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1 Introduction

There have been impressive confirmations of general relativity in the solar
system and from binary pulsars [1]. Most recently the existence of gravita-
tional radiation has been established [2]. However, general relativity does not
do such a good job at explaining certain observed regularities of rotationally
supported galaxies:

• The Baryonic Tully-Fisher Relation (v4∞ = a0GM) between the asymp-
totic rotational speed v∞ and the total mass M in baryons, where
a0 ≈ 1.2× 10−10 m/s2 [3];

• Milgrom’s Law that non-baryonic dark matter is required when the
gravitational acceleration from baryonic matter falls below a0 [4];

• Freeman’s Law (Σ < a0
G
) for the surface density Σ [5]; and

• Sancisi’s Law that features in the rotation curve are correlated with
features in the surface brightness [6].

Analogous regularities have been observed for pressure-supported galaxies [7].
These laws may signal undiscovered features in the way general relativity
combines baryons with much more massive pools of dark matter to form
cosmic structures. However, it is disconcerting that increasingly sensitive
experiments have so far failed to detect all this dark matter [8, 9, 10].

In the absence of laboratory detection of dark matter it is worth while
examining the possibility that gravity is modified instead. Milgrom has pro-
posed a particularly promising modification for what would be the static,
weak field limit of such a theory [11, 12, 13]. There is no question that
Milgrom’s MOdified Newtonian Dynamics (MOND) explains the various ob-
served regularities of galactic structure [14, 15]. The challenge is to extend
MOND to a fully relativistic theory that can be used to study the same range
of phenomena as general relativity. Two approaches have been followed:

• Models in which other fields carry the MOND force [16, 17]; and

• Models in which an algebraic function of a nonlocal invariant of the

metric is added to the Lagrangian — R −→ R +
a20
c4
fy(Z[g]) — [18].

The purpose of this paper is to specify fy(Z) for the latter approach.
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The modified gravity equations have been derived for a general metric
gµν and a general function fy(Z) [19, 20]. A crucially important point is
that whereas the nonlocal invariant Z[g] is positive for gravitationally bound
systems, it is typically negative for cosmological systems in which time depen-
dence is more significant than spatial dependence. Explaining the regularities
of galaxies fixes the algebraic function for positive arguments [18],

fy(Z) =
1

2
Z − 1

6
Z

3
2 +O(Z2) . (1)

Preserving solar system tests (and those at strong fields) requires that the
function fall off for large, positive Z. For example, the following simple form
would suffice [18],

Z > 0 =⇒ fy(Z) =
1

2
Z exp

[
−1

3

√
Z

]
. (2)

But how the function depends on negative Z must be regarded as a free
parameter at this stage.

The purpose of this paper is to show that the function fy(Z) can be chosen
so as to reproduce the ΛCDM expansion history — which is itself just a
model, with free parameters — over almost the full range of cosmic evolution.
It turns out that the nonlocal invariant Z fails to be monotonic at very
late times, which means that our nonlocal realization of MOND inevitably
deviates from ΛCDM cosmology. However, this deviation is serendipitous
because it makes the current value of the Hubble parameter about 4.5%
larger, which has the potential to explain why high redishift determinations
of H0 give a smaller value than low redshift determinations.

In section 2 we review the model, defining the nonlocal invariant Z[g] and
specializing the field equations to a general, spatially flat cosmology. Section
3 assumes the ΛCDM expansion history and uses this to derive the form of
fy(Z) must take for large negative Z and for small negative Z. Section 4
presents a numerical solution of the full problem, which includes the failure
of Z to be monotonic at very late times and the resulting deviation from
ΛCDM cosmology. What all this means is discussed in section 5.

2 The Model

The purpose of this section is to briefly review the nonlocal metric realization
of MOND [18, 19]. We begin by defining the full invariant Z[g](x), then give
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the general field equations. The section closes by specializing Z[g](x) and
the field equations to the homogeneous and isotropic geometry of cosmology.

The gravitational Lagrangian takes the form,

L =
c4

16πG

{
R +

a20
c4
fy

(
Z[g]

)}√
−g . (3)

The dimensionless nonlocal invariant Z[g],

Z[g] ≡ 4c4

a20
gµν

[
∂µ

1
Rαβu

αuβ
][
∂ν

1
Rρσu

ρuσ
]
, (4)

is constructed using three geometrical quantities:

1. The inverse scalar d’Alembertian,

≡ 1√−g ∂µ
(√

−g gµν∂ν
)
, (5)

where the inverse is defined using retarded boundary conditions.1

2. A normalized timelike 4-velocity uµ[g](x),

χ[g](x) ≡ − 1
1 =⇒ uµ[g] ≡ −gµν∂νχ[g]√

−gαβ∂αχ[g]∂βχ[g]
. (6)

3. The Ricci tensor Rµν .

At this point a digression is in order to comment on the probable genesis
of nonlocality. We believe that fundamental theory is local, but the nonlocal
Lagrangian (3) represents the gravitational vacuum polarization of the vast
ensemble of infrared gravitons created by primordial inflation. These gravi-
tons were not present at the beginning of inflation, and their wave lengths
do not extend to arbitrarily small scales. This in no way changes the purely
phenomenological status of the nonlocal model (3), but it does explain two
of the model’s features which would otherwise seem absurd [20]:

• That there is an initial time on which to specify the initial conditions
of the inverse d’Alembertian; and

1It might be preferable to define the initial derivative of Φ = 1 of anything as

−gµν∂µΦ∂νΦ = Constant [21]. For late times this improvement is not needed.
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• That MOND corrections affect large scales but not small scales.

The simplest way to present the general field equations is by introducing
nondynamical, auxiliary scalars after the method of Nojiri and Odintsov [22].
Localizing the Lagrangian (3) requires four such scalars [19],

L =
c4

16πG

{
R +

a20
c4
fy

(gµν∂µφ∂νφ
c−4a20

)

−
[
∂µξ∂νφg

µν+2ξRµνu
µuν

]
−

[
∂µψ∂νχg

µν−ψ
]}√

−g , (7)

where Dµ denotes the covariant derivative operator and uµ[g] is defined in
terms of the scalar χ according to the right hand side of (6). The auxiliary
scalars must not be considered as independent degrees of freedom because
two of them would be ghosts [23, 24]. The four scalars are rather nonlocal
functionals of the metric defined by solving their equations of motion with
retarded boundary conditions ,

φ[g] =
2
Rαβu

αuβ , χ[g] = − 1
1 , (8)

ξ[g] =
2
Dµ

[
∂µφf

′
y

(gρσ∂ρφ∂σφ
c−4a20

)]
, ψ[g] =

4
Dµ

[
ξ(gµρ+uµuρ)uσRρσ√

−gαβ∂αχ∂βχ

]
. (9)

The modified gravitational field equations are [19],

Rµν +
1

2
gµν

[
−R − a20

c4
fy + gρσ

(
∂ρξ∂σφ+∂ρψ∂σχ

)
+ 2ξuρuσRρσ − ψ

]

+∂µφ∂νφf
′
y − ∂(µξ∂ν)φ− ∂(µψ∂ν)χ− 2ξ

[
2u(µu

αRν)α+uµuνu
αuβRαβ

]

−
[

(ξuµuν) + gµνDαDβ(ξu
αuβ)− 2DαD(µ(ξuν)u

α)
]
=

8πG

c4
Tµν . (10)

It remains to specialize relations (8-10) to the homogeneous, isotropic and
spatially flat geometry relevant to cosmology,

gµνdx
µdxν = −c2dt2 + a2(t)d~x · d~x =⇒ H(t) ≡ ȧ

a
, ǫ(t) ≡ − Ḣ

H2
.

(11)
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In this geometry the auxiliary scalars become [19],

φ(t) = −6
∫ t

ti

dt′

a3(t′)

∫ t′

ti

dt′′a3(t′′)H2(t′′)
[
ǫ(t′′)−1

]
=⇒ Z(t) = − φ̇2(t)

c−2a20
, (12)

χ(t) =
∫ t

ti

dt′

a3(t′)

∫ t′

ti

dt′′a3(t′′) =⇒ uµ(t) = δµ0 , (13)

ξ(t) = 2
∫ t

ti

dt′φ̇(t′)f ′
y

(
Z(t′)

)
, ψ(t) = 0 , (14)

where ti is the initial time. The gravitational field equations are [19],

3H2+
a20
2c2

fy(Z)+3Hξ̇+6H2ξ =
8πG

c2
ρ , (15)

−2Ḣ−3H2− a20
2c2

fy(Z)−ξ̈−
( φ̇
2
+4H

)
ξ̇−

(
4Ḣ+6H2

)
ξ =

8πG

c2
p , (16)

where ρ(t) is the energy density and p(t) is the pressure.

3 Asymptotic Analysis

The aim of this paper is to choose the function fy(Z) so that equation (15)
reproduces the ΛCDM expansion history without including dark matter in
the energy density ρ(t). The purpose of this particular section is to accom-
plish that task analytically for large negative Z and for small negative Z. We
begin by defining the ΛCDM model, with the usual choice of redshift z as the
time parameter. We then present exact equations for the nonlocal invariant
Z and the algebraic function fy(Z). Solving these exact equations for large
and small negative Z completes the asymptotic analysis of the section.

3.1 The ΛCDM Model

Cosmologists employ the cosmological redshift z as the time variable,

1 + z ≡ a0
a(t)

=⇒ dz

1+z
= −Hdt , (17)

where a0 ≡ a(t0) is the value of the scale factor at the current time t0. In
the interest of simplicity we will abuse the notation slightly by referring to
standard quantities H(z), ǫ(z) and Z(z) as functions of redshift.

5



The ΛCDM model is defined by assuming the Hubble parameter is,

H(z) ≡ H0

√
Ωrad(1+z)4 + Ωmat(1+z)3 + ΩΛ ≡ H0×H̃(z) , (18)

where the parameters Ωr, Ωm and ΩΛ are [25],

Ωr = 0.0000916 , Ωm = 0.309 , ΩΛ = 0.691 . (19)

The first slow roll parameter of the ΛCDM model is,

ǫ(z) ≡
2Ωr(1+z)

4 + 3
2
Ωm(1+z)

3

Ωr(1+z)4 + Ωm(1+z)3 + ΩΛ

. (20)

Without dark matter the energy density of equation (15) is,

8πG

c2
ρ = 3H2

0

[
Ωr(1+z)

4 + Ωb(1+z)
3 + ΩΛ

]
. (21)

The baryonic fraction of the critical density is [25],

Ωb = 0.0486 . (22)

The missing mass is [25],

8πG

c2
ρ− 3H2 = −3H2

0×Ωc(1+z)
3 , Ωc = 0.259 . (23)

3.2 Exact Relations for Z(z) and fy(Z).

MOND corrections depend on the dimensionless ratio of c and H0 to a0,

α ≡ 6cH0

a0
≃ 33 . (24)

Because the initial redshift is effectively infinite the function Z(z) is,

√
−Z(z) = α(1+z)3

∫ ∞

z

dz′

(1+z′)4
Ωr(1+z

′)4 + 1
2
Ωm(1+z

′)3 − ΩΛ√
Ωr(1+z′)4 + Ωm(1+z′)3 + ΩΛ

. (25)

The right hand side of expression (25) is obviously positive and monotonically
increasing for large z. For small z the −ΩΛ term in the numerator of the
integrand changes the sign of the integrand, and we will presently see that
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this causes the integral to vanish at z∗ ≃ 0.0880. Because fy is a function
of Z, rather than z, we cannot enforce the ΛCDM expansion history for the
small region 0 < z < z∗, so we concentrate on the region z∗ < z < ∞ over
which the transformation from z to Z(z) is one-to-one. In this region the
modified Friedman equation (15) can be written,

fy(Z)

2α2H̃2
−

√
−Z f ′

y(Z)

αH̃
+

∫ ∞

Z

f ′
y(Z

′)dZ ′

(1+z′)d
√
−Z′

dz′
×αH̃

= −Ωc

12

(1+z)3

H̃2
. (26)

3.3 Results for large negative Z

The integration in expression (25) can be reduced to elliptic integrals but
the result is not especially useful. However, large negative Z corresponds to
large z, in which case one can neglect ΩΛ to obtain a useful expression,

√
−Z ≃ α(1+z)3

∫ ∞

z

dz′

(1+z′)4
Ωr(1+z

′)4 + 1
2
Ωm(1+z

′)3
√
Ωr(1+z′)4 + Ωm(1+z)3

, (27)

=
α
√
Ωr (1+z)

3

1+zeq

{
1

3

[
1+

1+zeq
1+z

] 3
2 +

[
1 +

1+zeq
1+z

] 1
2 − 4

3

}
, (28)

= α
√
Ωr (1+z)

2

{
1 +

∞∑

n=2

(n−1)(2n−3)!!

(n+1)!

[
−1

2

1+zeq
1+z

]n
}
, (29)

where zeq ≡ Ωm

Ωr
≃ 3370 is the redshift of matter-radiation equality.

Although the series (29) converges there is no point to proceeding higher
than n = 3 because the n = 4 term has the same strength as the neglected ΩΛ

contributions. The various expansions look simpler in terms of the quantities,

β ≡
√
α (1+zeq) , ζ ≡ − Z

Ωr
=⇒ d

dZ
= − 1

Ωr

d

dζ
. (30)

From (29) we find,

H̃ =

√
Ωr

α
ζ

1
2

{
1 +

1

2

β

ζ
1
4

− 1

6

β2

ζ
1
2

+
3

32

β3

ζ
3
4

+O
(β4

ζ

)}
, (31)

(1+z)
d
√
−Z
dz

= 2
√
Ωr ζ

1
2

{
1− 1

24

β2

ζ
1
2

+
3

64

β3

ζ
3
4

+O
(β4

ζ

)}
, (32)

(1+z)3

H̃2
=

√
α

Ωr
ζ−

1
4

{
1− β

ζ
1
4

+
49

48

β2

ζ
1
2

− 203

192

β3

ζ
3
4

+O
(β4

ζ

)}
. (33)
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Substituting these relations in (26) implies,

fy(Z) = −
√
αΩc

33
ζ

3
4

{
1− β

ζ
1
4

+
155

176

β2

ζ
1
2

− 625

768

β3

ζ
3
4

+O
(β4

ζ

)}
. (34)

Of course relation (26) is an inhomogeneous, first order integro-differential
equation so its solution is ambiguous up to the addition of a homogeneous
solution. For large Z this solution takes the form of a constant times,

fh(Z) = ζ
1
2
−

√
3

2

{
1− 2

5

(
1+

√
3
) β
ζ

1
4

+
[67
90

− 7

24

(
1−

√
3
)]β2

ζ
1
2

+O
(β3

ζ
3
4

)}
. (35)

The coefficient of fh(Z) is not fixed by the asymptotic expansion (34) so we
can use it to impose the condition that fy(Z) vanishes at Z = 0.

3.4 Results for small negative Z

As z is reduced it eventually becomes invalid to ignore ΩΛ. A reasonable
measure of this point is when the energy density in radiation becomes equal
to the vacuum energy density,

Ωr(1+ztr)
4 = ΩΛ =⇒ ztr =

(ΩΛ

Ωr

) 1
4 − 1 ≃ 8.32 . (36)

At this point the energy density in matter is still greatly predominant,

Ωr(1+ztr)
4 = ΩΛ = 0.691 ≪ Ωm(1+ztr)

3 ≃ 250 . (37)

For z < ztr we therefore make only a small error by writing,

√
−Z ≃ α(1+z)3

{∫ ∞

ztr

dz′

(1+z′)2

Ωr+
Ωm

2(1+z′)√
Ωr+

Ωm

1+z′

+
∫ ztr

z

dz′

(1+z′)
5
2

1
2
Ωm− ΩΛ

(1+z′)3√
Ωm+

ΩΛ

(1+z′)3

}
. (38)

The two integrals of (38) can be expressed in terms of,

Y ≡
√

1+ztr
1+zeq

≃ 0.0526 , 1 + zΛ ≡
(ΩΛ

Ωm

) 1
3 ≃ 1.31 , y(z) ≡

(1+zΛ
1+z

) 3
2 . (39)
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The result for (38) is,

√
−Z ≃ α

√
ΩΛ

3y2

{
(2Y +5Y 3)

√
1+Y 2 − 4Y 4

−2 ln
[
Y +

√
1+Y 2

]
− y

√
1+y2 + 2 ln

[
y+

√
1+y2

]}
, (40)

=
α
√
ΩΛ

3y2

{
y∗

√
1+y2∗−2 ln

[
y∗+

√
1+y2∗

]
−y

√
1+y2+2 ln

[
y+

√
1+y2

]}
, (41)

where y∗ ≡ y(z∗) ≃ 1.318 and z∗ ≃ 0.0880 is the redshift at which Z vanishes.
It is best to expand (41), and everything else, in powers of the parameter

∆y ≡ y − y∗ < 0,

√
−Z =

α
√
ΩΛ

3y2∗

{( 2y2∗−1√
1+y2∗

)
(−∆y)− (4+y2∗−6y4∗)

(1+y2∗)
3
2

(−∆y)2

2y∗
+O

(
∆y3

)}
. (42)

Inverting relation (42) gives,

−∆y =
3y2∗

√
1+y2∗

2y2∗−1

√
−Z
α2ΩΛ

{
1 +

3y∗(4+y
2
∗−6y4∗)

2
√
1+y2∗ (2y

2
∗−1)2

√
−Z
α2ΩΛ

+O(Z)

}
. (43)

From expression (43) we see that the various expansions will be simpler when
expressed in terms of the variable Z,

Z ≡ − Z

α2ΩΛ
=⇒ d

dZ
= − 1

α2ΩΛ

d

dZ . (44)

Before expanding in Z we will give the relevant expressions (exact up to
ignoring Ωr) in terms of y,

H̃ =
√
ΩΛ

√
1+

1

y2
,

(1+z)3

H̃2
=

1

Ωm

1

1+y2
, (45)

(1+z)
d
√
−Z
dz

= α
√
ΩΛ

[
1− 1

2y2√
1+ 1

y2

+ 3
√
Z
]
. (46)

Substituting relations (45-46) into (26) implies,

1
2
fy

1+ 1
y2

+

√
Z dfy

dZ√
1+ 1

y2

+
∫ ∞

Z

dfy
dZ′dZ ′

1− 1
2y′2

+3
√
1+ 1

y′2

√
Z ′

= −α
2Ωc

12

(1+zΛ)
3

1+y2
. (47)

9



The integral in (47) can be expressed in terms of a constant minus a part
which vanishes with Z,

∫ ∞

Z
dZ ′ =

∫ ∞

0
dZ ′ −

∫ Z

0
dZ ′ ≡ K −

∫ Z

0
dZ ′ . (48)

The constant K is determined by the requirement that fy(Z) vanishes at
Z = 0. There is no simple expression for it but we determined (numerically)
that its value is K ≃ −35.2.

Equation (47) suggests that the small Z form of fy(Z) is,

fy(Z) = −α
2Ωc

12
×(1+zΛ)

3×
√
Z

[
A+B

√
Z +O(Z)

]
. (49)

Using this in (47), with k ≡ − 12K
α2Ωc(1+zΛ)3

≃ 0.670, produces the equation,

[1
2
A
√
Z+ 1

2
BZ+. . .]

1+ 1
y2

+
[1
2
A+B

√
Z+. . .]

√
1+ 1

y2

+ k − 1

1+y2

=
∫ Z

0

[ A

2
√
Z′ +B+. . .]dZ ′

1− 1
2y′2

+3
√
1+ 1

y′2

√
Z ′

. (50)

The coefficient A is determined by the order Z0 term in (50),

A =
2[1−(1+y2∗)k]

y∗
√
1+y2∗

≃ −0.764 . (51)

The coefficient B comes from the order
√
Z term in (50),

B =
8−2(4+y2∗)k

(2y2∗−1)
≃ +0.127 . (52)

4 Numerical Analysis

The purpose of this section is to numerically determine the function fy(Z) for
negative Z, checking each step against the analytic results of the previous
section. Because Z(z) vanishes for z = z∗ ≃ 0.0880 one cannot exactly
reproduce the ΛCDM model in the range 0 ≤ z < z∗ so we must also quantify
the extent that the modified Friedman equation (15) causes the expansion
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history to deviate from the ΛCDM expansion history. Our technique for
finding fy(Z) is to first determine it and Z(z) numerically as functions of z
for z ≥ z∗. We then invert the relation between z and Z to construct z(Z),
and use this to find fy as a function of Z, both numerically and by fitted to
an analytic function. The section closes with a numerical evolution of the
modified Friedman equation (15) in the range 0 < z < z∗ to determine how
much the Hubble parameter deviates from that of the ΛCDM model.

4.1 Converting to z and factoring out α and Ωc

Figure 1: Graphs of s(z) for z∗ < z < ztr (left) and for ztr < z < 4000 (right).

We can entirely absorb the factors of α and Ωc in equations (25) and
(26) by changing the independent variable to z and rescaling the dependent
variables as,

f(z) ≡ −fy(Z)
α2Ωc

, s(z) ≡
√
−Z
α

, g(z) ≡
∫ ∞

z

f ′(z′)dz′

(1+z′)s′(z′)H̃(z′)
.

(53)
With these definitions equations (25) and (26) become,

s(z) = (1+z)3
∫ ∞

z
dz′

[Ωr(1+z
′)4 + 1

2
Ωm(1+z

′)3 − ΩΛ]

(1+z′)4 H̃(z′)
, (54)

1

2
f(z) +

H̃(z)f ′(z)

2s′(z)
+ H̃2(z)g(z) =

1

12
(1+z)3 . (55)

Equation (55) requires an initial condition which we take from the large z
limiting form of f(z) → 1

33
(1 + z)3.
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Figure 2: Graphs of s(z) for z∗ < z < ztr (left) and for ztr < z < 100 (right).
The dotted line on the left shows the analytic formula (57), minus an offset of
∆s = 1

2
introduced to make the two curves distinguishable. The dotted line

on the right displays the analytic formula (56), minus an offset of ∆s = 10
introduced to make the two curves distinguishable.

Figure 1 shows s(z) over a large range of redshifts. Our previous work pro-
vided good analytic approximations for s(z) — expressions (28) and (40) —
depending upon whether z is larger or smaller than the redshift of radiation-
vacuum equality ztr ≡ ( ΩΛ

Ωm
)
1
4 − 1 ≃ 8.32,

z > ztr =⇒ s(z) =

√
Ωr(1+z)

3

1+zeq

{
1

3

[
1 +

1+zeq
1+z

] 3
2 +

[
1 +

1+zeq
1+z

] 1
2 − 4

3

}
, (56)

z < ztr =⇒ s(z) =

√
ΩΛ

3y2

{
(2Y +5Y 3)

√
1+Y 2 − 4Y 4 − 2 ln

[
Y +

√
1+Y 2

]

−y
√
1+y2 + 2 ln

[
y+

√
1+y2

]}
. (57)

Here the redshift of matter-vacuum equality is zΛ ≡ (ΩΛ

Ωm
)
1
3 and we define

Y ≡
√

1+ztr
1+zeq

≃ 0.0526 and y(z) ≡ (1+zΛ
1+z

)
3
2 . Figure 2 shows that expressions

(56-57) are in excellent agreement with the exact result (54). In fact, we had
to offset the analytic formulae in order to distinguish them from the exact
result! The same is not at all true for the asymptotic series expansions (29)
and (42),

Large z=⇒ s(z) =
√
Ωr (1+z)

2

{
1 +

1

24
x2 − 1

32
x3 +O

(
x4

)}
, (58)
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Small z=⇒ s(z) =

√
ΩΛ

3y2∗

{
−1.496×∆y − 1.036×∆y2 +O

(
∆y3

)}
, (59)

where x(z) ≡ 1+zeq
1+z

, y∗ ≡ y(z∗) ≃ 1.318 and ∆y ≡ y−y∗ < 0. Figure 3 shows
that the large z series (58) is only valid for z >∼ 2000, and the small z series
(59) is only valid for z <∼ 1

2
.

Figure 3: Graphs of s(z) for z∗ < z < ztr (left) and for 1000 < z < 4000
(right). The dashed line on the left shows the small z series expansion (59)
while the dashed line on the right shows the large z series expansion (58).

Figure 4: Graphs of f(z) for z∗ < z < 1000 (left) and for 1000 < z < 10000
(right). The dashed line on the right-hand graph also shows the asymptotic
series (60).

Evolving f(z) with equation (55) is more challenging than numerically
integrating s(z) with (54). First, there is no analogue of the good analytic

13



approximations (56-57) we were able to get for s(z). Our previous work
— expressions (34) and (49) — does imply asymptotic series expansions for
large and small z,

Large z=⇒ f(z) =
(1+z)3

33

{
1− x+

83

88
x2 − 231

256
x3 +O

(
x4

)}
, (60)

Small z=⇒ f(z) =
(1+zΛ)

3

36y2∗

{
1.143×∆y − 0.7373×∆y2 +O

(
∆y3

)}
. (61)

However, one can see from Figures 4 and 5 that these series approximations
are only accurate for z >∼ 5000 and for z <∼ 1, respectively.

Figure 5: Graphs of f(z) for z∗ < z < 20 (left) and for z∗ < z < 100 (right).
The dashed line on the left also shows the asymptotic series (61).

A worse problem is that numerical solution of (55) is unstable. We can
evolve from large z to small, starting from the excellent series approximation
(60), but the result tends to diverge for small z. The better strategy turns
out to be evolving from small z to large, starting from f(z∗) = 0. To facilitate
this procedure one must extract g∗ ≡ g(z∗) from g(z),

g(z) = g∗ −
∫ z

z∗

f ′(z′)dz′

(1+z′)s′(z′)H̃(z′)
. (62)

When this is done, evolving to arbitrarily large z produces a solution which
seems to reach the form (60), but then grows in magnitude like z2+2

√
3, either

in the positive or negative direction. The correct value of g∗ ≃ 0.1807 is found
by seeking the point at which the asymptotic form changes sign.
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4.2 Solving for fy(Z) Numerically

Figure 6: Graphs of f(z) versus s for 0 < s < 20 (left) and for 0 < s < 100
(right). The dashed line on the left gives the asymptotic series expansion
(63).

Figure 7: Graphs of f(z) versus s for 0 < s < 103 (left) and for 105 < s < 106

(right). The dashed line on the right gives the asymptotic series expansion
(64).

This is really just a matter of using our previous results for s(z) and
f(z) to plot f(z) as a function of s. Figures 6 and 7 show the results for
small and large values of s, respectively. For the smallest (0 < s < 20) and
largest (103 < s < 106) ranges we also show the comparison with the analytic
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asymptotic series expansion which follow from the work of section 3,

Small s =⇒ f(z) =
(1+zΛ)

3

12

{
As√
ΩΛ

+
B s2

ΩΛ

+O
( s3

Ω
3
2

Λ

)}
, (63)

Large s =⇒ f(z) =
1

33

( s√
Ωr

) 3
2

{
1− 1√

σ
+
155

176

1

σ
−625

768

1

σ
3
2

+O
( 1

σ2

)}
, (64)

where A ≃ −0.764 and B ≃ +0.127 and we define σ(s) as,

σ(s) ≡ s√
Ωr(1+zeq)2

. (65)

Points to note are that the small s series (63) breaks down for s >∼ 1
4
, and

the large s series (64) breaks down for s <∼ 300, 000.

4.3 Fitting fy(Z) to an Analytic Form

Figure 8: Graphs of the ratios of f(z) to the asymptotic series expansions
(63-64) versus s for the ranges 0 < s < 1

4
(on the left) and for 105 < s < 106

(on the right).

A better measure of the accuracy of the asymptotic series expansions (63-
64) is gained by plotting the ratio of the numerical result for f(z) divided by
the expansions. Figure 8 shows this. The failure of the very large s ratio to
exactly approach unity is due to instability of our numerical determination
of f(z), as explained before. However, the deviations for 1

4
< s < 300, 000

represent the transition between the two asymptotic forms which we would
like to fit to an analytic function.
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Figure 9: The left hand graph shows f(z) versus s(z) in the region 0 < s < 20.
The dashed line shows the best fit quadratic in this same region. The right
hand graph is a log-log plot of f(z) versus s in the range 102 < s < 106.

We are dealing with a smooth function whose qualitative features are
shown in Figure 9:

• The small s regime is well fit by γs + δs2, but the coefficients γ and δ
evolve slowly as shown in Figure 10; and

• The large s regime is well fit by a power law which changes slowly from
s2 for moderate values of s to s

3
2 for large values of s.

We can find a reasonable ansatz by making a plausible interpolation of the
asymptotic series in curly brackets of expression (64), with σ(s) from (65),

1− 1√
σ
+

155

176

1

σ
− 625

768

1

σ
3
2

+O
( 1

σ2

)
−→ 1

1 + 1√
σ
+ 21

176 σ
+ 443

8448 σ
3
2

. (66)

The right hand side of (66) has the same large σ series expansion as the left

hand side, but it behaves like 8448
443

σ
3
2 for small σ. Hence we might define,

flg(s) ≡
1

33

( s
Ωr

) 3
2 × 1

1 + 1√
σ(s)

+ 21
176 σ(s)

+ 443

8448 σ
3
2 (s)

. (67)

This function will recover the asymptotic large s behavior, and go to zero
rapidly for small s. Then a reasonable ansatz for the full function is,

f(z) = γ(s)×s+ δ(s)×s2 + flg(s) , (68)
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Figure 10: Variation of the coefficients γ(s) and δ(s) in equation (68). The
left hand graph shows how the fitted coefficient γ varies slowly with the
midpoint of a small region used to make the fit. The right hand graph shows
the same thing for the coefficient δ.

The general shapes of γ(s) and δ(s) in Figure 10 motivate our fits. For
γ(s) a single rational function suffices; δ(s) is better described by the sum of
two terms, each of which falls off exponentially. Our results are,

γ(s) =
( 5
29
+ s

144
)( s

1440
−1)

1 + s
10000

+ ( s
5700

)2 + ( s
25000

)3
, (69)

δ(s) =
1
29
+ 1

9

√
s− 1

6
s+ 2

9
s

3
2 + s2

1 + 25s
11
4 exp[ 1

12
s]

+
s

4000
−100( s

4000
)2+104( s

4000
)3

1 + 33×104( s
4000

)
32
11 exp[ s

4000
]
. (70)

More complicated polynomials would of course be more accurate.

4.4 Quantifying the Disagreement for 0 < z < z∗

We have shown how to choose the function fy(Z) so as to exactly reproduce
the ΛCDM expansion history for all redshifts greater than z∗ ≃ 0.0880. One
cannot do the same for the small range 0 < z < z∗ because s(z) changes sign
from positive to negative in this region, whereas Z = −α2s2 is negative for
all z. Hence fy(Z) takes values already used to fit redshifts for z > z∗. This
means the very late time expansion history deviates from the ΛCDM model.

We can use the MOND cosmological equations (12), (14) and (15) to
derive a system of local, first order differential equations for φ̇ and H which
can be evolved inward from z = z∗, starting with the initial conditions φ̇∗ = 0
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Figure 11: The left hand graph shows the evolution of Φ(z) ≡ φ̇
6H0

in the

actual model. The right hand graph shows h(z) ≡ H
H0

in the actual model.

and H∗ = H0H̃(z∗). Our labor is reduced by some preliminary rescalings,

φ̇ ≡ 6H0×Φ(z) , H ≡ H0×h(z) . (71)

Then equation (12) implies,

Φ′ =
3Φ

1+z
+ h′ − h

1+z
. (72)

Dividing equation (15) by 3H2
0 gives,

h2(z) +
6fy(Z)

α2
+ 12h(z)Φ(z)f ′

y(Z) + 24h2(z)
∫ ∞

z
dz′

Φ(z′)f ′
y(Z

′)

(1+z′)h(z′)

= Ωr(1+z)
4 + Ωb(1+z)

3 + ΩΛ . (73)

Dividing by h2(z) and differentiating with respect to z will eliminate the
integration. Before giving the result it is worthwhile making some simplifi-
cations based on the fact that the redshifts we seek to understand are very
near z = 0. First, the radiation term to the right of (73) can be dropped.
Second, there is no point to using more than the first two terms of the small
s expansion (63) for fy(Z),

−fy(Z)
α2Ωc

≃ (1+zΛ)
3

12

{
A
√
−Z

α
√
ΩΛ

− BZ

α2ΩΛ

}
=

(1+zΛ)
3

12

{
ãΦ + b̃Φ2

}
, (74)

−
f ′
y(Z)

α2Ωc

≃ (1+zΛ)
3

12

{
− A

2α
√
−ΩΛZ

− B

α2ΩΛ

}
=

(1+zΛ)
3

12α2

{
− ã

2Φ
− b̃

}
, (75)
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where we define ã ≡ A√
ΩΛ

≃ −0.9192 and b̃ ≡ B
ΩΛ

≃ +0.1843. It is also

convenient to define c̃ ≡ Ωc(1 + zΛ)
3 ≃ +0.5824. With these simplifications

the final evolution equation for h(z) is,

{
− ã

2h
− b̃Φ

h
+
ãΦ

h2
+

2[Ωb(1+z)
3+ΩΛ]

c̃h2

}
h′ +

{
− ã

2h
+ b̃

}
Φ′

=
ã+2b̃Φ

1+z
+

3Ωb(1+z)
2

c̃h
. (76)

Figure 11 shows the results of evolving equations (72) and (76) inward
from z = z∗, starting with the initial conditions Φ(z∗) = 0 and h(z∗) =
H̃(z∗) ≃ 1.043. The evolution of Φ(z) is not significantly different from the
ΛCDM model, however, the evolution of h(z) differs markedly. Instead of
continuing to decline to the ΛCDM value of H̃(0) = 1, h(z) turns around
and increases slightly to h(0) ≃ 1.045. The increase is not large but halt-
ing the decrease may provide an explanation for the increasingly significant
tension between inferences of H0 based on data from large z [25] (cosmic ray
background anisotropies and baryon acoustic oscillations) and from small z
[26] (Hubble plots),

Large z =⇒ H0 =
(
67.74± 0.46

) km

s Mpc
, (77)

Small z =⇒ H0 =
(
73.24± 1.74

) km

s Mpc
. (78)

The model was defined using the large z numbers [25], which moves our
prediction for the current Hubble parameter closer to the small z result (78),

1.045×
(
67.74± 0.46

) km

s Mpc
=

(
70.79± 0.48

) km

s Mpc
. (79)

5 Discussion

This paper concerns a metric-based realization of MOND [18, 19] whose
Lagrangian (3) involves an algebraic function fy(Z) of a nonlocal scalar (4).
For gravitationally bound systems Z[g] is typically positive and the form of
fy(Z) is well constrained by the Tully-Fisher relation, weak lensing and solar
system tests. For cosmological systems the metric’s temporal variation is
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typically more important than its spatial dependence, which causes Z[g] to
be negative. Our goal in this paper has been to determine how the function
fy(Z) must depend upon negative Z so as to reproduce the ΛCDM expansion
history without dark matter.

We did not quite succeed because specializing to the ΛCDM geometry
does not result in a one-to-one function Z(z) for all z > 0. For large z
the function Z(z) is negative and its magnitude decreases as z decreases.
However, Z(z) touches zero at z∗ ≃ 0.0880 and then returns to negative
values in the range 0 < z < z∗. Therefore, we can only choose fy(Z) to
enforce the ΛCDM expansion history for z > z∗. In this region we determined
fy(Z) numerically, and then showed that a simple combination of analytic
functions (67-70) provides an excellent fit, with Z ≡ −α2s2 and fy(Z) ≡
−α2Ωcf(z). We also demonstrated that the model’s deviation from ΛCDM
in the range 0 < z < z∗ causes the current Hubble parameter to be about
4.5% larger than for the ΛCDM model. This would reduce (from 3.2σ to
only 1.4σ) the tension which currently exists between inferences of H0 which
are based on data from large z [25] and those based on small z data [26].

Cosmology offers an interesting venue for comparing nonlocal MOND
with the ΛCDM model. Both models incorporate the known densities of ra-
diation and baryonic matter, and both models assume an absurdly small cos-
mological constant. In both cases the remaining component of the Friedmann
equation is abstracted to cosmology from an explanation for very large and
weakly gravitationally bound structures. In both cases there is no definitive
derivation of this remaining component from fundamental theory although
possibilities exist. One major difference is that the ΛCDM model requires
only the single free parameter Ωc to describe the remaining component of the
Friedmann equation whereas nonlocal cosmology has a free function fy(Z) for
Z < 0. On the other hand, the function required does not seem outlandish.

The most reaspnable conclusion is probably that the cosmology of non-
local MOND will stand or fall depending on what it predicts now that the
function fy(Z) has been fixed. The model can be used to study things such
as the response to recent disturbances of gravitationally bound systems and
to perturbations around the background cosmology. The analogy is how
numerically determining the distortion function [27] of a nonlocal model of
dark energy [28] has facilitated detailed studies of structure formation in that
model [29, 30, 31]. We do not yet know how these studies will turn out for
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the nonlocal realization of MOND,2 however, a crucially important point is
that the function fy(Z) is NOT small for cosmology. This means that the
MOND corrections have a reasonable chance to reproduce what dark matter
does in general relativity.

The surprising (and wonderful) fact that MOND corrections are large for
cosmology was not expected by many who attempted to guess the form a
relativistic extension of MOND might take. These people made the reason-
able assumption that MOND corrections to cosmology should be negligible
because they are small for gravitationally bound systems, and because even
those small corrections entirely disappear when the curvature reaches values
far smaller than it has taken in cosmological history. This assumption fails
for two reasons:

• The invariant (4) becomes large in cosmology; and

• The function fy(Z) is not suppressed for large negative Z the way it is
for large positive Z.

The first point is a consequence of invariance. The phenomenology of MOND
dictates (4) as the simplest form for Z[g] [18, 19], and just evaluating this
functional for the ΛCDM cosmology happens to produce numerically large
results. Of course the second point resulted from how we choose to the
extend the function fy(Z) for negative Z. However, it is important to realize
that this decision makes sense if one conceives of MOND as derived from
the vacuum polarization of inflationary gravitons [20]. Those gravitons have
cosmological scales so it is entirely reasonable to expect strong effects on
cosmological scales but only weak effects on smaller scales.
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2Although one obvious point is that the model does reproduce the usual ΛCDM ex-
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