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For each set of (freely chosen) seed data, the conformal method reduces the Einstein constraint
equations to a system of elliptic equations, the conformal constraint equations. We prove an ad-
missibility criterion, based on a (conformal) prescribed scalar curvature problem, which provides
a necessary condition on the seed data for the conformal constraint equations to (possibly) admit
a solution. We then consider sets of asymptotically Euclidean (AE) seed data for which solutions
of the conformal constraint equations exist, and examine the blowup properties of these solutions
as the seed data sets approach sets for which no solutions exist. We also prove that there are AE
seed data sets which include a Yamabe nonpositive metric and lead to solutions of the conformal
constraints. These data sets allow the mean curvature function to have zeroes.
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I. INTRODUCTION

To construct a spacetime solution of the Einstein gravitational field equations, the first step is to find an initial
data set which satisfies the Einstein constraint equations. That is, for a fixed manifold Σn, one seeks a Riemannian
metric γ, a symmetric tensor field K, plus non-gravitational fields ψ such that the Einstein constraint equations

Rγ + (trγK)2 − |K|2γ = 16πρ(ψ, γ) (1)

∇iKij −∇j(trγK) = 8πJ(ψ, γ) (2)

are satisfied everywhere on Σn. Here Rγ is the scalar curvature of the metric, ρ(ψ, γ) is the energy density of the
non-gravitational fields, and J(ψ, γ) is the momentum density for these fields. As an example, if the non-gravitational
fields of interest are the electromagnetic vector fields B and E of the Einstein-Maxwell theory in 3+1 dimensions,
then we have ρ = 1

2 (|E|2γ + |B|2γ) and J = E ×γ B. For a perfect fluid, we may treat ρ and J themselves as the

non-gravitational field initial data[1] (so long as the algebraic constraint ρ2 ≥ |J |2γ is satisfied).
The conformal method (along with the closely related conformal thin sandwich method) has proven to be a very

effective procedure for producing as well as studying initial data sets (Σn; γ,K, ψ) which satisfy the constraints (1)-(2).
It does this by splitting the initial data into two sets of fields: the freely chosen seed data, and the determined data.
The idea is that, for a specified set of seed data, the constraint equations become a determined system to be solved
for the determined data.[2]
More specifically (working here with the Einstein-perfect fluid theory), the seed data set consists of a Riemannian

metric λ, a positive lapse function N , a symmetric tensor field σ which is divergence-free and trace-free with respect
to λ, a scalar function τ , a nonnegative scalar function r, and a vector field j such that r2 ≥ |j|2λ. The determined
data consists of a positive scalar field ϕ and a vector field W . For a chosen set of seed data[3] (Σn;λ,N, σ, τ, r, j), one
obtains ϕ and W by solving the conformal constraint equations, which take the form

αn∆λϕ = Rλϕ+ κnτ
2ϕqn−1 −

∣

∣

∣

∣

σ +
1

2N
LλW

∣

∣

∣

∣

2

λ

ϕ−qn−1 − rϕ−
qn
2 , (3)

divλ

( 1

2N
LλW

)

= κnϕ
qndτ + j. (4)

Here ∆λ is the Laplacian (with negative eigenvalues) with respect to the metric λ, Rλ is its scalar curvature, Lλ is
the conformal Killing operator, defined by

LλWij := ∇iWj +∇jWi −
2

n
λij∇

kWk (5)

for the λ-compatible covariant derivative∇, divλ is the corresponding divergence operator, and we use the dimensional

constants αn := 4(n−1)
n−2 , κn := n−1

n , and qn := 2n
n−2 . If indeed one does obtain a solution (ϕ,W ) to (3)-(4) for the

given set of seed data, then the initial data set

γ = ϕqn−2λ, (6)

Kij = ϕ−2

(

σij +
1

2N
LλWij

)

+
τ

n
ϕqn−2λij (7)

ρ = ϕ− 3

2
qn+1r/16π (8)

J = ϕ−qnj/8π (9)

is a solution of the constraint equations (1)-(2) on Σn. Note that if the seed data satisfies the inequality r2 ≥ |j|2λ,
it follows that the initial data satisfies the inequality ρ2 ≥ |J |2γ . Here, we are using the Hamiltonian conformal thin
sandwich (CTS-H) approach, as described in [4]. This adds the extra function N to the seed data. The traditional
conformal method simply sets N = 1/2. While the proofs in this paper can be carried out using the traditional
method[5], many of the calculations are simpler if one uses the CTS-H method since the CTS-H conformal constraint
equations (3)-(4) are conformally invariant [6], which is not the case for the traditional conformal constraint equations
(obtained from (3)-(4) by setting N = 1

2 .) In particular, as long as the conformal factor relating a metric to λ is
bounded above and below, we can choose to work with that conformally related metric instead.
The utility of the conformal method depends upon the extent to which one can determine and classify those sets of

seed data for which the conformal constraint equations admit a unique solution, and those sets for which this is not
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the case. For constant mean curvature (CMC) seed data on closed manifolds (so long as the nongravitational fields are
either Maxwell, perfect fluids, massless scalar fields, or vacuum, with nonnegative cosmological constant), this can be
done completely (see [7]), primarily because the CMC condition dτ = 0 decouples the conformal constraint equations
(3)-(4), and because the Yamabe classification of Riemannian metrics on closed manifolds is well understood (see [8]).
For seed data sets on closed manifolds which are nearly CMC in an appropriate sense, the determination of which
sets lead to (unique) solutions and which do not is essentially complete as well (see [9–12]).

In sharp contrast, for seed data without any restriction on the mean curvature, much less is known. Moreover, it
has been shown that for some seed data sets on closed manifolds there are multiple solutions, and for some families
of seed data sets one can pass from sets with no solutions to sets with unique solutions and on to sets with many
solutions (see [13, 14]). The general picture for seed data which is neither CMC nor near-CMC is very unclear.

What about seed data which is asymptotically Euclidean (AE)? While the analytical simplifications of the conformal
constraint equations which result from working with either CMC or near-CMC data sets occur regardless of whether
the data is specified on a closed manifold or is asymptotically Euclidean (or is asymptotically hyperbolic), the Yamabe
classification of AE metrics is more complicated (and less intuitive) than the Yamabe classification of metrics on closed
manifolds. For example, it has been shown (see [15]) that an asymptotically Euclidean metric can be conformally
deformed to an AE metric with zero scalar curvature if and only if the metric is Yamabe positive (as defined via the
Yamabe invariant (29) below). As well, it has been shown that an AE metric is Yamabe null if and only if it can be
conformally deformed to a metric with scalar curvature R for every function R ≤ 0 except R ≡ 0. As a consequence
of these features (and others) of the AE Yamabe classes, the analysis of the existence and nonexistence of solutions
of the conformal constraint equations is generally more complicated for asymptotically Euclidean seed data than it is
for seed data on closed manifolds.

The very recent advances in our understanding of the Yamabe classes of metrics for asymptotically Euclidean
metrics (see [15]), besides indicating some of the difficulties of the analysis of the conformal constraint equations for
AE data, also provide information which is useful in handling these difficulties. In this paper, after a brief review
(in Section II) of asymptotically Euclidean geometries and their analytic features (properties of Fredholm operators
on AE geometries, the various AE maximum principles and sub and supersolution theorems, and the AE Yamabe
classes), we discuss a number of new results concerning solutions of the conformal constraint equations for various
classes of AE seed data.

The key to many of the results we present here is the Curvature Criterion Theorem which we discuss and prove in
Section III. This result (Thm III.1, below) states (roughly) that the (stand alone) Lichnerowicz equation—which we
obtain by replacing the coefficient of the ϕ−qn−1 term by an arbitrary (specified) nonnegative function f2—admits a
positive solution ϕ with appropriate falloff properties if and only if the metric λ admits a conformal transformation
λ → ψqn−2λ such that the scalar curvature corresponding to ψqn−2λ is equal to −κnτ

2. From this result, we
readily infer an Admissibility Corollary (Corollary III.3 in Section III) for the conformal constraint equations; that
is, we infer conditions on the seed metric λ and the mean curvature function τ which must hold if the conformal
constraint equations (3)-(4) are to admit a solution for a given set of seed data (Σn;λ, σ, τ, r, j). We note that both
the Curvature Criterion Theorem and the Admissibility Corollary, which we present and prove in this paper for
asymptotically Euclidean data sets, have been inspired by earlier work of Maxwell [16], in which he proves analogous
results for initial data (with Yamabe negative metrics) on closed manifolds.

Many of the new insights obtained in [15] concerning the Yamabe classification of asymptotically Euclidean metrics
involve the prescribed scalar curvature problem for conformal deformation of AE metrics. Since this problem plays
a major role in the Admissibility Corollary, we are immediately led to simple results regarding the existence and
nonexistence of solutions to (3)-(4) for various classes of seed data. These are stated in Sections III and IV. Included
in these sections are comments regarding the existence of seed data sets of each of these classes.

Knowing that there are seed data sets Ŝ := (Σn; λ̂, σ̂, τ̂ , r̂, ĵ) for which no solutions to the conformal constraint

equations exist, it is useful to consider sequences of seed data sets Sℓ which approach Ŝ. In Section IV, we prove a
pair of results showing that if a solution to Eqns. (3)-(4) exists for each element of the seed data sequence Sℓ, then

these solutions must blowup—in the sense that supϕℓ → ∞—as Sℓ approaches Ŝ.

As argued in Section IV, for asymptotically Euclidean seed data sets which are CMC (and consequently maximal,
with τ = 0), if the Yamabe class of the metric λ is null or negative, then the conformal constraint equations admit no
solutions. To date, all existence theorems for solutions of Eqns. (3)-(4) for AE seed data (see [10, 17, 18]) have also
required that the Yamabe class of the seed metric be positive. In Section V, we prove an existence result which allows
for AE seed data with nonpositive Yamabe class. As well, this result allows for τ2 to have zeroes. This is significant
because the known existence results for nonpositive Yamabe class seed data on compact manifolds all require τ2 > 0.
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II. ASYMPTOTICALLY EUCLIDEAN INITIAL DATA SETS

In working with asymptotically Euclidean geometries and initial data sets, we use the definitions and conventions of
[19]. Specifically, we first define a C∞, n-dimensional Riemannian manifold (Σn; e) to be Euclidean at infinity if there
exists a compact subset V ⊂ Σn such that Σn \ V is the disjoint union of a finite number of open sets Uk, and each
(Uk; e|Uk

) (called an end) is isometric to the exterior of a ball in Euclidean space. Associated to each end is a natural,
smooth radial function. We smoothly interpolate these to define a function ρ ≥ 1, which is precisely the coordinate

radial function on each end. We then define the weighted Sobolev spaces W k,p
δ (Σn, e) (with 1 ≤ p ≤ ∞, s ∈ N

+, and
δ ∈ R) of tensor fields on (Σn; e) to be the closure of the set of C∞

0 tensors with the respect to the norm

‖T ‖Wk,p
δ

:=

{

∑

0≤m≤k

∫

Σn

|∇mT |pρ−n+p(m−δ)ν

}
1

p

, (10)

where ∇m denotes the m’th-order covariant derivatives compatible with the metric e (arbitrarily smoothly extended
into the interior region K as a Riemannian metric), | | is the corresponding tensor norm and ν is the corresponding
volume element. Note that by our choice of norm, δ directly encodes the falloff of T on the ends. Based on these two

definitions, we define a Riemannian manifold (Σn; γ) to beW k,p
δ -asymptotically Euclidean if there exists a Riemannian

metric e on Σn such that (Σn; e) is Euclidean at infinity, and such that the tensor γ − e is contained in W k,p
δ (Σn, e).

For simplicity, we shall often call a Riemannian manifold asymptotically Euclidean[20] without referring to the specific
values of k, p, and δ. We note, however, that unless otherwise specified, we assume that k > n

p so that the metric γ

is continuous and we assume that δ < 0 so that γ approaches e asymptotically on each end. We also note that, if

(Σn; γ) is W k,p
δ -AE, we may replace the norm (10) by an equivalent norm defined using the metric γ rather than e.

For later use, we also define AE Hölder norms by

‖T ‖Ck,α
δ

:= ‖Tρ−δ‖Ck,α . (11)

An initial data set (Σn; γ,K) for the Einstein vacuum equations is defined to be asymptotically Euclidean if the

Riemannian manifold (Σn; γ) is W k,p
δ -AE, and if in addition the tensor field K is an element of W k−1,p

δ−1 , where k ≥ 1

and δ ∈ (2−n, 0). If there are non-gravitational fields present, these are generally expected to be elements ofW k′−1,p
δ′ ,

for some k′ and δ′ related to k and δ, although discontinuities on co-dimension one submanifolds are often allowed
for fluid fields. We note that a seed data set is defined to be AE if it satisfies conditions analogous to these.
Our analysis of the conformal constraint equations and their solutions for AE seed initial data sets are carried out

usingW k,p
δ tensor fields; it is therefore useful to recall some of the properties of these spaces. We state these properties

in the form of the following two lemmas, both of which are proven in [21]:

Lemma II.1. (Sobolev Embeddings).

1. For k′ > k, δ′ < δ and 1 ≤ p <∞, the inclusion W k′,p
δ′ ⊂W k,p

δ is compact.

2. For k′ < k − n/p, the inclusion W k,p
δ ⊂ Ck

′

δ is compact.

Lemma II.2 (Sobolev Multiplication). If m ≤ min(j, k), p ≤ q, ǫ > 0, and m < j + k − n/q, then multiplication is

a continuous bilinear map from W j,q
δ1

×W k,p
δ2

to Wm,p
δ1+δ2+ǫ

for any ǫ > 0. In particular, if k > n/p and δ < 0, then

W k,p
δ forms an algebra.

We next consider elliptic differential operators and solutions of elliptic differential equations on AE manifolds. For
general elliptic differential operators, we refer the reader to [21], from which our standard elliptic type estimates come.
Focussing on PDEs of the form (3)-(4), we have for the latter of these two equations[22] (as proven in Section IV of
[10])

Lemma II.3 (Solvability of Vector-Laplacian Equations). Let (Σn;λ) be W k,p
ρ -AE with k > n/p, k ≥ 2 and ρ < 0,

let the lapse N satisfy the condition that N − 1 ∈ W k,p
ρ , and let the vector field ω ∈ W k−2,p

δ−2 with δ ∈ (2− n, 0). Then
the “vector-Laplacian” equation

divλ

( 1

2N
LλW

)

= ω (12)
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has a unique solution W ∈W k,p
δ , satisfying

‖W‖Wk,p
δ

≤ c‖ω‖Wk−2,p
δ−2

(13)

for some constant c which depends only on the metric λ and the lapse N .

We note that if we choose τ ∈ W k−1,p
δ−1 , ϕ ∈ W k,p

loc ∩ L∞, and j ∈ W k−2,p
δ−2 , and if we set ω = κnϕ

qndτ + j as in (4),
then the hypothesis of Lemma II.3 is satisfied.
To work with PDEs of the Lichnerowicz form (3), we wish to establish a sub and supersolution theorem for equations

of that form. To do that, we first recall some results from [17]:

Lemma II.4 (−∆+ V as a Fredholm Operator). Let (Σn;λ) be W k,p
ρ -AE with k ≥ 2, k > n/p and ρ < 0, let ∆ be

the corresponding (negative eigenvalue) Laplacian operator, and suppose that the function V is contained in the space

W k−2,p
ρ−2 . If δ ∈ (2 − n, 0), then the operator P := −∆+ V : W k,p

δ → W k−2,p
δ−2 is Fredholm with index 0. Moreover, if

V ≥ 0 then P is an isomorphism, in which case the standard elliptic estimate holds in these spaces.

This lemma corresponds to Proposition 1 in [17]. Note that the hypothesis for this lemma places no restrictions on
ρ other than that ρ < 0, which is needed so that the metric decays to the Euclidean metric. The following is a slight
strengthening of a maximum principle in [17].

Lemma II.5 (A Maximum Principle for AE Manifolds). Suppose that (Σn;λ) and V satisfy the hypothesis of Lemma

II.4, and suppose that V ≥ 0. If u ∈ W 2,p
loc , if for any choice of positive η one has u ≥ −η outside of a sufficiently

large ball, and if u satisfies the differential inequality

−αn∆u+ V u ≥ 0, (14)

then u ≥ 0.

Proof. Let

v = (u+ ǫ)− := min{0, u+ ǫ} (15)

for some ǫ > 0. It follows from this definition and from assumptions made above that v is compactly supported, and
that v ≤ 0. As well, it follows from Sobolev embedding (see Lemma II.1) that v ∈ W 1,2. Using integration by parts
(for v with compact support), using the differential inequality (14), and using the fact that wherever v is nonzero
(and therefore negative) it must be the case that u is negative (see (15)), we have

∫

Σn

αn|∇v|
2 =

∫

Σn

−αnv∆u ≤

∫

Σn

−V uv ≤ 0. (16)

This tells us that v must be constant on Σn. Since we know that there are places on Σn where u ≥ −η for any positive
η, it follows from (15) that v must be identically zero. Hence u ≥ −ǫ for any positive ǫ. Letting ǫ→ 0, we determine
that u ≥ 0.

For use in proving the Curvature Criterion Theorem below, we note one further maximum principle, which is
Lemma 4 from [17]:

Lemma II.6 (Another Maximum Principle for AE Geometries). Suppose that (Σn;λ) is W k,p
δ -AE with k ≥ 2,

k > n/p, and δ < 0, and suppose that V ∈ W k−2,p
δ−2 , and suppose that u ∈ W k,p

loc is nonnegative and satisfies
−∆u+ V u ≥ 0 on Σn. If u(x) = 0 at some point x ∈ Σn, then u vanishes identically.

To state the sub and supersolution theorem in a form which can be applied to the Lichnerowicz equation, we
consider the nonlinear PDE

−αn∆ϕ = F (x, ϕ) (17)

for a function F : Σn × R → R which takes the form F (x, y) =
∑j

i=1 ai(x)y
bi for specified functions ai : Σ

n → R

and for constants bi, where we use the convention that ybi ≡ 1 if bi = 0. We assume here that ai(x) ∈ W k−2,p
δ−2 for

some k > n/p, k ≥ 2 and δ ∈ (2− n, 0). We note that, depending on the value(s) of bi, the quantity ybi is smooth on
(0,∞), [0,∞), or (−∞,∞). We define the function F to be “Lichnerowicz-type” if it satisfies these properties, and
we define the largest interval for which all the ybi are smooth to be F ’s “interval of regularity” I.
Recalling that a pair of functions ϕ− and ϕ+ are called sub and supersolutions of an equation of the form (17) if

−αn∆ϕ− ≤ F (x, ϕ−), if −αn∆ϕ+ ≥ F (x, ϕ+), and if ϕ−(x) ≤ ϕ+(x), we have the following existence theorem:
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Theorem II.7 (Sub and Supersolution Theorem for AE Manifolds). Let (Σn;λ) be W k,p
ρ -AE with k > n/p, k ≥ 2

and ρ < 0. Suppose that F (x, y) is Lichnerowicz-type (as defined above) for some δ ∈ (2 − n, 0). Suppose that there

are sub and supersolutions ϕ± ∈ W 2,p
loc ∩ L∞ for which inf ϕ− ∈ I. Suppose there is a constant ξ > 0 such that,

sufficiently far out on each end, ϕ− ≤ ξ ≤ ϕ+. Then Equation (17) admits a solution ϕ such that ϕ− ≤ ϕ ≤ ϕ+ and

such that ϕ− ξ ∈W k,p
δ .

Proof. We prove this lemma using the strategy established for the analogous result in [10]. That is, we construct a
solution by induction, starting from ϕ−. Let s be a positive function on Σn such that s ∈ Lpδ and

s(x) + sup
y∈Range(ϕ±)

Fy(x, y) ≥ 0. (18)

Such a function s exists as a consequence of our assumptions on ϕ± and on F .

We now define v1 ∈ W 2,p
δ to be the unique solution to

−αn∆v1 + sv1 = F (x, ϕ−) + s(ϕ− − ξ) (19)

and set ϕ1 := v1 + ξ. The solution v1 exists as a consequence of Lemma II.4.
Using Eqn. (19) satisfied by v1 and the subsolution differential inequality satisfied by ϕ−, we calculate

−αn∆(ϕ1 − ϕ−) + s(ϕ1 − ϕ−) ≥ 0. (20)

It then follows from the maximum principle II.5 that ϕ1 ≥ ϕ−. Similarly, we calculate

−αn∆(ϕ+ − ϕ1) + s(ϕ+ − ϕ1) ≥ F (x, ϕ+)− F (x, ϕ−) + s(ϕ+ − ϕ−) (21)

= (ϕ+ − ϕ−)

(

s+

∫ 1

0

Fy(x, ϕ− + t(ϕ+ − ϕ−))dt

)

(22)

≥ 0, (23)

where the last line holds as a consequence of the assumption (18) which we have used in defining s. Again, it follows
from the maximum principle II.5 that ϕ1 ≤ ϕ+.

With ϕ1 to initialize it, we now define the sequence ϕi = vi + ξ, with vi ∈W 2,p
δ solving

−αn∆vi + svi = F (x, ϕi−1)− svi−1. (24)

Again using the maximum principle, we can show that ϕi is an increasing sequence; i.e.,

ϕ− ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕi−1 ≤ ϕi ≤ · · · ≤ ϕ+. (25)

Since the functions ϕi constitute a bounded increasing sequence, the ϕi converge to some function ϕ, with ϕ− ≤ ϕ ≤
ϕ+. We claim that this limit function ϕ is a solution of Eqn. (17).
To show this, we start by noting that the elliptic estimates indicated by Lemma II.4 give us

‖vi+1‖W 2,p
δ

≤ C‖F (x, ϕi)− svi‖Lp
δ
. (26)

Combining our assumptions on s and F with the bounds noted above for vi and ϕi, we verify that the right hand
side of this inequality is uniformly bounded. It thus follows that vi is uniformly bounded in W 2,p

δ .

The compact embedding of W 2,p
δ into C0,α

δ′ which holds for any δ′ > δ and for some α > 0 (see Lemma II.1) implies

that ϕi → ϕ in C0,α
δ′ , and that ϕ− ξ ∈W 2,p

δ . This convergence implies that F (x, ϕi−1)− kvi−1 converges in Lpδ ; thus,

since −αn∆+ s is an isomorphism, ϕi must converge to ϕ in W 2,p
δ . Consequently we obtain −αn∆ϕ = F (x, ϕ), as

desired. Additional regularity can be achieved by the usual bootstrap arguments.

Lemma II.7 is very useful for proving that Eqn. (3) admits solutions if it is decoupled from Eqn. (4). For maximal
seed data sets (those with τ = 0), this is the case.[23] For the fully coupled system (3)-(4), Lemma II.7 cannot be
directly applied. However, a modified version of it is very useful. We consider Lichnerowicz-coupled-type systems of
the form

−αn∆ϕ = H(x,W,ϕ) (27)

divλLλW = G(x, ϕ) (28)
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whereH(x,W,ϕ) satisfies the properties stated above for Lichnerowicz-type functions F (x, y), but with the coefficients

aj(x) in the expansion F (x, y) =
∑j

i=1 ai(x)y
bi allowed to depend on W and its first derivatives, and where G(x, ϕ)

is a polynomial in ϕ, with x-dependent coefficients. We define a global subsolution and global supersolution for the
system (27)-(28) to be pair of functions Φ− and Φ+ such that for all ϕ satisfying[24] Φ− ≤ ϕ ≤ Φ+, one has
−αn∆Φ+ ≥ H(x,W,Φ+) and −αn∆Φ− ≤ H(x,W,Φ−) where W satisfies divλLλW = G(x, ϕ). Relying on this
definition and the Schauder Fixed Point Theorem, one can prove as in [25] a result essentially the same as Lemma
II.7, showing that if global sub and supersolutions exist, then the system (27)-(28) admits a solution.

Theorem II.8 (Global Sub and Supersolution Theorem). If such a global sub and supersolution pair exist, then the

system (27)-(28) has a solution (ϕ,W ), with ϕ− ξ and W in W k,p
δ , where ξ is a constant as in Theorem II.7.

We recall (see the Introduction) that as a consequence of the conformal covariance of the conformal constraint
equations (in CTS-H form), in verifying the existence of solutions to (3)-(4) for a given set of seed data, one may
work instead with conformally-related seed data. As seen below, it often makes it easier to find global sub and super
solutions if a strategic conformal transformation is implemented at the start of the analysis.
We close this section with a discussion of the Yamabe classes for asymptotically Euclidean geometries. As with

Riemannian geometries on closed manifolds, the Yamabe class for an AE geometry is determined by the sign of the

Yamabe invariant. For a specified W k,p
δ AE geometry (Σn;λ,N) (with k > n

p , k ≥ 2, and δ < 0), we define the

Yamabe invariant Y (Σn, λ) as follows:

Y (Σn, λ) := inf
u∈C∞

c (Σn)

∫

Σn αn|∇u|
2 +Rλu

2

‖u‖2
Lq

n

. (29)

Here Rλ denotes the scalar curvature of the metric λ, and C∞
c (Σn) denotes the set of smooth functions on the AE

manifold Σn with compact support. One verifies that the Yamabe invariant Y (Σn, λ) is invariant under conformal
transformations of the metric, and one also readily verifies that the three Yamabe classes Y+(Σn),Y0(Σn), and
Y−(Σn) partition the set of all AE geometries (and their conformal equivalence classes) on a given manifold Σn.
For closed Σn, one has the familiar and intuitive—and very useful—result that a metric λ can be conformally

transformed to a metric λ̂ with Rλ̂ > 0 if and only if λ ∈ Y+; similarly one can conformally transform to Rλ̂ = 0 iff
λ ∈ Y0, and to Rλ̂ < 0 iff λ ∈ Y−. As noted in the Introduction, for asymptotically Euclidean metrics, the results
for conformal transformations to metrics with scalar curvature of a prescribed sign are significantly more complicated
and much less intuitive. As proven in [17] and in [15], one has the following for AE metrics:

Lemma II.9 (AE Yamabe classes and their properties).

• λ ∈ Y+ iff it can be conformally deformed to a metric with scalar curvature R for every function R ≤ 0.

• λ ∈ Y0 iff it can be conformally deformed to a metric with scalar curvature R for every function R ≤ 0 except
R ≡ 0.

• λ ∈ Y− iff there exists some R ≤ 0, with R 6≡ 0, such that λ cannot be conformally deformed to a metric with
scalar curvature R.

• If the scalar curvature of a metric λ (or of a metric conformally related to λ) is nonnegative, then λ ∈ Y+.

• An AE geometry (Σn;λ) is contained in Y+ or Y0 or Y− iff (Σn;λ) admits a conformal compactification to a
geometry of the same Yamabe class.

III. CURVATURE CRITERION FOR ASYMPTOTICALLY EUCLIDEAN SOLUTIONS OF THE

LICHNEROWICZ EQUATION

For asymptotically Euclidean initial data sets which have constant mean curvature (and consequently are maximal,
with trK = τ = 0), the system (3)-(4) decouples, and the conformal method admits a solution for a given set of seed
data if and only if Eqn. (3) admits a solution. Presuming that the coefficient of the ϕqn−1 term vanishes (which is
true for maximal data with vanishing cosmological constant and with no scalar fields present), one readily verifies
that (3) admits a solution if and only if the seed data metric λ is in the positive Yamabe class.[26]
For non-CMC data, one must work with the coupled system. However, even in the non-CMC case it is still useful

(as discussed below) to consider the solvability of (3) in its decoupled form (which is often labeled the Lichnerowicz
equation):

αn∆λϕ = Rλϕ+ κnτ
2ϕqn−1 − f2ϕ−qn−1 − rϕ−

qn
2 . (30)
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Relying primarily on the sub and supersolution theorem, as stated above in Lemma II.7, we prove the following:

Theorem III.1 (Curvature Criterion for AE Solutions to the Lichnerowicz Equation). Suppose that (Σn;λ) is W k,p
δ -

AE with k > n/p, k ≥ 2 and δ < 0, and suppose that r ≥ 0, that r, f2 and τ2 are in W k−2,p
δ−2 . The Lichnerowicz

equation (30) has a positive solution ϕ with ϕ − 1 ∈ W k,p
δ if and only if there exists a conformal factor ψ > 0 with

ψ − 1 ∈ W k,p
δ such that Rψqn−2λ = −κnτ

2.
The same result holds if we replace the conditions and conclusions stated here for ϕ− 1 and for ψ− 1 by conditions

and conclusions imposed on ϕ− c1 and on ψ − c2 for any positive constants c1 and c2.

The analogous theorem for data on closed manifolds, which holds for metrics the Yamabe negative class, was
originally proven by Maxwell in [16], using a very similar proof.

Proof. (⇒) We presume that a solution ϕ to the Lichnerowicz equation (30) exists, with regularity and asymptotics
as stipulated in the hypothesis. It follows from the formula for the transformation of the scalar curvature induced by
a conformal transformation of the metric that to prove the first part of this theorem, it is sufficient that we show that
there exists a solution ψ (with appropriate asymptotic and regularity properties) to the equation

−αn∆λψ +Rλψ + κnτ
2ψqn−1 = 0. (31)

To apply Lemma II.7 to Eqn. (31), we first note that it follows from the hypothesis of Theorem III.1 that Rλ ∈

W k−2,p
δ−2 ; thus we verify that this hypothesis ensures that the coefficients of the terms in (31) satisfy the regularity

requirements for Lemma II.7. For the supersolution ψ+ for (31), we choose ϕ, the solution of the Lichnerowicz
equation, with its prescribed regularity. For the subsolution, we take ψ− ≡ 0, which is of course sufficiently regular.
Noting that the powers of ψ appearing in the function F (x, ψ) = Rλψ + κnτ

2ψqn−1 are all positive, we verify that
indeed ψ− lies within the interval of regularity for F . It thus follows from Lemma II.7 that (31) admits a smooth
solution ψ bounded between ψ− and ψ+. One must still verify that this solution is bounded away from zero. This
follows immediately from the maximum principle Lemma II.6, along with the requirement that ψ approach 1 at
infinity.
(⇐) We suppose now that there is a conformal factor Ψ with the stipulated regularity and asymptotic behavior for

which RΨqn−2λ = −κnτ
2. We need to show that there must exist a solution of the Lichnerowicz equation (30), which

for convenience we rewrite in the (nonlinear operator) form

0 = L(Φ) := −αn∆λΦ+RλΦ+ κnτ
2Φqn−1 − f2Φ−qn−1 − rΦ−

qn
2 . (32)

The conformal covariance of the conformal constraint equations carries over to the Lichnerowicz equation, as long

as we transform f2 as f̂2 = Θ−2qnf2. Using the function Ψ as our conformal factor, and denoting the conformally
transformed quantities by hats, we see that it is sufficient to show that there exists a solution to

0 = L̂(Φ) := −αn∆λ̂Φ+ κnτ
2(Φqn−1 − Φ)− f̂2Φ−qn−1 − r̂Φ−

qn
2 . (33)

We readily verify that if f̂2 and r̂ both vanish everywhere, then Φ = 1 is a solution to this equation. Hence, we may
presume that one or the other of these quantities is nonzero somewhere. We also readily verify that L̂(1) ≤ 0, so
Φ− = 1 is a subsolution. To obtain a supersolution, we note that it follows from Lemmas II.4-II.6 that the linear
equation

−αn∆λ̂u+ κnτ
2u = f̂2 + r̂ (34)

admits a solution u− 1 ∈W k,p
δ , with u ≥ c > 0 for some constant c. Calculating L̂(βu) for a positive constant β, we

obtain

L̂(βu) =− αn∆λ̂(βu) + κnτ
2([βu]qn−1 − βu)− f̂2[βu]−qn−1 − r̂[βu]−

qn
2

=κnτ
2[(βu)qn−1 − 2βu] + f̂2[β − (βu)−qn−1] + r̂[β − (βu)−qn/2].

Since, as noted above, u is bounded away from zero, we see from this calculation that for sufficiently large β, Φ+ = βu
is a supersolution for (33). It follows that the Lichnerowicz equation admits a solution with the stated regularity and
asymptotic behavior.
To prove this result for alternate asymptotic limits for ϕ and for ψ, we argue as follows. Starting with a solution

ϕ to the Lichnerowicz equation (i.e., going ⇒) we note that for any choices of the asymptotic limits c1 and c2, there

is a constant β̂ ≥ 1, for which ψ̂+ = β̂ϕ is a supersolution for the conformal transformation equation (31) with the
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prescribed limits. Using ψ̂− = 0 as above, we can apply Lemma II.7 and thereby obtain a solution ψ of (31). We
argue as above using Lemma II.6 to show that this solution is positive everywhere.
Starting instead with the presumed existence of the conformal transformation Φ with appropriate limits (i.e., going

⇐), we again verify that with appropriate scalings of the subsolution and of the supersolution, we prove the existence
of a solution of the Lichnerowicz equation with the desired asymptotic limits.

Given a function τ2 ∈ Lpδ−2, for which W
2,p
δ -AE metrics does there exist a conformal transformation ψ such that

the scalar curvature of the transformed metric takes the value −κnτ
2? As noted in the first point of Lemma II.9, if

λ ∈ Y+, then such a transformation always exists. While this condition is sufficient, it is not necessary. As shown in
[15], one has the following:

Lemma III.2 (Yamabe Classes and the Curvature Criterion). Suppose τ2 ∈ Lpδ−2. There exists a conformal trans-

formation function ψ > 0, ψ − 1 ∈ W 2,p
δ such that Rψqn−2λ = −κnτ

2 if and only if one of the following conditions
holds:

• λ ∈ Y+.

• λ ∈ Y0 and τ2 > 0 on a set of positive measure.

• λ ∈ Y− and τ2 = 0 on a set of sufficiently small measure (in a sense described in [15]).

It follows immediately from this lemma that for any choice of AE seed data (Σn;λ,N, σ, τ, r, j), so long as λ ∈ Y+,
the Lichnerowicz equation (30) (with f2 = |σ + 1

2NLλW |2) admits a solution. This result has long been known, and
is directly relevant for the conformal method for maximal (τ ≡ 0) seed data. This lemma also tells us that for any
choice of AE seed data with λ ∈ Y0 and with τ 6≡ 0, the Lichnerowicz equation admits a solution. This consequence,
which is new, is not directly relevant to the conformal method, since AE seed data with τ 6≡ 0 must be non CMC, in
which case the full coupled system (3)-(4) must be solved.
Although the solvability of the Lichnerowicz equation for a given set of seed data is not the full story, it does serve

as an admissibility (or necessary) condition for the conformal method to work for that set of data. This is because
Theorem III.1 provides conditions on the seed data for (30) to admit a solution which are independent of the function
f2. If these conditions are not met, then regardless of σ and regardless of LW , the system (3)-(4) cannot admit a
solution. If these conditions are met, then there may or may not be a solution to the conformal constraint equations.
We summarize this discussion by stating the following corollary:

Corollary III.3 (Admissibility Condition for AE Seed Data Sets). Let (Σn;λ,N, σ, τ, r, j) be a set of asymptotically
Euclidean seed data, with regularity conditions as stated in Theorem III.1 (except with f2 replaced by |σ|2λ, and with the

added conditions that N −1 ∈W k,p
δ and j ∈W k−2,p

δ−2 ). The existence of a (suitably regular) conformal transformation

of the metric λ to a metric ψqn−2λ with scalar curvature Rψqn−2λ = −κnτ
2 is a necessary condition for the conformal

constraint equations (3)-(4) to possibly admit a solution. Correspondingly, if none of the conditions listed in Lemma
III.2 are satisfied by the seed data, then there is no solution to the conformal constraint equations.

We use this admissibility condition in the next section to show that there are AE seed data sets (Σn;λ0, N0, σ0, τ0, r0, j0)
for which the conformal constraint equations do not admit solutions, and proceed to study the behavior of solutions
of Eqns. (3)-(4) for sequences of seed data sets which approach (Σn;λ0, N0, σ0, τ0, r0, j0). Before doing this, we state
a uniqueness result for solutions of the Lichnerowicz equation with AE seed data.

Proposition III.4 (Uniqueness of Solutions to the Lichnerowicz Equation). Let (Σn;λ) beW k,p
δ -AE with k > n

p , k ≥ 2

and δ < 0, and let r ≥ 0, f2 and τ2 be functions contained in W k−2,p
δ−2 . If φ1 and φ2 are both (positive) solutions of

the Lichnerowicz equation (30) and if the asymptotic limits of both φ1 and φ2 are the same, then φ1 = φ2.

Proof. The idea of the proof follows that given in Theorem 8.3 of [27]: Recalling the conformal transformation formula
for scalar curvature, regardless of what the conformal factors φ1 and φ2 are, we have

αn∆λφ1 =Rλφ1 −Rφqn−2

1
λφ

qn−1
1 , (35)

αn∆λφ2 =Rλφ2 −Rφqn−2

2
λφ

qn−1
2 , (36)

αn∆(φ1)qn−2λ
φ2
φ1

=Rφqn−2

1
λ

φ2
φ1

−Rφqn−2

2
λ(
φ2
φ1

)qn−1. (37)
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Solving the first of these equations for Rφqn−2

1
λ, and using the assumption that φ1 is a solution of the Lichnerowicz

equation, we have

Rφqn−2

1
λ =

(

− αn∆λφ1 +Rλφ1

)

φ1−qn1

=
(

f2φ−qn−1
1 + rφ

qn
2

1 − κnτ
2φqn−1

1

)

φ1−qn1 ,

along with an analogous equation for Rφqn−2

2
λ. If we now substitute these formulas for Rφqn−2

1
λ and Rφqn−2

2
λ into Eqn.

(37), we obtain

−∆φqn−2

1
λ(u− 1) + Ξ(φ1, φ2)(u − 1) = 0, (38)

where u := φ2

φ1

, and where Ξ(φ1, φ2) ∈ Lpδ−2 is a positive expression involving the known functions φ1, φ2, f
2, r, and

the metric. Since −∆λ + Ξ is an isomorphism (see Lemma II.4), and thus injective, we have that u − 1 ≡ 0, which
implies that φ1 ≡ φ2, so we have uniqueness. We note that the assumed asymptotic value for the solutions φ1 and φ2
do not affect the proof, so long as they are the same.

IV. AE SEED DATA FOR WHICH THE CONFORMAL METHOD ADMITS NO SOLUTIONS, AND

BLOW UP BEHAVIOR FOR NEARBY DATA

While the Admissibility Corollary III.3 stated above does not stipulate for which AE seed data sets the conformal
constraint equations admit a solution, it does stipulate for which such data sets these equations cannot be solved.
Combining it with Lemma II.9, we obtain the following:

Corollary IV.1 (Nonexistence for Maximal AE Seed Data with Yamabe Nonpositive Metric). Let (Σn;λ,N, σ, τ, r, j)
be a set of asymptotically Euclidean seed data, with regularity conditions as stated in Theorem III.1 and Corollary
III.3. If the seed data is maximal (i.e., τ ≡ 0) and if λ ∈ Y0 or λ ∈ Y−, then the conformal constraint equations
(3)-(4) do not admit a solution. Seed data sets satisfying these conditions do exist.

Proof. The Admissibility Corollary states that a solution to the conformal constraint equations can exist for a given
set of seed data only if the metric can be conformally transformed to one with scalar curvature equal to −κnτ

2. For
maximal seed data, this means that the metric must admit a conformal transformation to a metric with zero scalar
curvature. Since Lemma II.9 says that only Yamabe positive metrics are conformally related to zero scalar curvature
geometries, the result follows.
To verify that there are in fact seed data sets with Yamabe nonpositive metrics, we first note from [15] (as is implied

by the last point of Lemma II.9), that for any closed geometry (Σn;λ), there exists a conformal decompactification

(i.e., a blow up at some point p ∈ Σn) which results in an AE geometry (Σ̃n, λ̃) whose Yamabe class is identical to that
of (Σn, λ). Since for “most” closed manifolds all metrics are contained in Y−, it follows that one readily constructs
Yamabe negative AE geometries. Since the map from general symmetric 2-tensors to those which are divergence-free
and trace-tree can always be carried through on negative AE geometries (using the “York decomposition”), it follows
that AE seed data sets (maximal or not) with negative Yamabe metrics are readily obtained. AE seed data sets with
Yamabe zero metrics are similarly readily obtained; we note the results of Friedrich [28] as a related approach to
obtaining such sets.

As an immediate consequence of Corollary IV.1, one finds that there exist no AE initial data sets (Σn; γ,K, ρ, J)
which satisfy the Einstein constraint equations (1)-(2), which are maximal, and which have either γ ∈ Y0 or γ ∈ Y−.
As noted in [15], one readily sees that this result directly follows from the Einstein constraint equations (1)-(2), along
with the statement (see Lemma II.9) that if an AE metric has nonnegative scalar curvature, then it must be Yamabe
positive.
Corollary IV.1 tells us that there are many sets of AE seed data for which the conformal constraint equa-

tions admit no solutions. Labeling one such set as Ŝ := (Σn, λ̂, N̂ , σ̂, τ̂ , r̂, ĵ), we may consider a sequence Sℓ :=
(Σn, λℓ, Nℓ, σℓ, τℓ, rℓ, jℓ) of seed data sets such that for each element of the sequence Sℓ there is a solution (φℓ,Wℓ),

and such that the sequence Sℓ converges to Ŝ. We may then ask what the behavior of the sequence of solutions
(φℓ,Wℓ) might be. We first prove a result which shows that the solution sequence cannot be bounded:

Theorem IV.2 (Unboundedness). Suppose that Ŝ := (Σn, λ̂, N̂ , σ̂, τ̂ , r̂, ĵ) is a set of seed data satisfying the regularity
conditions of Corollary III.3, and suppose that for this data, the conformal constraint equations admit no solution.
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Suppose that Sℓ := (Σn, λℓ, Nℓ, σℓ, τℓ, rℓ, jℓ) is a sequence of seed data sets such that each element Sℓ of the sequence
satisfies the regularity conditions of Corollary III.3 and for each element the conformal constraint equations admits a
solution (φℓ,Wℓ), and suppose as well that Sℓ converges in W

1,p
δ−1 to Ŝ. There do not exist constants a and b such that

0 < a ≤ φℓ ≤ b (39)

for all ℓ.

Proof. Setting up a proof by contradiction, we presume that such constants a and b do exist. It follows that for the
sequence of seed data Sℓ, the right hand side of (4) is uniformly bounded, and contained in Lpδ−2. Thence, since a

W 2,p
δ -AE manifold does not admit any conformal Killing fields which decay to zero at infinity, we determine from

Lemma II.3 that the vector fields Wℓ solving (4) are uniformly bounded and contained in W 2,p
δ .

We now focus on the Lichnerowicz equation (3), which for convenience we write in the form αn∆ℓφℓ = Fℓ(Wℓ, φℓ).
Combining the presumed bounds (39) on φℓ with the uniform bounds on Wℓ obtained above, along with the hypothe-
sized regularity of the seed data Sℓ, we see that Fℓ(Wℓ, φℓ) is uniformly bounded in Lpδ−2. Consequently, the solutions

φℓ of the Lichnerowicz equation are uniformly bounded in W 2,p
δ . Since the embedding of W 2,p

δ in L∞ is compact, the

sequence φℓ must contain a subsequence φ̃m which converges (in L∞) to some positive function φ∞. By a similar

argument, the corresponding subsequence W̃m converges to a vector field W∞ in W 2,p
δ .

We now repeatedly apply standard regularity estimates for solutions of elliptic equations (cf. [29]) to improve the

regularity of the solutions and of the convergence (“standard elliptic bootstrap techniques”) (W̃m, φ̃m) → (W∞, φ∞)

to argue that (W∞, φ∞) must be a solution to the conformal constraint equations for the limiting seed data set Ŝ.

However, by assumption Eqns. (3)-(4) do not admit a solution for the seed data Ŝ. We thus obtain the contradiction
which shows that in fact the sequence (Wℓ, φℓ) cannot be bounded away from both zero and infinity.

This result does not tell us whether, in general, the sequence φm blows up or goes to zero. To obtain results which
distinguish these possibilities, we make further assumptions. Unlike Theorem IV.2, these further results (below) are

somewhat restrictive regarding both the nature of the seed data sets Ŝ for which (by assumption) no solutions to the

conformal constraint equations exist, and the nature of the sequences of seed data sets Sℓ which converge to Ŝ. These
results hold for the seed data sets of Corollary IV.1, as well as for a wider class; however, it is not clear whether they
hold for every possible choice of Ŝ and of Sℓ. We hope to determine that sometime in the future.
To go beyond Theorem IV.2, the following monotonicity lemma is very useful. We note that some of the restrictions

on the choice of Ŝ and of Sℓ originate here, in the hypothesis of this lemma. We note in particular that we need
higher regularity (expressed here, for convenience, using Hölder norms) of the seed data in order to get the pointwise
bounds we require.

Lemma IV.3 (Monotonicity). Suppose that (Σn;λℓ) is a sequence of C2,α
δ -AE geometries which converge (in C2,α

δ )

to (Σn;λ∞), and that Nℓ − 1 ∈ C2,α
δ similarly converges. Suppose that τ2ℓ is a sequence of C0,α

δ−2 functions which

converge (in this space) to τ2∞, suppose that f2
ℓ and rℓ are sequences of C0,α

δ−2 functions, and finally suppose that for
each index ℓ, the Lichnerowicz equation (30) corresponding to the data (Σn, λℓ, Nℓ, fℓ, τℓ, rℓ) admits a solution φℓ. Let
the function τ0 be defined as

τ20 := Cρδ−2, (40)

where C is a positive constant sufficiently large so that τ20 ≥ τ2ℓ and κnτ
2
0 ≥ −Rλℓ

for all ℓ. If we label as ψ∞ the
conformal factor for which Rψqn−2

∞ λ∞
= −κnτ

2
0 , then for any ǫ > 0 one has φℓ > ψ∞ − ǫ for sufficiently large ℓ.

We note that there is no assumption in this lemma regarding the Yamabe class of the metrics λℓ and λ∞; nor is
there any assumption that the sequences fℓ or rℓ converge. We also note that the existence of C follows from the
function space conditions placed on λℓ and τℓ, and the existence of ψ∞ follows from the presumed form (40) of τ0,
and from the properties of the AE Yamabe classes, as described in Lemma III.2.

Proof. The hypothesis of this lemma presumes that for each set of the data (Σn, λℓ, Nℓ, fℓ, τℓ, rℓ), a positive solution
φℓ of the corresponding Lichnerowicz equation exists. The form (40) of τ0 together with Lemma III.2 imply that for
each value of ℓ there exists a conformal function ψℓ for which Rψqn−2

ℓ
λℓ

= −κnτ
2
0 . Noting that the functions ψℓ and

φℓ are all expected to approach one (or some other constant) asymptotically, we seek to show here that φℓ ≥ ψℓ for
all ℓ.
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It follows from the definitions of φℓ and ψℓ and from the conformal covariance of the Lichnerowicz equation under
the conformal transformation

(λ, f, τ, r) → (θqn−2λ, θ−qnf, θ−
3

2
qn+1r) (41)

that if we set ϕ̃ℓ :=
φℓ

ψℓ
, then ϕ̃ℓ satisfies

αn∆ψqn−2

ℓ
λℓ
ϕ̃ℓ = −κnτ

2
0 ϕ̃ℓ + κnτ

2
ℓ ϕ̃

qn−1
ℓ − f2ϕ̃−qn−1

ℓ − rϕ̃
−

qn
2

ℓ . (42)

To obtain a contradiction with our contention that φℓ ≥ ψℓ for all ℓ, we suppose now that φℓ < ψℓ somewhere in
Σn for some ℓ. This implies that ϕ̃ℓ < 1 somewhere. Since ϕ̃ℓ approaches 1 asymptotically, this function must have
a global minimum at some point p ∈ Σn; hence (since ϕ̃ℓ is, by construction, continuous) there exists a small ball

B(p) ⊂ Σn containing p on which ϕ̃ℓ < 1. It immediately follows that −κnτ
2
0 ϕ̃ℓ+κnτ

2
ℓ ϕ̃

qn−1
ℓ < 0 on B(p). Combining

this with (42), we find that ∆ψqn−2

ℓ
λℓ
ϕ̃ℓ ≤ 0 on B(p). Since a minimum is achieved in the interior of B(p), it follows

from the maximum principle that ϕ̃ℓ is constant (and negative) on B(p). It follows now from standard arguments that
the constancy of ϕ̃ℓ on B(p) extends to all of Σn. Noting the asymptotic behavior of ϕ̃ℓ, we obtain a contradiction;
consequently, φℓ ≥ ψℓ for all ℓ, everywhere on Σn.
Having established this inequality, to complete the proof of this lemma, it is sufficient to show that ψℓ → ψ∞ in

C2,α
δ . As a step towards verifying this limit, we first show that for all ℓ, ψℓ ≤ 1 everywhere. To verify this, suppose

that ψℓ > 1 somewhere. It follows from the asymptotic behavior of ψℓ that there is a point q at which ψℓ achieves
a maximum. The regularity of ψℓ together with the conformal transformation equation for scalar curvature and the

definition of ψℓ now imply that ψqn−2
ℓ ≤

−Rλℓ

κnτ20
at q. This violates the hypothesized inequality relating Rλℓ

and τ0;

we therefore conclude that ψℓ ≤ 1.
We now use this boundedness of ψℓ to argue the convergence of this sequence. Recall that, by definition, the

functions ψℓ satisfy

αn∆λℓ
ψℓ = Rλℓ

ψℓ + κnτ
2
0ψ

qn−1
ℓ . (43)

The presumed regularity of the sequence of metrics λℓ and of the function τ0, together with the bounds on ψℓ, allow
us to use (43) to bootstrap the regularity of ψℓ so that ψℓ − 1 ∈ C2,α

δ . We may then use compact embedding to show

that there exists a subsequence ψ̂m such that ψ̂m − 1 converges in C1,α
δ′ for some δ′ > δ to a function ψ̂∞ − 1.

A priori, we do not know that ψ̂∞ is the conformal factor for which Rψ̂qn−2

∞ λ∞
= −κnτ

2
0 . To argue that it is, we

add identical terms to both sides of (43), rearrange terms, and obtain

(−αn∆λ∞
+Rλ∞

)ψ̂m

= [(−αn∆λ∞
+Rλ∞

)− (−αn∆λm
+Rλm

)]ψ̂m − κnτ
2
0 ψ̂

qn−1
m . (44)

Since the sequence of metrics λm converges in C2,α
δ , the sequence of operators−αn∆λm

+Rλm
does as well. Combining

this with the convergence of ψ̂m, we see that the sequence of terms [(−αn∆λ∞
+Rλ∞

)− (−αn∆λm
+Rλm

)]ψ̂m in (44)

converges to zero. The convergence of ψ̂m guarantees that the remaining term on the right hand side of (44) converges;

it then follows from the uniqueness Lemma III.4 that ψ̂∞ is indeed the conformal factor for which Rψ̂∞λ∞
= −κnτ

2
0 ,

thus completing the proof of this lemma.

We now combine Lemma IV.3 with Theorem IV.2 to obtain a blow-up result for sequences of solutions of the
conformal constraint equations.

Theorem IV.4 (A Blow-up Result). Suppose that (Σn;λℓ, Nℓ, σℓ, τℓ, rℓ, jℓ) is a sequence of C2,α
δ asymptotically

Euclidean seed data with τℓ ∈ C1,α
δ−1, and with σℓ, rℓ, jℓ ∈ C0,α

δ−1, for δ ∈ (2−n, 0). Suppose that the conformal constraint
equations admit a solution (ϕℓ,Wℓ) for each ℓ, and finally suppose that the sequence (Σn;λℓ, Nℓ, σℓ, τℓ, rℓ, jℓ) converges

uniformly (in the indicated spaces) to a set of asymptotically Euclidean seed data (Σn; λ̂, N̂ , σ̂, τ̂ , r̂, ĵ) for which the
conformal constraint equations admit no solution. Then supϕℓ → ∞.

Proof. Since we know that each of the functions τℓ asymptotically approaches zero, and since we know that the
sequence of functions τℓ has a bounded limit, it follows that we can choose a sufficiently large positive constant C so
that τℓ ≤ Cρδ−1 for a uniform radial function ρ. If we now set f2

ℓ = |σℓ+
1

2NLλℓ
W |2λℓ

, then the hypothesis of Lemma
IV.3 is satisfied. It thus follows that φℓ is bounded away from zero. We readily verify that the hypothesis of Theorem
IV.2 is also satisfied. Consequently we know that ϕℓ cannot be bounded away from both 0 and ∞. Since we do have
φℓ bounded away from 0, it follows that this sequence blows up.
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If we further tighten the conditions on the sequence of seed data sets in certain ways then we can obtain further
information on the blow up of the solutions. We present here one version of such a result; it is likely that this result
could be generalized.

Theorem IV.5 (Another Blow-up Result). Suppose that the sequence of seed data sets (Σn;λℓ, Nℓ, σℓ, τℓ, rℓ, jℓ)
satisfies all the conditions of Theorem IV.4, along with the additional conditions that τℓ ≥ 0, that τℓ ≥ τℓ+1, that the

limit mean curvature function τ̂ = 0, and that the limit metric λ̂ is either in the Yamabe negative or the Yamabe zero
class. Let (ϕℓ,Wℓ) denote the corresponding solutions of the conformal constraint equations. For any choice of p > n,
one (or both) of the following is true:

• ‖τ2ℓ φ
qn−1
ℓ ‖Lp

η−2

is unbounded, for all η ∈ (2 − n, 0).

• ‖Rλℓ
φℓ‖Lp

ξ
is unbounded, for all ξ ∈ R.

Proof. Since we know by hypothesis that the conformal constraint equations admit a solution for each of the sequence
of seed data sets, it follows from Theorem III.1 that there exists a sequence of conformal transformation mappings ψℓ
which map the scalar curvature to −κnτ

2
ℓ ; they satisfy

αn∆λℓ
ψℓ = Rλℓ

ψℓ + κnτ
2
ℓ ψ

qn−1
ℓ . (45)

It follows from the standard elliptic estimates (from [21]) together with the regularity presumed for the metrics λℓ
that the solutions ψℓ to (45) satisfy the estimate

‖ψℓ − 1‖W 2,p
η

≤ C‖τ2ℓ ψ
qn−1
ℓ ‖Lp

η−2

+ C‖Rλℓ
ψℓ‖Lp

ξ
(46)

for some constant C and for any choices of η ∈ (2 − n, 0) and of ξ ∈ R. We note that the presumed regularity and
convergence of the sequence of metrics λℓ allows us to choose a single constant C, independent of ℓ.
We now argue that the right hand side of the inequality (46) is unbounded. We presume that this is not the

case, and we seek a contradiction. Since this presumption implies the uniform boundedness of ψℓ − 1 in W 2,p
η ,

compact embedding implies the existence of a C1,α
η converging subsequence ψm, with limit ψ∞. The boundedness

of ψℓ, together with our hypothesis regarding the sequence τℓ, also implies that τ2ℓ ψ
qn−1
ℓ → 0. We may then use

bootstrapping arguments to show that the limit function ψ∞ satisfies αn∆λ∞
ψ̃∞ = Rλ∞

ψ̃∞. However, since λ∞ is
Yamabe nonpositive, there cannot be a solution to this equation. We thus obtain a contradiction, and consequently
determine that either ‖τ2ℓ ψ

qn−1
ℓ ‖Lp

η−2

or ‖Rλℓ
ψℓ‖Lp

ξ
is unbounded.

To argue that either ‖τ2ℓ ϕ
qn−1
ℓ ‖Lp

η−2

or ‖Rλℓ
ϕℓ‖Lp

ξ
(or both) is unbounded, we use the monotonicity of the τℓ

sequence, together with arguments similar to those used in proving Lemma IV.3, to show that ϕℓ ≥ ψℓ for all ℓ. The
result follows.

V. EXISTENCE RESULT FOR AE SEED DATA WITH τ ADMITTING ZEROES

As noted above, for the class of asymptotically Euclidean seed data sets with τ = 0, the criterion for the existence of
solutions to the conformal constraint equations is simple: Solutions exist if and only if the metric is Yamabe positive.
For AE seed data with nonconstant τ , the few existence results known [10, 18] all involve positive Yamabe metrics as
well, and also require that τ have no zeroes.[30]
Here we present an existence theorem for solutions of the conformal constraint equations for seed data sets which

include metrics that need not be Yamabe positive, and for choices of nonconstant τ which may admit zeroes. As
with many existence theorems for these equations, the key to the proof is showing that there exist global sub and
supersolutions (see Section II) for the system (3)-(4), and the key to finding these involves balancing the positive
and negative terms which appear in the Lichnerowicz equation (3). The reason most results to date require τ to be
nonzero is because the only terms appearing on the right hand side of Eqn. (3) which may be positive are the τ term
and the Rλ term; hence, setting τ2 > 0 can balance the negative contributions from the |σ+ 1

2NLλW | term and the r
term. We get around this requirement here by using curvature deformation results based on those appearing in [15].
We state the deformation result we need in Lemma V.2 after stating a definition which is needed for this lemma; we
then present the existence theorem below.
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Definition V.1 (Yamabe Invariant of a Subset). Let (Σn;λ) be a Riemannian manifold, let S be a measurable subset
of Σn, and let FS be the set of real valued functions (not identically zero, of sufficient regularity) on Σn which vanish
on the complementary set Σn \ S. The Yamabe invariant for S is given by

Y (S ⊂ Σn) := inf
u∈FS

∫

Σn αn|∇u|
2 +Rλu

2

‖u‖2
Lq

n

. (47)

The set S is labeled Yamabe positive, Yamabe negative, or Yamabe zero according to the sign of Y (S ⊂ Σn).

Lemma V.2 (Curvature Deformation Lemma). Let (Σn;λ) be W 2,p
δ -AE with p > n, with δ ∈ (2 − n, 0), and with

radial function ρ, and let S be a closed subset of Σn which is Yamabe positive in the sense of Definition V.1. There
exists a conformal factor Ψ, with Ψ − 1 ∈ W 2,p

δ , such that RΨqn−2λ ≥ ǫρδ−2 on S for some ǫ > 0, and such that
RΨqn−2λ ≥ −ζ everywhere on Σn for some constant ζ > 0.
Further, if S′ is a (closed) subset of S, then there exists a conformal factor Ψ′ for the set S′, satisfying the

corresponding conditions (as above) relative to S′, and also satisfying the inequalities c ≤ Ψ′ ≤ Ψ, ǫ′ ≥ ǫ and ζ′ ≤ ζ
for some positive constant c depending only on the metric.

Proof. The proof of this lemma depends to a large extent on results proven in [15]. We define a function D : Σn → R

via

D(p) :=
2

π
arctan (Distance

λ
(p, S)) ≤ 1,

where the upper bound indicates a choice of branch. It follows immediately from this definition that {p ∈ Σn|D(p) =
0} = S. It then follows from the prescribed scalar curvature result Theorem 4.1 in [15] that there exists a conformal
transformation function Θ such that RΘqn−2λ = −κnD

2ρδ−2. In turn, we may now apply the Curvature Criterion
Theorem III.1 with f2 = ρδ−2 and r = 0 and thereby verify that there exists a solution Ψ to the Lichnerowicz equation

0 = L(Ψ) := −αn∆λΨ+RλΨ+ κnD
2ρδ−2Ψqn−1 − ρδ−2Ψ−qn−1. (48)

We claim that this function Ψ satisfies the criteria stated in this Lemma. To verify this, we note that it follows
from Eqn. (48) that RΨqn−2λ = −κnD

2ρδ−2 + ρδ−2Ψ−2qn . The regularity and boundedness properties built into the
definition of D show that RΨqn−2λ is bounded from below everywhere on Σn. The fact that D vanishes on S, together
with the regularity and boundedness of Ψ (a solution of (48)) on the closed set S, show that there exists some ǫ > 0
such that RΨqn−2λ ≥ ǫρδ−2 on S.
To prove the second statement, regarding the subset S′, we first define D′(p) := 2

π arctan (Distanceλ(p, S
′)), and we

see immediately that D′2 ≥ D2. Hence, constructing first Θ′ and then Ψ′ analogously to Θ and Ψ, we determine that
Ψ satisfies the supersolution inequality for Ψ′. Indeed, constructing the Lichnerowicz operator L′ which corresponds
to S′ and D′ (and for which we have L′(Ψ′) = 0), we calculate (using (48), and using the positivity of Ψ)

L′(Ψ) = κnρ
δ−2Ψqn−1(D′2 −D2) ≥ 0. (49)

This does not (directly) guarantee that Ψ′ ≤ Ψ. However, since we readily verify that for any positive value of
t ≤ 1, the quantity tΨ′ satisfies the subsolution inequality for Ψ′, and since the boundedness of Ψ and Ψ′ guarantee
that there exist some positive t0 such that t0Ψ

′ ≤ Ψ, we see that indeed t0Ψ
′ and Ψ form a sub and supersolution

pair for Ψ′. It then follows from Lemma II.7 that Ψ′ ≤ Ψ. We note that in completing this argument, we use the
Lichnerowicz solution uniqueness result Proposition III.4.
To verify the positive lower bound for Ψ′ (also part of the second statement), we may use a variant of the argument

implemented to prove Lemma IV.3, since, again, 1 ≥ D′2 ≥ D2. To verify the inequality for ǫ′, we recall that
RΨ′qn−2λ = −κnD

′2ρδ−2 + ρδ−2Ψ′−2qn , and we apply the bounds on Ψ′. For the inequality for ζ′, we instead rely on
the condition that D′2 ≤ 1 and that ρ ≥ 1.

Our main result in this section is the following theorem. This is a near-CMC result, using an integral inequality on
the derivative of τ as in, for example, [31].

Theorem V.3 (Existence Theorem). Suppose (Σn;λ,N, σ, τ, r, j) is a set of asymptotically Euclidean seed data which
satisfies the regularity and admissibility conditions as stated in Corollary III.3 and also satisfies p > n. Suppose in
addition that there exists a positive constant α such that Sα := {p ∈ Σn|κnτ

2(p) ≤ α} ⊆ S0 for some Yamabe positive
set S0. Then, there exists M = M(λ,N, S0) such that if α −M‖dτ‖2Lp

δ−2

≥ 0, and if σ, r and j are small enough

(relative to λ, N , S0, α and ‖dτ‖−1
Lp

δ−2

) then there exist solutions to the conformal constraint equations of appropriate

regularity.
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The existence of such an α is equivalent to the condition that the zero set of the function τ is sufficiently small. We
include the set S0 in the statement of this theorem to emphasize the fact that that the dependence of the constant
M on τ is very weak. In particular, M depends only on a (Yamabe positive) bounding set S0 containing the set Sα.
For example, in considering a family of mean curvature functions τℓ, as long as the corresponding sets Sαℓ

are nested,
M can be chosen uniformly. We use this fact in showing that there are seed data sets which satisfy the hypothesis of
this theorem.

Proof. As hypothesized, there exists a positive constant α such that the set Sα is Yamabe positive. It then follows
from Lemma V.2 that we may choose a function Ψ with Ψ−1 ∈W 2,p

δ such that the scalar curvature RΨqn−2λ ≥ ǫρδ−2

on Sα, for some ǫ > 0. We note that RΨqn−2λ ∈ Lpδ−2 and that Lemma V.2 proves that the lower bound −ζ for
RΨqn−2λ, the value ǫ, as well as the upper and lower bounds on Ψ, depend only on λ, N , and S0 (or, on Sα if we take
S0 = Sα). In particular, we use the conformal covariance of the CTS-H method (as explained in the introduction)
and work with conformally transformed quantities, denoted by hats. We note that as a consequence of the upper and
lower bounds on Ψ, bounds on hatted quantities are easily converted to bounds on the original seed data.
It follows from Theorem II.8 that to prove that the conformal constraint equations admit a solution, it is sufficient

to find a global sub and supersolution pair. We claim first that if |σ̂| and r̂ (and consequently ĵ) are sufficiently
small, then there exists a constant global supersolution η. To show this, we substitute η into the inequality (involving
the terms in (3)) which must be satisfied if this is the case. Doing a bit of rearranging, we see that η is a global
supersolution so long as the inequality

Rλ̂η
2−qn + κnτ

2 −

∣

∣

∣

∣

σ̂ +
1

2N̂
Lλ̂W

∣

∣

∣

∣

2

η−2qn − r̂η
2−3qn

2 ≥ 0 (50)

holds. We now work with the term involving Lλ̂W , seeking to bound it from below for all allowable values of W . The

standard quadratic inequality gives us −|σ̂ + 1
2N̂
Lλ̂W |2 ≥ −2|σ̂|2 − 1

N̂
|Lλ̂W |2. Elliptic estimates based on Eqn. (4),

with ϕ ≤ η (the purported global supersolution) give us

‖Lλ̂W‖C0

δ−1

≤ c‖W‖W 2,p
δ

≤ c‖ϕqndτ + ĵ‖Lp
δ−2

≤ cηqn‖dτ‖Lp
δ−2

+ c‖ĵ‖Lp
δ−2

, (51)

where c is a constant that depends on the metric λ and the lapse function N only. Then, since (following from the
definition of the weighted norms) we have the pointwise estimate |Lλ̂W | ≤ ‖Lλ̂W‖C0

δ−1

ρδ−1, the needed inequality

takes the form

Rλ̂η
2−qn + κnτ

2 − (2|σ̂|2 + c‖ĵ‖Lp

δ−2

)η−2qn − r̂η
2−3qn

2 − c‖dτ‖Lp

δ−2

ρ2δ−2 ≥ 0. (52)

We verify the inequality (52) separately in the region Sα, and in its complement. In Sα, we have the scalar curvature
bound Rλ̂ ≥ ǫρδ−2, for some fixed value of ǫ. Hence, in Sα, we may use the scalar curvature term to dominate the
negative terms in (52). Specifically, if we choose η so that

η2−qn = 2c‖dτ‖Lp
δ−2

/ǫ, (53)

then we verify that half of the scalar curvature term dominates the dτ term:

1

2
Rλ̂η

2−qn − c‖dτ‖Lp
δ−2

ρ2δ−2 ≥
1

2
ǫρδ−2η2−qn − c‖dτ‖Lp

δ−2

ρ2δ−2 ≥ 0. (54)

We note that here, the choice of the radial function so that ρ ≥ 1 is crucial; as well, we recall that δ is negative, by
assumption.
To take care of the rest of the negative terms in (52) (still working on Sα), we impose smallness conditions on |σ̂|,

on |ĵ| and on r̂. Specifically, with η now fixed, we require |σ̂|, |ĵ| and r̂ to be small enough so that

1

2
ǫρδ−2η2−qn − (2|σ̂|2 + c‖ĵ‖Lp

δ−2

)η−2qn − r̂η
2−3qn

2 ≥ 0. (55)

Clearly these restrictions on the choice of the seed data can always be made.
We now determine which conditions on the seed data must be imposed in order to verify inequality (52) in the

region Scα which is the complement of Sα. To carry out this determination, we note that the following estimates hold
within Scα: i) the definition of Scα implies that κnτ

2 > α; ii) Lemma V.2 guarantees that Rλ̂ is bounded below by

some (generally negative) constant, which we label −ζ; iii) since, by definition, ρ ≥ 1, the radial quantity ρ2δ−2 ≤ 1.
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Combining these estimates with the specification (53) for the constant η, we can express the needed inequality (52)
(for the region Scα) in the form

−ζ(2c‖dτ‖Lp
δ−2

/ǫ) + α− (2|σ̂|2 + c‖ĵ‖Lp
δ−2

)η−2qn − r̂η
2−3qn

2 − c‖dτ‖Lp
δ−2

≥ 0, (56)

which can be rearranged into

α− (2|σ̂|2 + c‖ĵ‖Lp
δ−2

)η−2qn − r̂η
2−3qn

2 − ĉ‖dτ‖Lp
δ−2

≥ 0, (57)

where the constant ĉ := c(2ζǫ + 1) depends only on the metric, N and S0. Splitting this inequality into a pair, we see
that for a specified AE geometry (Σn;λ) and a specified choice of α (recall that the constant α must be chosen so
that Sα is Yamabe positive) it is sufficient to choose τ so that

‖dτ‖Lp
δ−2

≤
α

2ĉ
, (58)

and then choose σ̂, r̂ and ĵ so that

(2|σ̂|2 + c‖ĵ‖Lp
δ−2

)η−2qn + r̂η
2−3qn

2 ≤
α

2
. (59)

We note that Eqn. (58) determines the constant M which appears in the hypothesis of this theorem.
We now have conditions on the seed data which guarantee that η serves as a global supersolution for the system

(3)-(4). For a global subsolution we choose ξψ/Ψ where ψ is the conformal factor for which Rψqn−2λ = −κnτ
2 (the

existence of such a function ψ is guaranteed by the hypothesis that the seed data be admissible), Ψ is as before, and
where ξ is a constant between zero and one which is chosen to ensure the sub/supersolution inequality ξψ/Ψ ≤ η.
(The division by Ψ is to account for the conformal transformation that we already used.) One readily verifies that the
appropriate differential inequality is satisfied so that indeed ξψ/Ψ is a global subsolution. We have thus determined
that for any AE seed data satisfying the conditions (58), (55) and (59), the conformal constraint equations admit a
solution.

We wish to emphasize that there do exist seed data sets satisfying the hypothesis of Theorem V.3. Indeed, one may
construct such data as follows: Choosing any asymptotically Euclidean geometry (Σn, λ,N) of sufficient regularity,
one considers smooth functions τ which are unity inside Bρ0 , vanish outside B2ρ0 , and have derivatives as small as
consistently possible in the annulus B2ρ0 \ Bρ0 . One readily checks (see [15]) that for large enough ρ0, Lemma V.2
holds on S := Σn \ Bρ0 . One also readily checks that ‖dτ‖Lp

δ−2

can be made arbitrarily small by choosing large

enough ρ0 (as long as δ > −1). Since the zero sets of functions τ constructed in this way are strictly decreasing as
ρ0 increases, it follows from the estimates stated in the second part of Lemma V.2 that the constant M is uniformly
bounded, and so the condition (58) is satisfied for sufficiently large ρ0. Conditions (55) and (59) are met by choosing
small |σ|, r and |j| directly.
It should be mentioned that there is no evidence of uniqueness for this result, except that it is near-CMC in some

sense. The sub and supersolution theorem only show existence, and never uniqueness. Indeed, we expect that for
some seed data, there are multiple solutions to the conformal constraint equations, as observed, for instance, in [14].
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