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We describe an atom interferometric gravitational wave detector design that can operate in a
resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets,
this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target fre-
quencies. The proposed detector is flexible and can be rapidly switched between broadband and
narrow-band detection modes. For instance, a binary discovered in broadband mode can subse-
quently be studied further as the inspiral evolves by using a tailored narrow-band detector response.
In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of
the resonant approach also opens up the possibility of searching for important cosmological signals,
including the stochastic gravitational wave background produced by inflation. We give an exam-
ple of detector parameters which would allow detection of inflationary gravitational waves down to
ΩGW ∼ 10−14 for a two satellite space-based detector.

I. INTRODUCTION

LIGO has opened a new window into the universe by
successfully launching the era of gravitational wave as-
tronomy [1]. The LIGO detector is sensitive to gravi-
tational waves with frequencies ' 10 Hz [2]. It is also
of interest to probe the gravitational wave spectrum in
the frequency band 0.1 Hz - 10 Hz [3]. Inspiralling black
hole and neutron star binaries have to travel through this
lower frequency band before entering LIGO’s band [4].
Continuous observation of these inspirals may allow bet-
ter estimation of binary parameters, potentially enabling
their use as standard sirens for cosmological measure-
ments [5]. Further, extremal black holes observed well
before their final coalescence can constrain the existence
of ultra-light bosonic particles such as axions [6]. In addi-
tion to sources that are observable at LIGO, the mergers
of intermediate mass black holes [7] (that do not make it
to LIGO’s band) occur in the frequency band 0.1 Hz - 10
Hz. This band is also expected to be relatively free of un-
resolvable astrophysical gravitational wave backgrounds,
making it an optimal choice to search for cosmological
sources of stochastic gravitational waves such as those
expected from cosmic inflation [8–10].
Atom interferometers have the potential to probe

this spectrum in terrestrial and satellite-based experi-
ments [11–16]. These proposals are motivated by recent,
demonstrated advances in atom technology such as the
ability to perform large momentum transfer beamsplit-
ters [17] to coherently separate atomic wave-packets by
∼ 54 cm [18], delta kick cooling [19] of atom ensembles
to pK temperatures [20] and the development of opti-
cal clock metrology [21]. Additionally, the original de-
tector concept required two-photon transitions which in-
troduce laser noise into the measurement (see e.g. [13]).
Using single photon transitions was known to preserve
the needed ‘accelerometer’ signal and remove laser noise
(see e.g. [22]) but is not sensitive enough to detect grav-
itational waves (see e.g. [23]). This problem is solved by

a new technique which allows large momentum transfer
beamsplitters and hence a sensitive gravitational wave
detector without laser noise [12]. Thus atom interfer-
ometry shows significant potential for gravitational wave
detection.

In the detector scheme considered in this paper [11, 12],
two widely separated atom interferometers (essentially
optical clocks) are run using common lasers, where the
lasers drive single-photon transitions in the atoms. Each
interferometer can be thought of as precisely comparing
the time kept by the laser’s clock (the laser’s phase), and
the time kept by the atom’s clock (the atom’s phase). A
passing gravitational wave changes the normal flat space
relation between these two clocks by a factor proportional
to the distance between them. This change oscillates in
time with the frequency of the gravitational wave. This
is the signal that can be measured with an atom inter-
ferometer. The signal in an individual interferometer is
masked by laser phase, frequency and platform noise.
However, since the same laser beams are used to operate
both interferometers, their differential phase contains the
gravitational wave signal with severely suppressed laser
noise. This differential signal enables the operation of
gravitational wave detectors with a single baseline, as
opposed to the two (or more) baselines demanded by
conventional optical interferometers. In addition, this
approach also exploits the fact that the atom ensembles
are inherently mechanically isolated from the environ-
ment as they free-fall during the optical interrogation
sequence [13–15]. We note that instead of single-photon
optical clock transitions, the interferometer can also be
operated using conventional two-photon Bragg/Raman
transitions wherein the atoms serve as a phase reference
to the lasers used to drive the interferometers. In this
case, since the lasers are the only available clock, cancel-
lation of laser frequency noise requires the operation of
two (or more) baselines [13–15] or an additional optical
frequency reference (e.g., an optical lattice clock [21] and
frequency comb [24]). The resonant scheme developed in
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this paper can be applied both to the optical clock and
two photon Bragg/Raman atom interferometer configu-
rations.
The conventional light-pulse atom interferometer con-

figuration based on a π/2-π-π/2 pulse sequence is max-
imally sensitive to gravitational waves whose frequency
ω is π/T , where T is the interrogation time of the inter-
ferometer (the time interval between successive pulses).
When this condition is satisfied, the gravitational wave
completes a full cycle in time 2T , resulting in the maxi-
mum possible change of the baseline’s proper length dur-
ing the interferometer. For frequencies ω ≫ 1/T , the
wave oscillates many times during T . Since the arms
of the interferometer remain fixed during these rapid
oscillations, the effects of the wave largely cancels, ex-
cept for phase shifts accrued over a single period ∼ 1/ω
of the wave. The instrument’s mechanical design fixes
the maximum interrogation time Tmax [13, 15] and sets
the lowest frequency accessible to the detector. In this
paper, we show that for frequencies ω ≫ 1/Tmax, the
pulse sequences used to drive the interferometer can be
changed to resonantly enhance the sensitivity of the de-
tector. Hence, the same instrument can be switched in
real time to operate in a more sensitive, resonant mode
for frequencies ω ≫ 1/Tmax, albeit at the expense of
bandwidth. We show that this narrow band resonant
mode enhances the sensitivity of the detector to both co-
herent signals (such as inspiralling binaries) and stochas-
tic sources.

II. RESONANT MODE

The interferometer can be run in a resonant mode by
using the pulse sequence π/2 − π − · · · − π − π/2 (see
Fig. 1) with Q π pulses instead of the standard, broad-
band π/2−π−π/2 pulse sequence. The pulses are equally
spaced in time by T / Tmax/Q. Gravitational waves with
frequencies ω = π/T oscillate by half a cycle between the
pulses (e.g., from crest to trough). Unlike the broadband
case, the phase differences caused by subsequent oscilla-
tions continually add in the resonant sequence, since the
series of π pulses periodically swap the arms of the in-
terferometer. Such pulse sequences have been previously
explored in the context of optical clocks, where they have
been used to characterize laser phase noise [25]. They
have also been recently proposed in the context of grav-
itational wave detection using optical lattice clocks [26].

A. Detector response function

As usual, we consider a configuration consisting of two
atom interferometers separated by a baseline of length L
that are driven by a sequence of common laser pulses. In
the following we assume the interferometers are based on
single-photon transitions, although as mentioned above
a resonant sequence can similarly be implemented using

FIG. 1: A space-time diagram of an example resonant atom
interferometer detector sequence. The detector consists of
two atom interferometers, one at position x1 and the other
at position x2, where x2 = x1 + L and L is the baseline.
The spacetime trajectories of the atoms are shown in blue for
the ground state and red for the excited state. Pulses of light
(thin black lines) are sent back and forth from each end of the
baseline and interact with the atoms (interactions shown as
black dots), transferring momentum to the atoms and chang-
ing their internal state. Whether or not an interaction occurs
is controlled by matching the frequency of the light pulses to
the Doppler shift of the atoms. The sequence shown consists
of two single-photon transitions for each atom optic (n = 2,
2~k momentum transferred) and a resonant enhancement of
Q = 3 (three diamonds). The interrogation time T depicted
here is near the limit for this baseline T ≈ 2(n−1)L/c, so the
gaps between the sequential laser pulses are small.

convention two-photon atom optics. To take advantage
of large momentum transfer (LMT) phase enhancement,
each atom optics ‘pulse’ may actually consist of n closely
spaced π-pulses which increase the separation of the in-
terferometer arms (see Fig. 2).
We use the following metric written in the TT gauge

for a plane gravitational wave traveling the z-direction:

ds2 = c2dt2−dx2 − dy2 − dz2 + h(t)(dx2 − dy2) (1)

where h(t) = h cos (ω(t− z
c ) + φ0) and h is the strain

amplitude of the gravitational wave, ω is the frequency,
and φ0 is the initial phase. For simplicity we assume the
interferometers lie along the x-axis so that the detector
is maximally aligned with the GW strain. It is straight-
forward to generalize this to arbitrary gravitational wave
polarization and angle of incidence, as is treated in [11].
To calculate the detector response, we determine the

phase shift of the resonant interferometer using the meth-
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ods described in previous work [11, 12, 22]. The phase
shift can be expressed as the sum of three contributions:
the propagation phase, laser phase, and separation phase.
The laser phase cancels to first order in a single-photon
gradiometer [12], and the separation phase contribution
to the signal can be neglected since the wavepacket sepa-
ration is small compared to L [11]. Thus the leading or-
der signal comes from a difference in propagation phase
between the two interferometers, which arises because
the atoms on one end of the baseline spend a different
amount of time in the excited state than atoms on the
other end.
Figure 2 shows an LMT interferometer sequence. The

interferometer is divided into segments in the ground
(blue) and excited (red) states. The duration of each seg-
ment is determined by the intersection of the light pulses
(gray) with the atomic trajectories. Using the metric
Eq. 1, a light pulse that leaves one of the laser sources at
position xI and time tI will arrive at the atom at position
x at coordinate time [11, 27]

τ(x, xI , tI) = tI +
|x−xI |

c + h
2ω

(

sin
(ω|x−xI |

c + ωtI + φ0

)

− sin
(

ωtI + φ0

)

)

(2)

These arrival times determine the duration of the ex-
cited state segments. Neglecting recoil effects [11], the
geodesics of the atoms can be approximated as being at
fixed coordinate positions x = constant, so the contri-
bution to the propagation phase from the ith segment
reduces to

δφi =
c

~

∫

mids =
mic

2

~
δτi (3)

where mic
2 is the mass-energy of the atom along the seg-

ment and δτi is the duration of the segment, determined
by Eq. 2. For the ground state the mass-energy is mc2

while for the excited state it is mc2 + ~ωa, where ~ωa is
the atomic energy level spacing. The total propagation
phase is

∆Φprop =
∑

{ui}
δφi −

∑

{li}
δφi (4)

where the sums are over the set of all upper segments
{ui} and lower segments {li} of the interferometer.
In Fig. 2, each diamond-shaped loop has duration 2T

and there are Q diamonds in total. The emission times
of the light pulses are given by tq,i ≡ t0+ qT + iLc , where
0 ≤ q ≤ 2Q and 0 ≤ i < n are integers. Pulses with even
i originate from xI = 0 while pulses with odd i originate
from xI = L. During the first half of each diamond (i.e.,
between time qT and (q + 1)T ), the upper arm of the
interferometer spends n intervals of time in the excited
state while the lower arm remains in the ground state,
and the opposite holds during the second half of each
diamond.
By symmetry, each pulse at time tq,i that adds momen-

tum to the arm is later followed by a pulse originating

FIG. 2: A space-time diagram of an LMT enhanced reso-
nant atom interferometer sequence. This pulse sequence uses
an LMT enhancement of n = 6 (6~k momentum transfer per
LMT atom optic) and a resonant enhancement ofQ = 3 (three
diamonds). The dashed curve is the atom trajectory of the
upper arm of the interferometer and the solid curve is the
lower arm. Pulses of light are shown as gray lines traveling
in alternating directions from each end of the baseline. The
midpoint of each LMT π-pulse sequence is indicated with a
dark gray photon path, while the (2n−1) axillary π pulses are
shown in light gray. The first and last pulse sequences are the
LMT π

2
pulses and consist of (n − 1) axillary π pulses (light

gray) and one π

2
pulse (dark gray). As in Fig. 1, the atom

ground state is shown in blue and the excited state is red, and
black dots indicate atom-laser interaction points. For simplic-
ity, only one LMT resonant interferometer is shown here (at
position x0), but in the detector configuration there would be
two interferometers at different positions, as in Fig. 1. For the
parameters chosen here, the light travel time of the n pulses
in each LMT atom optic is comparable to the interrogation
time T of the interferometer, so the atom trajectories exhibit
substantial curvature. Also, the recoil velocity vr has been
greatly exaggerated to show detail, but in any real detector
we always have vrT ≪ L.

from the same xI at time tq+1,−i that subtracts momen-
tum. These pulse pairs define a set of nested intervals of
duration ∆ti = (tq+1,−i − tq,i), where ∆ti+1 < ∆ti and
for the ith and (i+1)th intervals the atom is in alternat-
ing atomic states. Time intervals that are bracketed by
pulses from xI = 0 add to the time in the exited state
(even i pulses), while intervals due to pulses from xI = L
reduce that time (odd i pulses).

Let Φ(q, x) be the net phase accumulated during the
qth half-diamond for an atom at position x. Summing
over all the even i intervals and subtracting the odd i
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intervals yields a net phase of

Φ(q, x) = ωa

n−1
∑

i=0
even

(

τ(x, 0, tq+1,−i)− τ(x, 0, tq,i)
)

(5)

− ωa

n−1
∑

i=0
odd

(

τ(x, L, tq+1,−i)− τ(x, L, tq,i)
)

The phase for a complete diamond is given by the dif-
ference of Φ(q, x) for two arms, which by symmetry are
related by a time translation by T . Summing over all
Q diamonds in the sequence gives the total phase for an
interferometer at position x:

∆Φ(x) =

Q−1
∑

j=0

(

Φ(2j + 1, x)− Φ(2j, x)
)

(6)

The detector response is the phase difference of an in-
terferometer at x = 0 and x = L, which we call the
gradiometer phase: ∆Φgrad ≡ ∆Φ(L) −∆Φ(0). We de-
fine the difference in light arrival time ∆τ at the location
of the atoms at each end of the gradiometer as

∆τ(t) ≡ τ(L, xI = 0, t)− τ(0, xI = 0, t)

= L
c + h

2ω

(

sin
(

ω(t+ L
c ) + φ0

)

− sin
(

ωt+ φ0

)

)

= −
(

τ(L, xI = L, t)− τ(0, xI = L, t)
)

(7)

Note that the arrival time differences for pulses originat-
ing from xI = 0 and xI = L are the same except for an
overall minus sign. This means that the even and odd
sums of Eq. 5 can be combined, yielding

∆Φgrad = ωa

Q−1
∑

j=0

n−1
∑

i=0

(

∆τ(t2j+2,−i)−∆τ(t2j+1,i)

−∆τ(t2j+1,−i) + ∆τ(t2j,i)
)

(8)

The response of the detector has the form ∆Φgrad(t0) =
∆φ cos (ωt0 + φ0), where ωt0 + φ0 is the phase of the
gravitational wave at time t0 at the start of the pulse
sequence. The amplitude of the detector response is

∆φ = keffhL
sin(ωQT )

cos(ωT/2)
sinc

(

ωnL
2c

)

sin
(

ωT
2 − ω(n−1)L

2c

)

(9)

Here ~keff is the momentum transferred to the atom dur-
ing the LMT beamsplitters and mirrors, where keff ≡
nωA/c for an n-pulse LMT sequence using an optical
transition with atomic energy level spacing ~ωA. The
response is peaked at the resonance frequency ωr ≡ π/T
and has a bandwidth given by ∼ ωr/Q. The peak phase
shift on resonance (ω = ωr) has amplitude

∆φres = 2QkeffhL sinc
(

ωrnL
2c

)

cos
(ωr(n−1)L

2c

)

(10)

which in the low frequency limit ωr ≪ c
nL reduces to

∆φres ≈ 2QkeffhL. As expected, the phase response
shows an n-fold sensitivity enhancement from LMT and
a Q-fold enhancement from operating in resonant mode.
The interferometer can be switched from broadband to
resonant mode by changing the pulse sequence used to
operate the device (changing Q). Note that the imple-
mentation of this scheme principally requires the abil-
ity to coherently transfer momenta keff to the atom
wavepackets Q times, much like LMT interferometry.
The practicalities of this are discussed in Section IV.

B. Stochastic sensitivity

This resonant strategy may give significant sensitivity
to a stochastic background of gravitational waves, as can
arise for example from inflation. For such a measurement
it is desirable to cross-correlate two detectors. This could
be, for example, two single-arm detectors of the type de-
scribed above. Following [28] (but see also [29, 30]) we
estimate the sensitivity (really the 95% confidence limit)
to such a stochastic background as

ΩGW(f) =
πc2f3

ρcG|γ (~x1, ~x2, f) |

√

2

τint∆f
(1.645)h2

n(f)

(11)
where τint is the total averaging time of the experiment,
γ is a geometric factor taking into account the positions
of the two detectors which we take equal to its maximum
value 8π

5 (it will probably be slightly smaller in a real
configuration), and ρc is the closure density of the Uni-
verse. Here hn is the amplitude spectral density of the
strain noise in the gravitational wave detector as plot-
ted for example in Fig. 3. For the bandwidth we take
∆f ∼ fr

Q where fr = ωr/2π is the resonant frequency of

the detector.
The sensitivity in Eqn. (11) improves with resonance as

ΩGW ∝ Q− 3
2 (for a fixed resonant frequency fr). This is

because the strain sensitivity hn improves linearly in Q,
but we lose because the bandwidth drops linearly ∆f ∝
Q−1 so we are integrating over less power at higher Q.
A rough, intuitive understanding of this scaling with Q
is as follows. The relevant part of the stochastic signal
is the power within the bandwidth ∆f , so assume that
in fact the entire signal is just this part of the power
spectrum. This piece of the signal power spectrum by
itself is sharply peaked in frequency with a coherence
time of (∆f)

−1
.

III. STRAIN SENSITIVITY

Figure 3 shows example strain sensitivities curves that
can be achieved using the resonant detector mode. We
consider a specific design with a baseline of L = 4.4 ×
107 m, chosen to highlight the sensitivities that can be
achieved in the 0.1 Hz - 1 Hz band. To take advantage
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FIG. 3: Strain sensitivity for a detector using resonantly
enhanced LMT atom interferometry. The design is based
on single-photon transitions in Sr and uses a heterodyne
laser link over a single baseline of length L = 4.4 × 107 m.
The atom interferometer phase noise is taken to be δφa =
10−5 rad/

√
Hz, and the design assumes a telescope diameter

of d = 50 cm which is large enough to keep the contribu-
tion of photon shot noise less than δφa for all frequencies in
the detection band. The sensitivity curves for several possi-
ble pulse sequences are shown (red, green, blue, orange) with
different choices for the resonant enhancement Q and LMT
n. The black curve shows the peak on-resonance response at
each frequency that can be reached with appropriate choice
of n and Q. In all cases, the parameters of the sequence are
constrained so that the total number of pulses does not ex-
ceed nmax = 103 and the total interferometer duration is less
than Tmax = 300 s. The shaded regions below the black curve
indicate the value of n used in each range. The repetition
rate of the detector is frep = χ

2T
, where we assume sufficient

multiplexing to reach χ = 10 samples per gravitational wave
period.

of this long baseline, we assume a detector design based
on heterodyne laser links as described in [11]. Each of
the curves (red, green, blue, orange) shows the strain
sensitivity derived from Eq. 9 for a specific choice of the
tunable parameters of the detector: interferometer time
T , resonant enhancement Q, and LMT enhancement n.
While T is set by the targeted resonant frequency, the
values of Q and n have been chosen in each case to max-
imize the sensitivity while respecting certain practical
constraints, as described in detail below. Any of these
sensitivity curves can be realized by the same physical de-
tector (e.g., with the same baseline, telescope, and laser
design) and the response of the detector can be rapidly
changed among these by changing the pulse sequence in
software. In Fig. 3 we also assume that laser frequency
noise is sufficiently common between the two interferom-
eters that it can be neglected, as described in [11, 12].
The implied requirements for laser frequency noise (and
other technical noise sources) are discussed in Sec. IVD.
The black curve in Fig. 3 shows the peak strain sen-

sitivity for a resonant sequence at each frequency, as
given by Eq. 10 and using the same example design

(L = 4.4×107 m). As such, this is not the broadband in-
stantaneous response of the detector, but rather it shows
the strain sensitivity that can be achieved at each fre-
quency using a narrow band resonant sequence. Once
again, since the operating frequency 1/T can be easily
changed, the detector can be scanned sequentially across
this band to study signals at all frequencies.
The strain sensitivity also depends on the minimum

resolvable phase shift in the interferometer. Assuming
technical sources of phase noise can be suppressed suf-
ficiently well as a common-mode, the detector phase
readout is ultimately limited by the quantum projection
noise of the atoms. Here we anticipate that the per-
formance of the detector can benefit from ongoing ad-
vances in rapid ultracold atom preparation[31], as well
as from recent results[32] demonstrating metrologically
significant spin squeezing. For the curves in Fig. 3, we
extrapolate beyond current state-of-the-art and assume a
phase noise of δφa = 10−5 rad/

√
Hz. This could be met

with atom shot-noise-limited detection using an atom
flux of 1010 atoms/s. Alternatively, with 20 dB of spin
squeezing[32] the same target phase noise would require
an atom flux of 108 atoms/s.

IV. DISCUSSION

A. Detector design

The optimal choice of parameters, for example the
choice of Q, for an actual gravitational wave detector
is complicated and depends on the signal being searched
for. A full experimental design is beyond the scope of
this paper. Here we do not attempt to describe the op-
timal configurations for all situations. The parameters
chosen in Figure 3 are not optimized for science reach or
to avoid technical noise sources. Here we simply describe
the tool of resonant atom interferometry and several dif-
ferent possible uses.
One consideration is that in certain configurations

there may be a tradeoff between the resonant enhance-
ment Q and the LMT enhancement n since both require
repeated atom-laser interactions. For example, there is a
practical limit to the total number of atom-laser interac-
tions that are possible before an order one fraction of the
atoms are not coherently transferred. A benefit to using
more LMT instead of more resonant enhancement is that
while both increase the signal linearly, LMT leaves the
detector broadband. This tradeoff is discussed in more
detail in Sec. IVC.
On the other hand, it is possible that atom loss is not

the limiting factor. For instance, one limit on LMT is
the spatial size of the interferometer region, which can
become large because of the wavepacket separation as-
sociated with LMT [18]. Using resonant enhancement
while reducing LMT allows the interferometer region to
remain smaller because the two halves of the atom sep-
arate at a smaller recoil velocity ~keff/m. In order to
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maintain a fixed target sensitivity without resonant en-
hancement (Q = 1), the product nQ must be kept con-
stant by increasing n. For example, in the case of the
green sensitivity curve in Fig. 3, maintaining the same
sensitivity at the target frequency with Q = 1 would re-
quire n = 284, resulting in a wavepacket separation of
∆x = ~keffT/m ∼ 8 m. By comparison, using a reso-
nant sequence (n = 4 and Q = 71) leads to a wavepacket
separation of only ∆x ∼ 10 cm. This tradeoff could al-
low a higher sensitivity interferometer to fit inside a fixed
region such as a satellite. For a satellite-based gravita-
tional wave detector, this could be a significant advantage
of using this resonant mode of operation.

B. Application to cosmology and astrophysics

There are multiple possible uses for the resonant mode.
An important example is detection of a stochastic back-
ground of gravitational waves such as arises from infla-
tion or other cosmological sources. The stochastic strain
sensitivity of the resonant detector is shown in Fig. 4.
The 1 Hz band may be a particularly promising band for
detecting cosmological sources because it may have less
“noise” from astrophysical binaries [33, 34]. A satellite
based detector may for example naturally allow a total
interrogation time around 100 s, thus giving a broadband
sensitivity down to ∼ 10−2 Hz. It would be useful in this
case to use resonance and give up sensitivity at those
low frequencies where it is not useful, to gain sensitivity
around 1 Hz. A resonant enhancement of Q ∼ 100 would
move the peak sensitivity to 1 Hz and significantly boost
the sensitivity to a cosmological signal. The resonant fre-
quency can be changed by order one, thus allowing mea-
surement of the shape of the spectrum for a stochastic
signal, and for example possibly allowing measurement of
the inflationary gravitational wave spectrum. Improve-
ments beyond the example sensitivity curve shown in
Fig. 4 could even possibly allow the detector to reach
the level predicted by simple high-scale inflation models
(with r ∼ 0.1) [35].
The detectability of these stochastic cosmological

sources is subject to the GW background produced by
unresolved black-hole mergers [36]. A tunable, resonant
detector with enhanced sensitivity might help resolve this
background and deserves further study.
Another important use of resonance is for astrophysical

signals such as inspiraling binaries. At the lower frequen-
cies around 1 Hz and below these binaries last a very long
time and are thus rather monochromatic. If a binary is
detected, for example in broadband mode, resonant mode
can be used to focus on it, greatly increasing the SNR in
a much shorter time. This would allow significantly more
information to be learned about the binary including pa-
rameters such as masses, distance, and in particular the
direction to the binary. For both a satellite based de-
tector and a terrestrial detector, the baseline will rotate
(either with the earth or the satellite’s motion), periodi-

FIG. 4: Stochastic gravitational wave sensitivity. The black
curve shows the sensitivity to ΩGM using the same detec-
tor design as Fig. 3, with baseline length L = 4.4 × 107 m,
phase readout noise δφa = 10−5 rad/

√
Hz, and telescope size

d = 50 cm. This curve is constructed from Eq. 11 using the
peak on-resonance response for hn(f) (the black curve from
Fig. 3), a bandwidth of ∆f = f/Q (using the appropriate
Q at each f), and a τint = 1 year integration time. As be-
fore, this is not the broadband sensitivity of the detector, but
rather it shows the sensitivity that can be reached at each fre-
quency after operating a narrow-band resonant detector there
for τint = 1 year. To help visualize this, the red curve shows
the ΩGM sensitivity for a specific sequence (hn given by Eq. 9)
with resonance frequency fr = 0.15 Hz, Q = 44, and 6~k LMT
atom optics. This frequency is in a range that is interesting
for cosmological signals and may avoid white dwarf binary
confusion noise, shown in the gray band (whose width shows
an estimated uncertainty) [33]. The purple line shows an es-
timate for the power spectrum that could arise from GWs
produced during slow roll inflation with r ∼ 0.1 [35], the or-
ange line depicts GWs from models such as axion inflation
[37] that lead to enhanced GW production at frequencies ∼ 1
Hz while remaining consistent with CMB bounds on r (mea-
sured at 10−18 Hz), the blue line shows the expected GW
strains produced by a network of cosmic strings with tension
Gµ ∼ 10−16 [38] and the green curve (RS1) is an example of
the spectrum that might be produced by a phase transition
in the early universe [39].

cally changing the projection of the signal onto the detec-
tor baseline. The direction of the source can be inferred
by observing the resulting variation in signal amplitude,
ideally at many points in time throughout the period of
rotation of the detector. The high SNR in resonant mode
means that the source can be resolved with less averag-
ing time, allowing a much more accurate measurement of
the direction of the source than would be possible with
a broadband detector.
The resonant mode not only helps gain information

after a source has been detected, it also improves the de-
tectability of long-lived sources. The resonant frequency
can be scanned over a broad bandwidth. For example,
if one chooses to operate in this swept-resonance mode,
the strain sensitivity to such an astrophysical source is
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improved roughly as ∼ √
Q. This is because the strain

sensitivity on resonance is increased by Q, while the in-
tegration time spent in each particular frequency band
is decreased by a factor ∼ Q but this only costs as the
square root of time. Thus the swept-resonance mode may
have significant use for detecting astrophysical sources as
well as for gaining information about them once they are
detected.

C. Sensitivity curve constraints

There are several practical constraints that determine
the sensitivity shown in Fig. 3. First, as mentioned
above, there is a trade-off between LMT atom optics and
resonant enhancement that limits the useful range of the
ideal scaling ∝ nQ. In particular, due to imperfect trans-
fer efficiency and other losses associated with the atom
optics pulses, there is in practice a maximum number of
pulses nmax that can be applied during a single interfer-
ometer. Here we assume nmax = 103, which is an or-
der of magnitude above the current state-of-the-art for a
discrete pulse LMT sequence[18]. For the resonantly en-
hanced LMT interferometer, the total number of pulses
is np = 2Q(2n − 1) + 1, so keeping np ≤ nmax puts a
constraint on the product of n and Q that we respect in
Fig. 3.
Another practical constraint is that the total interfer-

ometer duration must be less than the lifetime of the
atomic ensemble. The maximum useful lifetime is limited
by losses due to collisions with background gas atoms,
scattering of stray light, the natural lifetime of the ex-
cited state, and expansion due to finite temperature. For
a resonant interferometer with Q oscillations, the total
time is constrained by 2TQ ≤ Tmax. We assume a max-
imum time of Tmax = 300 s. This can be reached with
modest vacuum requirements (. 10−10 Torr) and with
atom ensemble temperatures of ∼ 10 pK, similar to what
has already been demonstrated using delta kick cooling
[20]. This constraint limits the resonant enhancement Q
at low frequencies and is responsible for the stair-step
shape of the sensitivity curve in Fig. 3.
The nmax and Tmax combined constraints explain the

shape of the black sensitivity envelope in Fig. 3. Respect-
ing Tmax, higher frequencies allow for larger Q, but for a
fixed nmax the maximum allowed Q is smaller for higher
values of n. As a result, for each value of n (red, green,
blue, and orange shaded regions) the sensitivity improves
at first going to higher frequencies, but at a certain point
nmax is reached and Q can no longer increase. This cor-
responds to the best sensitivity for that value of n, and at
frequencies above this the sensitivity begins to degrade in
accordance with Eq. 10. As a result, the peak sensitivity
occurs at higher frequencies for smaller n. While increas-
ing n improves the sensitivity scale factor, it reduces the
maximum Q, so the net result is an increase in sensitiv-
ity at low frequency but a decrease at high frequency.
Increasing n also limits the maximum allowed frequency,

since the total duration of each LMT atom optic must be
less than the interferometer time: 2(n− 1)L/c < T . The
upshot of these considerations is that different values of n
are preferable in different frequency ranges. We empha-
size that the n and Q parameters used in Fig. 3 are only
optimized for one particular physical design and would
be different for other baseline lengths and telescope di-
ameters.

D. Noise constraints

The sensitivity curve in Fig. 3 is only an atom shot
noise limited curve. It does not take into account all
the other possible noise sources, since the level of those
noise sources depends on other parameters of the detec-
tor. The purpose of this paper is to point out a new tool
for gravitational wave detection. It is beyond the scope
of the paper to create a full detector design. Instead, in
this Section we will discuss several of the most relevant
noise sources and simply give the requirements on the
experimental design that would allow those noise sources
to be below the atom shot noise. We will not discuss how
to implement such constraints in a realistic design.
An important consideration for long baselines is the

photon shot noise of the laser link [11]. Shot noise
leads to uncertainty in the phase comparison between
the incoming reference laser pulses and the local oscil-
lator laser, and these phase errors accumulate for each
pulse in the atom interferometer sequence. In Fig. 3 we
assume a d = 50 cm telescope diameter and ensure that
the accumulated photon shot noise is less than the atom
shot noise δφa = 10−5 rad/

√
Hz at all frequencies shown.

This constraint puts limits on Q that become relevant at
high frequencies when the fact that T ≪ Tmax would
otherwise allow larger Q.
Using the analysis describe in [11], the minimum re-

quired telescope diameter is

d = 50 cm
(

L
4.4·107 m

)
2
5
(

1 W
Pt

)
1
10
(

2 Hz/200
fR/np

)
1
5
(

10−5/
√
Hz

δφ
a

)
2
5

(12)
where Pt is the power transmitted from one end of the
laser link and fR is the repetition rate of the detector.
As discussed in [11], multiple concurrent interferometers
are needed to achieve the desired repetition rates. To
eliminate dead time [40], atom cloud preparation and
interferometer operation must be interleaved.
To alleviate photon shot noise constraints further at

very long baselines, it can also be advantageous to trade-
off the baseline length for LMT enhancement. To achieve
a fixed target strain sensitivity at shorter baseline L, the
effective light path length Leff = nL of the LMT pulse
sequence can be held constant by increasing n. In this
way, the LMT sequences have the effect of folding a long
baseline into a smaller physical separation, much like how
the Fabry-Perot resonators in the arms of LIGO give a
longer effective baseline. By reducing the physical sepa-
ration, the light collection demands on the telescopes are



8

reduced since the beams diverge less. At a fixed level of
photon shot noise, the minimum required telescope diam-

eter scales as dmin ∼ L2/5n1/5 ∼ L
2/5
eff n−1/5 [11], which

is reduced as n in increased. This scaling accounts for
the fact that increasing n has the unwanted side effect of
increasing the total number of pulses, and thereby con-
tributing additional photon shot noise to the detector.
The sensitivity curves in Fig. 3 require tight constraints

on the laser wavefront. Laser wavefront aberrations δλ/λ
couple to satellite transverse position noise δx as dis-
cussed in [11]. Since the phase errors from aberrations
add coherently with each pulse, sequences with np near
nmax are the most challenging. The wavefront require-
ment is

δλ = λ
300

(

200
nQ

)(

Λ
1 cm

)(

δφ
a

10−5 rad/
√
Hz

)(

1 nm/
√
Hz

δx

)

(13)

where Λ is the aberration wavelength. Wavefront require-
ments may be traded against constraints on the satellite
position noise δx. It may be possible to relax these re-
quirements to some degree by imaging the atom ensemble
and resolving the phase imprint of the aberrations.
Timing jitter in the heterodyne laser link can result

in residual sensitivity to laser frequency noise [11]. As-
suming the pulses can be synchronized to ensure time
delays less than td ∼ 1 ns, the frequency noise amplitude
spectral density of the interferometer laser must be [11]

δω = 2π×10 Hz√
Hz

(

200
nQ

)(

1 ns
td

)(

δφ
a

10−5 rad/
√
Hz

)

. (14)

Kinematic noise such as from acceleration noise of the
laser platform can couple to the detector if there is a non-
zero relative velocity ∆v between the two interferometers
[12]. For a satellite-based detector, relative velocity be-
tween the interferometers may arise because of perturba-
tions to the orbits. The platform acceleration noise limit
for the sensitivity shown in Fig. 3 is

δa = 10−7g√
Hz

(

200
nQ

)(

1 cm/s
∆v

)(

δφ
a

10−5 rad/
√
Hz

)(

ωr

2π×40 mHz

)2

(15)
where g = 9.8 m/s2 is Earth’s gravity and ωr is the tar-
get frequency of the detector. Here we consider a rel-
ative velocity of ∆v ∼ 1 cm/s, but the actual velocity
perturbations depend strongly on the details of the or-
bit. Although platform acceleration noise is magnified for
sequences with many laser pulses, this is somewhat com-
pensated by the fact that the acceleration requirement
scales favorably with increasing frequency.

V. CONCLUSIONS

The resonant mode enhances the capabilities of pre-
viously proposed gravitational wave detectors based on

atomic sensors. The same instrument could be run ei-
ther in broadband or resonant mode, and the switch can
be made in real time since it only requires changing the
laser pulse sequence. This mode is a new tool for these
detectors that can provide design flexibility. For exam-
ple, it can be used to accommodate constraints on the
maximum size of the interferometer region, allowing a
significantly more sensitive detector to fit in a confined
region, such as inside a satellite.

The sensitivity to astrophysical sources and the infor-
mation gained about them can be enhanced with the
resonant mode of operation. For instance, it may sig-
nificantly boost the precision of the direction measure-
ment. Additionally, a specific binary may be followed in
frequency until it reaches the LIGO band above 10 Hz,
improving the confidence of the detection and the mea-
surement of the binary’s parameters by observing it in
multiple frequency bands.

The resonant mode may significantly enhance the use
of these gravitational wave detectors for cosmology. A
satellite-based detector operating in the resonant mode
could have significantly enhanced sensitivity around 1
Hz, which may be the optimal band to search for cosmo-
logical sources such as inflation. The only known ways to
directly observe such signals from inflation are the CMB
[41] and direct gravitational wave detection in this fre-
quency band. The 1 Hz band probes a very different
part of the inflationary epoch than the CMB, and a dif-
ferent part of the inflaton potential. In the ideal scenario,
a detection in both the CMB and a direct GW detector
would provide a powerful test of the inflationary spec-
trum over roughly 18 orders of magnitude in frequency,
probing details of the mechanism behind inflation. Such
a long lever-arm would allow precise measurement of in-
flationary parameters that may not otherwise be observ-
able. Gravitational waves offer possibly the only way to
directly observe the universe before last scattering, po-
tentially probing energy scales far above laboratory ex-
periments.
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