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In the curvaton scenario, primordial curvature perturbations are produced by a second field that is
sub-dominant during inflation. Depending on how the curvaton decays [possibly producing baryon
number, lepton number, or cold dark matter (CDM)], mixtures of correlated isocurvature perturba-
tions are produced, allowing the curvaton scenario to be tested using cosmic microwave background
(CMB) data. Here, a full range of 27 curvaton-decay scenarios is compared with CMB data, placing
limits on the curvaton fraction at decay, rp, and the lepton asymmetry, &iep. If baryon number is
generated by curvaton decay and CDM before (or vice-versa), these limits imply specific predictions
for non-Gaussian signatures testable by future CMB experiments and upcoming large-scale-structure

surveys.

PACS numbers: 95.35.+d, 98.80.Cq,98.70.V¢,98.80.-k

I. INTRODUCTION

The observed cosmic microwave background (CMB)
anisotropies and large-scale structure of the universe are
thought to result from primordial curvature perturba-
tions. The prevailing model is that these perturba-
tions are produced during inflation, an epoch of accel-
erated cosmological expansion preceding the radiation-
dominated era. In the simplest scenarios, both the accel-
erated expansion and the curvature perturbations result
from the dynamics of a single field (the inflaton) [1-3].
At the end of inflation, the inflaton field is thought to de-
cay and initiate the radiation-dominated era, a process
known as reheating [4, 5].

Standard single-field models of inflation produce nearly
scale-invariant, Gaussian, and adiabatic primordial fluc-
tuations [2, 3]. It may be challenging for the dynam-
ics of a single field to satisfy observational constraints
to the amplitude and scale-dependence of the curvature
perturbations as well as constraints to the amplitude of
a background of primordial gravitational waves [6, 7]. In
order to ease these requirements, a second field (the cur-
vaton) could source curvature perturbations and later de-
cay [3, 6-9]. There are a variety of candidates for the cur-
vaton motivated by high-energy particle theory [10-17].
In the curvaton scenario, constraints are more permis-
sive because the inflaton need only produce a sufficiently
long epoch of acceleration to dilute topological defects
and does not have to be the main source of perturba-
tions [3, 6-8, 18].

This scenario is distinct from single-field models in
predicting a non-adiabatic and non-Gaussian component
to primordial fluctuations [7, 18, 22-28]. Depending on
when the curvaton decays relative to the production of
baryon number, lepton number, and cold dark matter
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FIG. 1. Prediction for the amplitude f, of primordial non-
Gaussianity in curvaton-decay scenarios allowed by isocurva-
ture constraints. The left panel shows models with fu ~ 1,
which are potentially testable by future high-redshift 21-cm
surveys [19-21]. The solid green curve shows the case in which
baryon number/CDM are generated after /by curvaton decay.
The dotted blue curve shows the case in which baryon num-
ber/CDM are generated by/after curvaton decay. The solid
black curve shows the case in which baryon number/CDM
are generated before/by curvaton decay. Right panel shows
the predicted fn1 values if baryon number/CDM are gener-
ated by/before curvaton decay, which could be tested using
scale-dependent bias measurements from future galaxy sur-
veys with sensitivity Afn ~ 1.

(CDM), primordial fluctuations in different species could
carry an isocurvature component, in which the relative
number densities of different species fluctuate in space.
In the simplest models, these isocurvature fluctuations
are totally correlated (or anti-correlated) with the dom-
inant adiabatic component. Curvaton density fluctua-
tions are non-Gaussian, and so the curvature perturba-
tion is non-Gaussian [23, 26]. Less phenomenological re-
alizations of the curvaton model in higher-dimensional
theories may break the instantaneous decay approxima-
tion, modifying non-Gaussian and possibly isocurvature
signatures [29].

The level of non-Gaussianity is set by rp, a parame-
ter describing the curvaton energy-density. The level of
isocurvature is set by rp and &p, the chemical potential



describing cosmological lepton number [7]. Both param-
eters are constrained by observations.

Isocurvature perturbations alter the phase-structure
and large-scale amplitude of CMB power spectra [30-
35]. Planck satellite observations thus indicate that CMB
anisotropy power spectra are consistent with adiabatic
fluctuations, requiring that isocurvature fluctuations con-
tribute a fraction < 1073 — 0.1 of the total observed
power, depending on various assumptions [36-38]. Big-
bang nucleosynthesis abundances are altered if ffep > 0,

and so the primordial “He and deuterium abundances im-
pose the limit |£p] < 0.03 [36, 39-42].

In past work comparing curvaton model-predictions
with CMB data, isocurvature constraints were obtained
considering a single mode (neutrino, CDM, or baryon)
at a time, with consideration limited to several curvaton
decay-scenarios [36-38, 43-45]. Priors and parameter-
space exploration were implemented on the cross/auto-
power spectrum amplitudes and correlation coefficients of
single isocurvature modes, rather than rp and &ep, and
then mapped to the curvaton parameter space. Neutrino
isocurvature perturbations were not included.!

In fact, each curvaton-decay scenario makes specific
predictions for the amplitudes and cross-correlations
(with ¢) of each isocurvature mode: the baryon isocur-
vature mode, the CDM isocurvature mode, and the neu-
trino isocurvature density mode [6, 25, 46]. We take a dif-
ferent approach and separately consider all 27 curvaton-
decay scenarios. We use 2015 Planck CMB temperature
and polarization data to determine the allowed parame-
ter space of rp and e, (breaking degeneracies with other
data), computing the full set of isocurvature mode am-
plitudes and cross-correlation spectra (with ) for each
set of parameter values. We use a Monte Carlo Markov
Chain (MCMC) analysis to obtain constraints to all these
scenarios. We also perform a Fisher-matrix analysis to
determine the sensitivity of a future cosmic-variance lim-
ited experiment to these curvaton-decay scenarios.

The models fall into several categories. Some decay
scenarios generate purely adiabatic perturbations, and
these are always allowed, and these are unconstrained
by limits to isocurvature perturbations. Some gener-
ate order unity isocurvature fluctuations between non-
relativistic matter and radiation, independent of rp and
&iep values, and these are not allowed by the CMB data.
Others generate isocurvature perturbations that vanish
when rp = 1. Here, the data impose lower limits to rp,
with 95%-confidence regions given by rp > 0.93 — 0.99,
depending on precise model assumptions.

Finally, two cases lead to non-zero isocurvature per-
turbations in both the baryon and CDM. The only way
for these scenarios to agree with the CMB data is for
the baryon and CDM isocurvature modes have oppo-
site sign and nearly equal amplitudes, producing what is

1 Exceptions are Refs. [36, 40, 45], which included isocurvature in
neutrinos but not other species.

known as a compensated isocurvature perturbation [47].
This naturally leads to a measured value of rp which
is significantly different from unity. For the curvaton-
decay scenario in which baryon number/CDM are gen-
erated by/before curvaton decay, we find that rp =
0.1602f00_8(5)}17, while for the scenario in which baryon
number/CDM are generated before/by curvaton decay,
rp = 0.84927F5:0099.

All of these decay scenarios (except the one where
both CDM and baryon number are produced after cur-
vaton decay) make specific predictions for the ampli-
tude fy1 of local-type primordial non-Gaussianity, shown
by the distributions in Fig. 1. These are all consistent
with Planck limits to fi [48]. Future measurements of
scale-dependent bias in galaxy surveys (with sensitivity
Afm ~ +£1) [49, 50] and high-redshift 21-cm surveys
(with sensitivity Afy =~ £0.03) [19-21] could rule out
these decay scenarios.

We begin in Sec. II by reviewing basic aspects of the
curvaton model, including the production of curvature
and isocurvature perturbations. In Sec. III we continue
with a detailed discussion of curvaton-decay scenarios
and the resulting mixtures of curvature and isocurvature
fluctuations. The data sets, methodology, and resulting
constraints on these scenarios are presented in Sec. IV.
We present our conclusions in Sec. V.

II. THE CURVATON MODEL

The family of inflationary models is extremely rich.
Nonetheless, a successful inflationary model must meet
some fairly stringent requirements, producing a sufficient
number (~ 60) of e-foldings to dilute dangerous early
relics, generating the observed value of A, = 2.2 x 1079,
and agreeing with ever more precise measurements of the
scalar spectral index ng ~ 0.96 [37]. Limits to the tensor-
to-scalar ratio (r < 0.11 [37]) must also be met. If these
limits turn into detections, single-field slow-roll models
must further obey a consistency relation, r = 16¢ (see
Ref. [51] and references therein), which relates r to the
slow-roll parameter e. In fact, current data already rules
out the simplest of inflationary models [37].

One alternative to simple inflationary models is the
curvaton scenario, in which the inflaton (¢) drives expo-
nential cosmic expansion but is not the primary source
of the observed cosmological fluctuations. Instead, a
sub-dominant spectator field, the curvaton (o), acquires
quantum fluctuations that are frozen after o perturba-
tion modes cross the horizon during inflation. The cur-
vaton field then has a dimensionless fluctuation power-
spectrum of [7, 18, 43, 52]

where Hy is the inflationary Hubble parameter when the
mode with wave-number k freezes out. Initially, these



fluctuations are isocurvature perturbations, as the cur-
vaton is energetically sub-dominant to the thermal bath
(with energy-density pr) produced at the end of inflation
[3, 7-9, 23, 25]. The curvaton has mass m,, and once the
condition m, > 3H is met (where H is the Hubble pa-
rameter), o begins to coherently oscillate. The curvaton
energy-density then redshifts as p, ~ a3, where a its
the cosmological scale factor. As the scaling p, ~ a™3 is
slower than pg ~ a~*, the curvaton becomes increasingly
energetically important, converting the initial isocurva-
ture fluctuation into a gauge-invariant curvature pertur-
bation ( [7, 18, 43, 52]. Eventually the curvaton decays,
initating the usual epoch of radiation domination.
During radiation domination, the cosmic equation of
state is constant, and it can be shown that this implies
conservation of super-horizon modes of , with value

C:<1_7"D) C¢>|D+7"D CalDa (2)

where

B Po
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is the fractional contribution of the curvaton to the trace
of the stress-energy tensor just before curvaton decay.
Here (, denotes the spatial-curvature perturbation on hy-
persurfaces of constant x energy density (or equivalently,
the energy density perturbation on surfaces of constant
total ¢). The notation (|, indicates that (, is evaluated
at the moment of curvaton decay. For the duration of this
paper, we neglect the time-dependence of the curvaton-
decay rate [53] and assume the usual instantaneous-decay
approximation.

In principle, as we can see from Eq. (2), ¢ has in-
flationary and curvaton contributions. We follow the
usual practice of considering the scenario where the cur-
vaton dominates the curvature perturbation, that is,
rpCe > (1 —7rp) (s, and so we may use the approxi-
mation [24, 25]

< = TDC17~ (4)

Using expressions found in Ref. [54], and assuming a low
tensor-to-scalar ratio but detectable isocurvature and pri-
mordial non-Gaussianity, it is straight forward to show
that this limit implies that the homogeneous curvaton
field values are sub-Planckian at horizon crossing.

Note that in this limit the spectral index of all pertur-
bation spectra (adiabatic and isocurvature) is given by
one value ng. In general there could also be a non-zero
running of the spectral index, as = dng/dInk # 0. In the
context of curvaton scenarios, a is not a free parameter,
but rather depends on the functional form of the infla-
ton and curvaton potential energies V(¢) and V(o) [55].
A survey of the literature shows that for a wide range of
curvaton potentials that yield ng ~ 0.96, the resulting cs
value is not detectable at Planck-sensitivity levels (68%
confidence level (CL) of Aa ~ 0.01) [37, 56, 57]. To iso-
late the effect of isocurvature perturbations, to simplify

our analysis, and to leave our analysis unpinned to spe-
cific curvaton potentials, we thus impose the restriction
as = 0, which is consistent with Planck data. In future
work, it would be interesting to simultaneously explore
the diversity of curvaton potentials and decay scenarios
(including a5 # 0) in the analysis, with an eye towards
future cosmological data sets.

The curvaton is a massive scalar field, and so for the
simplest quadratic curvaton potentials, the curvaton en-
ergy density is p, ~ 72 +2600 + (60)2, where 7 is the ho-
mogeneous value of ¢ and do a spatial perturbation. As
o itself is a Gaussian random field, p, is non-Gaussian.
The resulting non-Gaussianity is of local type, that is,

¢ = (o) + %fnl [Cg(f) - <Cg2(f)>]with
fal=———= -2 (5)

where (,(Z) is a Gaussian random field [6, 7, 26, 27, 37,
43]. The stringent limits to local-type non-Gaussianity
from Planck temperature data, f, = 2.7 + 5.8 impose
the constraint rp > 0.12 [37, 48]. These constraints do
not depend on curvaton-decay scenario, and are thus rel-
atively model-independent. In some curvaton-decay sce-
narios, residual isocurvature perturbations would be ex-
cited, making more stringent limits to rp possible. Addi-
tionally, limits to or a detection of curvaton-type isocur-
vature would make it possible to test the decay physics
of the curvaton.

If the densities of all species are determined after cur-
vaton decay, then the density perturbations in all species
are set by ( alone, leading to purely adiabatic fluctu-
ations. On the other hand, if some conserved quantum
numbers are generated by or before curvaton decay while
others are not, there is a mismatch in density fluctua-
tions, leading to a gauge-invariant entropy (or isocurva-
ture) perturbation. In particular [6, 7, 43],

0, if x is produced before o decay,

(s, if x is produced by o decay, (6)
¢, if x is produced after o decay.

gw:

Here the index x denotes b (baryon number), L (lepton
number), or ¢ (CDM). The ¢, indicates initial curvature
fluctuations on hypersurfaces of constant particle number
(for CDM) or conserved quantum number (in the case of
baryons or leptons). The curvaton is assumed to behave
as matter at the relevant epochs, and so fg =(,.

We distinguish between quantum numbers (like baryon
and lepton number) and densities, as baryon and lep-
ton number could be generated at very early times, long
before quarks bind to produce actual baryons. Indeed,
baryogenesis (which refers to the creation of baryon num-
ber) could be related to curvaton physics, even if the
production of actual baryons happens much later.

The gauge-invariant entropy fluctuation between x and
photons is given by

Say = 3(C = G5) (7)



and is conserved on super-horizon scales [3, 58, 59|, as
long as the equation of state of the species ¢ (or the car-
riers of the relevant quantum number) is constant and the
quantum numbers are conserved. Photon perturbations
are described by (,, the spatial curvature perturbation
on hyper-surfaces of constant photon energy-density. For
baryons or leptons (, is the curvature perturbation on
surfaces of constant energy density of whichever species
carries the quantum number (at late times, these would
be actual surfaces of constant baryon energy density).
The constant super-horizon values of ¢ and S, are
‘initial conditions’ which precede horizon entry and de-
termine the spectra of CMB anisotropies, as computed by
CAMB [60] or any other CMB Boltzmann code. We take

J

Spy =
—3(¢y =€),

When fluctuations are set by the curvaton, as we can see
from Eq. (8), entropy fluctuations are set completely by
the adiabatic fluctuation (as we would expect when only
fluctuations in a single field are important), and are thus
totally correlated or anti-correlated to (.

Anti-correlated isocurvature perturbations can lower
the observed CMB temperature anisotropy at low mul-
tipole I, improving the mild observed tension between
the best-fit ACDM model and large-scale CMB observa-
tions [61, 62]. To see what this fact implies for curvaton
physics, and to more broadly test the curvaton model
using CMB observations, we now derive the isocurva-
ture amplitudes in different curvaton-decay scenarios. To
simplify the discussion, we will describe curvaton-decay
scenarios with the notation (by,,cy., Ly, ), where y €
{before, by, after}. For example, (byy, Catter, Lbefore) indi-
cates a curvaton-decay scenario in which baryon number
is generated by curvaton decay, cold dark-matter after
curvaton decay, and lepton number before curvaton de-
cay.

III. CURVATON-DECAY SCENARIOS

The various curvaton-decay scenarios can be divided
into cases where the production of either the baryon num-
ber, lepton number, or CDM occurs before the curvaton
decays, by the curvaton decay, or after the curvaton de-
cays. This naturally leads to a total of 3 x 3 x 3 = 27
distinct scenarios. As discussed in the previous Sec-
tion, curvaton decay can occur at any time after inflation
ends. Curvaton decay must certainly also occur before
big-bang nucleosynthesis (BBN). This means that within
the single-field slow-roll inflationary models the curvaton
may decay at temperatures ranging between 106 GeV

3(5% —1)¢=3(6 -0,

the initial values S, to be defined at some time after
the relevant species thermally decouple and reach their
final equation of state (for example, if = ¢, we consider
S at some time after CDM has become nonrelativistic).
After the quantum number associated with x thermally
freezes out, (, is conserved on super-horizon scales be-
cause the relevant quantum numbers are conserved. If
x € {c,b}, Sy is set long after actual baryons and CDM
become non-relativistic, and so (, = Q:g;, because surfaces
of constant energy and number density coincide. We dis-
cuss the subtler case of lepton number fluctuations and
neutrino isocurvature in Sec. III.

For any quantum number/species, there are then 3 sce-
narios [25]:

if z is produced before o decay,
if 2 is produced by o decay, (8)

if z is produced after o decay.

(

[37] down to ~ 4 MeV [63], at which point the primor-
dial light elements must be produced. In order for all 27
scenarios to be realized, there must be mechanisms that
generate baryon number, lepton number, and CDM over
this wide range of energy scales, as we now discuss.

A persistent mystery is the origin of baryon number—
i.e., the observed net asymmetry of baryons over anti-
baryons in the universe. Plausible models bracket a range
of energy scales, from baryogenesis at the electroweak
scale [64] to direct production of baryon number through
a coupling to the inflaton or curvaton (see Ref. [65] and
references therein). The energy scale of baryogenesis
could thus be anywhere in the range 1 TeV-10'6 GeV.
Since both the inflationary energy scale and the energy
scale of curvaton relevance/decay are poorly constrained,
it is possible for baryon number to be produced before,
by, or after curvaton decay.

The observed baryon asymmetry could be produced
through partial conversion of a much larger primordial
lepton asymmetry. One of the ways (reviewed at length
in Ref. [66]) to account for the observed non-zero neu-
trino mass is to invoke the seesaw mechanism [67, 68].
The seesaw mechanism generically introduces a hierar-
chy of neutrinos with masses above the electroweak scale
leading to the generation of lepton number at tempera-
tures greater than ~ 100 GeV.

Alternatively, lepton number could be produced near
the end of inflation (at energies as high as ~ 1016 GeV),
perhaps by a Chern-Simons (parity-violating) terms in
the gravitational sector [69] or by a novel coupling of chi-
ral fermions to an axion-like field [70]. On the other hand
the vYMSM model [71] allows for lepton number to be gen-
erated at lower energies. Finally, as discussed in the pre-
vious Section, it is possible that the decay of the curva-
ton field produces lepton number, leading to isocurvature



perturbations in the neutrino density perturbations.

The identity and production mechanism of the CDM
is also a mystery [72-75]. One possibility is that the
CDM consists of weakly interacting massive particles
(WIMPs) thermally produced by physics at the ~ TeV
scale [76]. If this is so, the CDM would be produced
around the electroweak energy scale. Direct-detection
experiments, however, have placed increasingly stringent
limits to WIMP couplings. The most natural WIMP can-
didate (a stable super-partner in supersymmetric models)
is also under increasing pressure from experiment, due to
the lack of evidence for low-energy supersymmetry from
the Large Hadron Collider (LHC) (see Ref. [77] and refer-
ences therein). This motivates the consideration of other
CDM candidates.

One possible CDM candidate is a stable extremely
massive particle (or wimpzilla) with mass in the range
10'2 GeV < m < 10® GeV [78]. The wimpzilla might
be produced by gravitational particle production during
inflation or directly from inflaton decay [4, 78]. Similarly,
even a standard lighter supersymmetric WIMP could be
produced by curvaton decay if WIMPs couple to the cur-
vaton field [7]. Just as with baryon and lepton numbers,
CDM could thus be produced before, by, or after curva-
ton decay [43].

Altogether, there are a variety of logically possible sce-
narios for producing the correlated isocurvature fluctua-
tions discussed in Sec. II. Our goal in this work is to
test these scenarios using CMB data. We assemble for
the first time in one work expressions for the amplitude
of correlated baryon, CDM, and neutrino isocurvature-
density (NID) perturbations in all 27 possible curvaton-
decay scenarios, as shown in Table I and Eq. (22). This
allows us to build on past work, which explored only one
isocurvature mode at a time [45] or neglected NID per-
turbations [43, 79], and self-consistently test for the first
time the full parameter space of rp and &ep in all 27
curvaton-decay scenarios.

We recognize that in the context of specific parti-
cle physics models for baryogenesis, leptogenesis, or
dark matter production, some of these scenarios are
more viable than others. For example, in the vMSM
[71], the lepton asymmetry and dark matter are pro-
duced nearly concurrently, and so scenarios of the form
(bbefore, Chefores Latter) do not apply. With this caveat in
mind, we have considered all possible curvaton decay-
scenarios without theoretical restrictions, in order to de-
termine the most general constraints.

At the level of observable power spectra in linear
perturbation theory, the CDM and baryon isocurvature
modes are indistinguishable [43, 47, 60, 79, 80], but the
NID mode has a distinct physical imprint [45, 81] from
the others that can be separately probed using the data.
We begin with the simplest curvaton-decay scenarios, in
which there is no lepton asymmetry L = Any,/ng (here
Any, = ny, — nz, where n;, and nt denote the number
densities of lepton number and anti-lepton number, re-
spectively).

A. No lepton asymmetry

During radiation domination, the total curvature per-
turbation is given by

C = (]- - RI/)C’Y + RUCU? (9)

where R, = p,,/(py+py) is the energy fraction in massless
neutrinos, a constant after electron-positron annihilation.
Neutrinos carry lepton number and thermally decouple
near temperatures T ~ 2 MeV. If there is no lepton
asymmetry, spatial fluctuations in lepton number density
track the total energy density, and so (, = (. From
Eq. (9) we then see that ( = ¢y = ¢, and thus S,, =
0. It is then straightforward to obtain the relationships
between baryon/CDM entropy fluctations and curvature
fluctuations for a variety of curvaton-decay scenarios by
applying Eq. (8). The resulting amplitudes are shown in
Table I. Later, to interpret constraints, it is useful to
define the total isocurvature in non-relativistic matter:

Q Q.
Spy =3 KQ”Q, + 4 Q) - C}
g

o St QmS‘”} . (10)

Here ©;, and Q. are the usual relic densities of baryons
and CDM relative to the cosmological critical density.

We note that the scenarios (by,Cbefores Ly, ) and
(Dbefore; Cby, Ly, ) lead to correlated (or anti-correlated)
isocurvature perturbations. These scenarios mitigate
some of the tension between CMB data (for { < 50) and
the best-fit ACDM model [38, 61, 62]. We discuss this
further in Sec IV.

The near cancellation of baryon and CDM isocurva-
ture contributions to S, in these scenarios requires
fine-tuned values of rp ~ Q4/Qy, and rp ~ Q./Qp.
This yields a relatively large CIP amplitude of Sy, =
3 (¢ — Cc) = 3¢/rp and —3(/rp in the (by, chefores L/yrL)
and (bpefore, Chy, Ly, ) scenarios, respectively, or more ex-
plicitly, Spe ~ 20¢ and S, =~ 3.5¢. These CIP amplitudes
could leave observable imprints on off-diagonal correla-
tions (or equivalently, the CMB bispectrum and trispec-
trum), a possibility discussed further in Ref. [47, 80].
The cases (bbeforevcaftervLyL)a (baftem Cbefore; LyL)> and
(Dbefore; Chefore; Ly, ) are completely ruled out by the data,
as already shown in Refs. [43]. We do not consider them
further.

The situation is considerably richer if there is a net
lepton asymmetry. As we see in Sec. IIIB, if the lep-
ton symmetry is generated before or after o decay, the
ratios Spy/(, Sey/(, and S, /¢ are given (to very good
or perfect accuracy, respectively) by the values shown in
Table I with S,,=0. On the other hand, if the lepton
asymmetry is generated by o decay, there is a residual
neutrino isocurvature perturbation S, [6, 25, 46].



B. Lepton asymmetry

Each neutrino species carries the lepton number of the
corresponding lepton flavor, and so in the presence of a
lepton asymmetry, fluctuations in Any, result in neutrino
isocurvature perturbations. For massless neutrinos, the
occupation number is

() = [eP/mre 1] ()

where the flavor label takes values j = e, u, or 7, the
corresponding chemical potential §; parameterizes the
primordial lepton asymmetry, the minus sign applies for
neutrinos, and the plus sign applies for anti-neutrinos.
Unlike the cosmological baryon asymmetry 7 ~ 6x 10719,
&; is rather poorly constrained. Some models of baryo-
genesis require comparable levels of lepton and baryon
asymmetry, but others convert a much larger lepton
asymmetry into the experimentally known baryon asym-
metry. Electron neutrinos (whose number density de-
pends on &.-) set the rates of S-decay processes active
during BBN, and so the value of £,.- effects the primor-
dial neutron-to-proton ratio n/p x exp(—¢&.-) and the
resulting abundance of ‘He [39, 40].

A lepton asymmetry also alters Neg, the number of
relativistic degrees of freedom during BBN;, although this
effect is less important for setting abundances than the
altered n/p ratio. Neutrinos are now known to have mass
and as a result exhibit flavor oscillations. Independent of
initial conditions, solar neutrino observations and results
from the KamLAND experiment [39, 41] indicate v mass
splittings and mixing angles that would lead to near fla-
vor equilibrium early on, and so - = &, = & = &ep-
BBN abundances (including the “He abundance Yy,) de-
pend not only on the primordial values &, but also on
the mixing angles between neutrinos [39], and in particu-
lar on the value of ;3. Current reactor and long-baseline
neutrino experiments indicate that sin(6;3) ~ 0.03, giv-
ing a 95%-confidence BBN limit of £, < 0.03 [42].

The resulting v energy and lepton- number densities
are [7, 45, 46]

pi_T (Tv>4Ai, (12)
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which can also be parameterized as [7]
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FIG. 2. The relationship between Neg and &, [Eq (16)].
The black dashed-line indicates the 95% CL upper limit to
ANeg from the 2015 Planck analysis using TT+LowP+BAO
and corresponds to a 95% CL upper limit Eﬁep < 0.5; the
red dashed-line indicates the 95% CL upper limit using
TT+AUIP+BAO.

Past forecasts and recent analyses of Planck data show
that if the only effects of &iep, are to alter Neg and the free-
electron fraction (by altering Yy.) at decoupling, CMB
constraints to jep (shown in Fig. 2) will remain less sen-
sitive than constraints from astronomical measurements
of primordial element abundances [82-88]. In the curva-
ton scenario, however, if the lepton asymmetry is gen-
erated by curvaton decay, the amplitude of neutrino-
isocurvature-density fluctuations depends on the values
of &ep, offering an additional possible channel for con-
straining this parameter. Neutrino experiments may still
yield surprises as to the precise values of quantities like
013. We thus explore what constraints to the neutrino
sector are possible from CMB observations alone. In the
future, measurements of the 21-cm emission/absorption
power spectrum from neutral hydrogen (during the epoch
of reionization or during the cosmic dark ages) could be
useful probes of the value of &, [89].

We assume that the cosmic thermal history is con-
ventional between neutrino decoupling and electron-
positron annihilation, and thus neglect fluctuations in the
neutrino-photon temperature ratio T, /T, ~ (4/11)'/3.
It is then straightforward to show that for neutrinos [46]

1A} 0&iep
Cz - C’y —ZXZ e ) (17)
~ 1 Bl 6&1ep
G — G —ggi s (18)

Neutrinos inherit the lepton asymmetry and its fluctua-
tions, and so §&ep = 7B; S/ BY, where S, = 3((r — ().



We then see that

1 P
Sw:; > (i) Sr, (19)

i=p,e,T

where we have assumed that £e,/7 < 1 and assumed
that flavor mixing of the cosmic neutrino background is

The expression for the case of L generated before o decay
is approximate, and has corrections of order S, ~ 1072¢
which are negligible at the level of accuracy needed for
the MCMC analysis of Sec. IV. The expression for the
case of L generated after o decay results from the require-
ment that the penultimate equation hold independent of
the true values of R, and ep.

In scenarios where L is generated by o decay, there
is a mismatch between the total ¢ (which has contribu-
tions from neutrinos and photons) and ¢,. This must be
self-consistently included in Eq. (9) to obtain the correct
expressions for the relationships between Sy (or S) and
¢, shown in Table I. If lepton number is generated before
or after o decay, the amplitudes are given as before in
Table I with S,, = 0.

IV. DATA

The main effect of the curvaton model is to intro-
duce totally correlated (or anti-correlated) isocurvature
modes into the initial conditions of the cosmological per-
turbations. In order to test the various curvaton decay
channels we use the CMB temperature and E-mode po-
larization power-spectra measured by the Planck satel-
lite [38, 90, 91]. The large-scale E-mode measurements
mainly constrain the optical depth to the surface of last

negligible after neutrino decoupling. We thus have that
[45, 46]

a5 (€, 5 135 (&, /-
5 (&)s2(E) )

To proceed further, we must specify when lepton number
(L) is generated. Applying Eq. (6), we obtain [45, 46]

if L is generated before o decay,
if L is generated by o decay, (21)

if L is generated after o decay.

(

obtain [to lowest order in (&ep/7)?] [46]:

if L is generated before o decay,

if L is generated by o decay, (22)

if L is generated after o decay.

(

scattering, 7, while the small-scale E-mode measure-
ments provide additional constraints on the allowed level
of isocurvature [92]. We also use measurements of Baryon
Acoustic Oscillations (BAOs) [93, 94] to break geometric
degeneracies in the CMB data and thus improve the sen-
sitivity of the Planck data to isocurvature perturbations.

The introduction of matter isocurvature modes, shown
by the blue curves in Fig. 3, has its most significant
affect on the large-scale TT and TE power spectrum,
where it changes the height of the Sachs-Wolfe plateau
and alters the shape/amplitude of the Integrated Sachs-
Wolfe (ISW) effect. On the other hand, neutrino-density
isocurvature with a comparable amplitude, shown by the
orange curves in Fig. 3, effects CMB anisotropies more
dramatically at all scales.

The Planck data has been divided up into a large
angular-scale dataset (low multipole number) and a small
angular-scale dataset (high multipole number) [91]. For
all constraints we use the entire range of measurements
for the TT power spectrum as well as the low multi-
pole polarization (TE and EE) data, which we denote as
LowP. We also compute constraints using the entire mul-
tipole range of polarization measurements, denoted by
AlIP. The division between these two datasets is the mul-
tipole number ¢ = 29 which approximately corresponds
to an angular scale of ~ 5°.

As demonstrated in Fig. 3 polarization data can



TABLE I. Baryon and CDM isocurvature amplitudes (in terms of the curvature perturbation ¢) for the various curvaton-decay
scenarios. If the lepton chemical potential {iep = 0, S,y = 0. Otherwise, if {lep # 0 and there is a net lepton number L # 0,
Sy~ 1s given by Eq. (21), taking non-zero values only if L is generated by curvaton decay, that is, y = by. This is discussed
in detail in Secs. III A and IIIB. The notation (by,, ¢y, , Ly, ) for various curvaton-decay scenarios is introduced in Sec. II.

scenario % SZW SZW
1 SU Su Qb Sl/
etore) L — —1 v x - 4 . -1 v .
(bby70bf yL) 3<TD >+R ¢ 3+ R ¢ 3(Qm7“D >+R ¢
S, 1 S, Q. S,
(bbefore:cb}HLyL) 3+ R, C 3 (TD 1) + R C (QmTD 1> R C
1 S, Sy QO (1 S
(buys Catior Ly, ) 3 (TD 1) + R Ry 3oy (TD ) + R
T nl (o) ()
D m D
Sy Sy Q Sy
(Bbetore, Catters Ly, ) -3+ R, Cﬂ/ R, CW -3 Qi +R, CW
S Sy, Q. S
(baftcr7 Chefore) LyL) R, ¢ 3+ C 3 Qm + R C
(bbefore7 Cbefore, LyL) -3+ R, Sg,\/ % %
1 S, Sb S
b I = 1 L, 2v = =
(boy, by, Lyp,) 3(TD )JFR ¢ ¢ ¢
S, Sy Sy
(baften Cafter, LyL) R, C’Y Ry C’Y Ry C’Y

break degeneracies present in a temperature-only anal-
ysis. This statement is especially true for tests of the
adiabaticity of the initial conditions [92]. The analysis
in Sec. 11 of Ref. [37] and Sec. 6.2.3 of Ref. [38] includes
constraints to isocurvature modes using the Planck 2015
data. As they point out the addition of AlIP greatly im-
proves the constraint to isocurvature modes which are
correlated to the adiabatic mode.

For example, the fractional contribution to the
temperature power spectrum is constrained to a =
—0.0025%9:993> 4t 95% CL using Planck TT + LowP
where the sign of « indicates whether the isocurva-
ture contribution is totally correlated (a > 0) or anti-
correlated (o < 0) with the adiabatic mode. The pref-
erence for an anitcorrelated mode comes from the well-
known deficit of power on large angular scales [90, 95].
When all polarization data is included in the analysis the
centroid shifts upward and the overall uncertainty on «
is reduced by more than 50%: a = 0.000310 0015 at 95%
CL. As noted by the Planck team [38] these effects may
both be driven by a significantly low point in the TE
cross power spectrum which may be due to unidentified
systematic effects (see, e.g., Ref. [96]).

In order to highlight the effects of including all of the
publicly available Planck data we divide our analysis into

two sets of data: Planck TT+BAO+LowP and Planck
TT+BAO+AIIP. Given the uncertainty around system-
atic effects in the high-£ polarization power spectrum we
take the Planck TT+BAO+LowP constraints to be more
robust.

In order to compare the data to our model we use a
modified version of the publicly available Boltzmann code
CosMOMC [97] along with the publicly available Planck
Likelihood code [91] included with the 2015 Planck data
release. We made modifications to these codes in order
to include the two curvaton parameters rp and &ep. As
discussed previously, the parameter rp only affects the
initial conditions whereas the lepton asymmetry, iep, af-
fects both the initial conditions, the effective number of
neutrino species, as well as S-decay processes occurring
during BBN. This latter effect alters the primordial light
element abundances, so that from measurements of pri-
mordial He and deuterium abundances, we have an in-
dependent constraint |&iep| < 0.03 at 95% CL [39, 42] as
discussed in Sec. III.

In our analysis we try three different priors on jep:
first we consider the constraints to &, from the CMB
only imposing a flat prior on &7 of 0 < & < 4; sec-
ond we impose the BBN constraint by placing a Gaussian
prior on £ with a mean of zero and a standard deviation
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FIG. 3. A comparison between the difference between a purely adiabatic mode and a totally correlated (solid) or anticorrelated

(dashed) matter (blue) or neutrino density (orange) isocurvature mode.

0+ 1)ACK

Each panel shows the binned residuals AD)XY =

XY /(27) (see Ref. [91] for details on the binning procedure). The matter isocurvature has an amplitude Sy, = 0.2

and the neutrino density isocurvature has an amplitude S, = 0.1. We also show the residuals for the power spectrum measured
by the Planck satellite [91]. Note that the horizontal scale is logarithmic up to £ = 29 and then is linear; the vertical scale on

the left and right-hand sides are different.

of 0.03; third we consider the case where o, = 0, re-
moving the neutrino isocurvature mode. We find that
both current CMB measurements by Planck and a fu-
ture cosmic-variance limited experiment (with maximum
¢ = 2200) are less sensitive to ﬁfep than measurements of
the light-element abundances.

The observed CMB power spectra can be written in
terms of the primordial curvature perturbation power
spectrum, Ag(k’), and the photon transfer function

@Z’X(k) for each initial condition i as

c?Y:M/ —AQ

0

ZAzfy@l X ]
ZA]"YG?Y(I/”') )
J

(23)

where X € {T, E} denotes the relevant observable (CMB
temperature or E-mode polarization anisotropy).

The primordial curvature perturbation is given in

terms of the amplitude parameter A,:

k3 EN\™ !
sabek) =40

where P (k) is the dimensional power spectrum of ¢, A is
the primordial scalar amplitude and n, is the primordial
scalar spectral index and the pivot wavenumber is taken
to be ko = 0.05 Mpc~!. As discussed in Sec. II, we set
the running as; = 0. The amplitude parameters

Aiw = {Aad> AC’ya Abvv Au'y}

are used to set the mixture of adiabatic and isocurvature
modes in the CMB Boltzman code caMB. It is impor-
tant to set all these amplitudes correctly in the presence
of neutrino isocurvature, as neutrinos contribute to the
relativistic energy density at early times, and the neu-
trino isocurvature density mode is excited in the curvaton
model, as we saw in Sec. III. As discussed in Appendix
A, using the initial perturbation values 6., d, 0., and §,
for each perturbation mode used in CAMB, we have that
Ab’y = Sb'y/C - Rusu'y/<> Ac'y = c*y/C - RVSV"//C7 and

AZ(k) = (24)

(25)



A,y =35, R, /4¢, where R, =1 — R, is the fraction of
relativistic energy in photons. We apply these relations
when running our MCMC chains for each of the curvaton

decay-scenarios enumerated in Sec. III, along with Table
I and Eq. (16).

Before presenting constraints to rp and &p it is in-
structive to consider a ‘model independent’ parameteri-
zation of the totally correlated (or anti-correlated) isocur-
vature modes. Fig. 3 gives us a sense of what to expect
from this exercise. First, note that a 20% contribution
from totally correlated CDM isocurvature (blue curves)
can produce a deficit of power on large scales while also
causing a significant change at around the first peak in
the TT power spectrum. Given the mild tension between
the best-fit theoretical power spectrum and the relatively
low temperature quadrupole (at the level of a little more
than one standard deviation), we expect the data to pre-
fer a slightly negative value for S,,,. The matter isocur-
vature also has a significant affect on the TE power spec-
trum between 100 < ¢ < 500.

The introduction of a 10% contribution from neutrino
isocurvature (orange curves) significantly changes the TT
power spectrum at nearly all scales as well as the TE and
EE power spectrum on scales with £ 2 100. We therefore
expect that the CMB data will be more sensitive to .S,
than than to S,,.

1 1 1
-0.75 -0.50 -0.25 0.00 0.25 0.50

Snl"}’

L L L L f L L
—0.75 -0.50 —0.25 0.00 0.25 0.50 —0.4 —0.2 0.0 02 04 0.6

Ss S,

FIG. 4. The posteriors for the correlated isocurvature am-
plitudes Sy, and S,,; the red curves show constraints us-
ing Planck TT+BAO+LowP and the blue curves show con-
straints using Planck TT+BAO+AIlIP. Note that at the level
of about one standard deviation the LowP case is better fit
by a totally anti-correlated matter isocurvature component,
which leads to a suppression of power on large angular scales.
When all of the polarization data is included this preference
is less dramatic.
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scenario rp (Am~y =0) rp (95% CL)

(bby, Coefore; Ly, ) 0.15800"0030  0.1602X0 005

EZbefom cby Ly )) 0.8373%0 0045 0.84925:0056
by s Cafter, YL 1 > 0.9578

( after) be7 L ) 1 > 0.9919

(buys oy Ly ) 1 > 0.9931

( after, Caftcr, LyL) 1 > 0.9973

TABLE II. Constraints to rp (with §lzep = 0) using Planck
TT+BAO+LowP to those models which can yield vanishing
isocurvature perturbations as seen in any two-point correla-
tion function. Note that the in the scenario (bater, Catter, Ly, )
we quote a constraint to x p which is related to rp as discussed
in more detail in Sec. IV B.

The results presented in Fig. 4 confirms our expecta-
tions: the Planck TT+BAO+LowP (red curves) prefers
a slightly anti-correlated matter isocurvature amplitude
and when all of the polarization data is included (blue
curves) the constraints shift towards a purely adiabatic
spectrum. We find that the Planck TT+BAO+LowP
places a constraint S,,, = —0.19 £ 0.18 and S,, =
0.0470 1% whereas Planck TT+BAO+AIIP gives S,,, =
—0.06 +£0.16 and S, = 0.05 £ 0.11 at 68% CL.

As was noted in Ref. [38] the difference between these
constraints may be driven by a handful of data points
around ¢ ~ 160. This can be seen by eye in Fig 3: in the
top panel, which shows the TT spectrum, the large-scale
residuals are significantly below zero, preferring totally
anti-correlated matter and neutrino density isocurvature
(dashed curves); in the TE spectrum there are a few data
points around ¢ ~ 160 which have residuals significantly
above and below zero. As the isocurvature curves show,
these data introduce a tension between totally correlated
and anticorrelated isocurvature modes. We note that this
tension may be a significant driver in the difference be-
tween the LowP and AlIP constraints on isocurvature
perturbations, although we do not explore this issue fur-
ther.

As the data is well-fit by a universe with purely
adiabatic perturbations, curvaton scenarios that fit
have rp and &ep values that produce adiabatic per-
turbations. This immediately eliminates the scenarios
(bafteu Cafter, LyL) and (bbefore; Chefore) LyL) We also note
that the case where (bpefore, Cafters Ly, ) Will produce a
huge isocurvature perturbation, unless rp exceeds the
bounds from non-Gaussianity and &, exceeds the BBN
bounds. This scenario is thus ruled out to high signifi-
cance as well. We are then left with 18 scenarios which
may be consistent with the data.

Each of the allowed 18 scenarios yield zero isocurvature
contributions to CMB power spectra if A,,, = 0-1i.e., as
long as they correspond to a compensated isocurvature
mode. We show the value of 7p in each of these scenarios
for which A,,, = 0 in Table II along with the constraints
to rp when ep = 0.



In addition to running MCMC chains to obtain con-
straints, we perform a Fisher-matrix analysis to forecast
the sensitivity of CMB data to In (rp) and & . We in-
clude these parameters, as well as the standard 6 ACDM
parameters. We apply the Fisher-matrix formalism as
described in Ref. [98]. In this analysis, we also include a
BBN prior on the primordial “He abundance, with error
Oyy. = 0.005.

Numerical derivatives are evaluated using a standard
two-sided two-point numerical derivative, except for the
parameters Inrp and flzep, for which a one-sided seven-pt
rule was applied to obtain sufficiently convergent numeri-
cal derivatives. Additionally, for Qyh?, a two-sided seven-
pt rule was used to guarantee numerical convergence. For
In (1019 Ay), the derivative dC;XY /d A4 was evaluated an-
alytically, as C;*Y oc A, obviating the need to compute
a numerical derivative for this parameter. These results
are used both to verify that our MCMC results for Planck
data are reasonable, and to forecast the ideal sensitivity
of a cosmic-variance limited CMB polarization experi-
ment to curvaton-generated isocurvature perturbations.

Fiducial values for Qyh?, Q.h2, Qa, As, ng, and T were
set to the marginalized means for these parameters in
a ACDM-only MCMC run. For the lepton asymmetry,
we used flgep = 0 as the fiducial value. For all curvaton
scenarios except (bny, Chefore;s Ly, ) and (bpefore, Chys Ly, ),
we used the fiducial value rp = 1, guaranteeing that the
fiducial model has adiabatic perturbations. For the sce-
narios (buy, Cbefore; Ly, ) and (bbefore, Chy, Ly, ), we used
fiducial values corresponding to zero isocurvature be-
tween radiation and non-relativistic matter (i.e., A,y =
0), corresponding to the rp values given in the middle
column of Table II.

We now present our constraints to curvaton-decay sce-
narios, grouped by the character of their effects on CMB
power spectra. We begin by discussing scenarios for
which there is non-zero isocurvature unless £ = 0 and
rp = ;/Qy,, where i denotes baryons or CDM. We then
move on to a scenario showing a total degeneracy between
f?ep and rp at the level of isocurvature amplitudes. We
finish by discussing scenarios for which all isocurvature
modes vanish when rp = 1.

A. Constraints to baryon number or CDM
production before curvaton decay

The two decay scenarios which produce compen-
sated isocurvature modes are (bny,Chefore; Ly, ) and
(bbefore, Cby, Ly, ). As shown in Table I, the isocurva-
ture contribution vanishes (i.e., is purely compensated)
when glep = 0 and rpD = Qb/Qm for (bby,cbefore,LyL)
or rp = Q¢/Q, for (buefore; Chy, Ly, ). In addition to
this, if rp is greater than the previous values the matter
isocurvature is anti-correlated with the adiabatic mode,
leading to a suppression of the large-scale temperature
power spectrum. As expected, constraints from Planck
TT+BAO+LowP lead to values of rp which are slightly
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FIG. 5. Constraints to rp and ffep for scenario
(bby, Cbefore; Ly, ). Top: the marginalized 2D constraints to
both rp and &ep. The red regions show the current con-
straints using Planck TT+BAO+LowP data, the blue regions
show constraints using Planck TT+BAO-+AIIP, and the black
regions show the projected constraints for a cosmic-variance
limited CMB experiment which measures out to {max = 2200,
obtained from a Fisher-matrix analysis. In this panel, a flat
prior is imposed on 5120p, as discussed in the text. The dashed
vertical green line gives the value of rp for which the isocur-
vature is totally compensated (i.e. A, = 0); the dashed
horizontal purple line gives the 95% CL upper limit on flzep
from measurements of the primordial light element abun-
dances. Bottom: marginalized 1D constraints to rp using
Planck TT+BAO+LowP under a variety of assumptions for
&iep: flat prior on &, (red), BBN-prior on &, (blue), and

£lzep = 0 (orange).

larger than the purely compensated case, since that leads
to a suppression of the large-scale temperature power
spectrum. Marginalizing over {ip for (buy, Chefore; Ly, )
we find that at 95% CL rp = 0.161970-0955 and €, /Q,,, =
0.1580f8:88ﬁ’; for (bbefore, Cby, Ly, ) we find that rp =



0.85673:915 and €./, = 0.840175:3953.

Constraints to rp in these two scenarios are
significantly different when all of the polarization
data is included. In this case marginalizing over
&y for (buy, Coefore; Ly,) we find that at 95% CL
rp = 0.1595700011 and Q,/Q,, = 0.1570700033; for
(Dbefore, Cby, Ly, ) we find that rp = 0.853f8'_8%2 and
O/ = 0.8455J_r8j882§. We can see that in both sce-
narios rp is constrained to be significantly closer to their
purely compensated values when all of the polarization
data is used.

The constraint to &, in these two scenarios is par-
ticularly interesting since the compensated isocurvature
leads to a stricter Planck/BAO constraint. Looking at
Eq. (22) we can see that the smaller rp the larger the
neutrino isocurvature contribution. This means that
the Planck/BAO constraints to §lzep for the scenario
(bby s Chefores Ly, ) is the most constraining with {fep <
0.0164 at 95% CL as seen in Fig. 5. Although this is not
competitive with constraints inferred from measurements
of the primordial light element abundances [36, 39-42],
&y < 0.001 at 95% CL, it is the tightest constraint to
& using only Planck/BAO data.

Since the value of rp is larger in the scenario
(bbefore, Cby, Ly, ) the constraint to flzep this case is not
as restrictive, giving 512ep < 0.368 at 95% CL. As shown
in Fig. 2, however, this is more restrictive than the up-
per limit placed on ffcp < 0.5 from its contribution to
the total radiative energy density of the universe, show-
ing that this constraint is driven by the effect the lepton
asymmetry has on neutrino isocurvature perturbations.

The constraint to 51261) does not change significantly
when including all of the polarization data: for scenario
(Dbefore; Cby, Ly, ) the constraint becomes €l2ep < 0.0165
and for (bpefore, Chy, Ly, ) becomes 5126p < 0.348.

As shown in the bottom panel of Figs. 5 and 6 the
marginalized 1D constraint on rp is fairly insensitive to
how we treat flgep. In those panels the red curve shows
the constraint arising from flat priors on ffep. The blue
curve shows the constraint that arises when 5126p has the
BBN prior §l2ep < 0.001 at 95% CL. The orange curve
shows the constraint obtained when we assume §lzep = 0.

The values of rp allowed by Planck/BAO data in these
scenarios also imply a non-Gaussian signature in the
CMB. The predicted level of this signature can be de-
termined through Eq. (5). We show the predicted ranges
for the amplitude of this signal, f,, in Fig. 7. The sce-
nario (bpefore, by, Ly, ) predicts fu = 5.92 £ 0.26 and
(bbefore, Chy s Ly, ) predicts that fu = —0.91979-032 at 95%
CL. Current data impose the constraint fn = 2.5 +5.7
[48]. The scenario (bny, Chefore; Ly, ) implies a particu-
larly large f,1 value, which could be sensitively tested
using measurements of scale-dependent bias in future
galaxy surveys [49, 50] or measurements of the matter
bispectrum from high-redshift 21-cm experiments [19-
21]. The scenario (bpefore; Chy, Ly, ), which makes more
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FIG. 6. Constraints to rp and ffep for scenario
(bbefores Cby, Ly, ). Top: the marginalized 2D constraints to
both rp and &ep. The red regions show the current con-
straints using Planck TT+BAO+LowP data, the blue re-
gions show constraints using Planck TT+BAO+AIIP, and the
black regions show the projected constraints for a cosmic-
variance limited CMB experiment which measures out to
lmax = 2200, obtained from a Fisher-matrix analysis. In
this panel, a flat prior is imposed on {fcp, as discussed in
the text. Bottom: marginalized 1D constraints to rp using
Planck TT+BAO+LowP under a variety of assumptions for
&iep: flat prior on &, (red), BBN-prior on &, (blue), and

&z, = 0 (orange).

modest predictions, could be tested with high-redshift
21-cm experiments [19-21].

Future CMB measurements will greatly improve upon
these constraints. As shown by the black ellipses in
Figs. 5 and 6 a cosmic-variance limited CMB experi-
ment which measures both the temperature and polar-
ization power-spectrum out to fp. = 2200 will give a
factor of 4.3 increase in sensitivity to 5126p and a fac-
tor of 3.5 increase in sensitivity to rp for the scenario
(bby, Chefore, Ly, ) and a factor of 11 increase in sensitiv-
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FIG. 7. Predicted value of the non-Gaussianity parameter
ful for the scenarios (buy, Cbefore; Ly, ) and (bbefore, Chy, Ly )
for parameter values which are consistent with our limits (on
isocurvature and the radiative energy density at decoupling)
from Planck/BAO data (red). The vertical dashed lines indi-
cate the 95% CL range of these predictions.
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ity to §12ep and a factor of 4 increase in sensitivity to rp for
the scenario (bpefore, Cbys Ly, ). Note that even with the
increased sensitivity, CMB/BAQO measurements of §1er
are still not as sensitive as measurements of the primor-
dial light-element abundances.

B. Constraints to baryon and CDM production
after curvaton decay

In the scenario where both the baryon number and
CDM are produced after curvaton decay, while lepton
number is produced by its decay, the initial conditions
are completely determined by the level of neutrino isocur-
vature alone, as shown in Table I. Looking at Eq. (22)
we can see this produces a perfect degeneracy between
rp and ﬁfep: the level of isocurvature can be made to be
arbitrarily small for any value of rp < 1 with a small-
enough value for 512910. In order to determine the allowed
region of parameter space, it is convenient to define a
new parameter, xp:

11_512‘*(11). (26)

XD w2 \rp

The constraints to xp and 51261) are shown in Fig. 8.

As discussed in Sec. III B, even in the absence of neu-
trino isocurvature, Planck/BAO data impose the con-
straint &7 < 0.49 (at 95% CL), due to the effect of &
on Neg. We have also seen that measurements of the
primordial light element abundances further constrain
§12Cp < 0.001 at 95% CL. The unshaded region of the
rightmost panel of Fig. 8 shows the currently allowed re-
gion of the rp—élip parameter space in this scenario.
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The Planck TT+BAO+LowP data places the con-
straint 1 — xp < 0.0027 and fip < 0.5 at 95% CL.
These data have a slight preference for non-zero §lzep due
to its additional contribution to the radiative energy den-
sity. This preference has been seen in previous analyses
[38, 99, 100]. When all the polarization data are used,
the preference for a non-zero {?ep disappears but is re-
placed by a slight preference for yp < 1, as can be seen
in the blue curves in the left panel of Fig. 8. In this case
we have 1 — yp < 0.0025 and flzep < 0.33 at 95% CL.

Given that any value of rp is consistent with the
Planck/BAO data, this scenario does not make a spe-
cific prediction for a level of non-Gaussianity. Instead,
current (fn = 2.5 + 5.7 [48]) allow us to conclude that
rp = 0.12 at 95% CL. This constraint is shown in the
left-hand panel of Fig. 8 as the vertical dashed line.

Future measurements of the CMB will more sensitive
to this curvaton-decay scenario, as shown by the black
curves in the left and center panel of Fig. 8. Using a
Fisher-matrix analysis, we find that a cosmic-variance
limited experiment which measures both the temperature
and polarization power-spectrum out to £ = 2200 will be
4 times more sensitive to xp and 3 times more sensitive

to ffep.

C. Constraints to remaining scenarios

As shown in Table I, unlike the other cases considered,
these three scenarios yield purely adiabatic initial condi-
tions when rp = 1. This has important implications for
Planck /BAO constraints to 51291) in these scenarios. From
Eq. (22), it is clear that the level of neutrino isocurva-
ture in these models is negligible. As a result, the sensi-
tivity of Planck/BAO data to €l2ep comes solely from its
contribution to the total radiative energy density of the
universe.

This expectation is borne out in Fig. 9 since in all 3
scenarios give nearly the same 95% CL upper limit from
the Planck/BAQO data for {?ep: for (batter, Chy, Ly ) 512619 <
0.42; for (buy, Catier, Ly, ) &y < 0.40; for (buy, cuy, Ly,)
5129p < 0.44. When using all of the polarization data (blue
regions in Fig. 9) the sensitivity to §lzep is significantly
improved. In all 3 cases, the 95%-confidence upper limit
to 5126p is a factor of ~ 0.75 of its value for less complete
polarization data.

The constraint to rp in each scenario varies because of
the specific pre-factor generated in each case. Looking at
Table I we can see that the overall matter isocurvature
in scenario (bny, Cater, Ly, ) is suppressed by the small
factor €4/, ~ 0.15. Because of this we expect the con-
straint to rp in that case to be the least restrictive. The
factor Q./€Q,, ~ 0.8 appears in the expression for the
isocurvature amplitude in the scenario (bafter, Cby, Ly, ),



14

(baften Cafter Ly,,)

Probability

Ml .
0.002 0.003 0.004 0.005 0.0 0.1 02 04 05 06 07

3
1 - XD é.lzzp

) A <R CTpep——

1 1
0.000 0.001

FIG. 8. Marginalized 1D constraints to a scenario in which lepton number is produced by curvaton decay, while baryon
number and CDM are produced after curvaton decay. For the left and middle panels the red curve shows constraints using
Planck TT4+BAO+LowP, the blue curve shows constraints using Planck TT+BAO+AIIP, and the black curve shows projected
constraints for a cosmic-variance limited CMB experiment which measures out to fmax = 2200, obtained from a Fisher-matrix
analysis. The vertical dashed lines indicate the 95% CL upper limit to each parameter using the Planck TT+BAO+LowP data.
Left hand panel: the 1D marginalized posterior for 1 — xp, where xp is defined in Eq. (26). Middle panel the 1D marginalized
posterior on £fep from CMB/BAO observations only. Right-hand panel: a contour plot showing the relationship between xp,
rp, and §l2ep. The dotted red contour shows the 68% CL upper limit on 1 — xp from Planck TT+BAO+LowP; the dashed
red contour shows the 95% CL upper limit on 1 — xp from Planck TT+BAO-+LowP. The vertical dashed line shows the 95%
CL lower limit on rp from constraints to the level of non-Gaussianity in the CMB; the horizontal dashed lines show the 95%
CL upper limits on §129p from the Planck TT+BAO+LowP data (black) and measurements of the primordial light element
abundances (red). The shaded region is currently ruled out at 95% CL.
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FIG. 9. Constraints to the three cases where the baryon number and/or CDM is produced after the curvaton decays. The
red regions show the current constraints using Planck TT+BAO+LowP data, the blue regions show constraints using Planck
TT+BAO-+AIIP, and the black regions show the projected constraints for a cosmic-variance limited CMB experiment which
measures out to fmax = 2200, obtained from a Fisher-matrix analysis. In all cases the inner contour corresponds to 68% CL
and the outer contour corresponds to 95% CL. In this panel, a flat prior is imposed on .flzep, as discussed in the text. In these
three cases the initial conditions are purely adiabatic when rp = 1.

leading to a moderate suppression of the matter isocur-
vature. Finally, since the scenario (bpy, chy, Ly, ) contains
no suppression we expect the most restrictive constraint
on rp to occur in this case. All of these expectations are
borne out, as shown in Fig. 9. The 95% CL lower limits
for (bafter,be7LyL) is rp = 0.992. For (bby,Cafter,LyL),
the limit is rp > 0.963. Finally for (byy, cny, Ly, ), the
limit is rp > 0.993. When using all of the polarization
data (blue regions in Fig. 9) the sensitivity to rp is nearly
unchanged.

The values of rp in these scenarios which are con-
sistent with the Planck/BAO lead to a non-Gaussian

signal. The predicted level of this signal can be deter-
mined through Eq. (5). Note that the predicted values
of fu are bounded from below, since when rp = 1 we
have f; = —1.25. We show the predicted ranges for
the amplitude of this signal, fy1, in Fig. 10. Since the
upper limit on rp for the scenarios (bagter, Chy, Ly, ) and
(bby, Chy, Ly, ) is more restrictive, the 95% CL upper limit
on the predicted level of non-Gaussianity in these scenar-
ios is more restrictive with —1.25 < fy1 < —1.23 whereas
for (buy, Catter, Ly, ), we have —1.25 < fr < —1.17. Cur-
rent Planck data indicate that fu = 2.5+5.7 [48], and so
both of these scenarios are consistent with current con-
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FIG. 10. Predicted value of the non-Gaussianity parameter
fu1 for the scenarios (bagter, Cby, Ly, ) and (bny, Caster, Ly, ) for
parameter values which are consistent with our limits (on
isocurvature and the radiative energy density at decoupling)
from Planck/BAO data (red). The vertical dashed lines indi-
cate the 95% CL range of these predictions. The results for
the (bby, cby, Ly, ) scenario are indistinguishable from those
for the (bafter, Cby, Ly, ) scenario.

straints to primordial non-Gaussianity. These fy; values
could, however, be tested using future measurements of
the matter bispectrum from high-redshift 21-cm experi-
ments [19-21].

Future CMB measurements will greatly improve these
constraints. As shown by the black ellipses in Fig. 9
a cosmic-variance limited CMB experiment which mea-
sures both the temperature and polarization power-
spectrum out to £y = 2200 will give a factor of 3.5
increase in sensitivity to ffcp and a factor of 2 increase in
sensitivity to rp for each of the three scenarios considered
in this subsection.

V. CONCLUSIONS

The curvaton scenario presents a rich and interesting
alternative to standard single-field slow-roll inflationary
models of early universe physics. There are 27 curvaton-
decay scenarios, distinguished by whether baryon num-
ber, lepton number, and CDM are produced before, by,
or after curvaton decay. Although some are better moti-
vated theoretically than others, we have presented con-
straints to all logical possibilities to fully explore the cur-
vaton parameter space. Of these, 18 are currently allowed
by CMB and large-scale structure measurements.

Sensitivity to rp, a parameter describing the curvaton
energy-density, comes from the effects of non-adiabatic
initial conditions on the CMB as well as the introduc-
tion of non-Gaussian statistics. Constraints on fip, the
lepton-number chemical potential, come from the effects
of non-adiabatic initial conditions on the CMB as well as
its contribution to the total radiative energy density.
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We compared predictions for CMB anisotropy power
spectra in these 18 scenarios with Planck CMB measure-
ments and the location of the BAO peak. The CMB
data is divided between large-scale and small-scale mea-
surements. As noted in Refs. [37, 38] the inclusion of
the small-scale polarization data significantly improves
sensitivity to isocurvature perturbation. We find that,
when the small-scale polarization data is also used to
measure the curvaton scenario parameters, the improved
sensitivity is less significant, due, in part, to degeneracies
between parameters.

For cases where rp = 1 restores totally adiabatic per-
turbations, we find limits of rp > 0.96—0.997 at 95% CL,
depending on the precise decay-scenario. In these cases,
constraints to f?ep are primarily driven by its effect on
the relativistic energy-density with &2 < 0.5 at 95% CL.
These scenarios (with the exception of the decay scenario
in which both CDM and baryons are produced after cur-
vaton decay) predict fn ~ —1.25, a value which could
be tested by future high-redshift 21-cm surveys [19-21].
When both CDM and baryons are produced after curva-
ton decay, rp and flzep are completely degenerate and no
specific prediction for f,; can be made.

The most interesting cases from an observational point
of view are those in which baryon number is produced by
curvaton decay, and CDM before, or vice-versa. The data
then require that rp = 0.1604+0.004 or rp = 0.850+0.009
at 95%-confidence for these two cases, respectively. This
window results from the requirement that the baryon
and CDM isocurvature fluctuations nearly cancel, mak-
ing testable predictions for future experiments.

First of all, there must be a compensated isocurva-
ture perturbation between baryons and CDM to obtain a
small overall isocurvature amplitude [44]. In the curvaton
model, this CIP must be totally correlated with ¢, and
a future CMB experiment (such as CMB Stage-I1V [101])
could test the scenario in which baryon number is gener-
ated by curvaton decay and CDM before [79]. The sce-
nario in which CDM is generated by curvaton decay and
baryon number before is inaccessible to CMB searches
for compensated isocurvature perturbations [79].

Second of all, in these decay scenarios the pertur-
bations are non-Gaussian. The non-Gaussian signal is
larger than in the cases where rp = 1, since the limit
of adiabatic perturbations corresponds to rp < 1 in
these scenarios. We find that when baryon number is
produced by curvaton decay and CDM before, the pa-
rameter values allowed by the CMB power spectra/BAO
data predict that fy; = 5.92 + 0.26. This is still within
the current limits to fy,) from the CMB bispectrum and
may be detected by future galaxy surveys [49] (through
scale-dependent bias) and high-redshift 21-cm experi-
ments [19-21]. If CDM is produced by and baryon num-
ber is produced before curvaton decay the model predicts
far = —0.919705%4 " detection is more challenging, but
perhaps possible with high-redshift 21-cm experiments
[19-21].

If lepton number is produced by curvaton decay, the re-



quirement that neutrino isocurvature perturbations sat-
isfy constraints imposes a limit on jp. If baryon number
is produced by curvaton decay, CDM after, and lepton
number by the decay, the Planck data require &, < 0.13,
much tighter than the constraint to &, obtained from
the overall radiation energy density at the surface of last
scattering.

Conservatively speaking, future CMB experiments
may bring an additional factor of ~ 3 improvement in
sensitivity to deviations of rp from values consistent
with purely adiabatic fluctuations. Depending the pre-
cise character of small-scale polarized foregrounds [102],
primary CMB polarization anisotropies could be mea-
sured at multipole scales as high as ¢ ~ 4000, further
improving sensitivity to curvaton-generated isocurvature.
As such, it would be interesting to repeat the Fisher anal-
ysis of this paper for a variety of specific curvaton poten-
tials, self-consistently including isocurvature as well as
variations in the spectral index ns and running «a; of pri-
mordial density perturbations.

Furthermore, primordial initial conditions should have
an imprint on the shape of the BAO peak, going beyond
the simple location of the peak in real space. This effect
could yield an additional test of the curvaton model, if it
can be disentangled from redshift-space distortions and
nonlinearities.
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Sey=Ac— A, = Apy |1 2907 +3Q07% — % (—296,07 + 4967072)] = A,

where we have applied the super-horizon power series so-
lution for the CDM isocurvature mode from Ref. [103]
and then evaluated it at initial conformal time 7 = 0.
This means that if this mode is excited with an amplitude
Acy (relative to the adiabatic mode) that S., = A.(C.

When we excite multiple isocurvature modes, then the
overall isocurvature is the linear combination of each
mode. Exciting both the CDM (with amplitude A.,) and
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Appendix A: Derivation of relation between
isocurvature amplitude and initial mode amplitude

We now derive relationships between the mode ampli-
tudes A;y used in CAMB and the physical isocurvature
amplitudes S;, predicted by the curvaton-decay scenar-
ios in Table I. In terms of the curvature perturbation on
hypersurfaces of constant single-species energy density
(&), we have

5pi 6
sw—:),(gg)—:m( p ’7), (A1)

7

where dp; = p;A;, the prime indicates a derivative with
respect to conformal time and H is the conformal Hubble
rate (and H = aH).

The continuity equation dictates that

pi = —3Hpi(1 + ’LUL) — ,0; = —37‘[,01‘(1 + wi). (A2)

Therefore we can write the isocurvature perturbation in
terms of the relative energy density perturbation A;:

1 3

Sz' = A

A, (A3)

We can now see that adiabatic initial conditions take the
usual form

A=Ay =-A,=-A,. (A4)

Now we can also see how to translate the conditions

given here to the initial conditions specified in a Boltz-

mann solver such as CAMB. For example, with CDM
isocurvature we have

(A5)

(

baryon isocurvature (with amplitude A, ) modes leads to

Sery = A — %AW = AeC, (A6)
3
Sty = Do = A, = Ay (A7)

Things get more interesting when we consider the exci-
tation of both matter and neutrino density isocurvature.
The linear combination of CDM, baryon, and neutrino
density isocurvature gives initial density contrasts (ap-



plying the power-series solutions from Ref. [103] again):

Ry R,

A ZACA,O-F*AI;A,O_AV D (A8)
Y Y=Y Rc Y=Y FYR’Y
3 3R
AC = Ac’y (1 + 4A770) + iRibA’y,OAb’yv (Ag)
3 3 R
Ab = EA’%OAC’Y + <1 + 4Afy70]%b> Ab’yv (Alo)
R
Ay =Acy Ay + ﬁbAv70Abv + Avy, (A11)

C

where A, is a constant, R. = p./(pc + pp), Ry =

pb/(pc + pb)7 and R, = pu/(p'y + pu)~
Applying Eq. (A3), we then find that

3R,
Sey/C = (Am + 4R7Aw> , (A12)
3R,
Spy /€ = <Abv + 4RWAW> ) (A13)
3R,
Sy /¢ = Apy Ry + Ay Re + = =2 (A14)
AR,
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Solving this set of equations for the initial condition
amplitudes in terms of the isocurvature amplitudes, we

obtain

Acy = Sey [C+ (Ry — 1)/, (A15)

Apy = Sb’y/c + (R’y - 1)Sw/<7 (A16)
3

Ay = ZRVSW/C. (A17)
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