time is one of the basic building blocks of physics. It has evolved
dramatically from Euclid to Newton and then from Minkowski to Einstein. Moreover, since the
advent of Einstein’s theories of relativity, the concept of locality in a classical space-time has become
one of the cornerstones of modern physics. It is one of the key properties underlying effective field
theory, which is widely considered a fundamental tool in describing various physical phenomena,
capturing the main features of disparate physical systems at low energy scales. What is very
surprising in these developments is the fact that quantum physics has exerted little or no influence
on our views about space and time. If one excludes quantum gravity, all theories assume that
quantum processes occur in the space-time of classical physics. Yet we know that non-locality is
one of the most counter-intuitive and central characteristics of quantum mechanics, and thus our
current picture of space-time in fundamental quantum theories is likely incomplete.

That non-locality must enter any theory of quantum gravity is guaranteed by the presence of a
fundamental length scale, the Planck length. We also expect that in any theory of quantum gravity
the classical concept of space-time must be replaced by some suitable quantum notion. Therefore the
open challenge underlying any theory of quantum gravity is to understand the nature of quantum
space-time. The usual view, however, is that questions of quantum space-time should be tied to
gravitational phenomena involving strong curvature in some way, and/or that the modifications of
quantum space-time are restricted to regions of space-time of the size of the Planck length. These
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would seem to be natural conclusions from the point of view of local effective field theories. One
expects that aspects of quantum space-time are irrelevant to ordinary non-gravitational phenomena.

In this paper, we challenge this perspective and argue that one should revisit our current
concepts of space and time in the light of quantum mechanics, even before establishing a full
theory of quantum gravity. We argue that quantum mechanics itself allows for the introduction of
such new concepts. The evolution of our thinking on this subject has grown from the realization
that metastring theory [1–4] gives rise to a quantum structure that we call modular space-time.
In the present paper, we focus on space only by retreating to ordinary quantum mechanics and
show that a notion of modular space is already present in the theory, and has in fact had a number
of familiar applications. We regard this discussion as laying the groundwork for a more complete
understanding of modular space-time.

Ultimately, what we are interested in are quantum systems with a built-in length scale. What
we will argue here is that our ability to understand such systems has been diminished by precisely
the assumption that quantum physics takes place in a classical space. Philosophically though, one
might expect that classical notions such as space are determined not a priori, but by the nature
of the probes of a quantum system. Indeed there is ample evidence that the apparent physics,
for example of the phase of a material, is determined by probe properties such as energy [5, 6].
And in gravitational physics, there is recent strong evidence that the observer plays a fundamental
role [7, 8].

One of the key ideas we present here is that the usual classical notion of space is not a necessity.
If we accept the idea that probes are in general quantum, we will see that a more general notion
of space can emerge. The idea is to simply view space as a choice of polarization in phase space.
We will show that there are quantum polarizations that do not have classical analogs. These
polarizations are generic at the quantum level and the usual Schrödinger representation of the
Heisenberg group that corresponds to classical space is obtained only in a degenerate limit in which
notions of a fundamental length scale are washed away.

The primary conceptual problem in understanding the physics of modular space-time is in the
nature of time itself. This opens up new and fascinating questions about what could be the meaning
of generalizing the usual Schrödinger evolution to modular time. We will consider such questions
elsewhere.

The present paper is organized as follows. First, we carefully discuss the Heisenberg group and
its representations. We find that generally quantization corresponds to identifying a commutative
subgroup. The usual examples correspond to classical Lagrangian submanifolds of phase space, but
generically, representations correspond to quantum (or modular) polarizations which we recognize
as modular spaces. These modular spaces are compact cells in phase space and carry units of
symplectic flux. The construction should be recognized as a formalization of Aharonov’s discussion
of modular variables in quantum mechanics [9]. Next we introduce the Zak transform which maps
unitarily between the Schrödinger representation and the modular polarizations. The modular
polarizations are determined by a choice of lattice within phase space as well as a co-cycle, which
we relate to the existence of a symmetric bilinear form η of split signature. Equivalently, the co-
cycle can be thought of as related to the existence of a connection with integral flux through an
elementary lattice cell. In the context of modular polarizations, we show that there is generally
no well-defined notion of translation invariant vacuum. Instead, we show that a vacuum can be
identified with a state that is annihilated by a kinetic “Hamiltonian”. This “Hamiltonian” is
associated with a second symmetric bilinear form H on phase space. Thus we are led to the
conclusion that general quantizations correspond to a choice of three structures, (ω, η,H) where ω
is the symplectic structure that defines the Heisenberg algebra. Parenthetically, these structures
are precisely the geometrical structures found in the simplest metastring theory, and hence we
believe that metastring theory can be identified with a quantum theory of space-time, which is
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apparently fully consistent. In a final section, we explain the resolution of the symmetry paradox:
since a modular quantization is associated with a discrete lattice, naively it appears that rotational
and translational symmetry are broken. The paradox is resolved by recognizing that an observer’s
notion of space corresponds to a choice of basis (a choice of polarization), and such a notion is acted
upon by rotations. However, precisely because the underlying algebra is non-commutative, any such
choice is unitarily equivalent to any other, and thus the action of rotations induces a superposition
of modular spaces. This reasoning leads us to the notion of extensification, corresponding to the
emergence of a classical space. An extensification can be thought of as a many-body effect (or more
precisely, a many-observer effect). Technically, it arises by taking the flux, alluded to above, to
infinity in a coherent way.

1 Modular Operators and Quantum Mechanics

1.1 Quantum space

The notion of space and the notion of time pervades every other concept in physics. They are
of course central concepts in the theory of gravity, but also in our formulation of non-relativistic
and relativistic quantum mechanics. What interests us here is that even in quantum mechanics
space and time are still treated as classical entities. For instance, the classical notion of space-time
appears in the argument of relativistic fields; it also appears in the notion of micro-causality, in the
definition of the notion of rescaling and renormalization group, in the hypothesis of the locality of
interactions, in the definition of the S-matrix and in the hypothesis of separation of scales. Without
a preconceived classical notion of space-time, it is not even possible to define these notions, and
hence what is meant by a relativistic version of quantum mechanics. At the non-relativistic level we
have on the other hand a dichotomy. Finite-dimensional quantum mechanics can be defined purely
algebraically without any preconceived notion of classical space and the notion of time evolution
can also be abstracted as a form of quantum computation [10]. Schrödinger quantum mechanics,
which can be seen as the non-relativistic precursor of relativistic field theory, on the other hand
relies on a classical notion of space, appearing as the argument of the wave function, while the flow
along a classical time is encoded into a choice of Schrödinger evolution. The choice of Schrödinger
dynamics contains then a built-in notion of classical locality which we call here absolute locality:
a notion of space and locality independent of the quantum probe. Of course, it is fundamental to
quantum theory that a choice of basis for a Hilbert space is immaterial, and that a choice can be
made subject to convenience. On the other hand, in relativistic field theory, a preconceived notion
of space is built into the theory, distinguished from other bases by locality. If we take the point of
view however, that all physics is fundamentally quantum, it is natural to investigate whether we
can infer the concept of space and eventually time from quantum mechanics itself. This is the point
of view we explore here. It is important to emphasize that ultimately we will not be discussing here
the quantum dynamics of a particle in a fixed space, but rather the quantum mechanics of space
itself.

Let’s begin with the notion of space in non-relativistic quantum mechanics. The basic definition
that we propose for a quantum space is that it is a choice of polarization for the representation of the
Heisenberg algebra. If one takes the Schrödinger representation H = L2(Rd) with wavefunctions
ϕ(q) we recover usual space as a label for the quantum states. This representation amounts to
diagonalizing the set of commuting operators which are functions of q̂ only. What is interesting to
us is the fact that the generic representation of the Heisenberg algebra is not of the Schrödinger
type. As we are about to see, a generic choice of polarization corresponds to a choice of a modular
cell within phase space. Hence generically, quantum space is modular.

We use the word modular because of a precise analogy with similar variables that play a nat-
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ural role in purely quantum phenomena in ordinary quantum mechanics. Modular variables are
described in detail by Aharonov and Rohrlich [11]. The fundamental question described there and
initially posed by Aharonov was as follows: what type of quantum operators does one need to use in
order to capture interference effects in the Heisenberg picture? For example, what are the quantum
observables that can measure the relative phase responsible for interference in a double-slit experi-
ment? The striking answer is that no polynomial functions P (p̂, q̂) of the fundamental Heisenberg
operators, satisfying [12]

[q̂, p̂] = i~, (1)

can detect such phases. Suppose that we look at a double slit experiment where the slit separation
is R and denote by 〈·〉α the expectation value in a state ψ(x) + eiθαψ(x+R), where each ψ factor
is localized around one of the slits. Here α is a control parameter like a magnetic flux or potential
difference that modifies the interference phase. It is easy to check that ∂α〈P 〉 = 0 for any polynomial
function P (p̂, q̂)! In order to detect the phase, we must work with operators such as V (p̂) = eiRp̂/~,
as they do have an expectation value that depends on α. Similarly, it is natural to introduce
U(q̂) := e2πiq̂/R. A simple fact about U and V is that, although one depends exclusively on p̂ and
the other on q̂, they nevertheless commute

UV = V U. (2)

What is remarkable about this identity is that it is a purely quantum identity with no classical
analog. No non-trivial function of p can Poisson-commute with a non-trivial function of q. Our
usual preference for working with q̂ and p̂ is that they have classical analogues, while this is not
true of U and V . Since they commute they can be simultaneously diagonalized. This is not without
subtlety however, as U and V have periodicity. The knowledge of U, V therefore defines a torus,
or modular cell, for instance M = [0, R)× [0, 2π~/R), which is the phase space analog of the choice
of a Brillouin cell in crystals. This cell is twice the dimension of the classical polarization space
determined by diagonalizing the classical variable q̂.

A key property of these modular operators is that they involve a length scale, which determines
their periodicity. What we will find is that such scales are present in ordinary quantum mechanics
in that they are associated with generic representations of the Heisenberg group. To explore this,
let us introduce a length scale1 λ, which in turn defines (given ~) a fundamental energy scale
ε = 2π~c/λ. Whereas ~ can be thought of as a measure of fundamental areas in phase space, the
ratio ε/λ has the interpretation of a fundamental tension, or more pragmatically, ε and λ provide
scales to which we can independently measure energies and lengths.

Given a scale, we can unify space and momentum into phase space, denoted P, and introduce
dimensionless coordinates x ≡ q/λ and x̃ ≡ p/ε measuring position and momentum in natural
units. It will be convenient to use the phase space coordinatization

X̂A ≡
(
x̂a

ˆ̃xa

)
, [x̂a, ˆ̃xb] =

i

2π
δab. (3)

The Heisenberg group HP [13] is generated by the Weyl generators, which are the phase space
analogues of plane waves

WK ≡ e2πi ω(K,X̂), W †K = W−K. (4)

1It is of interest to note that within the framework of purely quantum phenomena discussed extensively by
Aharonov [11], a length scale (such as a slit spacing) that is inherent to the experimental apparatus is introduced
within the Schrödinger representation. The result is a contextual modular space with an environmentally determined
length scale.
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We have introduced the symplectic structure ω given in these coordinates by

ω(X,Y) ≡ x̃ · y − x · ỹ. (5)

The Weyl generators form a projective group which is a central extension of the translation group
on P:

WKWK′ = eiπ ω(K,K′)WK+K′ , WKWK′ = e2πi ω(K,K′)WK′WK, (6)

where K = (k, k̃) ∈ P. There is a natural projection π : HP → P from the Heisenberg group to the
space P, viewed as an Abelian group, given by π : WK 7→ K. The first relation in (6) introduces a
2-cocycle defining HP as the central extension2 of P. The closure of the algebra generated by the
Weyl operators forms a C∗-algebra and it is this algebra that we refer to as the Heisenberg algebra.

The projection π : HP → P defines a line bundle over P. We focus on sections Φ of degree 1
which are acted upon by the regular representation. The sections (which can also be thought of as
homogeneous functions on the total space of degree one) will be referred to as states, and denoted
for simplicity3 by Φ(P). The Heisenberg group acts by right multiplication, which reads

WP′Φ(P) = eiπω(P,P′)Φ(P + P′). (8)

Thus the states can be thought of as living in L2(P), and carry a representation of HP . This
representation is exactly self-dual: if one defines the Fourier transform

Φ(X) :=

∫
dP eiπω(P,X)Φ(P), (9)

we still have that WPΦ(X) = eiπω(X,P)Φ(X + P), so this representation coincides with its Fourier
transform.

What we have described here is often regarded as “prequantization”: the representation L2(P) is
highly reducible. We therefore need to restrict this highly reducible representation to an irreducible
one. In the geometric quantization program [14], the representation is reduced by the choice of a
classical polarization, that is a Lagrangian submanifold L ⊂ P. The states then descend to L2(L).
This can always be thought of in terms of a projector acting on L2(P). In the familiar case of the
Schrödinger representation, we have a real polarization, obtained by

PLΦ(x, x̃) := Φ(x, 0). (10)

In the mathematical literature it has proven more convenient to choose complex polarizations
instead. These correspond to a choice of Lagrangian subspace P of the complexified phase space,
and they are such that P ⊗ C = P ⊕ P̄ . The resulting sections are holomorphic with respect to
a complex structure I on P. In either of these cases, the projection is associated with a classical
phase space structure. As we now describe, this is in general too restrictive: there exist additional
‘purely quantum’ polarizations, associated with quantum Lagrangians, which we also call modular
spaces. In other words the modular quantization that we propose can be seen as a generalization
of the geometric quantization program to spaces that include a fundamental scale.

2 In the mathematics literature, the combination ηWP, where η ∈ U(1), is expressed as the pair (η,P) ∈ U(1)×P
which makes explicit the bundle structure HP ' U(1) × P and the group multiplication reads (η,P) · (η′,P′) =

(ηη′eiπω(P,P′),P + P′). This is the sense in which HP is a central extension of the translation group.
3A state is a homogeneous function of degree 1 on the group which satisfies Φ(ηŴP) = ηΦ(ŴP) := Φ(P). We can

equivalently denote them as functions Φ(η,P) = ηΦ(1,P) ≡ ηΦ(P). The group acts on the states by

(η′,P′) · Φ(P) = Φ(ŴPŴP′η
′) = η′eiπω(P,P′)Φ(P + P′), (7)

which yields (8).
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All of these cases have in common the choice of a commutative subalgebra of HP , which is then
represented diagonally. In the Schrödinger representation, this is the algebra of functions O(q̂)
associated with L, while for the complex polarizations, it is the algebra of holomorphic functions
O(ẑ). The more general principle that we employ then is that an irreducible representation diag-
onalizes a commutative subalgebra which is maximal in the sense that it contains its commutant.
We will also restrict to subalgebras that are closed under the † operation, called ∗-subalgebras,
since we are interested in generalizing the notion of space itself which is a real structure. In sum-
mary, a quantum Euclidean space is associated with a maximal commutative ∗-subalgebra of the
Heisenberg algebra. The main point is that these are not necessarily associated with a classical
Lagrangian structure.

In fact, this notion also fits well with familiar ideas in non-commutative geometry. In the case of
commutative *-algebras, we can regard the elements of the algebra as the functions on an associated
(compact) space, the Gelfand-Naimark theorem [15]. We will take the point of view that any choice
of a maximally commutative *-subalgebra of the Heisenberg algebra can be thought of as defining
our concept of quantum Euclidean space, this space being the Gelfand-Naimark dual of the chosen
commutative algebra.

1.2 Modular Space as Quantum Polarization

We are now ready to apply this general strategy. Since we are interested in this work in the
generalization of quantum Euclidean space we restrict our analysis to polarizations that preserve
the linear structure of the Heisenberg algebra. In other words we need to find the maximally
commuting subgroups of the Heisenberg group just defined and construct the representation that
diagonalizes this commuting subgroup. This question was first investigated by Mackey in a seminal
work [16] and expanded upon in several monographs [17, 18] . We review here these concepts well
known to mathematicians but largely ignored by physicists, and present them in a new light. We
have included a summary of the main results at the end of this section for the reader who wishes
to skip the detailed mathematical derivations.

In the classical setting, the commutativity of observables is ensured by demanding that the
symplectic potential vanishes on those observables. In the quantum case, the commutative relation
involves a phase and the commutativity condition instead reads

[WP,WP′ ] = 0 ⇒ e2πiω(P,P′) = 1. (11)

The maximal commutative subgroups Λ̂ of the Heisenberg group are therefore easy to classify. They
correspond to lattices Λ = π(Λ̂) ∈ P which are integral and self-dual with respect to ω. In other
words Λ̂ is the subgroup of HP generated by elements of the form αWλ where α ∈ U(1) and λ ∈ Λ.
Let us recall that an integral lattice Λ is a subgroup of the translation group such that ω(λ, µ) ∈ Z
for all λ, µ ∈ Λ. A lattice is said to be self-dual if and only if the condition that ω(λ, µ) ∈ Z for
all λ ∈ Λ implies that µ ∈ Λ. The self duality condition expresses the maximality condition, that
there are no elements outside the subgroup Λ̂ which commute with Λ̂.

The group Λ̂ is a U(1) extension π : Λ̂ → Λ of the integral lattice. A key ingredient in the
construction of modular representations is the possibility to find a lift α : Λ → Λ̂ that maps the
lattice into an Abelian subgroup Λ̂α ⊂ Λ̂, such that π ◦α = id. More precisely, we parametrize this
lift in terms of a map α : Λ→ U(1) such that Uλ ≡ α(λ)Wλ ∈ Λ̂α is a homomorphism

UλUµ = Uλ+µ. (12)

This means that α(λ) must have the property

α(λ)α(µ)eiπω(λ,µ) = α(λ+ µ), λ, µ ∈ Λ. (13)
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The relation (12) implies that the lattice is faithfully represented in the Heisenberg group. It is
similar to the property of the Duflo map which is a choice of an ordering prescription for the
quantization of invariant functions on a Lie group that preserves all the classical relations.4

An important class of lifts that we will focus on are associated with a bilagrangian structure in P,
that is a choice of decomposition P = L⊕L̃ as a sum of two transversal Lagrangian subspaces. Here,
we say that L is Lagrangian if L⊥ = L, with orthogonality defined relative to ω, and transversality
means that L∩L̃ is point-like. The choice of a bilagrangian structure can be encoded into the choice
of a polarization metric η: given the decompositions P = p+ p̃ and Q = q+ q̃ with p ∈ L, p̃ ∈ L̃ etc.,
we define η(P,Q) = ω(p̃, q) + ω(q̃, p). This is a metric of signature (d, d) such that L (resp. L̃) are
null subspaces. If one works in Darboux coordinates associated with the bilagrangian structure, we
can simply take the symplectic structure to be the skew symmetric combination ω(P,Q) = q · p̃−p· q̃
while the polarization metric is given by the symmetric combination

η(P,Q) ≡ p̃ · q + p · q̃. (15)

More generally given a symplectic structure ω and a bilagrangian decomposition P = L⊕ L̃ we can
define the neutral metric η by the conditions

η(L,L) = 0 = η(L̃, L̃), η(L̃, L) = ω(L̃, L), (16)

where the notation η(L, ·) means that we contract η with any vector in the Lagrangian L. This
definition is tailored to make the chosen Lagrangian subspaces to be null with respect to the
polarization metric, and the non-zero pairing between conjugate Lagrangians to be given by the
symplectic pairing. The fact that the corresponding metric is neutral (i.e., of signature (d, d))
follows from the fact that its null subspaces are d-dimensional.

To construct a lift α(λ), we will make use of η. However, we must further suppose that the
lattice is also compatible with the bilagrangian structure. Given a symplectic lattice Λ and a
bilagrangian decomposition we can define sublattices ` = Λ∩L and ˜̀= Λ∩ L̃ which are Lagrangian
by construction. We say that the lattice Λ is bilagrangian if the Lagrangian sublattices generate
the whole:

Λ = `⊕ ˜̀. (17)

This means that Λ, which is defined as a lattice self-dual with respect to ω, can also be viewed as
a lattice which is integral and self-dual with respect to η. Moreover the Lagrangian sublattices `
and ˜̀ are null with respect to η. In other words a bilagrangian lattice is a Narain lattice [21]. We
define modular quantization to correspond to the case where the lift α(λ) is constructed in terms
of the polarization metric

αη(λ) := ei
π
2
η(λ,λ). (18)

We can now check that this solves (13) which is equivalent to the condition

η(λ, µ) = ω(λ, µ) (mod 2), for λ, µ ∈ Λ. (19)

This is guaranteed if the lattice is bilagrangian as a short computation shows: we first notice that
the defining conditions (16) for the polarization metric imply that the following components vanish:

4 The Duflo-map [19], a generalization of the Harish-Chandra isomorphism [20], is a map from the symmetric
algebra Sym(g) over a Lie algebra g to its universal enveloping algebra U(g). It is uniquely characterized by the
condition that

Q : Sym(g)G → Z(U(g)), (14)

is an isomorphism between invariant polynomials on g∗ and the center of U(g).
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(η−ω)(L,L) = (η−ω)(L̃, L̃) = (η−ω)(L̃, L) = 0. So for general λ = (n, ñ) ∈ Λ and µ = (m, m̃) ∈ Λ
we have that

(η − ω)(λ, µ) = 2ω(n, m̃),

where we used the fact that ` and ˜̀ are Lagrangian. The righthand side is zero (mod 2) because
ω(x, ỹ) ∈ Z for λ, µ ∈ `⊕ ˜̀.

Now that we have chosen a bilagrangian lift αη we can look for the general solution of the lift
condition (13). It is clear from this condition that given any lift α the combination α/αη is an
abelian character. It is therefore uniquely characterized by the choice of a point O ∈ P/Λ inside the
modular cell.5 We call this point the characteristic of the modular cell. This shows that a general
lift can therefore be parametrized by a bilagrangian structure encoded into η and a characteristic
O and is given by

α(η,O)(λ) = ei
π
2
η(λ,λ)e2πiω(O,λ). (20)

This shows in particular that we can always understand a choice of another modular lift associated
with a different polarization metric η′ as being related to a lift with characteristic. In other words,
given two polarization metrics η and η′ compatible with ω in the sense (19), we can always find a
characteristic Oη,η′ such that

αη′ = α(η,Oη,η′ ). (21)

As a summary, we have seen that the choice of modular quantization αη is associated with the
choice of a polarization metric η which determines a bilagrangian lattice (Λ, η), also called Narain
lattices. We have seen that the identification of the symplectic lattice (Λ, ω) as a Narain lattice
(Λ, η) allows us to lift Λ into a commutative subgroup of the Heisenberg group. This correspondence
between symplectic lifts and Narain lattices is not fortuitous, and goes a long way in explaining
why modular spaces naturally appear in string theory. More generally, they should be regarded as
relevant in any proper quantum theory of gravity, that is any quantum theory with a fundamental
scale built in.

From now on we restrict for illustration purposes to lifts of zero characteristic, that is to modular
quantizations. Given the polarization metric, we can take the associated lift morphisms to be the
restriction to Λ of the maps

αη(K) ≡ e iπ2 η(K,K), (22)

and we define the modified Heisenberg generators

UK = e
iπ
2
η(K,K)WK. (23)

These satisfy the algebra

UKUK′ = eiπ(ω−η)(K,K′)UK+K′ . (24)

This can be regarded as specifying a particular operator ordering, one respecting, as does (12), the
lattice translation group. Indeed, in the coordinates described above, we have for K = (k, k̃) that

UK = e2πi k̃x̂e−2πi k ˆ̃x,

where the x̂ are moved to the left of the ˆ̃x. We can now see that including the characteristic O
amounts to a phase redefinition of the morphism Uλ → e2πiω(O,λ)Uλ and such a phase redefinition
corresponds to a choice of origin X → X − O. In other words, and as we will see in more detail

5We have denoted the characteristic as O since it corresponds to a choice of observer inside the cell, as we will see.
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later, the dependence of the lift on the characteristic is what allows the preservation of translation
invariance.

Given the bilagrangian lift we can now define the corresponding Hilbert space HΛ. The idea
behind the construction is simple and goes back to Mackey [16, 22–24]. We have seen that a
quantum polarization is a choice of a maximal commutative subalgebra C[Λ̂α]. Here Λ̂α → Λ,
with U(1) fiber, is the Abelian subgroup lifted by α and associated with Λ. As we have seen, the
quantum algebra acts naturally on degree 1 sections, that is, homogeneous functions on the group
Φ̂(ηWP) = ηΦ̂(WP). Henceforth, it will be convenient to change notation slightly and denote the
section by ϕ(X) := Φ̂(UX).

It is important to remark that because of the non-commutative structure we in fact have two
different actions of the group on the algebra, one from the left and one from the right. The two
actions are defined by

LUYϕ(X) = Φ̂(U−1
Y UX), RUYϕ(X) = Φ̂(UXUY). (25)

We require that the left-action of the lifted lattice Λ̂ be trivial, LUλϕ(X) = ϕ(X), which implies
that

ϕ(X + λ) = eiπ(η−ω)(λ,X)ϕ(X), (26)

and then it follows that the right-action of Λ̂ is diagonalized

RUλϕ(X) = e−iπ(ω+η)(λ,X)ϕ(X + λ) = e−2πiω(λ,X)ϕ(X). (27)

Given the form of (26), we identify LΛ → TΛ to be the U(1) bundle over TΛ = P/Λ given by the
identification

(u,X) ∼ (ueiπ(ω−η)(λ,X),X + λ), (28)

and ϕ with L2 sections of this bundle. Such sections are quasi-periodic on the torus. Note however
that the modulus of the field is periodic and therefore the L2-norm ||ϕ||2 =

∫
P/Λ |ϕ(X)|2dX is

well-defined as an integral over the torus.
To summarize: we have seen in this section that a typical commutative sub-algebra of the

Heisenberg algebra is given by modular observables which are functions on P periodic with respect
to a lattice Λ ⊂ P. Representations that diagonalize these modular observables require the intro-
duction of a bilagrangian structure, that is, the choice of a decomposition of P = L ⊕ L̃, where
(L, L̃) are Lagrangian subspaces, which extends to the lattice Λ = ` ⊕ ˜̀. This bilagrangian struc-
ture can be equivalently characterized by a choice of a neutral metric η for which L and L̃ are null
and such that η(L̃, L) = ω(L̃, L). Given these structures, the Hilbert space H(Λ,η) is given by L2

sections of a line bundle over a 2d-dimensional torus TΛ = P/Λ in phase space . In other words,
states are quasi-periodic functions with the quasi-periods determined by the bilagrangian structure:

ϕ(X + λ) = eiπ(η−ω)(λ,X)ϕ(X), (29)

and the action of the Heisenberg group element UP = e
iπ
2
η(P,P)e2iπω(P,X̂) is given by

UP ϕ(X) = e−iπ(η+ω)(P,X)ϕ(X + P), (30)

on T d with T = S1 × S1, instead of functions over Rd.
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1.3 Modular space as Fundamental Space

We draw several conclusions from the above analysis. It is first important to appreciate that
although the commutative observables Uλ(X̂) are Λ-periodic, i.e., Uλ(X̂+µ) = Uλ(X̂) as operators,
the corresponding modular fields ϕ(X) that diagonalize them are not, they are only quasi-periodic,
as in eq. (26). This means that we should think of the modular field as living on a modular
cell M in phase space, which is the analogue of a Brillouin cell. More precisely a modular cell
M corresponds to a choice of section of a line bundle over TΛ = P/Λ. The quasi-periodicity (27)
ensures that the knowledge of ϕ on M determines the knowledge of ϕ on all phase space. Once a
modular cell is chosen, we can then describe the modular Hilbert space as HΛ = L2(MΛ). Now
it is true that as a Hilbert space, we have L2(MΛ) ' L2(TΛ). This isomorphism depends however
on the choice of modular cell, while the original formulation does not. It also does not respect the
continuity properties since it ignores the quasi-periodicity condition. For instance, it is well-known
that a differentiable quasi-periodic function Φ necessarily vanishes inside each cell while a periodic
function does not have to. This follows from the fact that the quasi-periodicity translates into the
condition that the winding number of Φ is 1:

1

2πi

∮
dΦ

Φ
= 1, (31)

where the integral is along a cycle that winds once around the boundary of the modular cell. For
these reasons, we see that it is more appropriate to think of the argument of the wave function to
be a modular cell and not a torus. This distinction is somewhat subtle, but important conceptually.

These representations differ drastically from the Schrödinger representation in three respects.
First, the spectrum of a modular observable defined as a modular space, is compact, and forms a
torus. Second, the dimension of such a modular space is doubled as compared to the Schrödinger
polarization. In other words, states are sections over T d with T = S1×S1 instead of functions over
Rd. Third, modular space is not simply connected, while Schrödinger space is, generically, simply
connected. The fact that modular space is not simply connected allows for Aharonov-Bohm phases
to be canonically defined as quasi-periods.

1.4 Stone-von Neumann Theorem

In the previous section, we have seen that a generic representation of the Heisenberg algebra is
modular, i.e., associated to a discrete lattice Λ ⊂ P. To fix ideas, let us take standard coordinates
(x, x̃) in P and assume that we start with the self-dual lattice given by Λ1 ≡ Zd × Zd. Other
lattices can be obtained from Λ1 by the action of a symplectic transformation and inequivalent
lattices are classified by the quotient Sp(2d,R)/Sp(2d,Z). Let’s consider for instance the symplectic
transformation (x, x̃) → (ax, a−1x̃), which deforms the self-dual lattice, the modular cell and the
Hilbert space into Λa, Ma = [0, a] × [0, a−1] and Ha respectively. When a > 1, it squeezes the
modular cell along the momentum direction and stretches it in the space direction. In the limit
a→∞ the lattice is fully stretched in the space direction and becomes very dense in the momentum
direction so that it limits to a classical Lagrangian Λ → L̃, the torus TΛ = P/Λ degenerates into
the quotient space P/L̃ ' L and the Hilbert space based on the modular cell becomes the space of
functions that do not depend on p, that is L2(Ma)→ L2(L). Since L2(L) = L2(Rd), we recover the
usual Schrödinger representation in this singular limit, where the modular cell is fully squeezed. In
this limit we lose all the information about the phase space connection and the Aharanov phases.
In this limit we lose the information that the cell has unit Planck area. In this limit we also lose
half the dimensions of the modular cell. From this perspective, it is clear that the Schrödinger
representation is not a generic representation of the Heisenberg algebra but on the other hand a
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highly singular one. It is only for this singular choice of lattice that one recovers the usual classical
notion of space.

Modular space has applications in ordinary quantum mechanical settings, in which the length
scale is set by an experimental apparatus (such as a slit spacing). From this point of view, what we
have done above is to define the underlying theoretical structure of Aharonov’s modular variables.
On the other hand, if a fundamental scale was available, we could use the modular space as a new
and fundamental notion of space.

The concept of locality that we use in physical theories is tied to the choice of a preferred basis,
the Schrödinger polarization. As we have just seen this preferred basis is from the point of view
of quantum mechanics very singular while the modular basis is generic. If our usual notion of
space is singular, it is of interest to consider why we use it as the foundation on which the rest
of physics is built. We can identify three reasons for this. The first is historical: the notion of
space came before quantum mechanics (Euclid lived 2300 years ago) and it was natural to build
in classical Euclidean and Minkowskian geometries into quantum mechanics instead of the other
way around. The second reason is that, even if classical space arises as a limit or approximation of
modular space, it is a very robust approximation. Indeed, if we identify the scale associated with the
modular cell with the Planck scale, the squeezing of the modular cell is given by the gravitational
tension ε/λ ∼ c4/GN ' 1017kg/Å. This is a huge tension and all quantum experiments performed
today, even the most energetic ones, fail by a huge margin to probe the thickness of the modular
cell in the momentum direction. For all practical purposes we can then assume that the space is
not modular, as long as we are not dealing with quantum gravity observables. The third reason
is mathematical and ingrained deeply into the psyche of any quantum physicist. It comes from
the Stone-von Neumann theorem [25, 26], which states that all representations of the Heisenberg
group are unitarily equivalent to the Schrödinger representation. It is this theorem that seems to
justify the use of a classical space as a universal polarization. This very powerful mathematical
theorem is in our view fundamentally misleading in the present context. It doesn’t appreciate
that different polarizations do have very different geometry, notions of regularity, and sets of C∞

vectors. In particular, the spectrum of operators diagonalized by the 1d Schrödinger representation
is non-compact and 1-dimensional while the modular representation is compact and 2-dimensional.

In fact the original proof [26] by von Neumann of the theorem is non-constructive. It uses
the fact that the operator P ≡

∫
e−π(x2+x̃2)W(x,x̃) is a rank one projector on any irreducible

representation and the unitary equivalence H ' H′ can simply be implemented by identifying the
image PH = PH′. This projector crushes all the information about the representation and any
choice of representation is valid. From that perspective it is not clear why one should focus on
the Schrödinger representation more than any other, except that this was the only one explicitly
known at the time of the theorem.

The explicit construction by Mackey [16, 22–24] twenty years later of induced representations
that we presented in the previous section, gives on the other hand a wealth of explicit representations
based on modular spaces. Any one of these is a valid polarization and we just argued that the self-
dual polarization is more typical and less singular than the Schrödinger one in the sense that all
modular spaces can be simply obtained by a symplectic mapping from the self-dual one, while the
reverse is not true — the modular spaces cannot be understood in terms of the usual Schrödinger
space. Our goal is now to rebuild the notion of dynamics, the relativity principle and fields in
the context of modular spaces. It is interesting to note that doing so amounts to going back to
the original formulation of quantum mechanics invented by Heisenberg, Born, Jordan and Dirac
[12, 27–29]. Their discovery of quantum mechanics was intimately linked with a deconstruction of
the notion of space and this was one of the most puzzling aspects of matrix quantum mechanics.
This was the state of the art before Schrödinger and then von Neumann reintroduced into quantum
mechanics the usual notion of space that matrix quantum mechanics had deconstructed.
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1.5 Zak transform

The Stone-von Neumann theorem implies that there is an isomorphism between the modular and
Schrödinger representations. In order to illustrate this unitary equivalence we will restrict ourselves
to d = 1 to simplify the exposition and we choose the canonical symplectic structure and commuta-
tion relation [q̂, p̂] = i~ which are mapped onto the dimensionless parameters x ≡ q/λ and x̃ ≡ p/ε,
with λε = 2π~, measuring position and momentum in natural units. We restrict ourselves in this
section to the self-dual lattice Λ1 with elements denoted λ = (n, ñ) ∈ Z2. Any other lattice in 1d
is related to this one by rescaling (x, x̃) → (ax, a−1x̃), which corresponds to a different choice of
fundamental scales preserving ~.

Bringing to this example the general discussion of the previous section, we find that the self-dual
modular space is represented by the two-dimensional cell M1 = [0, 1)× [0, 1) and the Hilbert space
H1 is given by the space of L2 quasi-periodic functions (26). We can write the quasi periodicity
condition explicitly in terms of the Lagrangian coordinates (x, x̃) as

Φ(x+ n, x̃+ ñ) = e2iπnx̃Φ(x, x̃), ||Φ||2 =

∫

[0,1)2

dxdx̃|Φ|2 <∞. (32)

This Hilbert space can also be understood as the space of L2 sections of a U(1) bundle over the
torus T2 = R2/Z2. The Zak transform6 is an explicit unitary map ϕ(q)→ (Zλϕ)(x, x̃) between the
Schrödinger Hilbert space and the modular one

Zλ : L2(R)→ L2(M1), (Zλϕ)(x, x̃) ≡
√
λ
∑

n∈Z
e−2πinx̃ϕ(λ(x+ n)). (33)

It can be checked that the image satisfies the quasi-periodicity property and that it is a unitary
map. This equivalence is non-trivial from a topological perspective: it maps functions on a non-
compact space onto functions on a compact space of twice the dimension. The fact that such an
isomorphism is possible at the quantum level is the expression of the complementarity principle.
The inverse of the Zak transform reads

(Z−1
λ Φ)(x+ n) =

1√
λ

∫ 1

0
dx̃ e2iπnx̃Φ(λ−1x, x̃), x ∈ [0, 1). (34)

We see from this expression that while it is an L2 isomorphism the inverse map does not necessarily
respect continuity properties. The image under Z−1

λ of a smooth modular state generically exhibits
discontinuities at x = n and is not in the domain of the translation operator p̂. The behavior of
the Zak transform under the Fourier transformation

√
2π~ ϕ̃(p) ≡

∫
dq e−ipq/~ϕ(q) is given by

(Zλϕ̃)(x, x̃) = e2πixx̃(Zεϕ)(−x̃, x). (35)

We see that the Fourier transform acts very simply under the Zak transform; it is given, up to a
phase, by the exchange X → IX where I(x, x̃) = (−x̃, x). It is interesting to note that in the case
where x = x̃ = 0, this Fourier identity reduces to the Poisson resummation formula.

It is useful to express the form of the elementary Heisenberg operators under the Zak transform:

ˆ̃x→ − i

2π
∂x, x̂→

(
i

2π
∂x̃ + x

)
. (36)

6Apparently, initially discovered by Gelfand, the Zak transform [30, 31] is an important concept, for example,
in signal processing [32]. It also makes an appearance in condensed matter contexts such as the Quantum Hall
Effect [33].

12



An important point is the fact that we could define another isomorphism of the form Z
(α)
λ = e2iπαZλ,

where α(x, x̃) is a function on M1. The image still satisfies the same quasi-periodicity conditions
as long as α is periodic. But under this gauge rescaling, we get a different representation of
the Heisenberg generators. In order to express the change we introduce an Abelian phase space
connection AAdXA = Axdx+ Ax̃dx̃ and the corresponding covariant derivatives ∇x = ∂x − 2πiAx
and ∇x̃ = ∂x̃ − 2πiAx̃. The initial choice of gauge for Zλ is (Ax, Ax̃) = (0, x). This connection
is discontinuous on the torus, and it is this discontinuity which necessitates the fields to be quasi-
periodic instead of periodic. In other words, the naive derivative does not respect the quasi-
periodicity relation but the covariant derivative does. We can check that indeed we have

[∇x̃Φ](x+ n, x̃+ ñ)] = [∂x̃ − 2iπ(x+ n)][e2iπnx̃∇x̃Φ](x, x̃)] = e2iπnx̃[∇x̃Φ](x, x̃). (37)

Under the gauge rescaling, the connection transforms as A→ A+ dα and the canonical generators
can be expressed as covariant derivatives

ˆ̃xΦ = − i

2π
∇xΦ, x̂Φ =

i

2π
∇x̃Φ. (38)

The Zak transform Z
(α)
λ corresponds to the choice Ax = ∂xα, Ax̃ = x+ ∂x̃α. This means that the

curvature of the phase space connection associated with the Zak transform is constant

F (A) = ∂xAx̃ − ∂x̃Ax = 1, (39)

which is a gauge invariant statement. In order to write in a convenient manner the quasi-periodicity
conditions (32), we introduce another connection Ã which is given by A + Ã = d(xx̃). This
connection is such that it has the opposite constant curvature F̃ = −1 and its covariant derivative
∇̃ ≡ ∂ − 2iπÃ commutes with ∇

[∇̃A,∇B] = 0. (40)

The relevance of this connection appears when we rewrite the quasi-periodicity conditions (27,32).
It allows us to write the left-invariance condition (26) which defines the line bundle in a covariant
manner as the condition

φ(X + λ) = exp

(
2πi

∫

(X,λ)
Ã

)
φ(X), (41)

where λ ∈ Λ and (X, λ) denotes a path in P that starts at X, ends at X + λ and moves along the
lattice Λ. The connection is not flat but if we choose two different paths, the expression differs
by a phase exp(2πi

∮
Λ Ã) which is the integral along a closed path in Λ. The constancy of the

curvature implies that each lattice cell carries an integer unit of flux and thus the phase is trivial.
The quasi-periodicity condition can also be written as

eλ
A∇̃Aφ(X) = en∇̃x̃eñ∇̃xφ(X) = φ(X), (42)

for λ = (n, ñ).
This shows that we can understand a modular space as a phase space torus equipped with a

constant ‘magnetic field.’ This magnetic field is not stretched in space but instead as one component
along space and one along momenta.

In order to illustrate the behavior of the Zak transform, it is useful to consider the transform of
the Gaussian state e(τ,λ)(q) = 1√

λ
eiπτq

2/λ2
, with τ a complex parameter with Im(τ) > 0, controlling

the shape of the Gaussian relative to the units (λ, ε). Thus τ provides a dimensionless squeezing
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parameter. The Zak transform of the Gaussian is given, up to an overall phase, by the Jacobi theta
function7

Θτ (x, x̃) ≡ (Zλe(τ,λ))(x, x̃) = eiπτx
2
θ(z; τ), z ≡ τx− x̃. (43)

The quasi-periodicity condition translates into the theta function quasi-periodicity

θ(z + τa+ ã; τ) = e−iπ(τa2+2az)θ(z; τ), (a, ã) ∈ Z2, (44)

and since ẽ(τ,λ) =
√
−iτ e(−1/τ,ε), the exchange property (34) of the Zak transform under the Fourier

transform is equivalent to the inversion identity

θ(z/τ ;−1/τ) =
√
−iτ eiπz2/τθ(z; τ). (45)

In fact, we can characterize the Jacobi theta function as the unique element Θτ ∈ HΛ such that
e−iπτx

2
Θτ (x, x̃) is holomorphic with respect to z = τx− x̃. The fact that there are no other quasi-

holomorphic sections will be important for us. What is special about the section Θτ , apart from its
holomorphicity property, is the fact that it vanishes only at one point inside the modular cell, the
center: Θτ (1

2 ,
1
2) = 0. We have already emphasized that a differentiable section needs to have at

least one zero inside the cell. The theta section and its translations minimize the number of zeroes
inside the cell.

1.6 Modular Translations

In this section we investigate the notion of “pure space” or empty space and whether this notion,
which is essentially classical, can be generalized to modular space. In other words, we want to
investigate whether there is such a thing as empty modular space? The answer, as we are going to
see, is negative and this has many far-reaching consequences. But first, let’s try to formalize more
what is usually meant by empty space; why it is a central concept, and how it is consistent with
the Schrödinger representation. The notion of empty space is a key notion for our understanding
of physics, it allows us to organize our representation of nature by imagining space as a receptacle
in which we put matter. So what is usually meant by this concept of empty space? At the classical
level and in the absence of gravity what is meant is a place where no change takes place. In
mathematical terms empty space has the property of being isotropic, that is, translation invariant.
At the quantum level the notion of empty space translates into the choice of a translation invariant
state, that is, a vacuum state solution of

p̂a|0〉 = 0. (46)

Now we see that in order to define the notion of vacuum representing pure space, we need to identify
a notion of translation algebra. In the Schrödinger picture this translation algebra is associated
with the choice of a classical Lagrangian, the subset of phase space generated by p̂a. The question
that is therefore going to occupy us is whether or not we can identify a notion of translation algebra
for modular space.

That is, instead of identifying the vacuum with a state that annihilates the action of a commu-
tative algebra like the translations, we can also define the vacuum to be the minimal energy state
associated with a positive operator that for brevity we refer to as a “Hamiltonian.” Hopefully, for

7

θ(z; τ) ≡
∑
n∈Z

eiπn
2τ+2πiz.
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the vacuum state corresponding to empty space, these two notions are the same. Indeed, demand-
ing that |0〉 is annihilated by the translation generators p̂a is equivalent to demanding that it is
annihilated by the operator8

Ĥh ≡ habp̂ap̂b, (47)

as long as hab is a positive definite metric. The fact that this notion of vacuum state is the same
as the notion of translation invariant state follows from the fact that if Ĥh|0〉 = 0 then Ĥh′ |0〉 = 0
for any other positive definite metric. In other words the vacuum state of usual flat space does
not depend on the choice of metric the space possesses, only the excited states do. This is the key
property that allows one to think of empty space as a universal notion.

Now this discussion relies strongly on the fact that we are in the Schrödinger representation
where the algebra of translations is clearly identified, but what about modular space? We have
seen in the previous sections that the modular representations HΛ(α) allows us to diagonalize the
modular observables Φ(X̂ + λ) = Φ(X) generated by the lattice observables Uλ with λ ∈ Λ. What
we want to investigate now is the possibility of defining Hermitian operators P̂A conjugate to X̂A.
This means that we are looking for operators such that

[P̂A,Φ] =
i

2π
∂AΦ, Φ(X̂ + λ) = Φ(X̂). (48)

Since the modular observables are angles, we expect each P̂A to have a purely discrete spectrum
and indeed the previous commutation relations implies that

U−1
λ P̂BUλ = P̂B + λAωAB. (49)

It is easy to see that the most general solution of (48) is given by

P̂A = ωABX̂B + aA(X̂), (50)

where aA(X̂) is an operator that commutes with all modular functions and is therefore a modular
function itself. We have seen in the previous section that X̂ is acting as a covariant derivative
∇0
A = ∂A+2iπAA. Therefore this definition shows that when acting on modular states ϕ ∈ HΛ(α),

P̂ acts also as a covariant derivative

P̂Aϕ(X) =
i

2π
∇Aϕ(X), (51)

where ∇A = ∂A + 2πi(AA + aA) is a U(1) connection, which is the translation of the naive phase
space connection AA by aA. The curvature of this connection is

[∇A,∇B] = 2πiFAB, FAB = ωAB + ∂AaB − ∂BaA. (52)

This algebra is invariant under the gauge transformation Φ(X)→ e2iπα(X)Φ(X) which implies that

P̂→ P̂, aA → aA + ∂Aα, (53)

where α is a modular function. The question that we need to focus on is what choice of connection
represents the translation operation associated with pure space?

A fundamental property of modular translations is the fact that there is no choice of connection
aA that can make the translations commute with each other. This follows from the fact that for

8Although we are using the term “Hamiltonian” here, the reader should not confuse it with the Hamiltonian of
some particle system. Instead, it is a tool that we use to identify a “vacuum state of empty modular space.”
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any choice of connection and any closed and non-contractible 2-surface S embedded in TΛ we have
that ∫

S
FABdXA ∧ dXB =

∫

S
ωABdXA ∧ dXB 6= 0. (54)

This equation tells us that the “modular flux” through 2d modular cells in phase space, which is
an analogue of the magnetic flux in a quantum Hall sample, does not vanish but is always equal
to its area. This is a fundamental difference with the Schrödinger case where a general translation
operator9 is of the form p̂a + Aa(q̂), and we can choose Aa to have vanishing curvature. In this
case the pa commute and it makes sense to impose that they are simultaneously diagonalized.
The modular translations on the other hand never commute. We cannot therefore define the state
representing pure space as a state of isotropy. In this sense the study of modular space is similar
to the study of the dynamics of charged particles in a non-zero magnetic field.

Another way to understand this impossibility is to look at the vacuum wave-functional

〈X|0〉 ≡ e(X). (55)

The vacuum wave-functional e(X) has to be a section of the line bundle. That is, if one focuses
on the one-dimensional modular space, it has to satisfy, in the Zak gauge, the quasi-periodicity
conditions

e(x+ n, x̃+ ñ) = e2iπnx̃e(x, x̃). (56)

This section labels the possible vacuum states |0〉. In the Schrödinger representation, we fix the
ambiguity by demanding the vacuum to be translation invariant, which implies that e is constant.
Since the line bundle is non-trivial, we cannot simply take e to be constant. This follows from the
fact that the quasi-periodicity condition implies the circulation of the phase of e around a cycle
lying in the boundary of the modular cell carries a unit of flux

1 =
1

2πi

∮
de

e
. (57)

This is due to the fact that the phase ϕ given by e(X) ≡ |e(X)| exp(2πiϕ(X)) necessarily possesses
a unit winding number. The integral (57) computes a residue and it implies that if differentiable,
which we assume, the vacuum wave function necessarily possesses a zero. The location of this
zero, denoted O, clearly breaks the translation invariance by defining a preferred location inside
the modular cell. In other words the fact that there is no translation invariant vacuum because
the translation generators do not commute is related to the fact that e(X) cannot be chosen to be
constant and vanishes at at least one point in the cell.

We therefore need to find another criterion in order to choose the plane wave section. Translation
invariance would be the condition P̂|0〉 = 0. Since this is not possible the next natural choice, is to
minimize the translational energy. This means that we pick a positive definite metric HAB on P,
and we define

ÊH ≡ HABP̂AP̂B, (58)

and demand that |0〉H be the ground state of ÊH . This is indeed the most natural choice and it
shows that we cannot fully disentangle the kinematics (i.e., the definition of translation generators)
from the dynamics. In the Schrödinger case, since the translation generators commute, the vacuum
state Ê|0〉 = 0 is also the translation invariant state and it carries no memory of the metric H
needed to define the energy. In our context, due to the non-commutativity of translations, the
operators ÊH and ÊH′ do not commute. As a result the vacuum state depends on H, in other
words |0〉H 6= |0〉H′ , and it also possesses a non-vanishing zero point energy.

9That is, an operator Na such that [Na, φ(q̂)] = −i∂aφ.
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1.7 Modular Vacua

In order to understand how the vacuum state changes under a change of “Hamiltonian” we now
make the extra assumption that the metric entering the “Hamiltonian” is derived from a complex
structure. That is we assume that H(X,Y) = ω(X, I(Y)) where10 I : P → P is a complex structure
I2 = −1 which is compatible with the symplectic structure: ω(I(X), I(Y)) = ω(X,Y). Such a
complex structure determines a Hermitian form

〈X,Y〉 = H(X,Y) + iω(X,Y), (59)

on PC, and also an associated choice of complex coordinates. Our conventions are such that the
Hermitian form is linear in its second argument, 〈X, I(Y)〉 = i〈X,Y〉. The complex coordinates are
given by a map from phase space to the complexified Lagrangian ZΩ : P → L̃C, with

ZΩ : X 7→ zX = Ωx− x̃,

which we require to satisfy11

ZΩ(IX) = iZΩ(X). (60)

After a short calculation (writing Ω in terms of real matrices, Ω = Ω1 + iΩ2, Ω2 positive), the
Hermitian form is found to be given by

〈X,Y〉 = z̄X
TΩ−1

2 zY. (61)

Given a state Φ(x, x̃), it is convenient to recast it in the complex polarization as

Φ(x, x̃) = eiπ x
TΩx Θ(zX, z̄X). (62)

With this redefinition we can describe the scalar product as a Bargmann integral

||Θ||2 =

∫

MΛ

ddzddz̄ e−2π x(z)TΩ2x(z) |Θ(z, z̄)|2. (63)

where x(z) = Ω−1
2 Im(z). From these expressions, it is clear that ZΩ and its Hermitian conjugate

act on Θ as creation and annihilation operators, satisfying the algebra

[
ẐΩa, Ẑ

†
Ωb

]
=

1

π
Ω2ab. (64)

Starting from the Zak representation (36) of X̂ on Φ, one finds that they act on Θ as differential
operators:

ẐΩ →
(

1

π
Ω2∂z̄

)
, Ẑ†Ω → −

(
1

π
Ω2∂z + z − z̄

)
. (65)

From this expression it is clear that the vacuum state is a holomorphic functional which satisfies
the quasi-periodicity condition (32)

Θ(z + Ωn− ñ) = e−iπ n
TΩne−2πi nT z Θ(z) (66)

10 A complex structure is usually a map I : TP → TP but since P is linear we identify TP and P.
11If we write more generally ZΩ(X)a = τaAXA, then (60) implies τI = iτ . Thus, in the chosen parameterization

τaA = (Ωab,−δab), if we write Ω in terms of real matrices as Ω = Ω1 + iΩ2 with Ω2 positive, the complex structure
on TP has the form

I =

(
Ω−1

2 Ω1 −Ω−1
2

Ω1Ω−1
2 Ω1 + Ω2 −Ω1Ω−1

2

)
.
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There is a unique holomorphic vacuum functional satisfying this condition given by the lattice
theta function

ΘΛ(z,Ω) =
∑

n∈`
eiπ n

TΩne2πi nT z. (67)

We can now analyze what happens to the vacuum state when we modify the complex structure [34],
(holding ω and X fixed). Given the identification12 ÊΩ = H(X,X), we write a variation of the
complex structure in terms of ∆ := Ω−1

2 δΩ Ω−1
2 and one finds that

δÊΩ =
1

2i

[
Ẑa∆̄

abẐb − Ẑ†a∆abẐ†b

]
. (68)

This transformation can be reabsorbed into an infinitesimal Bogoliubov transformation. Two vacua
are related to each other by squeezing |0′〉 ' (1 + iπ

4 Z
†∆Z† + ...)|0〉 ≡ N exp(iπZ†ΞZ†)|0〉, which

shows that the vacuum associated with the “Hamiltonian” ÊΩ′ contains an arbitrarily large number
of ÊΩ excitations. This is reminiscent of the Unruh ambiguity inherent to the choice of vacuum
for quantum fields in curved space, where different frames of reference (choices of time slicing)
correspond to different vacua which are squeezed with respect to each other. It is interesting that
such an effect takes place in the context of modular polarizations of space.

The geometrical reason behind this relies on the fact that the vacuum wave function vanishes
at a point O, which can be thought as specifying a frame of reference for the quantum state.
In the Schrödinger representation this point represents ∞, the locus at which a wavefunction
vanishes. Since the modular cell is compact, the shape of the state around this point is accessible
to observation, and the different vacua measure effectively in which quantum reference frame the
system finds itself. It is tempting to draw a speculative analogy with the Unruh effect where
the nature of the quantum vacuum depends on the accelerated observer’s frame of reference. The
analogy can be pushed further if one identifies the Unruh horizon with the point O which represents
a point of unobservability, since probability vanishes at that point.

2 Rotation and Translation Invariance in the Face of Discreteness

In this final section, we comment on how spatial symmetries are realized in modular quantizations.
Ordinarily, one would say that a theory defined on a torus has only discrete versions of these
symmetries. As we are about to see, this is not true. Even continuous rotations and translations
are realized in a precise sense on a modular space. One can see that, given the Stone-von Neumann
theorem, this is inevitable because any symmetry that exists in the Schrödinger representation
ought to be realized in any other (unitarily equivalent) quantization.

Before presenting our main line of argument, let us comment that resolving (a close relative
of) this issue is of fundamental importance to quantum gravity. Indeed, the main conundrum
for any theory of quantum gravity is to be able to find a way to reconcile the presence of a
fundamental length and energy scale with the principle of relativity. The basic issue is that the
Lorentz contraction of length and the dilation of time for relative observers renders seemingly
impossible the ability to have a scale on which all observers agree. This fundamental issue has
attracted a lot of attention in recent years and is still at the core of any attempt to produce a
viable theory of quantum gravity.

A useful analogy in quantum mechanics is provided by angular momentum. Classically, the
angular momentum describes a point on a sphere, and its canonical actions are given by rotations
which are symmetries of the sphere. Quantum mechanically, representations are discrete; the

12To facilitate this calculation, note that this implies ÊΩ = 〈X,X〉 = z̄Ω−1
2 z and under a variation in complex

structure, we have δz = 1
2i

Ω2∆(z − z̄).
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eigenvalue of the angular momentum is evenly spaced and this can be interpreted as a discretization
of the sphere, in which it is replaced by a discrete set of circles equally spaced along the z-axis, say,
a geometrical picture rigorously realized in the Kirillov orbit method [35]. These orbits correspond
to the weight lattice of the representation. The lattice apparently destroys the rotational symmetry
of the classical description. But we know that is not true: quantum theory restores the rotational
symmetry by arranging for a superposition of spin states which in turn parametrize a sphere’s-
worth of states. The spin states are merely a basis for the entire state space, and the basis is not
invariant under rotations.

Figure 1: Discretization of sphere.

So how does this analogy work in the context of modular space? In the Schrödinger representa-
tion, rotations act within the set of states |x〉, giving back a linear combination of these states. In
the modular polarization, clearly, we should regard the rotations as acting on the basis, resulting
in a new choice of modular cell, i.e., a new ’quantization axis’. Such a transformation corresponds
to a canonical transformation.

Let us start again with the puzzle we are facing. As we have seen, once we introduce a fundamen-
tal scale, the natural polarization that respects the presence of this scale introduces a bilagrangian
lattice Λ = `⊕ ˜̀ embedded in phase space P, and equipped with a neutral metric η. Moreover, we
have seen that the Hilbert space is given by a space of sections of a line bundle LΛ over the torus
TΛ = P/Λ and that the embedding TΛ ↪→ LΛ is characterized by a lift, αη ∈ U(1). Rotations act
on phase space as symplectic transformations

X = (x, x̃) 7→ O · X = (Ox,OT x̃), O ∈ O(d). (69)

These transformations not only preserve ω, but they also preserve the polarization metric η and the
quantum metric H. Remarkably, we can show that rotations are in fact the only transformations
that preserve the given Born geometry (ω, η,H) of the modular space. In other words, we have
that the rotation group lies at the intersection of the symplectic, neutral and doubly orthogonal
groups,

O(d) = Sp(2d) ∩O(d, d) ∩O(2d). (70)

Here Sp(2d) is the symplectic group preserving ω, O(d, d) is the neutral group preserving η and
O(2d) the orthogonal group preserving H. It is also interesting to understand the pairwise inter-
sections. For instance, the group of transformations that preserves the symplectic structure and
the polarization metric η (hence the lift) is given by

GL(d) = Sp(2d) ∩O(d, d). (71)

Here GL(d) is the general linear group that represents the sets of frames eai determining the vacuum
metric H(x, x̃) = xaqabx

b+x̃aq
abx̃b, with qab = eai δ

ijeaj and qab its inverse, while the space of vacuum
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metrics associated with a given Hilbert space is encoded in GL(d)/O(d). The other pairwise
intersections are

U(d) = Sp(2d) ∩O(2d), O(d)×O(d) = O(d, d) ∩O(2d). (72)

The space U(d)/O(d) represents the choice of inequivalent lifts η that preserve the symplectic
structure and the vacuum state, while the quotient of the double orthogonal group by O(d) represent
the choice of inequivalent symplectic structures, hence Weyl groups, that possess the same Hilbert
space with the same vacuum.

The presence of a lattice structure naively breaks rotational invariance. Indeed under a generic
rotation, the lattice is mapped to a different lattice OΛ 6= Λ. It is only for a discrete subgroup
which is a subset of O(d,Z) for which OΛ = Λ that we expect the symmetry to be implemented
exactly. For all other rotations, we expect the symmetry to be broken. The discrete lattice that
follows from the introduction of a fundamental scale therefore breaks the symmetry to a discrete
subgroup. This is exactly the conclusion one would reach if we were in the case in which space-time
is not modular, but this is not the right conclusion if space is modular. The main simple but
profound point is that a modular space does not come from the discretization of space but from
the discretization of phase space and at the quantum level, phase space is non-commutative. In
order to show what this implies, recall that the lattice elements λ = (n, ñ) ∈ ` ⊕ ˜̀ are labels of
commutative observables

Uλ = eiñ·x̂e−in·
ˆ̃x ∈ Λ̂η, (73)

where Λη is a shortform for the abelian subgroup Λ̂αη and U is a morphism, UλUµ = Uλ+µ.

Now after a rotation, these operators are mapped onto another commutative subalgebra Λ̂′η with
Λ′ = OΛ, still satisfying that UOλUOµ = UO(λ+µ) . The main point is however that these two
commutative algebras do not commute with each other, [Uλ, UOλ] 6= 0. In fact we can express the
non-commutation easily as

UλUOλ = e2πiω(λ,Oλ)UOλUλ, (74)

and unless the rotation is tuned to be such that all the angles ω(λ,Oλ) are integers, the non-
commutativity is manifest. Since these two sets of commuting observables do not commute with
each other, we can find a unitary transformation UO that maps one set onto the other.

UOUλU†O = UOλ, U†O = U−1
O , ∀λ ∈ Λ. (75)

When the rotation O can be written as an exponential of an infinitesimal transformation Oab =
(exp θ)ab where δbcθ

c
a = −δacθcb, one may check that the unitary generator can be simply written

in terms of the basic operators x̂, ˆ̃x as

UO = exp(2πi θabx̂
b ˆ̃xa). (76)

So indeed the rotation maps one modular space TΛ into another TOΛ, but since by construction, a
modular space is a choice of polarization, any other modular space is related to the original one by
a change of polarization, i.e., a canonical transformation.

This should be contrasted with the usual picture of discretizing space where the lattice and
its image are associated with different spaces but where the algebra of functions on each space
still commute with each other. Because of this commutativity, it is not possible to relate them in
any way and the two discretizations are not equivalent. This is also the case in the double field
theory picture in string theory where the target space is doubled to include winding modes but
the space-time coordinate x and its dual, the winding coordinates x̃, are assumed to be commuting
with each other (for a review, consult [36]). In this picture where one regards the target as a
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doubled torus arising from compactification, the two sets of plane waves are totally unrelated and
rotational symmetry is broken. This is one of the essential differences between the double space
picture and the modular space picture in which different polarizations do not commute with each
other. The main mechanism behind the symmetry restoration is the fact that a rotation does
not act on the discrete space itself. It maps one discrete space to another isomorphic one. Since
modular space is the quantum analog of a choice of a Lagrangian in phase space, the analogy is that
after a rotation we generically end up in another quantum Lagrangian. The property that there
is a way to think about space as a Lagrangian in phase space and the fact that transformations
change the Lagrangian is a characterization of relative locality [37]. Space is a notion relative to
the observer, and different observers rotated with respect to one another experience isomorphic but
different notions of space [37], [38]. The argument given here is closely related to a proposal for a
resolution of the paradox in quantum gravity [39], where it was argued that geometric operators
associated with different boosted observers might not commute. The difference here is that we
have a precise realization of this idea, which shows that it has to be associated with a realization
of space as modular space. We will discuss the application of these ideas in quantum gravity and
string theory elsewhere.

Now return to the analogy of the spin system, which goes as follows: consider the quantization
of a spin N system, [Si, Sj ] = εijkS

k. The choice of a modular space TΛ is analogous to a choice of
a Cartan subgroup in the rotation group, Sz say. The quantization implies that the spectrum of Sz
is discrete, with 2N + 1 integer-spaced values. Now the geometrical picture of the discretization of
the sphere, which is a rigorous description of the quantum geometry associated with the observer
Sz, seems to break rotational invariance. The resolution is due to the superposition principle of
quantum mechanics: after a rotation Sz → Sx say, eigenstates |n〉z of Sz are also superpositions of
eigenstates of Sx. The superposition |n〉z =

∑
m Unm|m〉x is realized by the unitary transformation

U †SzU = Sx. In other words states which are localized with respect to one polarization are
delocalized with respect to another.

This mechanism of mapping localized discrete states into delocalized states expressed as a
superposition is the key mechanism. In order to appreciate this delocalization principle in the
context of modular space, we will formalize what we mean by a localized state. The mapHΛ → HOΛ

can be expressed as a composition ZO(Λ)Z
−1
Λ of Zak transform an its inverse. It can be written as

the integral transformation

UOΦΛ(X) =

∫

MΛ

dY GO(X,Y)ΦΛ(Y), (77)

where the integral kernel is explicitely given by

GO(X,Y) =
∑

(n,m)∈`2
e−2πi(O(n)·x̃)δ(d)(x+O(n), y +m)e2πi(m·ỹ). (78)

This is the integral kernel for the map HΛ → HOΛ given by

UOΦΛ(X) =

∫

MΛ

dY
(2π)d

GO(X,Y)ΦΛ(Y), (79)

where the integral is over a fundamental cell. The kernel belongs to LO(Λ)×L∗Λ and it satisfies the

property that GO(X + λ,Y + µ) = eiπ(η−ω)(λ,X)GO(X,Y)eiπ(η−ω)(X,µ) for (λ, µ) ∈ Λ2. This means
that this map is well-defined, independent of the choice of fundamental cell and mapping sections
of LΛ into sections of LOΛ. It can also be checked to be unitary. It is even simpler to describe
this unitary map if one works with the complex polarization’s functions Θ(z, z̄) described in the
previous section. If we work with the canonical complex structure Ωab = iδab, we have that

UOΘΛ(X) = ΘΛ(OT ·z,OT ·z̄). (80)
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This shows the simplicity of the complex polarizations; the unitary map is simply represented as a
rotation of the holomorphic coordinates.

Now that we have understood how the rotational symmetry is restored, let’s look at translation
symmetry. Since the lattice possesses a preferred origin, naively one expects only a subset of discrete
translations TO to preserve the lattice. At first sight the situation seems radically different because
under a translation TOX = X+O, or in components (x, x̃)→ (x+o, x̃+ õ), the commutative algebra
Λ̂ is mapped onto itself and therefore the algebras Λ̂ and TOΛ̂ commute with each other. There
are however two elements that come to our rescue and insure that translations, like rotations,
are implemented canonically. The first one is the fact that the translation algebra itself is not
commutative as we have seen in a previous section. The second is that even if the commutative
algebra is the same under translation, the lift α(η,O), and hence the line bundle L(η,O) that defines
the Hilbert space, is not the same. We have seen that a lift is characterized in general by a choice of
a polarization metric η and by a characteristic O ∈ P. A translation will change the characteristic
and gives TOL(η,0) = L(η,−O). A change of characteristic corresponds to a change of phase of the
commutative operators, which can be reabsorbed by a unitary transformation

Uλ(X + O) = TOUλ = e2πiω(λ,O)Uλ = W †OUλWO, (81)

where WO denotes the Weyl translation operator (4). We see that once again a translation that
changes the lattice can be implemented via a unitary isomorphism as it maps a state Φ(X) into

WOΦ(X) = eiπω(X,O)Φ(X + O). (82)

The fact that translations act by a phase shift is the underlying reason for localization.
One can ask indeed why it is that we do not experience a mixture of space and momentum

space as modular space is suggesting? In principle it should be possible to prepare a state which is
a superposition of Φ and its translation, that is

Ψ(X) = Φ(X) +WOΦ(X) = Φ(X) + eiπω(X,O)Φ(X + O). (83)

If one could keep the coherence of that state we could in principle observe interferences between
a state and its translation along O due to the presence of the phase ω(X,O). Now if X and O
belong to the same Lagrangian, this phase vanishes and no interference can be experienced. Note
that one has to take O inside a Lagrangian complementary to X in order to witness interference.
Decoherence on the other hand, due to the imprecision of the state preparation and the interaction
of the states with an external system that kicks the state around, will ensure that states which are
translated along orthogonal Lagrangians decohere with each other. The reduced density matrix
will not mix states that are translated into transverse Lagrangians. This can explain why we seem
to live in a classical Lagrangian instead of a modular one.

2.1 Extensification: Many is Large!

In this final section, we investigate in what sense we can recover in some approximation the usual
notion of space starting from the quantum modular perspective. So far we have discussed the
Hilbert space for one unit of flux and we have seen that it is associated with a Planckian cell of
area ~. We also have seen in the previous section how geometrical transformations that change
the shape of the lattice can be implemented as unitary transformations. The question we want to
investigate now is what happens if we “extensify” the modular cell, which is of unit Planckian area,
into a cell of area N in Planck units? More precisely, we consider changing the lattice in a variety
of ways which changes the size of its fundamental cell. This is a non-trivial process, as it changes
the structure of the theory, and in particular modifies the Hilbert space. More precisely, while

22



a change of the lattice shape Λ → Λ′ that doesn’t modify its size can be implemented unitarily,
a change that changes its size leads to inequivalent Hilbert spaces HΛ and HΛ′ . The fact that
they are inequivalent can be seen in the fact that they generically have different degeneracies in the
vacuum sector. Fundamentally this is due to the fact that modular spaces depend on a fundamental
scale. This should be contrasted with the Schrödinger representation for which a rescaling of space
ϕ(q)→ ϕ(Nq) is a diagonal unitary transformation.

Given a bilagrangian lattice Λ = `⊕ ˜̀ there are really two different ways in which we can extend
the cell. We can extensify modular space along the Lagrangian L if we replace the lattice by N`⊕ ˜̀.
Or we can extensify modular space along L̃ by performing the rescaling Λ → ` ⊕ Ñ ˜̀. It will be
convenient to introduce the short-hand notations

N ·Λ·Ñ := (N`)⊕ (Ñ ˜̀), N ·Λ := N ·Λ·1, Λ·Ñ = 1·Λ·Ñ . (84)

With this notation we distinguish N ·Λ which corresponds to an extensification along L from
(NΛ) = N ·Λ·N which corresponds to a “coarsening” operation13. The first operation makes the
size of space relatively bigger than the size of momentum, while the second increases the size of the
cell homogeneously in both directions. It will be important to note that there are two equivalent
ways to formalize the process of extensification: we can either expand the lattice Λ → N ·Λ,
while keeping the fundamental scales (λ, ε) fixed or we can equivalently keep the lattice fixed
while rescaling the fundamental scales as λ → λ/N , and ε → ε. This corresponds to a rescaling
(G, ~) ∼ (λ/ε, λε/2π) → (G/N, ~/N). The large N limit corresponds to a limit in which both ~
and the gravitational coupling (used here as a conversion factor) are sent to zero at the same speed.
It is reminiscent of the relative locality limit considered in [37].
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⇶
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N⇤H(1)
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Figure 2: Rescaling the lattice by N results in a new Hilbert space.

The coarsening limit on the other hand corresponds to a rescaling λ→ λ/N , ε→ ε/N of both
fundamental scales. This corresponds to the transformation (G, ~)→ (G, ~/N2), which apparently
can be interpreted as a classical GR limit (once we introduce a curved version of modular space).
From this perspective both extensification and coarsening correspond to expanding towards a larger
phase space cell. While both contain a classical rescaling of ~, what distinguishes them is that
during extensification we change the shape of the cell, which is elongated along the space direction,
while during coarsening, we do not. This is the first main point: extensification corresponds to
an enlargement of the phase space cell, together with a proportional increase of the fundamental
tension.

We also want to understand what happens to the concept of modular space when we consider
multi-flux states H⊗NΛ , instead of HΛ. An interesting fact is that this is fundamentally related
to the notion of extensification presented above. The Hilbert space of multi-flux states can be

13We use the term ‘coarsening’ to refer to a uniform rescaling of the size of the phase space lattice. This should be
distinguished from a coarse-graining operation, which would preserve the volume of the cell.
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decomposed into the product of the Hilbert space for the ‘center of mass’ times the Hilbert space
of the ‘relative motion’ around the center of mass

H⊗NΛ = H(N)
Λ,com ⊗H

(N)
Λ,rel. (85)

We can then show that the Hilbert space for the center of mass H(N)
Λ,com is isomorphic to the

extensified modular space HNΛ. Moreover the states obtained by extensification HN ·Λ ↪→ H⊗NΛ

can be embedded into the multi-flux Hilbert space as a subset of states which are highly coherent
with respect to the relative degrees of freedom. This relation is in fact very natural: since each
flux in HΛ occupies an elementary cell, a collection of N fluxes occupies in a precise sense a
larger phase space cell. What differentiates an extensified state possessing an emergent geometrical
interpretation, from another quantum state, is the way the N fluxes are arranged within the cell.
In order for the usual notion of space to appear, the elementary fluxes have to be arranged to lie
regularly along a classical Lagrangian.

Let us first study the extensification process Λ → N ·Λ. The first thing to establish is an

understanding of the difference between the Hilbert space HΛ = H(1)
Λ and its sections, versus those

of the extensified version H(1)
N ·Λ. The superscript notation, which we have not used previously, now

emphasizes that the sections are meant to be homogeneous of degree one and here we generalize

this notion. As we have seen, H(1)
Λ is14 the space Γ(1)(LΛ) of degree one sections of the line bundle

LΛ → TΛ, where we recall that the line bundle is defined by (u,X + λ) ∼ (ueiπ(η−ω)(λ,X),X) =
(ue2iπnx̃,X) and the degree N of a section is the homogeneity degree Φ(λu,X) = λNΦ(u,X). We

can similarly define the Hilbert space H(N)
Λ := Γ(N)(LΛ) of degree N sections. The degree measures

the amount of symplectic flux going through a fundamental cell. If the phase space is of dimension
2d we have that ∫

MΛ

ωd = Nd. (86)

We now want to express that at the quantum level there are two equivalent ways of describing

the extensified Hilbert space. We can either define it to be the Hilbert space H(1)
N ·Λ associated with

a bigger lattice or we can define it as the Hilbert space H(N)
Λ , associated with degree N sections on

the initial lattice. This second description corresponds to a rescaling of the fundamental constants.
Before describing the isomorphism, let us specify each space: if we denote the element of the lattice
by (n, ñ) ∈ ` ⊕ ˜̀, the elements of the extensified lattice are (Nn, ñ) ∈ N ·Λ. The elements Ψ of

H(1)
NΛ satisfy

Ψ(y +Nn, ỹ + ñ) = e2πiNnỹ Ψ(y, ỹ), (87)

where we have introduced the natural coordinates for the extensified cell, y ∈ [0, N), ỹ ∈ [0, 1). On

the other hand, the elements Φ of H(N)
Λ are sections of LΛ satisfying

Φ(x+ n, x̃+ ñ) = e2πNinx̃ Φ(x, x̃), (88)

where (x, x̃) ∈ [0, 1) × [0, 1) describe the reference cell. The isomorphism between these two de-
scriptions is simply given by the extensification mapping

ÊxN : H(1)
N ·Λ → H(N)

Λ , (89)

Φ(y, ỹ) → (ÊxNΦ)(x, x̃) := Φ (Nx, x̃) , (90)

14 Strictly speaking the Hilbert space and the line bundle depend on the choice of lift and we should refer to it as
H(1)

(Λ,η) and L(Λ,η) respectively. Since we keep η fixed in this section we drop the extra label for notational clarity.
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and indeed given Φ ∈ H(1)
Λ , we have

(ÊxNΦ)(x+ n, x̃+ ñ) = Φ (N(x+ n), x̃+ ñ) = e2πiNnx̃(ÊxNΦ)(x, x̃). (91)
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Figure 3: Pictorial view of the ÊxN isomorphism of Hilbert spaces. Degree N sections have N
zeroes within a fundamental cell.

In order to appreciate what is changing under extensification, one looks at the vacuum sector.
As we have seen in section (1.7), the choice of a “Hamiltonian” ÊΩ = ẑ†Ω−1

2 ẑ can be understood in
terms of a choice of complex structure, which for simplicity here, we restrict to the simplest choice
Ωab = iδab for the lattice Λ. That is we assume

z = ix− x̃ = i yN − ỹ. (92)

In order to analyze the vacuum sector and its excitations we consider the complex polarization,
and we define

(ÊxNΦ)(x, x̃) = e−Nπ(x·x)Θ(z, z̄), (93)

where the contraction is now with the Kronecker matrix x · x = xaδabx
b and the factor N in the

exponent takes care of the fact that Φ is a degree N section. As we have seen, the vacuum states
are the holomorphic sections while the degree N condition means that they transform as

Θ
(N)
Λ (z + in+ ñ) = eπN(n·n)e−2iπN(n·z)Θ

(N)
Λ (z). (94)

The general solution of this equation is easy to find: one first expands Θ(z) in Fourier modes e2iπn·z

and translates the previous equation into a recursion equation for the Fourier coefficients. One finds
that there are Nd independent solutions labeled by k ∈ (N`)/` and given by

Θ
(N)
(Λ,k)(z) =

∑

n∈`
e−πN(n+k/N)2

e2iπN(n+k/N)·z. (95)

The number of independent functions that correspond to vacuum states is given by the total flux∫
ωd over a fundamental cell of the extensified lattice. They are a generalization of Landau levels

to d dimensions [40]. The important point is that they form a basis of H(N)
Λ which is of dimension

Nd.
As we have seen the key property of the vacuum functional is the location of its zeroes. The

flux determines the number of zeroes: we expect to find N zeroes of order d per cell. In order to
find them we write

Θ
(N)
(Λ,k)(z) = eπNx

2
∑

n∈`
e−πN(n−k/N+x)2

e−2iπN(n−k/N)·x̃. (96)
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For simplicity, we assume from now on that ` = Zd and therefore k = (k1, · · · kd) ∈ N`/` can be
represented by choosing ka ∈ {0, · · ·N − 1}. From this expression we see that the points

x =
(

1
2 , · · · , 1

2

)
+
k

N
, x̃ =

(
1
2 , · · · , 1

2

)
+
m

N
, m ∈ N ˜̀/˜̀, (97)

are zeroes of order d of Θ
(N)
(Λ,k) labeled by elements of the quotient lattice N ˜̀/˜̀. This follows from

the fact that for these values the exchange na → −na − 1 changes the summand by a sign. We see
that a general extensified state is a state with a particular coherency in the structure of its zeroes.

We also see that the zeroes of the extensified vacuum states Θ
(N)
(Λ,k) are aligned along a Lagrangian

manifold given by the condition x := (z − z̄)/2i = k/N ( see Fig. 3). The choice of Lagrangian is
controlled by the choice of complex structure that enters the definition of the “Hamiltonian”. The
coherency of these states is manifest in the fact that the zeroes are equally spaced with regular
spacing ∆X ∈ N−1 ˜̀ along the dual Lagrangian N−1 ˜̀= (N`)⊥.

An important fact is that the position of the zeroes determines the vacuum wave-function, up to
a constant. This follows from the fact that the ratio of two wave-functions with the same zeroes is
analytic and periodic and hence constant. Using this fact, we can introduce another basis of H(N)

Λ

whose zeroes are distributed arbitrarily. One first considers the theta function ΘΛ(z) = Θ
(1)
Λ (z)

which is the unique vacuum state of H(1)
Λ and we define

Θ
(N)
Λ (z; zi) := e−2iπNc·(z−zc)

N∏

i=1

ΘΛ(z − zi), (98)

where we have introduced the ‘center of mass’ position: zc := (
∑N

i=1 zi)/N = ic− c̃. The normal-
ization is chosen so that it is translation covariant

Θ
(N)
Λ (z + a; zi + a) = e−2iπNIm(a)(z−zc) Θ

(N)
Λ (z; zi). (99)
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Figure 4: Organizing the zeroes of the vacuum wavefunction in H(N)
Λ in a coherent fashion identifies

an embedding H(N)
Λ ↪→

(
H(1)

Λ

)⊗N
.

This means that a change of the center of mass can be reabsorbed, up to an exponential factor,

by a translation in z. When a ∈ Λ we know that Θ
(N)
Λ is mapped onto itself. This means that the

translation of the center of mass position by an element of Λ is trivial.
This wave-function possesses zeroes at the points z = i

2 + 1
2 + zi , for i = 1, · · · , N . The

quasi-periodicity condition of this function reads

Θ
(N)
Λ (z + in+ ñ; zi) = e2iπN(nc̃−ñc)eπNn

2
e−2iπnN ·zΘ

(N)
Λ (z; zi). (100)

This shows that it is in H(N)
Λ provided the center of mass (c, c̃) belongs to the lattice (N−1Λ). When

this is the case the phase factor is equal to the identity for all (n, ñ) ∈ Λ. Using the translation
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covariance we can therefore label this function in terms of N elements zi such that
∑

i zi = 0 and
an element (c, c̃) ∈ Λ/(N−1Λ).

Let us finally comment on the physical relevance of the coherency of the position of zeroes of
the wave function. First let us remark that the vacuum states |Θzi〉 represented by the holomorphic
functional ΘΛ(z − zi) are coherent states centered around 〈X̂i〉 = (Im(zi),Re(zi)), where we have
introduced the expectation value of Xi in the state Θzi by 〈X̂i〉. The dispersion of the states defined
by (∆X)2 = 〈Θ|(X̂− 〈X̂〉)2|Θ〉 is given by ∆X = (1/π, 1) in the units we have chosen. Now a basic
fact about the action of Hermitian operators on states is that it can be decomposed as [11,41]

X̂Ai |Θzi〉 = 〈X̂i〉|Θzi〉+ ∆XAi |Θzi〉⊥, (101)

where |Θzi〉⊥ is a normalized state orthogonal to |Θzi〉. What is of interest to us is how this
decomposition scales when we consider a multi-particle state |Θ(N)〉 := |Θz1〉 ⊗ · · · ⊗ |ΘzN 〉. We
define the center of mass observables X̂ = 1

N

∑
i X̂i and a corresponding orthogonal normalized

state |Θ(N)〉⊥ = 1√
N

∑
i |Θz1〉 ⊗ · · · ⊗ |Θzi〉⊥ · · · ⊗ |ΘzN 〉. Now, since all individual states have the

same coherency ∆Xi = ∆X, we can evaluate

X̂|Θ(N)〉 = 〈X̂〉|Θ(N)〉+
∆X√
N
|Θ(N)〉⊥. (102)

From here we can see that there exist two radically different physical situations. If we assume
that the expectation values 〈X̂i〉 are randomly distributed, along a random walk, with diffusion
constant D say, then we know that in the large N limit we have that 〈X̂〉 ∼ D/

√
N , since we

are summing over random variables. Therefore, for an incoherent state the average value of an
observable is of the same order as its dispersion in the large N limit and it cannot be interpreted
classically. If, on the other hand, the distribution of the average value is coherently distributed
we can see that the average value 〈X̂〉 is of order one, while the dispersion is of order 1/

√
N , and

the state becomes classical in the large N limit. In order to get the “classicalization” of a state
we have used, we need the quantum coherency of individual states and the classical coherency of
the distribution of average values. Under these conditions we conclude that, quite paradoxically,
coherency is necessary in order to obtain the usual classical limit.

As a conclusion, let us remark that the relationship between an extensified wave-function and
the superposition of multi-flux wave-functions extends to the coarsening operation. If we assume
that Λ = Zd ⊕ Zd we can investigate the basic coarsening operation that amounts to the rescaling
Λ → 2Λ. This operation can be realized as an embedding H2·Λ·2 ↪→ H⊗4

Λ . This embedding is
encoded by the Riemann identity [17]:

ΘΛ (2z) =
1

2dΘΛ(0)3

∑

(a,b)∈(Z/2Z)2d

e4πa2
e2iπaz[ΘΛ(z + ia+ b)]4. (103)

In this section we have shown that modular space has properties which are far more intricate
than those of the usual classical space. Now we have a possibility to realize states associated with
larger space as multi-flux states. These identifications in principle blur the line between what is
pure geometry and what can be considered as matter. This unification of matter and geometry
contained in modular space is one of the most fascinating aspects of this discussion.

3 Discussion

In this paper, we have introduced the notion of quantum polarization, corresponding to a generic
choice of a maximally commutative sub-group of the Heisenberg group, found in ordinary non-
relativistic quantum mechanics. This construction can be thought of as the proper mathematical
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underpinning of modular variables [9], which have been used to best describe purely quantum
phenomena (such as double slit experiments and their brethren). Within such an application, the
lattice (and consequently a length scale) associated with the maximally commutative sub-group is
set contextually by some experimental apparatus (such as a slit spacing).

More generally, we interpret the construction to give rise to a purely quantum notion of space. In
this interpretation, we take the scale associated with the quantum polarization to be fundamental.
The usual classical notion of space is recovered from this quantum space in a singular limit15 [42] in
which the fundamental length scale decouples. This interpretation is certainly more conjectural, but
it seems natural to suppose that the fundamental length scale is associated with the gravitational
(or string) scale, ε/λ ∼ c4/GN . In this context, we might think of the unit flux modular space as a
‘space-time bit’. The principle of equivalence together with the relativity principle postulate that
the gravitational tension is independent of the nature of constituents. It is interesting to notice
that in physical units the gravitational tension is huge, of order 1017kg/Å. Consequently, if we do
make this identification, in most experiments we can safely ignore the presence of a fundamental
scale, as fluctuations along momentum directions are negligible compared to fluctuations in position
directions. In making this identification, we are suggesting that the quantumness of space is in fact
quantum gravitational. Hence one might interpret this as the gravitization of the quantum. Some
of our reasons for believing this conjecture are contained in earlier publications, and forthcoming
papers will provide further and more focussed evidence.

A commutative sub-group of the Heisenberg group is determined by an integral self-dual lattice.
We have shown that geometrical structures arise, principally a symmetric bilinear form η of split
signature and a positive definite form H. Remarkably, these are precisely the structures that arise
in generalized geometry [43] as well as in the T-duality symmetric formulation of string theory that
we refer to as metastring theory. It is quite possible that the structure of modular quantizations
has observable consequences in metastring theory, through UV-IR mixing, when the appropriate
limit is taken to obtain local effective field theories in large space-times.

Another contribution presented in this paper is a resolution of a central conundrum in all
formulations of quantum gravity concerning how to make the existence of a fundamental invariant
gravitational scale consistent with the relativity principle. There are two issues here: the first is that
discretizations break continuous symmetries, while length scales are typically not invariant under
Lorentz boosts. Even in ordinary quantum mechanics we are concerned with the former. Indeed the
modular polarization, with its associated lattice, apparently breaks the continuous rotational and
translational symmetries of phase space. We have shown that this is a naive conclusion however,
precisely because phase space is a non-commutative space, following a mechanism first proposed
in [39]. A choice of quantum polarization is a choice of basis, unitarily equivalent to any other. To
reconcile these ideas, we must retool our thinking in terms of the superpositions of quantum spaces.
This should be thought of as an implementation of the idea of relative locality [37]. We anticipate
that the use of these ideas in quantum gravity will have similar consequences.

Our discussion suggests that the modular basis is rather special in ordinary quantum mechanics,
because it seems to capture its essential non-locality. We also have seen that in the process of
extensification the boundary between purely geometrical degrees of freedom and matter-like degrees
of freedom encoded in the fluxes gets blurred. This may be one of the most fascinating aspects of
modular space and this is one of the questions that we hope to explore in a future work. We will
also address the restoration of Lorentz symmetry and the question of how causality is reconciled

15 A typical example of a singular limit is the limit of zero viscosity of a viscous fluid. A singular limit is a
mathematically consistent description, but it contains an impossibility realized in the non-singular limit: as is well
known in an Euler fluid, planes can’t fly. Other examples of singular limits are the geometric optics limit of wave
optics, when the wavelength is neglected, the thermodynamic limit of statistical mechanics, when the number of
particles is assumed to be infinite, and finally, the classical physics limit of quantum physics.
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with non-locality. We also expect that the modular basis should find wider uses in foundational
questions of quantum theory, including the problem of measurement, and the emergence of classical
physics as a singular limit of the underlying quantum world. Finally it should allow us to bring a
new perspective on the geometry of string theory since it is in this context that it first appeared [3].
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