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Tidal effects have an important impact on the late inspiral of compact binary systems containing
neutron stars. Most current models of tidal deformations of neutron stars assume that the tidal
bulge is directly related to the tidal field generated by the companion, with a constant response
coefficient. However, if the orbital motion approaches a resonance with one of the internal modes
of the neutron star, this adiabatic description of tidal effects starts to break down, and the tides
become dynamical. In this paper, we consider dynamical tides in general relativity due to the
quadrupolar fundamental oscillation mode of a neutron star. We devise a description of the effects
of the neutron star’s finite size on the orbital dynamics based on an effective point-particle action
augmented by dynamical quadrupolar degrees of freedom. We analyze the post-Newtonian and
test-particle approximations of this model and incorporate the results into an effective-one-body
Hamiltonian. This enables us to extend the description of dynamical tides over the entire inspiral.
We demonstrate that dynamical tides give a significant enhancement of matter effects compared to
adiabatic tides, at least for neutron stars with large radii and for low mass-ratio systems, and should
therefore be included in accurate models for gravitational-wave data analysis.

PACS numbers: 04.25.Nx 04.30.Db 97.60.Jd

I. OVERVIEW

The much anticipated era of gravitational-wave astron-
omy recently began with the observation of gravitational
waves from binary black-hole mergers by Advanced LIGO
[1, 2]. Still the two LIGO detectors [3] have not reached
design sensitivity yet, and will be augmented by Ad-
vanced Virgo [4], KAGRA [5], and LIGO-India [6] in the
future. Such a network of ground-based gravitational-
wave observatories is needed for improving the sky lo-
calization of sources and thus enable targeted electro-
magnetic follow-up observations. This is a particularly
fascinating prospect for neutron stars in compact binary
coalescences where the merger or disruption is expected
to generate for instance short gamma-ray bursts [7].

Maximizing the science gains from gravitational-wave
observations requires accurate models of the binary dy-
namics as matched-filtering templates for data analysis.
Of particular importance for the analytic description of
the dynamics of a neutron star in a binary is a detailed
model for tidal interactions. The purpose of the present
paper is to develop a model for dynamical tides in gen-
eral relativity and to incorporate it into the effective-one-
body (EOB) formalism [8, 9], which has been providing
LIGO and Virgo with waveform models to detect signals,
infer their astrophysical properties, and test general rel-
ativity [1, 2, 10–12].

A. Newtonian dynamical tides

It is instructive to review dynamical tidal effects for
an irrotational ideal fluid in Newtonian gravity. For sim-

plicity, consider an isolated star in an external gravita-
tional field. The external tidal field deforms the star and
displaces its fluid elements away from their equilibrium
position. At linear order in this perturbation, the dis-
placement of the fluid elements can be represented as a
superposition of normal modes of oscillation, where the
coefficients are dynamical (time dependent) mode ampli-
tudes. The normal mode that dominates the tidal inter-
action is the quadrupolar fundamental (f-)mode. The
f-modes can be understood as standing waves on the
surface of the star1 that are efficiently excited through
tidal forces. Resonances between the orbital motion and
the quadrupolar f-mode in Newtonian gravity were first
discussed for ordinary stars by Cowling [13] and much
later for neutron stars [14–19]. However, these studies in
Newtonian gravity are of limited applicability to physi-
cally realistic neutron stars since they are strongly self-
gravitating objects. The purpose of the present work is to
overcome these limitations and develop a rigorous model
for dynamical tidal excitations in general relativity.

The quadrupolar oscillations of a neutron star due to
the f-mode can be described by a dynamical quadrupole
Qij , with i, j = 1, 2, 3, obeying the equation of motion of
a tidally driven harmonic oscillator. We do not include a
damping of the oscillator since the neutron-star viscosity
is low and therefore the star is not tidally locked [20, 21].

1 By definition, the f-modes have no nodes of oscillation inside
the star and the oscillation amplitude grows towards the surface.
Their overtones are called p-modes.
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FIG. 1. Dimensionless effective tidal deformability from
a two timescale approximation under leading order radi-
ation reaction (see Sec. VI E with the replacement r =

(GM)(GMΩ)−2/3, in units with c = 1 and for an H4 equation
of state and mass 1.35M�). The index l refers to the mul-
tipolar order, such that k2 is the quadrupolar dimensionless
tidal deformability and k3 is the octupolar one.

The corresponding Lagrangian is [22]

LDT =
1

4λω2
f

[
Q̇ijQ̇ij − ω2

fQ
ijQij

]
− 1

2
EijQ

ij , (1.1)

where a dot denotes a time derivative, the numerical con-
stant ωf is the angular frequency of the f-mode, λ is the
tidal deformability which is related to the Love number
[23], and Eij is the quadrupolar tidal field. In terms of
the Newtonian gravitational potential Φ the tidal field
is Eij = ∂i∂jΦ. The Lagrangian LDT, together with a
point-mass action, can be used as a model for a neu-
tron star in a binary, supplemented by the usual action
of the Newtonian gravitational field. A generalization of
Eq. (1.1) to additional modes is straightforward.

The meaning of the tidal deformability is best under-
stood in the limit of adiabatic tides, which is given by
ωf → ∞ for our normalization of LDT. In this limit,
the kinetic term in the Lagrangian (1.1) drops out and
a variation of Qij leads to Qij = −λEij . That is,
the quadrupole instantaneously follows the external tidal
field Eij with the proportionality factor being the tidal
deformability λ. For finite ωf , one can consider an equi-
librium solution of the oscillator as in Ref. [22] and as
we discuss in Appendix B. This solution can be used to
determine initial conditions for the quadrupole equations
of motion.

To characterize the effects of dynamical tides we intro-
duce an effective tidal deformability λeff that depends on
the binary separation. Since the separation evolves under
gravitational radiation reaction, λeff is in fact a function
of time. We define λeff through

λeff = −EijQ
ij

EklEkl
. (1.2)

Note that in the adiabatic case λeff = λ. When we
evaluate Eq. (1.2) for an inspiral using a dynamical
quadrupole, the function λeff can be understood as a
varying tidal deformability. The deviation of λeff from
its constant value λ is an indication of the impact of dy-
namical tides.

In Sec. VI E we derive an approximate analytic expres-
sion for λeff using a two timescale method. The result is
shown in Fig. 1 and displays the enhancement of tidal ef-
fects due to dynamical tides close to merger or disruption.
The quantities shown in this figure are the dimensionless
Love numbers which are related to the deformability by

k` =
(2`− 1)!!

2

Gλ`
R2`+1

, (1.3)

where R is the radius of the neutron star and ` is the
multipolar order (` = 2 for the quadrupole considered
here, i.e., λ ≡ λ2). We work in units where c = 1, but we
keep Newton’s constant G. We use Greek letters to de-
note spacetime indices that run over {0, 1, 2, 3} and Latin
letters running over the values {1, 2, 3} for 3-dimensional
spatial components.

B. Qualitative expectations for relativistic effects
in dynamical tides

Relativistic corrections to the Newtonian tidal inter-
actions discussed above are important to accurately de-
scribe tidal effects of binary neutron stars. Such correc-
tions were computed in Ref. [24] within a post-Newtonian
(PN) approximation to 1PN order and applicable for any
kind of tides, and for the case of adiabatic tides the 2PN
order was calculated in Ref. [25]. These studies showed
that relativistic corrections enhance the tidal force act-
ing on the body, which is a statement on the interaction
term EijQ

ij in Eq. (1.1). Moreover, by virtue of the
equivalence principle, Eq. (1.1) provides an intuitive de-
scription of the relativistic case in a local freely falling
coordinate system attached to the neutron star. Such
local observer experiences a relativistic redshift relative
to an observer at spatial infinity and also a frame drag-
ging due to gravito-magnetic fields. This has interesting
consequences for dynamic tides.

The physical consequence of the redshift effect can be
understood as follows. All frequencies measured in the
neutron-star’s frame are redshifted from the perspective
of an observer measuring the gravitational waves at spa-
tial infinity. This means that the f-mode frequency seen
by the distant observer is redshifted with respect to the
constant f-mode frequency ωf in the rest frame of the
neutron star. Conversely, from the perspective of the
neutron star, the frequency of the driving tidal force is
larger compared to that inferred by an asymptotic ob-
server. This redshift effect is expected to enhance the
dynamical tidal effects, since it shifts the resonance with
the f-mode to a lower orbital frequency. The radiation
reaction is therefore smaller at the resonance, such that
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FIG. 2. The frame of the tidally deformed neutron star is
dragged in the direction of the orbital motion.

the system spends more time close to the resonance and
transfers more energy from the orbital motion to the tidal
excitation.

The consequence of the frame-dragging effect due to
the gravito-magnetic field is somewhat opposite to the
redshift effect. For a comparable mass system, the dom-
inant angular momentum is the orbital one. Hence the
neutron-star frame is dragged in the direction of the or-
bital motion as illustrated in Fig. 2. The orbital fre-
quency in this dragged frame is therefore lower than for
the distant observer. The frame dragging thus effectively
shifts the f-mode to a higher frequency. This is analogous
to the Zeeman effect for the splitting of atomic spectral
lines in the presence of a magnetic field. Similarly, a
bulge on the star rotates clockwise or counter-clockwise
within the orbital plane, as a free oscillation. Invoking
the equivalence principle, one infers that the bulge ro-
tates with the constant f-mode frequency ωf in both di-
rections in the neutron-star frame. However, this frame
is dragged as seen from a distant observer. This observer
therefore sees different frequencies for the clockwise and
counter-clockwise oscillations: the frequency of the bulge
traveling in the direction of the orbit is shifted to larger
values, while the frequency of the bulge traveling in the
oppposite direction is shifted to lower values. However,
since the external tidal field always tracks the orbital mo-
tion, only the mode with the raised frequency is excited.
A similar effect also occurs for neutron stars with spin
[18], where, however, the direction of the dragging de-
pends on the orientation of the spin. For a neutron star
with a large spin that is anti-aligned with the orbital an-
gular momentum, the resonance frequency is effectively
lowered since in that case the spin drags the frame in the
direction opposite to the tidal force.

The frame dragging is usually encoded in various spin
interactions in a Hamiltonian formulation of the binary
dynamics. This is true also for the frame dragging act-
ing on the dynamical tides. Noether’s theorem applied
to the rotational invariance of Eq. (1.1) shows that the
tides contribute to the total angular momentum through
a “tidal spin” given by the antisymmetric tensor SijQ =

2Qk[iQ̇j]k/(λω2
f ). To obtain a complete tidal model it is

essential to include a covariant generalization of this spin
in place of the ordinary relativistic spin interaction terms

in the Hamiltonian, whose importance was alluded to in
Ref. [24], and which becomes obvious from Eq. (2.31)
below.

C. Action for relativistic dynamic tides

Dynamical tides in general relativity have been stud-
ied in the case of a test-mass orbiting a neutron star
[26–29] and for comparable masses in the PN limit focus-
ing on r-modes [30]. Resonances due to tidal interactions
have also been seen in numerical-relativity simulations
[31] for binaries on eccentric orbits. An interesting dy-
namical response to a stationary tidal field was found
recently for a slowly rotating neutron star [32]. The au-
thors of Refs. [33–35] have developed a dynamical model
for the tidal interaction of neutron stars by approximat-
ing them as triaxial ellipsoids with self-similar internal
isodensity surfaces. This model takes into account the
strong self-gravity of the neutron star, but does not in-
clude mode resonances in an explicit way. The effect on
the gravitational-wave phase was found to be negligible
[33]. We come to a different conclusion here when dy-
namical tides are allowed to become resonant.

Let us write down a 4-dimensional covariant and min-
imally coupled form of the Lagrangian (1.1) as

LDT =
z

4λ

[
1

z2ω2
f

DQµν
dσ

DQµν

dσ
−QµνQµν

]
− z

2
EµνQ

µν ,

(1.4)
with the full action principle of the matter being

S =

∫
dσ L, L = −mz + LDT, (1.5)

where D denotes a covariant parameter derivative, z =√−uµuµ, uµ = ẏµ, and the worldline of the particle is
yµ(σ) with σ being a generic worldline parameter. The
signature of spacetime is +2. Note that in this notation
z2 = −uµuµ, and the factors of z are introduced such
that the action is invariant under reparameterizations of
the worldline parameter σ. For the gauge choice of σ
adopted later on, z takes on the physical meaning of the
redshift factor. The 4-dimensional tidal field Eµν is the
electric part of the Weyl tensor Cµναβ given by

Eµν = Cµανβ
uαuβ

z2
, (1.6)

which is reparameterization-invariant and is a
symmetric-tracefree spatial tensor in the rest frame, i.e.,
Eµνu

ν = 0, E[µν] = 0, and Eµµ = 0. Similarly, the
4-dimensional quadrupole tensor Qµν is required to be a
symmetric tracefree spatial tensor in the rest-frame,

Qµνu
ν = 0, (1.7)

Q[µν] = 0, Qµµ = 0. (1.8)

These are covariant constraints that reduce the
quadrupole degrees of freedom to the correct physical
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ones. We explicitly relate Qµν to a SO(3) tensor in Sec.
II D and highlight the connection of the equations of mo-
tion derived from the Lagrangian (1.4) to the dynamics
of a generic extended body given by Dixon [36] in Sec.
II B. In Sec. III we compute the Lagrangian (1.4) within
the PN approximation for the orbital dynamics. The PN
results agree with the 1PN tidal Lagrangian derived in
Ref. [24]. However, the formalism developed in this pa-
per features several advances beyond the standard PN
approach such as (i) elucidating the role of the frame ef-
fects discussed above, which emerge from the constraint
on the quadrupole in Eq. (1.7) and the covariant deriva-
tive in Eq. (1.4), (ii) exhibiting the redshift factors ex-
plicitly, and (iii) revealing a direct mapping between tidal
effects and known PN results for spinning bodies, which
we explain in Sec. III.

D. Body and orbital zones

The link between the action (1.5) describing a point
particle with a dynamical quadrupole and the actual ex-
tended neutron star is established by introducing various
zones in which different approximation schemes are valid.
For instance, in the PN approximation, one introduces a
body zone for each object where gravity can be strong,
an orbital zone (or near zone) where the PN expansion
in weak gravitational fields and slow motion can be ap-
plied, and a radiation zone where the emitted gravita-
tional waves are weak and propagate with the speed of
light.

The connection between the zones can be rigorously es-
tablished using matched asymptotic expansions as sum-
marized in Ref. [37]. For binary black holes, an ex-
plicit construction of all zones has been developed in
the context of initial data for numerical-relativity simula-
tions [38–43]. For neutron stars, the process of matching
between body and orbital zones encodes the tidal interac-
tions. An explicit construction of all the zones analogous
to that for black holes is not yet available. However,
this does not prevent us from obtaining a complete de-
scription of the orbital dynamics, since this requires only
knowledge of the body’s multipole moments [44, 45]. For
stars with low compactness such as white dwarfs, the
matching calculations can also be done by applying the
PN approximation to the interior of the star, which was
worked out to 1PN order by Damour, Soffel, and Xu [46–
49].

The matching of the body and orbital zones can be
achieved by using a point-particle action as an intermedi-
ary, since it provides an immediate physical understand-
ing, like the harmonic oscillator action in Eq. (1.4). Once
the parameters defined by the action (λ and ωf ) are fixed
through some matching, one can apply the point-particle
model to a PN description of the orbital dynamics. One
can think of the body zone being effectively shrunk to
a point. Conversely, from the perspective of one of the
bodies, the orbital scale can be expanded to spatial in-

finity. This leaves an isolated body in an external field,
which is a rather simple setting in which the parameters
in the action can be matched. For instance, the tidal
parameters λ and ωf can be obtained from linear pertur-
bations of a spherically symmetric relativistic star. This
approach properly incorporates the strong gravity inside
relativistic stars, which is reflected in the numerical val-
ues for λ and ωf . The quadrupolar Love number λ was
first obtained from linear perturbations of a relativistic
star in Ref. [50] and generalized to higher multipoles in
Refs. [51, 52]. The latter study also raised important
subtleties in defining the Love numbers through such a
matching procedure [52]. Subsequently Ref. [53] showed
how these subtleties are avoided in the case of nonro-
tating black holes. The rotating case is not settled, but
progress has been made in the slow rotation approxima-
tion [54–57]. The matching of the f-mode frequency is
likewise a delicate problem and the frequency entering
the action (1.4) is distinct from the complex quasi-normal
mode frequencies [58, 59]. We discuss all these issues in
detail in Sec. II A.

E. Effective-one-body Hamiltonian

The impact of dynamical tides over adiabatic ones is
expected to be noticeable only close to the f-mode reso-
nance. This occurs in the strong field regime of general
relativity, where the PN approximation loses accuracy.
Dynamical tides in general relativity therefore require
a method which is applicable to the nonlinear orbital
regime, such as numerical relativity. However, to en-
able the generation of a large bank of gravitational-wave
templates for data analysis, a computationally much less
expensive approach is needed. The EOB model is cur-
rently used for this purpose since it provides an accu-
rate description of the entire gravitational-wave signal
by combining analytical information from PN and black-
hole perturbation theory into a single framework [8, 9].
The accuracy of the model has been further improved
through a calibration to numerical relativity [60, 61], thus
creating a synergy of the most powerful tools to describe
relativistic compact binaries.

The EOB model was extended to tidal effects in
Refs. [25, 62–66], but restricted to adiabatic tides. The
purpose of the present paper is to improve the description
of matter effects by considering dynamical tidal effects
in the EOB Hamiltonian. In contrast to Ref. [25], our
construction implements the test-particle results with-
out introducing poles in the Hamiltonian (see Secs. V B
and VI C). This is important for neutron-star–black-hole
systems, where for certain mass ratios the poles might
be reached during the final stages of the binary evolu-
tion. The main result for the EOB Hamiltonian is given
by Eqs. (4.1), (6.4)–(6.6), (6.16a)–(6.16c), and (6.23)
for circular orbits. This result is accurate to 1PN or-
der and further contains partial information at 2PN or-
der in Eq. (6.16a) determined by matching to the adi-
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abatic limit from Ref. [62]. We also study different,
structurally less motivated, implementations of dynami-
cal tides in the EOB Hamiltonian to verify that our con-
clusions are not an artifact of the specific implementa-
tion. Our results are the foundation of EOB waveforms
with fully dynamical tides that have been compared
against numerical-relativity simulations in Refs. [67, 68].
The tidal EOB Hamiltonian can equivalently be obtained
from the generic 1PN tidal Lagragian derived in Ref. [24].
The benefit of starting from a relativistic action is that
it leads to immediate insights into the structure of the
terms, thus providing physical intuition as well as use-
ful guidance for devising an EOB resummation of tidal
effects.

The plan of this paper is the following. We first discuss
the general relativistic point-particle action encoding dy-
namical tides in Sec. II. To express the terms in this ac-
tion explicitly, we specialize to the PN and test-particle
approximations in Sec. III. This is the basis for the EOB
Hamiltonian derived in Sec. VI, following the construc-
tion principles outlined in Sec. IV and making use of the
gauge freedom from Sec. V. Finally, the results are dis-
cussed in Sec. VII where we compare waveforms includ-
ing dynamical tides with waveforms using only adiabatic
tides. We find that dynamical tides are an important
physical effect for certain realistic nuclear equations of
state and mass ratios.

II. THEORY OF RELATIVISTIC DYNAMICAL
TIDES

In this Section we discuss in detail the effective point-
particle action for dynamical tidal effects in general rel-
ativity. We first review Newtonian dynamic tides to mo-
tivate the covariant form of the relativistic action (1.4)
which we determine within an effective-field-theory ap-
proach. Next, we consider the equations of motion and
Legendre transformations that bring the action into a
convenient form. Lastly, we impose the constraints by
separating the time and spatial components of the tidal
variables to derive an action that involves only the phys-
ical tidal degrees of freedom.

A. The effective action

Below we discuss the reasoning that led us to posit the
particular form of the Lagrangian (1.4) for a relativis-
tic action that describes quadrupolar mode oscillations
of a deformable body. We start by reviewing the New-
tonian description of stellar oscillations to make the re-
lation between the mode amplitudes and the quadrupole
degrees of freedom Qij explict. Subsequently, we use the
effective-field-theory approach for compact binaries de-
veloped by Goldberger and Rothstein [69, 70] to obtain
a covariant version of the Newtonian action that leads to

Eq. (1.4). Previous work on this topic already derived
the quadrupolar interaction terms [71, 72] and consid-
ered a dynamical quadrupole in the context of absorp-
tion from the black-hole horizon [71]. Other work [25]
obtained an effective action in the limit of an expansion
around the adiabatic case. Here, we go beyond these
studies by deriving a general effective action for a fully
dynamical quadrupole that describes mode oscillations of
a deformable body. We further discuss subtleties related
to the identification of the coupling constants λ and ωf ,
survey additional terms that could in principle contribute
to the action, and argue that in the case of interest here
these terms are negligibly small.

Generic tidal perturbations of a Newtonian star can
be decomposed into its normal modes of oscillation [73],
and are an extensively studied topic. An action principle
for the mode amplitudes was formulated by Alexander
[74], and also derived from Lagrangians for an ideal fluid
polytrope [75], for homentropic stars [76], and from an
effective-field-theory approach [77]. These action princi-
ples rely on treating the amplitude of each mode as a har-
monic oscillator. Since the unperturbed star is rotation-
ally symmetric, the modes fall into irreducible represen-
tations of SO(3). This implies that the quadrupolar mode
variables, which are usually decomposed into a spherical-
harmonic basis with l = 2 and m = −l, · · · , l, can equiva-
lently be described by rank-two symmetric-tracefree ten-
sors, denoted here by Aij , with A[ij] = 0 = Aii. The
Lagrangian for the quadrupolar f-mode amplitudes Aijf
therefore has the form

LDT =
1

2
Ȧijf Ȧ

ij
f −

ω2
f

2
Aijf A

ij
f −

If
2
EijA

ij
f + . . . , (2.1)

where the constants ωf and If are the angular frequency
and coupling constant, also known as the “overlap inte-
gral” [78], of the mode, Eij is the quadrupolar tidal field,
and the dots denote possible nonlinear interaction terms.
The Lagrangian in Eq. (2.1) differs from Eq. (1.1) only
by a choice of normalization, where

Aijf =
1

If
Qij , λ =

I2
f

2ω2
f

. (2.2)

It is straightforward to extended this result to several
quadrupolar modes by adding copies of Eq. (2.1) for each
mode. However, if the normal-mode expansion fails to
represent the complete solution for the perturbed star,
copies of Eq. (2.1) for each mode will be insufficient to
represent the entire quadrupolar response of the star and
additional terms of the form EijEij must be included in
the Lagrangian (2.1) to compensate for the residual dis-
crepancy. For Newtonian perfect fluid stars, the normal
modes are complete [79] and hence no such additional
terms are required. In this case, the constants ωf and
If (or λ) entering the Lagrangian are easily identified
with quantities computed from linear perturbations of a
fluid star [23, 79]. The dominant modes for tidal inter-
actions are the f-modes, whose tidal coupling constants
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If are several orders of magnitude larger than those of
other quadrupolar modes [15, 16], hence we neglect those
other modes here.

To obtain a relativistic generalization of the Newtonian
Lagrangian (1.1) we employ the effective-field-theory ap-
proach to the gravitational interaction of compact ob-
jects [69]. In this approach, the interaction terms in the
action are determined by writing down all possible op-
erators consistent with the symmetries (general covari-
ance, parity, and time reversal), and redefining variables
to eliminate couplings that involve accelerations [80]. For
the linear, electric-type, quadrupolar interactions these
considerations lead to a single interaction term derived
in Ref. [71] and given by ∼

∫
dσEµνQ

µν , with the rela-
tivistic tidal field Eµν defined in terms of the spacetime
curvature in Eq. (1.6). This generalizes the Newtonian
coupling

∫
dtEijQ

ij and the Newtonian definition of Eij .
The remaining steps in mapping from the Newtonian to
the relativistic action consist in replacing time derivatives
with covariant derivatives along the wordline, and insert-
ing factors of z to ensure invariance of the action under
reparameterizations of the parameter σ. In general, as
discussed above in the Newtonian case, tidal couplings
of the form EµνE

µν may need to be added to the La-
grangian (1.4). Such terms would account for the incom-
pleteness of modes which is known to occur in general
relativity, as well as for other quadrupolar modes besides
the f-modes. However, as in the Newtonian case, the
coupling coefficients of these additions are estimated to
be small [81] and we therefore neglect these additional
terms here.

As mentioned in Sec. I D, the relativistic effective ac-
tion (1.5) discussed above describes the binary only on
an orbital scale, where the coefficients λ and ωf remain
undetermined and must be linked to quantities describ-
ing a perturbed relativistic fluid star through a matching
procedure. In contrast to the Newtonian case, the rela-
tivistic nonlinearities introduce subtleties into this iden-
tification and can lead to counter-intuitive results. For
instance, the Love number λ of black holes vanishes [53],
which is impossible to reproduce through a superposi-
tion of damped mode amplitudes as would be done when
extrapolating Newtonian results. While neutron stars
are less compact than black holes, they nevertheless en-
close strong gravitational fields and might inherit some
non-intuitive features. A rigorous definition of their tidal
deformability coefficients λ requires performing an ana-
lytic continuation in the dimensionality of spacetime as
done for the case of black holes in Ref. [53] or, as a more
practical but less rigorous alternative, using the prescrip-
tion for neutron stars developed in Ref. [81]. Likewise,
the real mode frequency parameter ωf in the Lagrangian
follows from a matching of the orbital and body zones as
discussed in detail in Ref. [81]. The boundary conditions
of this matching are different from those used to define
the complex quasi-normal mode frequencies [58, 59], yet
the numerical value of ωf determined in this way turns
out to be very close to the value of the real part of the

quasi-normal mode frequency [81].
Having discussed the construction of the relativistic ac-

tion for fully dynamical quadrupoles, it is also useful to
consider the limiting case far from a resonance where the
quadrupole is nearly adiabatic, to establish a connection
with previous work in Refs. [25, 77]. The effective-field-
theory paradigm states that all degrees of freedom with
frequencies above the orbital frequency should be inte-
grated out of the action. Thus, when restricting the de-
scription to tidal driving frequencies that cannot excite
the f-mode, the tidal Lagrangian (1.4) is approximated
by a quasi-adiabatic Lagrangian [25, 77]

LqAT =
λ

4
EµνE

µν +
λ′

4

DEµν
dσ

DEµν

dσ
+ . . . , (2.3)

with the dots denoting similar terms with higher-order
derivatives of Eµν . The first term in Eq. (2.3) corre-
sponds to the adiabatic limit and the second term is the
first correction due to dynamical tides, with the coeffi-
cient λ′ determined in terms of (λ, ωf ) by the Taylor
expansion

λω2
f

ω2
f − ω2

= λ+ λ′ω2 +O(ω4), (2.4)

i.e., λ′ = λ/ω2
f , and similarly for the omitted higher or-

der terms. Close to the resonance, such an expansion of
the Lagrangian around the adiabatic limit in Eq. (2.3)
breaks down since the resonance corresponds to a pole in
the response. Cases for which the inspiral terminates well
before the resonance is reached could be adequately de-
scribed by retaining a finite number of terms in Eq. (2.3).
This would avoid the introduction of additional dynam-
ical variables for the quadrupole, which is computation-
ally expensive. However, in Sec. VI E we introduce a
significantly more useful method for reducing the compu-
tational cost while still capturing the nonlinear features
of the resonance.

B. Equations of motion

To study the dynamics described by the action (1.4)
we first obtain the equations of motion using a manifestly
covariant variation as described in detail in Ref. [82]. Ig-
noring the constraint in Eq. (1.7) for the sake of clarity,2

this leads to

Dpµ
dσ

=
1

2
SαβQ Rαβρµu

ρ − 1

6
∇µRαρβσJαρβσQ , (2.5)

2λ

z

DPµν
dσ

= −Qµν − λEµν . (2.6)

2 The constraint (1.7) is preserved if the secondary constraint
Pµνuµ = 0 holds. The method of Lagrange multipliers legit-
imizes our procedure, since it fixes the multipliers of these con-
straints to zero, up to terms of negligible order in the curvature.
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Here, we have introduced a “tidal spin” tensor SµνQ as-
sociated with the angular momentum of the dynami-

cal quadrupole and a rank-4 quadrupole moment JµναβQ
given by

SµνQ = 4Qρ[µP ν]
ρ, (2.7)

JαρβσQ = −3

z
u[αQρ][βuσ]. (2.8)

The generalized momenta in Eqs. (2.5) and (2.6) are
defined by

pµ =
∂L

∂uµ
, (2.9)

Pµν =
∂L

∂
(
DQµν

dσ

) =
1

2λω2
fz

DQµν
dσ

, (2.10)

where the partial derivatives of the Lagrangian are cal-
culated assuming the functional dependence

L = L

(
uµ, Qµν ,

DQµν

dσ
,Rµναβ , gµν

)
. (2.11)

Our convention for the Riemann tensor is

Rµναβ = Γµνβ,α−Γµνα,β+ΓρνβΓµρα−ΓρναΓµρβ , (2.12)

where Γµνβ is the Christoffel symbol.
Since we are considering here an irrotational matter

configuration, the presence of spin terms in the equations
of motion requires further explanation. The interpreta-
tion is that the tidal bulge carries an angular momentum
given by Eq. (2.7) since the bulge points towards the
companion and thus travels around the neutron star’s
surface during an orbit. However, this angular motion
of the bulge is due to fluid elements undergoing only a
radial motion; hence the neutron star itself remains irro-
tational. Yet, it has a net spin given by the sum of the
spin due to the rotation of the fluid, which vanishes in
the case considered here, and the tidal angular momen-
tum SµνQ . The dynamics of the tidal spin SµνQ are anal-
ogous to those of an intrinsic spin, obeying the generic
form of the equations of motion for the spin-dipole found
by Dixon [36],

DSµνQ
dσ

= 2zEρ[µQν]
ρ = 2p[µuν]+

4

3
Rαβρ

[µJ
ν]ρβα
Q , (2.13)

which can be verified using the quadrupolar equations
of motion (2.6) and (2.10). Dixon’s general multipolar
approximation scheme fully determines the equations of
motion only for the linear momentum pµ and spin-dipole
of the body. The equations of motion for all higher mul-
tipoles are not restricted by the conservation of energy
and momentum, and depend on the internal structure of
the body. Therefore, information about the internal dy-
namics of the higher multipoles must be supplemented
to Eqs. (2.5) and (2.13). An example of such supple-
mental information to complete the set of equations of

motion is the oscillator dynamics describing f-modes in
Eqs. (2.6) and (2.10). This example also illustrates that
the tensors describing the spin and higher multipole mo-
ments in Dixon’s equations of motion, in this case the
quantities in Eqs. (2.7) and (2.8), are in general merely
mathematical structures that represent combinations of
more fundamental degrees of freedom.

Having developed insights into the covariant dynamics
discussed above, we next turn to the idea of using the
action (1.4) to derive a fully constrained Hamiltonian
that can be mapped to an EOB model. This requires
transformations of Eq. (1.4) that involve the following
steps. First, we replace all velocities in favor of the con-
jugate momenta, include the mass-shell constraint in the
transformed action, and perform a decomposition of all
the quantities into time and space directions. Next, we
obtain explicit expressions for the various terms in the
resulting Lagrangian within the PN approximation, as
well as in the test-particle limit, and construct the cor-
responding Hamiltonian. Finally, we investigate several
possibilities for mapping this information onto the EOB
model. In the subsequent Sections we present a detailed
discussion of each step in this procedure.

C. Legendre transformations

Following Refs. [82, 83], we apply a Legendre transfor-
mation and rewrite the action in Eq. (1.4) in the following
equivalent form

S =

∫
dσ

[
Pµν

DQµν

dσ
+RQ

]
, (2.14)

where

RQ = −mz − zλω2
fPµνP

µν − z

4λ
QµνQ

µν − z

2
EµνQ

µν .

(2.15)
The action (2.14) has the advantage that the compli-
cated covariant derivative of Qµν appears only linearly
and only in a simple kinematic term, which is convenient
for explicit calculations.

A further Legendre transformation can be performed
to replace uµ by pµ. This is interesting since it manifestly
brings the action into first-order form in all variables,
which is necessary for a Hamiltonian formulation. From
Eq. (2.9) we have

pσ =
uσ
z

[
m+ λω2

fPµνP
µν +

1

4λ
QµνQ

µν

+
1

2
EµνQ

µν

]
−
[
δασ +

uσu
α

z2

]
CµανβQ

µν u
β

z
.

(2.16)

Using the normalization of the four-velocity uµu
µ = −z2

leads to the mass-shell constraint

pµp
µ +M2 = 0, (2.17)
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with

M = m+Ht, (2.18)

Ht = λω2
fP

abPab +
1

4λ
QabQ

ab +
1

2
EabQab, (2.19)

where we neglect terms of higher order in curvature and
tidal variables. [Note that this results is analogous to
Eq. (85) in Ref. [82], but with a factor of 2 typo in the
interaction term corrected here.]

The mass-shell constraint (2.17) is in fact a special
case of a general first-class constraint associated with
a gauge freedom. Here, the gauge symmetry is the
reparameterization-invariance of the worldline parameter
σ, with its associated gauge freedom represented by the
length of uµ. This leads to the feature that the relation
(2.16) depends only on the normalized four-vector uµ/z
and is noninvertible. Following the usual procedure in
constrained dynamics [84, 85], the constraint (2.17) must
be added to the action using a Lagrange multiplier α

S =

∫
dσ

[
pµu

µ + Pµν
DQµν

dσ
− α

2
(pµp

µ +M2)

]
,

(2.20)
with the canonical Hamiltonian being zero. In this form
of the action, the function α is undetermined and rep-
resents the gauge freedom of the original action (2.14).
Note also that in (2.20) the mass-shell constraint takes
the place of the Hamiltonian and all interactions enter
as deformations of the mass shell. This is an important
point of view for constructing the test-particle–limit (and
then EOB) Hamiltonian, as we shall see in Secs. III C and
IV.

D. Imposing the tidal constraints

In this Section we impose the constraints on the tidal
variables from the action in Eq. (2.14) through an explicit
split into spatial and time components.

We perform the 3+1 decomposition of Qµν and Pµν to
single out their spatial SO(3)-irreducible parts. As dis-
cussed below Eqs. (1.7) and (1.8), in the body’s rest frame
the quadrupole is a symmetric trace-free spatial tensor.
Its conjugate momentum Pµν shares the same properties
and satisfies the same constraints to linear order in the
tidal variables, as can be shown by taking a time deriva-
tive of Eq. (1.7) and using the definition (2.10). There-
fore, to single out the independent spatial components
of Qµν and Pµν we perform a Lorentz boost to the rest
frame. For this purpose, we project the tidal variables
onto a tetrad ea

µ, defined such that gµν = ea
µeb

νηab,
where ηab is the Minkowski metric. The quadrupole can
thus be expressed in terms of its components on the local
Lorentz frame Qab as Qµν = ea

µeb
νQab. The next step is

to apply a Lorentz boost Bab to transform Qab and Pab
to the rest frame which we denote by a tilde,

Qab = BacBbdQ̃
cd, Pab = BacBbdP̃

cd. (2.21)

A particularly simple boost to the rest frame is given by

Bab = ηab − 2
uaδb0
z

+
(ua + zδa0 )(ub + zδb0)

z(z + u(0))
, (2.22)

which is sometimes referred to as a standard boost. This
boost has the properties BabB

cb = ηac, Ba(0) = ua/z,
and ua/zB

a
b = η0b. This implies that the constraints

Qµνu
ν = 0 and Pµνu

ν = 0 become Q̃a(0) = 0 = P̃ a(0) in
the rest frame, where the round brackets around an index
denote the local frame. The SO(3)-irreducible compo-
nents of Qµν and Pµν are therefore the spatial symmetric

trace-free tensors Q̃(i)(j) and P̃ (i)(j). The transformation
to the tetrad frame is

Qab = Ba(i)Bb(j)Q̃
(i)(j), (2.23)

Pab = Ba(i)Bb(j)P̃
(i)(j). (2.24)

To simplify the notation, we henceforth drop the tilde
and the round brackets for the spatial indices of certain
tensors. Specifically, we define

Qij := Q̃(i)(j), P ij := P̃ (i)(j), Eij := Ẽ(i)(j), (2.25)

SijQ := S̃
(i)(j)
Q = 4Qk[iP j]k, (2.26)

and we also omit the round brackets on indices of Bab
since it is used in the local frame only.

We next consider the split of the action in Eq. (2.14)
into space and time starting with the tidal kinematic
term

Pµν
DQµν

dσ
= Pij

DQij

dσ
+

1

2
SijQ

DBai
dσ

Baj . (2.27)

Interestingly, the combination of boosts in the last term
also appears in the computation of spin effects [86]. Here
only the last term of Eq. (3.18) in Ref. [86] gives a non-
vanishing contribution leading to

DBai
dσ

Baj =
u(i)ηja

z + u(0)

D

dσ

[
ua

z
+ δa0

]
− (i↔ j). (2.28)

It is important to note that δj0 = 0 can only be inserted in
Eq. (2.28) after expanding the covariant derivative using
that

Dub
dσ

= u̇b + uµuaωµab. (2.29)

Here, the Ricci rotation coefficients are defined to be
ωµ

ab = eaν,µe
b
ν + ebνe

aρΓνρµ, the Christoffel symbols
are 2Γαµν = gαµ,ν + gαν,µ − gµν,α, and in this Section
a dot denotes a derivative with respect to σ. Thus, the
decomposition of the tidal kinematic terms is explicitly
given by

Pµν
DQµν

dσ
= PijQ̇

ij + LFD, (2.30)

with

LFD = uµωµij

[
SijQ
2

+
SikQ u(k)u

(j)

z(z + u(0))

]
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− uµωµ0iS
ij
Q

u(j)

z
+
SijQu(i)u̇(j)

z(z + u(0))
. (2.31)

Here FD stands for frame dragging, whose physical ori-
gin was explained in the introduction. These interaction
terms are identical to those in the effective action of or-
dinary spin effects (as given in Eq. (5.27) of Ref. [86]).

We continue the split into space and time components
of the action (2.14) with the decomposition of the tidal
interaction term,

LEQ = −z
2
EµνQ

µν = −z
2
EijQ

ij , (2.32)

where we use the notation Eij = BaiB
b
jea

µeb
νEµν . This

term likewise has a corresponding analog in the ordinary
spin calculations given by the spin-induced quadrupole,
which is discussed below. Finally, the oscillator part of
the Lagrangian is

Lo = −z
[
λω2

fPijP
ij +

1

4λ
QijQ

ij

]
. (2.33)

Note that the dependence on the metric enters only
through the overall factor z, which is the same for the
point-mass part, i.e., −zm. Thus, one can view the pure
oscillator part as a shift of the mass m, see Appendix C.

Collecting all the pieces, the matter action is given by

S =

∫
dσ
[
PijQ̇

ij −mz + Lo + LEQ + LFD

]
. (2.34)

A very similar decomposition can be worked out for the
action in Eq. (2.20), which is exercised in Sec. III C.

III. POST-NEWTONIAN AND TEST-PARTICLE
APPROXIMATIONS

In this Section we explicitly derive all the terms en-
tering the action (2.34) to 1PN order and obtain the
Hamiltonian. The PN approximation requires integrat-
ing out the potential or near-zone “modes” of the gravi-
tational field [69, 70] and usually involves lengthy Feyn-
man integral calculations. Here, however, we can by-
pass these computations by exploiting connections to the
point-mass and spin sectors and simply apply certain re-
placements to PN results from Ref. [86]. Previous results
for the action using different approaches were obtained
at 1PN order [24] and, in the adiabatic limit at 2PN [25],
see Sec. I B. In addition to the PN limit of the action,
we also consider the test-particle limit, which provides
information about the strong-field behavior.

A. Potential at 1PN order

The PN approximation is a weak-field and slow-motion
approximation with orders counted as powers of v2 ∼
Gm/r, where v is the velocity of the object and r is

the orbital separation. In this framework, tidal effects
are suppressed by a multipolar approximation parameter,
which, for the even-parity 2l-polar tidal interaction, is
given by

(2l-pole) ∼
(
R

r

)2l+1

, (3.1)

where R is the object’s radius, and l = 2 for the lead-
ing order tidal effects considered here. For black holes,
R ∼ Gm, which means that the multipolar suppression
meshes with the PN power-counting scheme and the con-
clusion from Eq. (3.1) is that tidal effects start only at
5PN order. However, for neutron stars R� Gm so that
the multipolar scaling fails to mesh with the PN count-
ing. Therefore, tidal effects are considered to start at
Newtonian order. In this Section, we work out the next-
to-leading or first PN (1PN) corrections to tidal effects
and compare to the findings in Ref. [24].

We introduce the following notation. The tidally de-
formed body is labeled as number 1 and its point mass
companion as number 2, where the labels are also used
for the corresponding masses and orbital variables. The
index A denotes a generic particle label. We continue to
give explicit results only for the case of one tidally de-
formed body, noting that all the expressions can readily
be extended to the case of two deformed bodies by adding
a copy of all the tidal terms with the particle labels in-
terchanged. For the worldline parameter, we choose the
gauge σA = t, where t is the coordinate time that coin-
cides with the time measured by an asymptotic observer.

For the subsequent PN analysis it is convenient to ex-
press the action (2.34) in terms of the PN potential VQ
as

S =

∫
dt
[
Lpm + PijQ̇

ij − VQ
]
, (3.2)

where Lpm is the point-mass Lagrangian in the PN ap-
proximation. Here, the subscript “pm” denotes a point-
particle having only a mass monopole. The PN approxi-
mated tidal potential is decomposed as

VQ = Vo + VEQ + VFD, (3.3)

where each part of Eq. (3.3) is discussed and derived in
detail below.

The contribution arising from the oscillator (2.33) is
obtained as follows. As already noted, the dependence
on the gravitational field enters in this term only through
the overall factor of z, which is the same in the point-
mass part. We can therefore obtain the PN potential Vo
associated with Eq. (2.33) by a linear shift of the mass
m1 in the non-tidal part of the Lagrangian which leads
to

Vo = z1

[
λω2

fPijPij +
1

4λ
QijQij

]
, (3.4)

where we use

zA = −∂Lpm

∂mA
. (3.5)
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To 1PN order this is explicitly

z1 = 1− v2
1

2
− Gm2

r
, (3.6)

where r = y1−y2, vA = ẏA. It is crucial here that Pij is
treated as an independent variable, otherwise the depen-
dence of Lo in Eq. (2.33) on the gravitational field would
be more complicated. The physical interpretation of the
quantity z1 is that it is the redshift between the proper
time of the worldline τ1 and the asymptotic observer with
time t. The fact that the redshift can be obtained from
the formula (3.5) was first realized in the context of the
first law of mechanics for binary black holes [87]. This
can be understood by observing that Lpm arises from
the procedure of integrating out the potential modes of
the point-mass Lagrangian −zAmA. This procedure does
not affect the physical meaning of the partial derivative
in Eq. (3.5), hence we have

zA =
√
−uµuµ =

dτA
dt

. (3.7)

In the last step we used the definition of the proper time
dτ2
A = −gµνdyµAdyνA and the gauge σA = t.
Consequently, the PN corrections to the pure oscilla-

tor part have a simple physical interpretation. When the
oscillator is described in terms of the proper time τ1, it
is an ordinary Newtonian oscillator, in accordance with
the expectations from the equivalence principle. The PN
corrections in Vo are due to the redshift to the asymp-
totic observer with time t, which is used to describe the
dynamics in PN theory and which is measured by the
gravitational-wave detectors. This leads to an effective
redshift of the resonance frequency away from its value
ωf measured in the frame of body 1.

The contribution from the interaction terms VEQ in
Eq. (3.3) is associated with the Lagrangian in Eq. (2.32).
This term is analogous to the spin-induced quadrupole
coupling described in Refs. [86, 88, 89]

LES2 =
zCES2

2m
EµνS

µSν =
zCES2

2m
EijS

iSj , (3.8)

where the spin vector is defined by

Sα = −1

2
ηαβµν

uβ

z
Ŝµν , Si = Baiea

µSµ, (3.9)

and ηαβµν is the completely antisymmetric volume form.
The spin potentials are expressed in terms of the canon-
ical spin denoted by a hat. This spin is given by the
spatial components Ŝi = 1

2εijkŜ
(j)(k) of the spin ten-

sor Ŝµν which satisfies the Newton-Wigner condition
Ŝab(u

b + zδb0) = 0. Using this condition and the defini-

tions given above, one can show that Ŝi = Si. There-
fore the spins Si in Eq. (3.8) are those appearing in
the final PN potential. The potential associated with
Eq. (2.32) can therefore be obtained by substituting the
tidal quadrupole in place of the spin quadrupole using
the identification

CES2SiSj → −mQij . (3.10)

This further implies the substitution S2 → 0 since Qij is
tracefree. Using these replacements in the 1PN expres-
sions for the spin-induced quadrupole interaction poten-
tial given in Eqs. (6.10) and (6.40) of Ref. [86] or equiv-
alently in Ref. [90] leads to

VEQ =
Gm2

2r3
Qij
[
− 3ninj − vi1v

j
1 + vi1v

j
2 + 3vi1n

j(v1 · n− v2 · n)− 3vi2n
jv1 · n− 1

2n
inj(9v2

1 − 21v1 · v2 + 9v2
2 (3.11)

− 15v1 · nv2 · n)
]

+
3

2

G2m2

r4
(m1 + 4m2)Qijninj +

Gm2

r2

[
Qijai1n

j + Q̇ij(vi1n
j − 3

2v
i
2n
j − 3

4n
injv2 · n)

]
,

where n = r/r, aA = v̇A. This result can readily be
extended to 2PN order by applying the spin to tidal-
quadrupole mapping (3.10) to the expressions in Ref. [91].

The last term in Eq. (3.3) describes the interaction
of the orbital and tidal angular momentum given in
Eq. (2.31), which, as discussed above, is identical to the
ordinary spin interaction terms in PN theory. We can
therefore obtain the corresponding potential VFD by re-
placing the spin by SijQ in the PN spin potentials that
are already available. Note that this replacement only
works because SijQ is independent of the field and instead

depends only on the two independent tensors Qij and
Pij . Applying the spin to tidal-spin transformation to

the leading-order spin-orbit potential from Eq. (6.3) in
Ref. [86] leads to

VFD = −2
Gm2

r2
SQ · [v1 × n− v2 × n]

− 1

2
SQ · v1 × a1,

(3.12)

where SiQ = 1
2εijkS

jk
Q . Previous alternative derivations

of the result (3.12) can be found in Refs. [92–94].
This potential is at 1PN order in the tidal case, but

in the literature it is usually counted as a 1.5PN spin ef-
fect. This happens because the counting of the ordinary
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spin effects usually assumes a rapidly rotating (extremal)
black hole whose spin is considered to be a 0.5PN contri-
bution, while the tidal spin SQ is fixed by the Newtonian
counting of the quadrupole through Eq. (2.26). The po-
tential could be extended to 3PN order (3.5PN in the or-
dinary counting) using the results of Refs. [95, 96]. These
interaction terms have the physical interpretation that
they describe the frame-dragging effect due to a gravito-
magnetic field, as explained in Sec. I B above. The inti-
mate connection between spin and frame dragging is evi-
dent in the case of a small test spin, which stays constant
in a local inertial frame but can change direction as seen
by a distant observer. In general, the particle’s worldline
deviates from geodesic motion, e.g., due to tidal forces.
Thus, the frame associated with the worldline is not in-
ertial, but follows a Fermi-Walker transport. This is en-
coded in the acceleration-dependent term in Eq. (3.12).
Since we consider the case of an irrotational star, we refer
to VFD as frame dragging rather than a spin effect.

The final result for the 1PN tidal Lagrangian (3.2) is
then obtained from Eq. (3.3) together with Eqs. (3.4),
(3.11), and (3.12). A similar result was derived from the
PN equations of motion in Ref. [24]. Taking into account
the different conventions, we find that the difference be-
tween the two expressions is a total time derivative given
by

LQ + VEQ + Vo =
d

dt

[
−Gm

2
2

r2M
Qijni(vj1 − v

j
2)

]
, (3.13)

where LQ is the Lagrangian from Ref. [24], M = m1+m2,
and we specialize to the adiabatic limit ωf → ∞ in Vo.
We can further obtain an equation of motion for the tidal
angular momentum, which at Newtonian order reads

ṠklQ =
6Gm2

r
Qj[knl]nj , (3.14)

in agreement with the tidal torque in Eq. (1.7) in Ref. [24]

and our covariant Eq. (2.13). While the method based
on the PN equations of motion [24] and the effective ac-
tion approach developed here lead to identical results, the
advantage of using the effective action is that it makes
the underlying structure of the terms (such as the red-
shift factors) explicit, and clarifies the relevance of the
tidal spin. These insights further facilitate the extension
of the results to higher PN orders and the identification
of several tidal contributions for which existing results
about point-mass and spin potentials can be used.

B. Hamiltonian at 1PN order

Implementing dynamical tidal effects in the EOB for-
malism first requires deriving the Hamiltonian associated
with the Lagrangian (3.2). This can be accomplished by
employing a reduction of order to remove higher order
time derivatives in the potential using the equations of
motion [80], followed by a Legendre transformation of the
velocities. We apply this procedure to the 1PN tidal La-
grangian in Eq. (3.2) using the Newtonian equations of

motion Q̇ij = 2λω2
fPij . Similarly, to perform the Legen-

dre transformation it is sufficient to use the Newtonian
relations vA ≈ pA/mA, where pA are the canonical mo-
menta conjugate to yA. Since the Hamiltonian can be di-
rectly obtained from these substitutions, we refrain from
showing this intermediate result here. Next, we trans-
form to the center of mass frame where p1 + p2 = 0.
This results in the following 1PN accurate Hamiltonians

Ho = z1

[
λω2

fPijPij +
1

4λ
QijQij

]
, (3.15)

z1 = 1− p2

2m2
1

− Gm2

r
, (3.16)

HFD =
G

r2
SQ ·L

[
2 +

3

2

m2

m1

]
, (3.17)

HEQ =
G

2m1r3
Qij
[
− 3m1m2n

inj − 3
2 (7 + 3m1

m2
+ 3m2

m1
)ninjp2 − 15

2 n
inj(p · n)2 − (1 + m2

m1
)pipj + 3(2 + m2

m1
)pinjp · n

]
+
G

r2
λω2

fPij
[

3
2n

injp · n + (3 + 2m2

m1
)pinj

]
+
G2m2

2r4
(3m1 + 10m2)Qijninj , (3.18)

where p = p1 = −p2 and L = r × p.

To derive the Poisson bracket relations and demon-
strate that Qij and P ij and r and p are canonically con-
jugate pairs, it is useful to consider the action expressed
in the form

S =

∫
dσ
[
p · ṙ + PijQ̇

ij −Hpm −HQ

]
, (3.19)

where Hpm is the point-mass Hamiltonian in the PN ap-
proximation and the tidal Hamiltonian is

HQ = Ho +HEQ +HFD. (3.20)

The redshift can be obtained from the Hamiltonian
through

zA =
∂Hpm

∂mA
. (3.21)
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Note that the reduction of order in the Lagrangian im-
plicitly also entails a redefinition of the variables as dis-
cussed in Ref. [80]. Therefore, the canonical momenta p
do in general not agree with the spatial components of
pµ.

The equations of motion obtained from varying the
action (3.19) have the structure of Hamilton’s equations
and are equivalent to the Poisson brackets

{ri, pj} = δij , (3.22)

{Qij , Pkl} = δijkl, (3.23)

with all others being zero. The quadrupolar symmetric
trace-free projection operator is given by

δijkl =
1

2
(δikδjl + δilδjk)− 1

3
δijδkl. (3.24)

It follows that the tidal angular momentum SijQ obeys a

canonical SO(3) angular-momentum algebra,

{SijQ , S
kl
Q } = δikS

jl
Q − δjkS

il
Q − δilS

jk
Q + δjlS

ik
Q . (3.25)

However, the tidal angular momentum SijQ has nonvan-
ishing brackets with other variables,

{Qij , SklQ } = δilQ
kj − δikQlj + δjlQ

ik − δjkQil, (3.26)

{Pij , SklQ } = δilPkj − δikPlj + δjlPik − δjkPil. (3.27)

This algebra implies that SijQ is the generator of infinites-
imal rotations for the tidal variables. The interaction
terms involving SijQ therefore effectively rotate or drag
the frame of the tidal variables. The Poisson brackets
(3.26) agree with the bracket algebra for internal degrees
of freedom of a spinning particle in general relativity con-
structed in Ref. [97].

C. Test-particle Hamiltonian

The PN approximation discussed above is only valid
for slow motion and weak gravitational fields, but generic
mass ratios. By contrast, the small-mass-ratio approxi-
mation is valid for generic velocity and field strength, but
is limited to perturbations of the test-particle limit. The
EOB model provides a unified framework to incorporate
both the PN and test-particle results in the respective
limits, bridging between them. As a first step in build-
ing a dynamical tidal EOB Hamiltonian, in this Section,
we derive the dynamical tidal Hamiltonian in the test-
particle limit following the method in Ref. [98]. The adi-
abatic limit of the tidal Hamiltonian in the test-particle
case for circular orbits was computed in Ref. [25]. Fur-
thermore, the frame dragging contributions can be found
in Refs. [98, 99], where the spin should be mapped to the
tidal spin. In order to focus on the new terms in this
Section, we therefore omit these known frame-dragging
contributions entering via Eq. (2.30).

We start from the action principle given in Eq. (2.20).
Neglecting frame effects in Eq. (2.30), one can pass to
the SO(3)-irreducible tidal variables by simply replacing
4-indices by local 3-indices. The action principle then
becomes

S =

∫
dσ
[
pµu

µ + PijQ̇
ij − α

2
(pµp

µ +M2) +O(SQ)
]
,

(3.28)
where as before the dynamical mass is M = µ+Ht and
the tidal Hamiltonian is

Ht = λω2
fPijPij +

1

4λ
QijQij +

1

2
EijQ

ij . (3.29)

We replace the mass m by µ here for later convenience.
All interactions are encoded in a deformation of the mass-
shell constraint,

0 = (µ+Ht)
2 + gµνpµpν , (3.30)

which follows from the variation of α.
We next reduce the orbital variables to their physical

components, choosing the coordinate time as the world-
line parameter σ = t, or u0 = 1, as we did in the PN
case. Solving the mass-shell constraint (3.30) for p0, we
obtain the action in the form

S =

∫
dt(piṙ

i + PijQ̇
ij −HTPL), (3.31)

whereHTPL ≡ −p0 is the Hamiltonian in the test-particle
limit (TPL). To obtain explicit expressions for the po-
tentials in the Hamiltonian HTPL we insert the metric in
Schwarzschild coordinates (t, r, θ, φ) into the mass-shell
constraint, since similar coordinates are used in the EOB
model. The solution of the mass-shell constraint then
leads to

HTPL =
√
ATPL

√
(µ+Ht)2 + p2

e, (3.32)

where ATPL = 1− 2GM/r. We see from Eq. (3.32) that
the tidal Hamiltonian Ht enters as a shift of the test-
mass µ, which is expected based on the form of the mass-
shell constraint (3.30). The subscript e on the linear
momentum vector denotes that components are taken in
the local tetrad frame ea

µ,

pe =
(
p(i)
)

=

 √ATPLpr
pθ/r

pφ/(r sin θ)

 , (3.33)

and pe = |pe|. Here the tetrad was chosen as the sym-
metric matrix square-root of the metric. Since Ht scales
with the fourth power in the mass ratio, we can expand
in Ht as

HTPL ≈
√
ATPL(µ2 + p2

e) + zTPLHt, (3.34)

where the redshift is

zTPL =
∂HTPL

∂µ
≈
√
ATPL

[
1 +

p2
e

µ2

]− 1
2

≈ µATPL

HTPL
.

(3.35)
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To derive the expression for the tidal Hamiltonian we
decompose it as

Ht = HTPL
o +HTPL

EQ +O(SQ), (3.36)

HTPL
o = λω2

fPijPij +
1

4λ
QijQij , (3.37)

HTPL
EQ =

3GM

2µ2r3
Qij
[
(n× pe)

i(n× pe)
j

−
(
p(0)ni −

n · pep(i)

µ+ p(0)

)(
p(0)nj −

n · pep(j)

µ+ p(0)

)]
,

(3.38)

where we have obtained Eij = BaiB
b
jea

µeb
νEµν from

the mapping in Eq. (3.10) and Ref. [98] in the limit of
vanishing Kerr parameter. In these expressions, one can
interchangeably use uµ or pµ within our approximation

and the quantity p(0) is

p(0) =
HTPL√
ATPL

≈
√
µ2 + p2

e. (3.39)

In Eq. (3.38) we have also introduced a vector (ni) =
(1, 0, 0) so as to express the Hamiltonian in a mani-
festly rotation-invariant form. This facilitates the use of
Cartesian-like frames that are used in PN computations
whereas the frame used above is adapted to spherical co-
ordinates and is therefore noninertial in the Newtonian
limit. Hence the frame effects involving SijQ , which we
ignored in this Section, cover not only relativistic frame-
dragging effects, but also Newtonian frame effects (e.g.,
the Coriolis force). This becomes more apparent in an
explicit calculation below.

Although the test-particle Hamiltonian (3.38) is al-
ready rather simple, we can make a further useful ap-
proximation, namely that the motion is along circular
orbits so that pr ≈ 0. In this limit the tidal interaction
Hamiltonian reduces to

HTPL
EQ =

3GM

2µ2r3
Qij

[
LiLj

r2
−
(
p(0)
)2

ninj
]

+O(pr),

(3.40)
where L = rn × pe. An interesting feature of this
circular-orbit version of HTPL

EQ is that no other terms be-
yond the 1PN approximation appear.

IV. CONSTRUCTION OF THE
EFFECTIVE-ONE-BODY HAMILTONIAN

In this Section we map the above analytical results for
relativistic dynamical tides into the EOB Hamiltonian
describing the conservative dynamics of the binary. The
full EOB waveform model, including dissipative effects,
is discussed in Ref. [68]. The implementation of generic
quadrupoles discussed here immediately applies also to
spin-induced quadrupoles via Eq. (3.10), which can be
useful for improvements of EOB models for spinning bi-
naries.

A. Structure of the Hamiltonian

In the EOB approach, incorporating the properties of
the bodies other than the masses is non-trivial. For in-
stance, in the case of spinning black holes, different pro-
posals exist [60, 61]. The task of incorporating the effects
of dynamical quadrupoles is qualitatively very different
from including black-hole spins, since they further in-
volve the internal dynamics of the bodies. In this Section,
we therefore elaborate on the basic principles behind the
construction of the EOB Hamiltonian to motivate our
prescription for incorporating dynamical tidal effects in
the EOB model.

The EOB Hamiltonian HEOB is based upon an effec-
tive Hamiltonian Heff describing the motion of an ef-
fective particle in an effective metric [8]. In the test-

particle limit, the effective metric gαβeff can be chosen as
the Schwarzschild or Kerr metric so that the test-particle
limit is incorporated in a natural manner. For generic
mass ratios, the mapping between the Hamiltonians is

HEOB = M

√
1 + 2ν

(
Heff

µ
− 1

)
, (4.1)

where µ = m1m2/M is the reduced mass and ν = µ/M .
While alternatives to this map were considered in the
literature [8, 100], no compelling reason was found to
modify it away from this simple form, except for the one
found in Appendix C here. The action corresponding to
the EOB Hamiltonian is

SEOB =

∫
dt(piṙ

i + PijQ̇
ij −HEOB). (4.2)

To construct the effective Hamiltonian it is useful to
recall that in the Newtonian limit, the motion of a binary
can be mapped to the motion of a reduced mass µ in
a central potential of mass M . Hence it is natural to
start out the EOB construction with a particle of mass µ
moving in a (deformed) effective metric of mass M . The
effective Hamiltonian, being a test-particle Hamiltonian,
is then given by Heff = −p0 (see Sec. III C), where p0

follows as the solution of the mass-shell constraint

0 = µ2 + µ2
NG + gαβeff pαpβ . (4.3)

Here µNG incorporates possible effective interactions
which lead to a non-geodesic (NG) motion, analogous to
the tidal interactions in Sec. III C. For the time being, we
consider µNG to be a generic symbol, but assume that a
possible dependence on p0 can be treated perturbatively
as in Eq. (3.39) when solving the mass-shell constraint.3

The effective Hamiltonian for a generic effective metric
is then given by

Heff = −p0 =
√
A

√
µ2 + µ2

NG + γijeffpipj + βipi, (4.4)

3 Note that µ2
NG is related to the potential Q introduced in

Ref. [100]
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where

A = − 1

g00
eff

, βi =
g0i

eff

g00
eff

, (4.5)

and γijeff is the inverse of the spatial effective metric geff
ij ,

γijeff = gijeff −
g0i

effg
0j
eff

g00
eff

. (4.6)

The effective metric and µNG are fixed by requiring that
HEOB agree with the PN and test-particle Hamiltonians
in the respective approximations.

B. Matching to the test-particle limit

Since the foundation for the structure of the effective
Hamiltonaian is the test-particle limit, we first discuss
the inclusion of dynamical tides in the test-particle EOB
Hamiltonian. In the test-particle limit the EOB and ef-
fective Hamiltonians are related by

HEOB ≈M +Heff − µ, (4.7)

where the factors of masses are due to the different rest-
mass energies of the two Hamiltonians. The test-point-
mass limit is then reproduced by taking the effective met-
ric to be the Schwarzschild metric.

To incorporate the case of a test-particle with dynam-
ical tidal degrees of freedom we consider the mass-shell
constraint in Eq. (3.30) which is explicitly given by

0 ≈ µ2 + 2µ(HTPL
o +HTPL

EQ ) + gαβpαpβ +O(SQ), (4.8)

where we have linearized in the tidal terms. Compar-
ing this expression to the constraint given in Eq. (4.3) to
identify the tidal contributions to the effective metric and
the non-geodesic term does not lead to a unique identi-
fication. To fix this freedom, we choose the prescription
that all terms that are quadratic in pµ in Eq. (4.8) result
from a contraction with the effective metric. This im-
plies that HTPL

EQ contributes to the effective metric, which

follows from the interaction term in Eq. (3.29) together
with the definition (1.6) and using that within our ap-
proximations uµ and pµ are interchangeable in this term.
The effective metric is then given by

gαβeff = gαβ +
1

µ
CµανβQµν . (4.9)

Furthermore, note that the pure oscillator part HTPL
o is

independent of pµ and hence must be included in the
non-geodesic term leading to the result µ2

NG = 2µHTPL
o .

It is noteworthy that the effective metric is deformed
away from the Schwarzschild metric gαβ even in the test-
particle limit here, in contrast to non-tidal EOB models
where the deformation starts at linear order in the mass
ratio.

Using the above conventions to construct the effective
Hamiltonian in Eq. (4.4) leads to the following prescrip-
tion. All the terms in the mass-shell constraint (4.8)
that are quadratic in pi, as seen explicitly by substitut-
ing the expression (3.38) for HTPL

EQ , are resummed in

γijeff, while all terms linear in pi and in p0 contribute to
the potential βi, all terms quadratic in p0 contribute to
A, and all remaining terms are included in µNG. The im-
portance of having access to additional information from
the mass-shell constraint to determine these assignments
is highlighted in Appendix C.

V. GAUGE FREEDOM WITH DYNAMICAL
TIDAL EFFECTS

Having derived the general structure of tidal contribu-
tions to the EOB Hamiltonian based on the test-particle
limit, we next discuss several manipulations that are nec-
essary to map the PN results into tidal corrections to the
EOB functions. In this Section we focus on gauge trans-
formations. We first derive the 1PN accurate general
canonical transformation from harmonic to EOB coordi-
nates including the tidal terms. We subsequently apply
the method of canonical transformations to obtain a rig-
orous derivation of the circular-orbit limit. Lastly, we
present a convenient choice of frame for the degrees of
freedom of the dynamical quadrupole.

A. Tidal terms in the gauge transformations

To express the PN Hamiltonian HPN in the form re-
quired by the EOB Hamiltonian we apply a canonical
transformation with generator g to obtain

HEOB = HPN + {HPN, g}+
1

2!
{{HPN, g}, g}+O(g3).

(5.1)
This transformation can be evaluated by making a gen-
eral ansatz for g and for the PN expansion of the EOB
potentials that are invariant under rotations and transla-
tions, each involving undetermined coefficients, and solv-
ing (5.1) at each PN order. The solutions for the coef-
ficients are in general not unique, which allows for fur-
ther simplifications or convenient choices. The resulting
canonical transformation can be viewed as a change of
gauge on phase space with the choices for the free coeffi-
cients defining the gauge(s) of the EOB model.

To proceed, we split the canonical transformation into
point-mass and tidal parts,

g = gpm + gDT. (5.2)

The point-mass part to 1PN order reads [8]

gpm =
νr

2µ2
p2n · p− GM

2
n · p(2 + ν). (5.3)
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This generator and the point-mass potentials are
uniquely fixed by the requirement that the effective
Hamiltonian is identical to the test-particle Hamiltonian,
that is, no corrections in the mass ratio are necessary. At
2PN order, however, this requirement can no longer be
satisfied. [Yet, the pφ-dependence in Eq. (6.4) below can
in fact remain unaltered at higher PN orders. This in-
variance can be interpreted as a gauge-invariant meaning
of the radial coordinate as the “centrifugal” radius [101].]

For the tidal part of the canonical transformation,
we choose an ansatz such that the transformation only
generates terms having the same structures as already
present in the 1PN Hamiltonian (3.18). This excludes
generators involving Pijn

inj and requires the generator
to be linear in p and at most quadratic in the tidal vari-
ables. This leads to the general form

gDT =
Gm2

µr2
Qij
[
g1n

injn · p + g2n
ipj
]

+
rn · p
µ

[
g3λω

2
fPijPij +

g4

4λ
QijQij

]
+

g5

µ2r
n · pL · SQ + gcirc,

(5.4)

where the coefficients gn parameterize the freedom in
the PN coordinates. Here, the term involving g5 that is
quadratic in p is associated with frame effects, which are
discussed in detail in Sec. V C below. To avoid terms of
the form PijQ

ij , which do not appear in the Hamiltonian
up to 1PN order, we set g4 = g3. The generator gcirc is
an additional contribution that is necessary for imposing
the circular-orbit limit at the level of the Hamiltonian.
It will be discussed in the next Section and is given by

gcirc =
g6Gm2

µr2p2
Qijpipjn · p. (5.5)

Note that this generator should only be used for special-
izing to circular orbits since it would otherwise produce
unusual terms due to the factor of p2 in the denominator.

Another possible term in the generator is the combi-
nation

gDT ∼
[
p2

2µ
− GMµ

r

]
PijQ

ij . (5.6)

The prefactor here is the Newtonian Hamiltonian, which
approximately commutes with HPN in Eq. (5.1) and
therefore does not produce structurally new terms, so
that it is formally allowed. However, this transformation
produces terms proportional to the kinetic and potential
energies of the oscillator in Eq. (3.15), but with the op-
posite relative sign. Since the structure in Eq. (3.15) per-
sists to all PN orders, we can exclude terms like Eq. (5.6)
in the generator of the canonical transformation. How-
ever, for alternative choices of the EOB mapping not con-
sidered here, where the kinetic and potential oscillator
energies are included in different potentials of the EOB
Hamiltonian, the generator in Eq. (5.6) carries a nonzero
coefficient.

B. Specializing the tidal Hamiltonian to circular
orbits

We are ultimately also interested in specializing our
results for the tidal terms in the EOB model to circular
orbits. In the case considered here, this specialization can
be accomplished by starting from the results for generic
orbits and substituting pr := n · p = 0, p2 = L2/r2, and
replacing L2 by its value for circular orbits derived from
the equations of motion. These ad-hoc substitutions can,
however, be justified by employing a rigorous reduction
method based on canonical transformations, as detailed
below.

First, we consider the subtleties in the condition for cir-
cular orbits. By definition, circular orbits have r = const.
in time. From the equations of motion for the sys-
tem (given in Appendix B), it follows that the condition
r = const. concurrently requires the quadrupole degrees
of freedom to be in equilibrium. Altogether, this implies
that pr = 0 for circular orbits in the case considered here.

As mentioned in the previous Section, the circular-
orbit limit can be imposed through a canonical transfor-
mation. It is useful to start with general considerations of
the effect of the transformation (5.4) in the circular limit.
Specifically, we note that most of the terms in (5.4) have
the structure

gf = f
rn · p
µ

= f
rpr
µ
, (5.7)

where f = f(r,p, Qij , Pij) is a generic function of the
canonical variables. The effect of a transformation of the
form (5.7) in the circular-orbit limit, to linear order in
the tidal variables, and to leading order is

{Hpm, gf} = −f rṗr
µ

+O(pr),

= f

[
−p2

µ2
+ u

]
+O(pr, u

2), (5.8)

where

u =
GM

r
. (5.9)

The transformation (5.8) effectively replaces p2 by its
value for circular orbits in absence of tidal effects, given
by4

p2 = µ2(u+ 3u2) +O(pr, u
3). (5.10)

To specialize the tidal interaction terms in the Hamilto-
nian (3.18) to circular orbits one first sets all occurences
of (p · n) to zero. The remaining terms involving p2

are eliminated through transformations with generators
of the form (5.8), with f chosen to cancel the coeffi-
cient of p2 in each case. For example, the circular-orbit

4 The higher-order terms are justified in Appendix D.
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limit of the second term in the first line of HEQ from
Eq. (3.18) is obtained by using a transformation with
f = −3µ2GQijninj(7 + 3m1/m2 + 3m2/m1)/(4m1r

3).
However, generators of the form (5.7) are insufficient
to remove all the dependences on p from the tidal in-
teraction Hamiltonian (3.18) since there are additional
terms having the structure ∼ Pijn

ipj and ∼ Qijpipj .
To eliminate the former requires a generator of the form
∼ Qijnipj already present in the generic generator (5.4)
while removing the latter requires a new structure (5.5)
that is absent for generic orbits. For each of these genera-
tors the coefficients are chosen so as to remove such terms
from the transformed Hamiltonian. Appropriate choices
for specific cases are determined in Secs. VI B and VI D.

C. Corotating frame

In addition to the choice of gauge for the canonical
transformations, further freedom remains to choose the
frame in which the dynamical quadrupole components
are expressed. This gauge choice on phase space must be
treated exactly instead of using an infinitesimal generator
g since it can introduce Newtonian Coriolis forces, and
would therefore require an infinite number of terms in
Eq. (5.1). Here, we specialize to a frame that is aligned
with the tidal field in the Newtonian limit. Specifically,
this frame is corotating with the orbit and spanned by
the basis vectors ΛI given by

Λ1 = n, Λ3 =
L

L
= `, (5.11)

Λ2 = Λ3 ×Λ1 =
r

L
(p− prn). (5.12)

We denote the corotating frame by capital indices, as in

Qij = ΛI
iΛJ

jQIJ , Pij = ΛI
iΛJ

jPIJ . (5.13)

The tidal kinematic terms in the EOB action (4.2) then
become

PijQ̇
ij = PIJQ̇

IJ + SiQΩi, (5.14)

where the angular velocity of the frame is Ωi =
1
2εiklΛI

kΛ̇I
l and reads explicitly

Ω = Λ1 × Λ̇1 −Λ1Λ2 · Λ̇3. (5.15)

The relation (5.15) is valid for a generic frame and cyclic
permutations of the frame indices. Substituting the
frame (5.11) leads to

Ω = n× ṅ +
r2

L2
n (n · p× ṗ + prp · n× ṅ) . (5.16)

We henceforth assume that the tidal quadrupole is
aligned with the orbit and parameterize it as follows

(QIJ) =

α+ β γ 0
γ α− β 0
0 0 −2α

 . (5.17)

This also implies that the tidal angular momentum is
aligned with the orbital angular momentum, SiQ ∼ Li,

and therefore only the first term in Eq. (5.16) contributes.
This term can be eliminated by a shift of the linear mo-
mentum

p −→ p− 1

r2
SQ × r, (5.18)

such that

piṙ
i + PijQ̇

ij −→ piṙ
i + pαα̇+ pβ β̇ + pγ γ̇. (5.19)

Using these results in the EOB action (4.2) implies the
new Poisson brackets for the quadrupole components

1 = {α, pα} = {β, pβ} = {γ, pγ}, (5.20)

with all others being zero. Here we used the decomposi-
tion

(PIJ) =
1

2

pα
3 + pβ pγ 0
pγ

pα
3 − pβ 0

0 0 − 2pα
3

 . (5.21)

This shift produces terms similar to the frame-dragging
Hamiltonian (3.17), but depends on p. For this reason it
is useful to include the term involving g5 in Eq. (5.4).

We find it most convenient here to first map the PN
results to the EOB potentials and then transform the
EOB action to the corotating frame. The effect of the
rotation from Eq. (5.13) in the tidal terms of the EOB
Hamiltonian can be obtained from the relations

p = prΛ1 +
L

r
Λ2, n = Λ1, (5.22)

and the orthonormality of the basis ΛI . Within our ap-
proximations, the transformation in Eq. (5.18) is only
applied to the point-mass terms, i.e., to the linear mo-
mentum terms under the square root in Eq. (6.4) since
SQ is already quadratic in the dynamical tidal vari-
ables. The effect of the transformation in Eq. (5.18)
can then be written as a contribution to µ of the form
µ2

frame = −2r−2SQ · L + O(S2
Q). However, since this

contribution is linear in p it should be rewritten as a
contribution of the form fframe = βiframepi/µ as

fframe = − Apm

Heff,pmµr2
SQ ·L +O(S2

Q). (5.23)

Note that, aside from the linearization in SQ, this equa-
tion is exact.

VI. EFFECTIVE-ONE-BODY HAMILTONIAN
FOR DYNAMICAL TIDAL EFFECTS

In this Section, we use the results of the previous Sec-
tions to derive the EOB model for dynamical tidal effects.
We first devise the model for generic orbits before dis-
cussing the specialization to circular orbits. In the case of
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point masses this reduction introduces poles at the light-
ring into the Hamiltonian. We discuss the use of gauge
transformations to understand the origin of such poles
and options for their removal, and further show that the
tidal model developed here is free of such pathologies. We
also explore several alternative prescriptions for including
the tidal information in the EOB model to demonstrate
that the importance of dynamical tides is not an artifact
of the particular choice of the EOB resummation of tidal
effects.

A. Generic orbits at 1PN order

Before proceeding with the presentation of our tidal
EOB Hamiltonian, we introduce convenient notations
for the ingredients of the effective Hamiltonian (4.4).
We split the potential A into point mass (“pm”) and
dynamical-tidal parts

A = Apm +ADT. (6.1)

For the potential βi the point-mass terms vanish by our
assumption that both bodies are nonspinning, however
there is a contribution from the tidal frame effects given
by

fDT =
βipi
µ

. (6.2)

For the tidal terms in the other EOB functions µNG and
γijeff we use the fact that the tides are a small correction
to the point-mass case and collect all the dynamical tidal
terms into a single function µDT given by

µ2
NG + γijeffpipj = µ2

DT + µ2
pm +

p2
r

Dpm
+
L2

r2
. (6.3)

Here pr = n · p and pφ = L, which agree with the
Schwarzschild momenta for θ = π/2 and pθ = 0. The
point-mass parts of the potentials can be found in Eq. (2)
of Ref. [60] and Eq. (10) of Ref. [102], and are summa-
rized in Appendix A. With these conventions our ansatz
for the dynamical tidal extension of the EOB Hamilto-
nian is

Heff =

√
A

[
µ2 + µ2

DT + µ2
pm +

L2

r2
+
Ap2

r

Dpm

]
+ µfDT. (6.4)

The quantities ADT, µDT, and fDT are determined below
by matching to the PN Hamiltonian up to a canonical
transformation, and they are independent of the linear
momentum.

To construct the tidal EOB potentials ADT, µDT, and
fDT we express them as

ADT = EijQij , fDT = −ZSQ · `, (6.5)

µ2
DT

µ2
=

zc
2µλ

(
QijQij + 4λ2ω2

fPijPij
)

+QijCij . (6.6)

The quantities Eij , Cij , Z, and zc are defined below.
We do not include interaction terms involving Pij , al-
though they appear in Eq. (3.18), i.e., we assume that
Pij only appears in the oscillator kinetic energy in the
EOB Hamiltonian. This condition, which restricts the
gauge freedom, is suggested not only by the test-particle
limit in Eq. (3.40), but also by the structure of the co-
variant coupling in Eq. (1.4), where the tidal field Eµν

couples only to Qµν , but not to Pµν . In fact, the terms
involving Pij in Eq. (1.4) arise from partial integrations
in the PN computation and could be avoided by making
different choices of the residual gauge freedom.

We next posit an ansatz for Eij , Cij , Z, and zc that is
fixed by requiring that the PN expansion of HEOB agrees
with the Hamiltonians from Sec. III B up to a canoni-
cal transformation. The canonical transformation is re-
quired since, in general, the PN Hamiltonians do not fit
into the EOB structure. As the last step, we transform
the EOB Hamiltonian to the corotating frame, that is,
we add Eq. (5.23) to fDT. The tidal interaction is then
encoded in

Eij = −3Gm2

µr3
ninj {1− [2X2 − (1− c1)ν]u} , (6.7)

Cij =
3Gm2

µ3r3

{
L2

r2
`i`j + [1 + (c2 − 2c1)ν]nipjpr

+
[
(1− c1)p2 + (5c1 − c2)p2

r

]
νninj

}
, (6.8)

the correction to the redshift factor is

zc = 1 +
3

2
X1u+

ν

2
(1 + 2c1)

[
p2

µ2
− u
]
, (6.9)

and the frame effects are described by

Z =
L

µ2r2

{
1 + [3X1 − 5− (1 + c2)ν]

u

2

− (1− c2ν)
p2

2µ2
− c2ν

p2
r

µ2

}
,

(6.10)

where XA = mA/M . The remaining gauge freedom is
contained in the arbitrary constants c1 and c2. The gauge
parameters are explicitly given by

g1 =
3ν

4
(2c1 − 1), g2 = 1 +

X1

2
, (6.11a)

g3 = g4 =
X1

2
+ (1− 2c1)

ν

2
, g5 =

c2ν

2
, (6.11b)

and g6 = 0.
Recall that we work in the corotating frame, so that

contractions of the quadrupole should be replaced by the
canonical variables α, β, and γ, with the Poisson brackets
given in Eq. (5.20) and using the relations

Qijninj = α+ β, Qijnipj = pr(α+ β) +
L

r
γ, (6.12)
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Qij`i`j = −2α, SQ · ` = 2(βpγ − γpβ), (6.13)

PijPij =
p2
α

6
+
p2
β

2
+
p2
γ

2
, (6.14)

QijQij = 6α2 + 2β2 + 2γ2. (6.15)

B. Circular orbits and 2PN completion

In this Section, we specialize the dynamical tidal EOB
model to circular orbits using a canonical transformation
to remove occurrences of the linear momentum from the
Hamiltonian, as described in Sec. V B. We also discuss
the inclusion of information at 2PN order in the model.

Following the method in Sec. V B, the tidal terms
(6.7)–(6.10) for circular orbits simplify to be

Eij = −3Gm2

µr3
ninj

{
1− [2X2 − (1− c1)ν]u+ E2PNu

2
}
,

(6.16a)

Cij =
3G2m2

νr4
(1 + 3u)

[
`i`j + (1− c1)νninj

]
, (6.16b)

zc = 1 +
3

2
X1u

[
1 +

9

4
u

]
, (6.16c)

Z =
L

µ2r2

{
1 + [3X1 − 6− ν]

u

2

− [X1(9 + 6ν) + ν(3 + ν)]
u2

8

}
.

(6.16d)

The gauge parameters used to obtain these expressions
are given by

g1 =
3

4
(ν − 2), g2 = 1 +

X1

2
, (6.17)

g3 = g4 =
X1

2
+ ν, g5 =

1

2
, (6.18)

with a nonvanishing coefficient in Eq. (5.5) equal to

g6 = −3

2
. (6.19)

The fact that a nonvanishing generator gcirc is required
to eliminate the momenta from the Hamiltonian implies
that taking the circular-orbit limit and performing the
EOB resummation do not commute here, since Eq. (5.5)
is not admitted as a canonical transformation for generic
orbits. We note that the remaining free parameter c1 in
Eq. (6.16) is not related to a gauge parameter gn here,
but can be used to move a term between Eij and Cij . It
is chosen such that the result in this Section follows from
that of the previous Section by inserting the circular-
orbit expression for p2 given in Eq. (5.10). However,
as discussed in the previous Section, such an insertion
is in general not a correct procedure, in contrast to the

adapted canonical transformation involving the term in
Eq. (5.5).

The expressions (6.16) already include information at
2PN order determined in the following way. The 2PN
terms in the redshift, Eq. (6.16c), follow from Eq. (C1),
while the 2PN correction in Eq. (6.16d) is a combination
of the spin-orbit frame-dragging terms in Ref. [103] and
the corotating frame addition in Eq. (5.23). For the tidal
interaction terms we have added a parameter E2PN to
Eq. (6.16a). In general, one would expect such 2PN cor-
rections also in Cij , but for simplicity we do not consider
this modification; the 2PN terms in Eq. (6.16b) arise only
from substituting the linear momentum for circular or-
bits from Eq. (5.10). We fix E2PN by using the results
for adiabatic tidal (AT) effects in the EOB model that
were calculated to 2PN order in Ref. [25]. In that model,
all adiabatic quadrupolar tidal effects are included in the
potential A, by setting A = Apm +A2PN

AT with

A2PN
AT = −3λX2G

2M

X1r6

[
1 +

5

2
X1u

+

(
337

28
X2

1 +
1

8
X1 + 3

)
u2

]
. (6.20)

Requiring that the adiabatic limit of our model discussed
in Appendix B gives the same result for the 2PN ex-
pansion of HEOB as that obtained from using Eq. (6.20)
determines that

E2PN =
5X1

28
(33X1 − 7). (6.21)

Note that while by construction the PN expansion of our
model agrees with the PN expansion of the results of
Ref. [25] a nonperturbative specialization of our EOB
model to adiabatic tides does not reproduce the EOB
model in Ref. [25], which we explain in Sec. VI C.

We further note that it is not possible to completely re-
move the linear momentum from all terms using a canoni-
cal transformation. In particular, the frame term (6.16d)
is still linear in L. Inserting the circular-orbit relation

L

µr
=
√
u

[
1 +

3u

2
+

(
27

4
− 3ν

)
u2

2

]
+O(pr), (6.22)

in Z leads to

Z =
u3/2

GMµ

{
1− (3X2 + ν)

u

2

− [X2(9− 6ν) + ν(27 + ν)]
u2

8

}
.

(6.23)

In general, substituting relations like Eq. (6.22) in the
Hamiltonian is not justified, since they are derived using
the equations of motion. But, as long as the tidal spin
is small SQ ≈ 0, as is the case in the adiabatic limit, in-
serting Eq. (6.22) in the Hamiltonian amounts to adding
an approximate “double zero” to the Hamiltonian, which
is legitimate [104, 105]. This means that while inserting
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Eq. (6.22) alters the equation of motion for the orbital
phase, the change is proportional to SQ and hence neg-
ligible, provided that the assumption that SQ is small is
valid. Nevertheless, it is important to keep terms linear
in SQ in the Hamiltonian, since they also influence the
equations of motion for the dynamical quadrupole in the
form of frame effects, as discussed in Sec. I B.

From the discussion above, it is obvious that a spe-
cialization to circular orbits relies on several assump-
tions. Furthermore, the used circular-orbit relations are
2PN exact only and are not exact in the test-particle
limit. However, when considering the final 25 cycles of
the inspiral waveform for several binary configurations
we find that the difference between using the circular-
and generic-orbit tidal terms is small compared to the
uncertainty due to the lack of higher-order PN informa-
tion.

C. Behavior near the light ring

In the test-particle limit, the light ring is the
(marginally stable) circular orbit for a massless parti-
cle such as a photon and is located at u = 1/3 in the
Schwarzschild spacetime. Its importance for test-particle
motion is that. when specializing the Hamiltonian to
circular orbits. most quantities exhibit a pole at this
location due to the value of p2 being

p2 =
µ2u

1− 3u
+O(pr). (6.24)

Previous, adiabatic tidal EOB models [25, 66] that in-
corporated test-particle and gravitational self-force re-
sults specialized the tidal potentials to circular orbits and
thus introduced poles into the Hamiltonian. In Ref. [66]
the pole marks the location of an approximate5 light ring
that is shifted away from the test-particle–limit value due
to corrections coming both from the mass ratio and PN
tidal interactions. These singularities are problematic in
an EOB evolution especially for neutron-star–black-hole
binaries with large mass ratios, where the orbit may pass
through the pole before the end of the inspiral, which
leads to an unphysical divergence.

As originally pointed out in Sec. VII.C of Ref. [106] and
explained in detail in our Appendix D, the pole in the
tidal contributions to the Hamiltonian is due to a patho-
logical choice of gauge, but as we discuss in Appendix D
it can be eliminated through a canonical transformation.
The gauge choice made in Refs. [25, 66] that gave rise to
the pole is a consequence of the requirement that tidal
terms are independent of the linear momentum for cir-
cular orbits, or equivalently that r is the “centrifugal”

5 The light ring is determined in Ref. [66] from an approximate
EOB model that only incorporates PN tidal results since a self-
consistent solution for the light ring of the tidal EOB model of
Ref. [66] is difficult to obtain [25].

radius [101]. This means that in this gauge the func-
tion L2 = p2r2 +O(pr) appears in the effective Hamilto-
nian only as the combination AL2/r2, like in the point-
mass Hamiltonian in the Schwarzschild background. In
the model developed here, this gauge choice is unavail-
able due to the richer structure of the couplings involv-
ing L2 for a generic quadrupole such as the `i`j-term
in Eq. (6.8). This term is invariant under the residual
gauge freedom parameterized by c1 and c2 and therefore
cannot be removed to reproduce the gauge of Ref. [25].
Note that our tidal EOB model (6.7) reproduces the test-
particle limit case from Eq. (3.40) without introducing
any explicit singularities.

D. Alternative factorized resummations

To account for the uncertainty due to lack of complete
knowledge of the dynamical tidal effects beyond 1PN or-
der, we develop different prescriptions for incorporating
PN tidal information in the EOB Hamiltonian. In par-
ticular, we consider two alternatives where all corrections
are included either in ADT or in µ2

DT. For each case, we
devise both a factorized form and a Taylor expanded ver-
sion. Comparing the gravitational waveforms generated
based on these different EOB Hamiltonians allows us to
assign an uncertainty to our model.

We start by considering the case where all tidal cor-
rections are included in µ2

DT. Mimicking the structure of
the covariant interaction terms in Eq. (2.15) we express
µ2

DT in the form

µ2
DT

µ2
=

2zµ2

µ

[
QijQij

4λ
+λω2

fPijPij+
1

2
QijEij−gQSQ ·`

]
,

(6.25)
with ADT = 0 = fDT. The reparameterization-
invariance of Eq. (2.15) requires an overall factor of z,
which corresponds to zµ2 here. For the tidal field Eij ,
we assume that it is given by the test-particle expres-
sion with an overall factor Ec accounting for the finite
mass-ratio PN corrections, such that

EcH
TPL
EQ =

1

2
QijEij , (6.26)

or explicitly

Eij =
3GM

µ2r3
Ec

[
L2

r2
`i`j − (µ2 + p2)ninj + prn

ipj

]
.

(6.27)

This agrees with Eq. (3.40) for Ec = 1, and the term
involving pr reproduces the 1PN expansion of Eq. (3.38).
Note that within our approximations it would also be
consistent to use the test-particle results Eq. (3.38) in
Eq. (6.27) instead of its 1PN expansion, which could
potentially lead to further improvements of the model,
but is not considered here.
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Following the same procedure as before, namely requir-
ing that the PN expansion of HEOB – using Eqs. (6.25),
(6.27), and ADT = 0 = fDT – agrees with the PN Hamil-
tonian from Sec. III B up to a canonical transformation,
we determine the factors in the Hamiltonian to be

Ec =
µ

m1

{
1 +

X1

2
u+ E2PNu

2 − 3ν

2

[
p2

µ2
− u− 3u2

]}
,

(6.28)

gQ =
L

µr2

{
1− (3 + ν)

u

2
− (9 + 9ν + ν2)

u2

8

− ν

2

[
p2

µ2
− u− 3u2

]}
,

(6.29)

zµ2 = 1 +
3X1

2
u+

27X1

8
u2 +

ν

2

[
p2

µ2
− u− 3u2

]
.

(6.30)

The gauge parameters read

g1 = −3ν

4
, g2 = 1 +

X1

2
, (6.31a)

g3 = g4 =
X1

2
+
ν

2
, g5 = g6 = 0. (6.31b)

The 2PN completion is

E2PN =
36

7
X2

1 −
13

8
X1, (6.32)

determined by matching the PN expansion of the adia-
batic result in Ref. [25] for circular orbits.

We refer to the model in the form (6.25) as a factorized
model due to the overall factor of zµ2 and the factor of Ec
in the tidal field. Interestingly, the factorized structure
leaves no free gauge parameters. Hence it can be con-
sidered as a gauge independent representation at 1PN
order. It would be interesting to include a similar factor-
ization into our EOB model from Sec. VI A with the aim
of singling out a unique gauge. We leave this for future
work, where we will also compute the 2PN dynamical
tidal effects.

Next, we consider an EOB model where all tidal terms
are included in the potential A as in Ref. [25]. This is
very similar to Eq. (6.25), with the modification that the
overall factor zA is different. Specifically,

ADT =
2zA
µ

[
QijQij

4λ
+ λω2

fPijPij +
1

2
QijEij − gsSQ · `

]
,

(6.33)
with µ2

DT = 0 = fDT and

zA =
µ2A2

H2
eff

zm (6.34)

≈ 1 +
3

2
u(X1 − 2)− 9X1

8
u2

+
[ν

2
− 1
] [p2

µ2
− u− 3u2

]
.

(6.35)

It is important to emphasize that, although above we
have included terms at 2PN order, for the case of generic
orbits the expressions should be truncated at 1PN or-
der. This is because the 2PN terms were matched to the
results of Ref. [25], and hence are only consistent for cir-
cular orbits. The specialization of the above results for
ADT and µ2

DT to circular orbits is accomplished follow-
ing the procedure described in Sec. VI B. This amounts
to inserting Eqs. (5.10) and (6.22) while keeping the fac-
torized structure. The model from Eq. (6.25) reproduces
the test-particle limit by construction, while the model
from Eq. (6.33) achieves this only when the exact expres-
sion for the redshift correction zA (6.34) is used.

Finally, for both EOB models presented in this Section,
we also consider a Taylor expanded version, where the en-
tire expressions are expanded and the result is truncated
to the desired PN order (1PN or 2PN). In the adiabatic
limit, the 2PN Taylor expanded version of ADT reduces
to the model in Ref. [25] given in Eq. (6.20).

E. Effective Love number for dynamical tides

Adding the degrees of freedom for a dynamical
quadrupole to the EOB model considerably increases the
computational cost to generate waveforms. In this Sec-
tion, we develop a model that eliminates the quadrupole
variables while still capturing the effect of dynamic tides.
This is achieved through the effective tidal deformability
function introduced in Sec. I A and derived below. Due
to its computational advantages, this model is currently
being implemented as the TEOB model in the LIGO Al-
gorithm Library (LAL) used for searches and parameter-
estimation studies.

The effective model for the dynamical tides is based
on approximate solutions for the quadrupole degrees of
freedom for a Newtonian inspiral. To obtain these so-
lutions we perform a systematic multi-timescale analy-
sis as described in the textbook [107]. However, since
these computations are not particularly illuminating and
merely follow standard methods we refrain from giving
the details here. Instead, we present a simplified analysis
that exhibits the main features and results.

For the subsequent calculations it is more convenient to
parameterize the quadrupole in the body frame instead
of in the corotating frame as

Qij =

α+ b c 0
c α− b 0
0 0 −2α

 , (6.36)

and to transform to the variables in the corotating frame
after obtaining the solutions. The relation between the
variables in the two frames is

β = cos(2φ)b+ sin(2φ)c, γ = − sin(2φ)b+ cos(2φ)c.
(6.37)

Using the body-frame variables, the Newtonian conser-
vative equations of motion for circular orbits are given
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by
α̈

b̈
c̈

+ ω2
f

αbc
 = ω2

fA(r)

 1/3
cos(2φ)
sin(2φ)

 , (6.38)

where φ =
∫

Ω(t)dt is the orbital phase and

A(r(t)) =
3Gm2λ

2r3
, (6.39)

is the amplitude of the tidal force. The dynamical de-
grees of freedom b and c, calculated using the method of
variation of parameters and trigonometric identities, are
given by

2

ωf

{
b
c

}
= cos(ωf t)

∫
dtA

{
sin(2φ+ ωf t)
cos(2φ+ ωf t)

}
+ sin(ωf t)

∫
dtA

{
cos(2φ+ ωf t)
sin(2φ+ ωf t)

}
+ cos(ωf t)

∫
dtA

{
sin(2φ− ωf t)
− cos(2φ− ωf t)

}
+ sin(ωf t)

∫
dtA

{
cos(2φ− ωf t)
sin(2φ− ωf t)

}
+

{
ab1
ac1

}
cos(ωf t) +

{
ab2
ac2

}
sin(ωf t), (6.40)

where the terms in the last line are homogeneous solu-
tions. The functions Ω(t) and r(t) = (GM)1/3Ω(t)−2/3

in the Newtonian approximation evolve on the radiation-
reaction timescale, which we assume to be slow compared
to the orbital timescale. Therefore, locally in time A can
be treated as constant. In this limit, the solution for the
static component α is α = A/3. For the dynamical de-
grees of freedom, a resonance between the tidal forcing
and the f-modes occurs when Ω ∼ ωf/2 or (2φ−ωf t) ∼ 0.
In the regime away from the resonance and assuming that
r evolves slowly, the integrals (6.40) can be performed as
they stand, and the solutions for no initial mode excita-
tion reduce to{

bouter

couter

}
=

A
1− 4Ω2

ω2
f

{
cos(2φ)
sin(2φ)

}
. (6.41)

Transforming to the corotating frame, the outer solution
for β obtained from Eqs. (6.37) and (6.41) is

βouter =
A

1− 4Ω2

ω2
f

. (6.42)

Near the resonance, however, the last two integrands in
Eq. (6.40) have a stationary phase and require a special-
ized treatment such as a Taylor expansion around the
resonance which takes into account the evolution of Ω
due to radiation reaction. We define a small parameter

ε =
64

5
21/3G2/3M2/3ω

5/3
f µ, (6.43)

that characterizes the ratio of the radiation-reaction and
orbital timescales at the resonance. The frequency has
the near-resonance expansion

Ω ≈ ωf
2

+ Ω̇(tf )(t− tf ) +O
(
(t− tf )2

)
. (6.44)

Here, tf is computed by integrating ṙ =
−64µG2M2/(5r3) up to the resonance radius
r3
f = 4GM/ω2

f . The phase in the integrands in

Eq. (6.40) is then

χ ≡ 2φ− ωf t ≈ χf + Ω̇(t− tf )2 +O
(
(t− tf )3

)
. (6.45)

The integrands are stationary as long as χ−χf is small.
When χ − χf = O(1) they are again oscillatory, indi-
cating that the system has left the resonance’s region of
influence. The duration of the resonance can thus be
estimated from

1 ∼ (χ− χf ) ∼ Ω̇(t− tf )2, (6.46)

which implies that the resonance lasts for a time tres ∼
1/
√
ε since Ω̇ = O(ε). To conveniently describe the near-

resonance behavior, we use the phase instead of time as
the dependent variable and introduce a rescaled variable

t̂ =
√
ε(φ− φf ) =

8

(
1− r5/2ω

5/3
f

2 22/3G5/6M5/6

)
5
√
ε

. (6.47)

Using the expansion in Eq. (6.45), the definition from
Eq. (6.47), and transforming to the corotating frame us-
ing (6.37) leads to the near-resonance solution

βres =
Ã√
ε

[
cos(Ω′t̂2)

∫ t̂

−∞
sin(Ω′s2)ds

− sin(Ω′t̂2)

∫ t̂

−∞
cos(Ω′s2)ds

]
, (6.48)

where Ã = Aω2
f/(4Ω2) = 3m2ω

2
fλ/(8M), Ω′ = 3/8 is

a rescaled derivative of Ω, and the factor of 1/
√
ε arises

from converting dt to dt̂. The lower limit of the integrals
refers to times long before the resonance. To construct
a composite solution that incorporates both the reso-
nance and the outer behavior involves adding the two
solutions and subtracting their common term to avoid
double-counting. This common term can be identified
by expanding Eq. (6.48) for t̂→ −∞ and expanding the
outer solution (6.42) for Ω → ωf/2, taking into account
the slow evolution of Ω and using the definition (6.47).
The results are

lim
Ω→ωf/2

βouter = − Ã
2
√
εt̂Ω′

= lim
t̂→−∞

βres. (6.49)

The two solutions match and the composite solution is
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βDT =
Ã

ω2
f

4Ω2 − 1
+

Ã
2
√
εt̂Ω′

+
Ã√
ε

[
cos(Ω′t̂2)

∫ t̂

−∞
sin(Ω′s2)ds− sin(Ω′t̂2)

∫ t̂

−∞
cos(Ω′s2)ds

]
. (6.50)

Note that we consider here only the behavior up to fre-
quencies of ωf + O(

√
ε) which fails to describe the dy-

namics long after the resonance, but is sufficient for the
range of frequencies reached during a binary inspiral.

Using the solution (6.50) we compute λeff defined in
Eq. (1.2) as the ratio to the adiabatic result. The adia-
batic solution for β is obtained by expanding Eq. (6.42)
for 4Ω2/ω2

f → 0 and gives βAT = A. This leads to

λeff

λ
=

1

4
+

3

4

βDT

A
. (6.51)

The expression (6.51) can be converted to a function of
the orbital radius r and the tidal parameters by using in
the result for βDT from Eq. (6.50) the definitions (6.47)
and (6.43), together with the relation Ω2 = GM/r3

and the value Ω′ = 3/8. The integrals in Eq. (6.50)
are standard Fresnel integrals (e.g., they are available

in Mathematica with the convention
∫ t̂
−∞ sin(Ω′s2)ds =

√
π

2
√

2Ω′ [1 + 2 FresnelS(t̂
√

2Ω′/
√
π)].)

To incorporate this result in the EOB model we first
consider the connection to the adiabatic limit more gen-
erally. From the quadrupole equation of motion given by
Q̈ij + ω2

fQ
ij = −λω2

fEij one can verify the identity

λeff

4
EijEij = − Qij

4λω2
f

[
Q̈ij + ω2

fQ
ij + 2λω2

fEij

]
. (6.52)

Here, the left-hand side is the coupling used to obtain
the 2PN adiabatic tidal interaction in Ref. [25], while the
right-hand side is identical to the tidal Lagrangian from
Eq. (1.1) except for the first term, which differs by an
irrelevant total time derivative. This implies that we can
obtain a dynamical tidal EOB model by starting with the
adiabatic EOB model from Ref. [25] given in Eq. (6.20)
here and replacing λ→ λeff using Eqs. (1.3) and (6.51).

VII. RESULTS AND DISCUSSION

Before assessing the importance of dynamical tidal ef-
fects, we give more details about the EOB model used in
the analysis. We only consider the circular-orbit version
of all results here, since in this case more information
about tidal effects at 2PN order is available. We checked
that the generic-orbit version of the Hamiltonian typi-
cally differs by less than 0.1 radian from the circular-
orbit version (for circular orbits at 1PN order and over
24 cycles). We fix the remaining arbitrary constant in the
model in Eq. (6.16) to be c1 = 0, since this choice im-
plies that the gauge parameters (6.11) are the same as for
the factorized models (6.31). This choice can be revised

model equations
TEOB-AAT (6.20)
TEOB-keff (6.20) with λeff, (6.51), (6.50), (6.39)
TEOB (6.5), (6.6), (6.16a)–(6.16c), (6.23)

TEOB-µfDT (6.25), (6.27)–(6.30)

TEOB-AfDT (6.33), (6.35), (6.27)–(6.29)

TABLE I. We list the tidal EOB models that we consider in
Figs. 4 and 5, together with the equations that define them
(see for all cases also the energy map (4.1) and the effective
Hamiltonian (6.4)). The formulas should be specialized to cir-
cular orbits by inserting Eqs. (5.10) and (6.22), if applicable.
An explicit form in terms of canonical quadrupole variables in
the corotating frame with Poisson brackets from Eq. (5.20) is
obtained through the relations in Eqs. (6.12)–(6.15). The su-
perscript “f” stands for “factorized.” We also consider models
where the factorization is expanded and PN truncated. Those
models are denoted by a superscript “e.”

once the complete 2PN dynamical result becomes avail-
able. The initial conditions for the EOB evolutions are
the equilibrium solutions of the EOB equations of motion
determined numerically, as explained in Appendix B.

We first consider the effect of dynamical tides in the
conservative dynamics, specifically on the location of the
innermost stable circular orbit (ISCO). This is shown
in Fig. 3 for the case m1 = 1.350M� with a radius of
13.5 km and a piecewise polytropic approximation to the
H4 equation of state from Refs. [108, 109], which gives
a tidal deformability of λG/(Gm1)5 = 1111 and f-mode
frequency of Gm1ωf = 0.0629. The plots suggest that
dynamical tidal effects become important as soon as tidal
effects become relevant.

However, the most interesting observables are the grav-
itational waves emitted by the system. To generate
waveforms, we also include radiation reaction forces con-
structed from the flux in Ref. [102] together with the an-
alytically known adiabatic tidal corrections to the wave-
form modes from Ref. [110], as explained in detail in
Ref. [68]. We evaluate the relevance of dynamical tidal
effects on gravitational waves using the following mod-
els devised in the previous Section: (i) the dynamical
tidal model based on the EOB construction developed in
Sec. VI A and denoted by TEOB here, (ii) the factorized
models from Sec. VI D where tidal terms are contained
exclusively in either µ2

DT or ADT and denoted by TEOB-

µfDT/A
f
DT, (iii) their Taylor expanded versions TEOB-

µeDT/A
e
DT, and (iv) the “effective–Love-number” model

denoted by TEOB-keff based on Sec. VI E and the adi-
abatic EOB model (6.20) from Ref. [25]. These models
are summarized in Table I.

The difference in the gravitational-wave phase between
our dynamical tidal models and the 2PN TEOB-AAT adi-
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FIG. 3. Innermost stable circular orbit (ISCO) as a function of the mass ratio for a neutron-star–black-hole binary. As soon
as the adiabatic tidal effects deviate from the point-mass case, the dynamical tidal effects are relevant, too. Here we used the
2PN accurate TEOB-keff model with an effective Love number from Sec. VI E.
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FIG. 4. Phase difference in radians between waveforms using the 2PN TEOB-AAT model [25] as the baseline and the models
summarized in Table I for m1 = 1.350M� and a piecewise polytropic approximation of the H4 equation of state. While
individual lines are shown for the 1PN truncation of the models, the shaded area encompasses the range of all dynamical
models at 2PN order. The fact that the span with 2PN information lies within the 1PN span indicates that our conclusions
about the importance of dynamical tides will likely remain valid when higher PN orders are included. Furthermore, the TEOB
model (red curve) is always close to the upper part of the span.

abatic tidal model from Ref. [25] used as a baseline is
shown in Figs. 4 and 5. Note that the span of the 2PN
results lies within the 1PN results, indicating that an
inclusion of even higher PN orders would refine our find-
ings, but is unlikely to move the results in a different
region. This plot also demonstrates the importance of
2PN knowledge. The 2PN results show that dynamical
tidal effects are important at least up to a mass ratio of
3, in agreement with Fig. 3. It is also intriguing that the
two Taylor expanded alternative models TEOB-µeDT and
TEOB-AeDT lead to very different results at 1PN, but
their factorized versions agree quite well. This demon-
strates that the factorization can remove some arbitrari-

ness from the EOB resummation.
We further note from Fig. 4 that the effective–Love-

number model TEOB-keff captures the effects well, in
spite of the derivation of keff being based on Newtonian
gravity and leading-order radiation reaction. However,
in hindsight this makes sense because (i) the model in-
cludes relativistic corrections to the tidal field with 2PN
accuracy since the effective–Love-number function enters
through Eq. (6.20), and (ii) the relativistic redshift and
frame-dragging effects tend to compensate each other (as
explained in Sec. I B), thus leading to only a small shift
of the resonance condition away from the Newtonian ex-
pectation. Since the TEOB-keff model does not require
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FIG. 5. Same as Fig. 4, but for an equal-mass neutron-star
binary.

an evolution of additional dynamical variables it is more
convenient for generating a large bank of gravitational
waveforms. Furthermore, the Love number and f-mode
frequency are linked by an approximately universal re-
lation [111], which can be used to reduce the parameter
space for the template bank. A universality of this kind
can also potentially be used as a test of general relativity,
as discussed in Ref. [112].

Previous studies have raised concerns regarding the
measurement of tidal effects due to the lack of knowl-
edge of high-order terms in the PN approximation in the
point-mass sector [113, 114]. This is because, as dis-
cussed in Sec. III, Newtonian tidal effects enter formally
at 5PN order, but the point-mass terms are only known
to 4PN order, so that this lack of PN knowledge could
lead to systematic errors in the measurements of tidal
parameters. However, this issue arises only for PN-based
analytical waveform models. It is mitigated in the EOB
model since its point-mass version is resummed and cal-
ibrated to numerical relativity [60] and thus effectively
includes all the higher PN orders. For nonspinning bina-
ries the systematic errors in the EOB model have been
quantified and found to be small. Therefore, EOB-based
measurements of tidal parameters for such systems are
not expected to be contaminated by the large systematic
errors found in [113, 114]. This issue also illustrates why
synergetic approaches like EOB are important to obtain
accurate waveforms over the full frequency range of cur-
rent detectors.

VIII. CONCLUSION

In this paper we developed a general relativistic model
for dynamic tides based on a covariant effective action.

While we focused our analysis on the quadrupolar f-mode
oscillations of neutron stars, the results can readily be ex-
tended to more general cases and higher multipoles. We
derived explicit results for all the contributions to this
action both in the PN and the test-particle limit and dis-
cussed the physical effects encoded in these results. This
served as the foundation for constructing, for the first
time, an EOB Hamiltonian describing dynamical tidal
effects both for generic orbits and specialized to circular
orbits. In contrast to the line of work in Refs. [25, 66], our
TEOB model does not contain poles at the light ring due
to the choice of gauge we adopted,6 but it still repro-
duces the test-particle limit. Throughout these deriva-
tions we provided the relevant details of the calculations
to make the paper self-contained and highlighted various
subtleties. We then used the new tidal EOB Hamilto-
nian to show that dynamical tides are relevant both in
the conservative dynamics and in the gravitational-wave
phase and quantified the uncertainty in the model due to
the lack of higher-order tidal PN information. Moreover,
we devised a computationally more efficient yet approxi-
mate TEOB model where the dynamical tidal effects are
encoded in an effective–Love-number function which we
calculated.

Our model is currently being implemented for
gravitational-wave data analysis and will aid in extract-
ing the unique information on the equation of state
of neutron stars from upcoming observations with Ad-
vanced LIGO and Virgo. In a forthcoming paper [68]
we will study refinements of the EOB waveform model,
include dynamical higher multipoles, as well as the ef-
fects of dynamical tides in the dissipative sector and
hence in the waveform amplitudes, and perform compar-
isons of the model against new highly accurate numerical-
relativity simulations of neutron-star–black-hole binary
systems.

ACKNOWLEDGMENTS

We gratefully acknowledge useful discussions with
Justin Vines and Francois Foucart. T. H. acknowledges
support from NSF Grant No. PHY-1208881 and thanks
the Max Planck Institute for Gravitational Physics in
Potsdam for hospitality.

Appendix A: Point-mass parts of the
effective-one-body potentials

Here we report the point-mass potentials from Ref. [60]
that enter our tidal EOB model. The potential A is given
by

6 A comparison of our TEOB model and the models in Refs. [25,
66] against numerical-relativity simulations can be found in
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A = ∆̄u

(
∆0ν + ν log

(
∆5u

5 + ∆4u
4 + ∆3u

3 + ∆2u
2 + ∆1u+ 1

)
+ 1
)
, (A1)

with

∆̄u = a2

(
u− 1

r+

)(
u− 1

r−

)
, (A2a)

r± =
(

1±
√

1− a2
)

(1− νK) , (A2b)

∆5 =
(Kν − 1)2

ν
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−1

3
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∆3
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5(Kν − 1)2
+

2275π2
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+

128γ

5
− 4237

60
+

256 log(2)

5
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, (A2c)

∆4 =
1

96

[
8
(
6a2

(
∆2

1 − 2∆2

)
(Kν − 1)2 + 3∆4

1 + ∆3
1(8− 8Kν)− 12∆2

1∆2 + 12∆1(2∆2Kν − 2∆2 + ∆3)
)

+48∆2
2 − 64(Kν − 1)(3∆3 − 47Kν + 47)− 123π2(Kν − 1)2

]
, (A2d)

∆3 = −a2∆1(Kν − 1)2 − ∆3
1

3
+ ∆2

1(Kν − 1) + ∆1∆2 − 2(Kν − 1)(∆2 −Kν + 1), (A2e)

∆2 =
1

2

(
∆1(∆1 − 4Kν + 4)− 2a2∆0(Kν − 1)2

)
, (A2f)

∆1 = −2(∆0 +K)(Kν − 1), (A2g)

∆0 = K(Kν − 2), (A2h)

where K is a calibration parameter tuned to numerical-
relativity simulations whose value is given in Ref. [60].
The potential Dpm is

Dpm = 1 + log

[
1 +

6νG2M2

r2
+

2(26− 3ν)νG3M3

r3

]
.

(A3)
In all expressions above we use only the nonspinning limit
where a → 0. In our implementation, we evolve the
“tortoise” radial momentum

pr∗ =
pr√
D
, (A4)

instead of pr, and for the non-geodesic term we use

µ2
pm

µ2
= 2ν(4− 3ν)

p4
r∗G

2M2

µ4r2
. (A5)

Appendix B: Equilibrium and adiabatic solutions

Equilibrium solutions are solutions for Qij that are
static in the corotating frame and exist for circular orbits.
These solutions are obtained by solving for Qijequil when
setting to zero the time derivatives of the equations of
motion: ∂HEOB/∂Q

ij |pr=0= 0, ∂HEOB/∂Pij |pr=0= 0.
Here, we give the specific solutions for the variables
(α, β, γ) defined in Eq. (5.17) for the case of our TEOB
model, the generalization to other tidal resummations
can be derived from the above equilibrium equations.
When written out explicitly, the EOB tidal potentials
in the circular-orbit limit are

µ2
DT

µ2
= −3G2MX2(α+ β)

νr4
(2− (1− c1)ν)

(
1 +

3GM

r

)
+

6βG2MX2

(
1 + 3GM

r

)
νr4

+
2

µ

(
1 +

3GMX1

2r
+

27G2M2X1

8r2

)[
3α2 + β2 + γ2

2λ
+

1

6
λω2

f

(
p2
α + 3p2

β + 3p2
γ

) ]
, (B1a)

ADT = −3GMX2(α+ β)

µr3

[
1 +

5G2M2X1(33X1 − 7)

28r2
+
GM((1− c1)ν − 2X2)

r

]
, (B1b)

fDT = −2
√
GM(βpγ − γpβ)

µr3/2

[
1− GM(ν + 3X2)

2r
−
G2M2

(
ν2 + 27ν − 6νX2 + 9X2

)
8r2

]
. (B1c)

Refs. [67, 68].
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From α̇ = 0 we obtain pequil
α = 0, and from both

β̇ = 0 = ṗγ we find γequil = 0 = pequil
β . To proceed

further requires either numerically solving the equations
0 = ∂Heff/∂α = ∂Heff/∂β = ∂Heff/∂pγ for α, β, pγ or
making a perturbative expansion by linearizing in the
tidal terms. The results of this can be obtained explicitly
with Mathematica, but are not particularly illuminating.

Note that when doing a PN expansion one cannot brute-
force expand the full EOB solutions for r → ∞ since
this would also PN-expand the “Newtonian” dependence
1/[1− ω2

f/(4Ω2)] (or with EOB involving pφ rather than

Ω). When solving the equations of motion iteratively for
β = βNewt + βPN etc. we obtain

βequil =
3λGMX2

2r3(1−W )
− 3λG2M2X2(2νW + (1−W )(X2 − 3))

4r4(1−W )2
, (B2a)

pequil
γ =

3
√
GMWX2

4r3/2(1−W )
− 3(GM)3/2WX2 [ν(1 +W ) + (X2 − 3)(1−W )]

8r5/2(1−W )2
, (B2b)

αequil =
λGMX2

2r3
− λ(GM)2(X2 − 7)X2

4r4
, (B2c)

where W = 4GM/(r3ω2
f ). The adiabatic limit is obtained for W → 0 or ω2

f � Ω2 ∼ GM/r3 in Eqs. (B2) and leads
to

βAT =
3λGMX2

2r3
− 3λG2M2(X2 − 3)X2

4r4
, pAT

γ = 0, (B3)

and αAT = αequil. For the initial conditions we use the circular-orbit solution for Pφ (valid again for our TEOB model,
but the generalization to other models simply requires setting to zero fDT and µ2

DT or ADT),

p2
φ |circ

µ2
= −

2r3Af ′DT

√
(2A− rA′) (r(µ̃2

DT)′ + 2µ̃2
DT + 2) + r2 (f ′DT)

2

(rA′ − 2A)
2 −

r3
(
(µ̃2

DT + 1)A′ +A(µ̃2
DT)′

)
rA′ − 2A

+
2r4A (f ′DT)

2

(rA′ − 2A)
2 .

(B4)

Here µ̃DT = µDT/µ, primes denote derivatives with re-
spect to r, and all tidal potentials are evaluated for the
equilibrium solutions computed numerically as described
above. We augment the nontrivial solutions for pφ, α,
β, pγ by the initial value for pr. This is computed from
numerically solving for pr from

Ė
(
∂2HEOB/∂r∂pφ

)
(∂HEOB/∂pφ) (∂2HEOB/∂r2)

∣∣∣∣∣
circ

= −∂HEOB

∂pr
. (B5)

Appendix C: The oscillator Hamiltonian and the
mapping from post-Newtonian to effective-one-body

Hamiltonians

In this Appendix we discuss some subtleties in the
identifications of tidal terms in the EOB model that arise
when starting from the structures in the PN Hamiltonian
instead of basing the construction on the test-particle
limit. Whereas in the test-particle case we can obtain ad-
ditional information from the mass-shell constraint (see
Sec. IV B, this information is not readily available in the
PN limit where our explicit results are limited to the
Hamiltonian. Below we discuss the consequences of this
imbalance in the source of information in the two limits.
We start by outlining several arguments for adding tidal

terms into the various EOB functions similar to those for
the test-particle limit. While for the interaction terms
both the Newtonian limit and test-particle expectations
lead to consistent identifications, the oscillator terms give
rise to a discrepancy that we discuss and resolve.

The structure of the leading-order PN-tidal corrections
can be identified in a similar manner as discussed in
the context of the test-particle, namely by counting the
power of momenta in each term. First, we note that
based on our assumptions, the effective metric is inde-
pendent of the canonical momentum. As a consequence,
the structure of Eq. (4.4) dictates that (i) interactions
that are linear in pi must be incorporated in the poten-
tial βi, (ii) terms quadratic in pi should appear in γijeff,
and (iii) terms independent of the momentum must be in
A. Remaining terms of cubic and higher order in pi are
then collected into µNG. Following this reasoning we de-
duce that the Newtonian interaction term in Eq. (3.18),
which is independent of the momenta, belongs to A. This
agrees with the result of applying similar arguments in
the test-particle case to the second term on the right-
hand side of Eq. (3.40). However, this consistency be-
tween PN and test-particle–limit identifications fails for
the oscillator piece.

We have deduced in Sec. IV B that in the test-particle
limit the pure oscillator Hamiltonian enters the EOB
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functions through the nongeodesic term µ2
NG. On the

other hand, following the reasoning for the EOB identifi-
cation of PN corrections we note that in the Newtonian
limit the oscillator Hamiltonian (3.15) with z1 = 1 does
not depend on the canonical linear momentum. Follow-
ing the classification of terms by powers of momenta, it
should therefore be included in A instead of µNG. This
discrepancy is due to the additional information from
the p0-dependence in the mass-shell constraint (2.17),
which is available in the test-particle limit, but not in
the PN Hamiltonian. This means that the test-particle
limit gives a more refined picture in this case, so we in-
clude the oscillator part in µ2

NG here.
The freedom in making the identifications between PN

tidal terms and the EOB Hamiltonian can also be ex-
ploited to devise different mappings. For instance, adopt-
ing the convention that momentum-independent terms
should be included in µ2

DT in the PN case would shift
the disagreement with the test-particle mass-shell con-
straint to the HQE contributions. However, it is impor-
tant to stress that these ambiguities have no physical
consequences and are merely a result of incomplete infor-
mation within the different approximation schemes. In
particular, note that PN information enters in the oscil-
lator Hamiltonian (3.15) only through the redshift z. An
accurate prediction for the value of the redshift beyond
the PN expressions is provided by the EOB point-mass
Hamiltonian through

zA =
∂Hpm

EOB

∂mA
. (C1)

Since Hpm
EOB has been calibrated to numerical-relativity

simulations for circular orbits, this formula gives the red-
shift zA to high accuracy and could be used to improve
the resummation of the pure oscillator terms in any of
the EOB potentials.

Finally, we point out another interesting possibility for
a resummation. The Hamiltonian (3.15) together with
Eq. (C1) is the first term in a Taylor expansion in the
mass m1. The most elegant way to include the oscillator
terms is therefore a shift of the mass m1 given by

m1 → m1 + λω2
fPijPij +

1

4λ
QijQij , (C2)

in Hpm
EOB. This automatically makes the oscillatory dy-

namics as accurate as Hpm
EOB. However, it implies that

dynamical terms are introduced in the energy map (4.1)
as well. Since the tidal effects are small, we do not fur-
ther explore this proposal here, but it is worth to point
out that such a modification of the energy map would
lead to a noticeable structural simplification.

Appendix D: Canonical transformations and the
pole at the light ring

In this Section we consider the effect of using a canon-
ical transformation to specialize the test-particle–limit

tidal Hamiltonian (3.34) to circular orbits. The general
method was explained in Sec. V B and here, we only pro-
vide an illustrative example for one of the terms in the
Hamiltonian. This serves to clarify the statements made
in Ref. [106] that the pole at the light ring comes from a
particular gauge choice and it can be eliminated through
a canonical transformation. In other words, the light-ring
pole should be interpreted as a coordinate singularity in
the phase space.

In the test-particle limit, the generator gf from
Eq. (5.7) leads to the transformation

{HTPL
pm , gf} = −f(r,p, Qij , Pij)

rṗr
µ

+O(pr) (D1)

=
f(r,p, Qij , Pij)µ

HTPL
pm

[
−p2

µ2
(1− 3u) + u

]
+O(pr).

(D2)

We next use this relation to eliminate p2 from the tidal
part of the test-particle–limit Hamiltonian (3.34) in fa-
vor of its circular-orbit value as a function of u given by
Eq. (6.24),

p2 =
µ2u

1− 3u
+O(pr), (D3)

which exhibits the pole at the light ring. Note that the
occurences of p2 in the tidal part of Eq. (3.34) enter
both through the overall prefactor zTPL, determined from
Eqs. (3.35) and (3.32), and through the interaction term
in Eq. (3.38). This can be analyzed by working with the
binomial expansion

zTPL =
√
ATPL

∞∑
n=0

(−1)n(2n− 1)!!

2nn!

(
p2

µ2

)n
, (D4)

where we used p2
e = p2 following from pr = 0. For exam-

ple, consider the term involving the second combination
in (3.40), which enters into the Hamiltonian (3.34) in the
form

HTPL
EQ,p2

= − 3GM

2µ2r3
zTPLQ

ijninjp2, (D5)

=
3GM

2r3
Qijninj

√
ATPL

[
−p2

µ2
+

p4

2µ4
−O(p6)

]
,

(D6)

where in Eq. (D6) we explicitly consider only the first
two terms in the expansion of zTPL from (D4). If we use

f0 =
HTPL

pm

1− 3u

3GM

2µr3
Qijninj

√
ATPL

[
−1 +

p2

2µ2
−O(p4)

]
,

(D7)
we can eliminate the first occurence of p2 from the trans-
formed Hamiltonian

HTPL
EQ,p2

+ {HTPL
pm , gf0} =

3GM

2r3
Qijninj
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×
√
ATPL

[
− u

1− 3u
+

u

2(1− 3u)

p2

µ2
−O(p4)

]
. (D8)

To remove the remaining dependence on p2 we apply a
second transformation with

f1 =
HTPL

pm

1− 3u

3GM

2µr3
Qijninj

√
ATPL

[
u

2(1− 3u)
−O(p2)

]
,

(D9)
and obtain

HTPL
EQ,p2

+ {HTPL
pm , gf0}+ {HTPL

pm , gf1} =
3GM

2r3
Qijninj

×
√
ATPL

[
− u

1− 3u
+

u2

2(1− 3u)2
−O(p2)

]
. (D10)

Repeating this procedure and summing the series for
which we only exhibited the first two terms leads to

HTPL circ
EQ,p2

= HTPL
EQ,p2

+
{
HTPL

pm , gf
}

(D11)

= −3GM

2r3
Qijninj

u√
1− 3u

, (D12)

where gf =
∑
n gfn or f =

∑
n fn. This rigorously

demonstrates that simply substituting Eq. (D3) into
Eqs. (3.35) and (D5) is a valid procedure to specialize
to circular orbits and introduces an explicit pole at the
light ring u = 1/3.

Furthermore, as first noticed in Ref. [106], the trans-
formation outlined above introduces a coordinate singu-
larity in the phase space at the light ring. Here, we made
it explicit that the singularity is produced by the poles in
the generator of the canonical transformation gf . Never-
theless, the presence of poles is not problematic as long
as the light ring is not reached. An important observa-
tion is that the method of the canonical transformation
works in both ways, i.e., one can also remove an explicit
pole at the light ring by replacing it with a function of p2

using Eq. (D3). In the explicit example given above, this
corresponds to performing the inverse canonical transfor-
mation generated by minus gf .
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