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We examine the degree to which observations of large-scale cosmic microwave background (CMB)
polarization can shed light on the puzzling large-scale power modulation in maps of CMB anisotropy.
We consider a phenomenological model in which the observed anomaly is caused by modulation of
large-scale primordial curvature perturbations, and calculate Fisher information and error forecasts
for future polarization data, constrained by the existing CMB anisotropy data. Because a significant
fraction of the available information is contained in correlations with the anomalous temperature
data, it is essential to account for these constraints. We also present a systematic approach to
finding a set of normal modes that maximize the available information, generalizing the well-known
Karhunen-Loève transformation to take account of the constraints from the temperature data. A
polarization map covering at least ∼ 60% of the sky should be able to provide a 3σ detection of
modulation at the level favored by the temperature data. A significant fraction of the information
in such a data set is contained in the single mode that optimally encapsulates the signal due to
temperature-polarization correlation.

I. INTRODUCTION

The cosmic microwave background (CMB) radiation
provides much of the most important evidence in support
of the standard cosmological model [1–3]. However, there
have been claims of various “anomalies” on large angu-
lar scales in the all-sky maps made by the WMAP and
Planck satellites, which appear to be in tension with cer-
tain aspects of the model [4–9]. Some, such as the align-
ment of low-order multipoles [4–7, 10–13] and the dipolar
modulation of fluctuations [4–6, 14–21], even appear to
violate the assumptions of homogeneity and isotropy. If
there is indeed strong evidence that these assumptions
are violated, the effect on cosmology would be revolu-
tionary.
The statistical significance of these anomalies is contro-

versial (e.g., [4, 22]), in large part because they are quan-
tified with a posteriori statistics – that is, the anomalies
were noticed in the data, and subsequently statistics were
devised to quantify their improbability. Such statistics
are problematic: in any large data set, some patterns will
arise merely by chance, and statistics designed after the
fact to characterize these patterns will have artificially
low p-values. (This problem is sometimes described as
the “look-elsewhere effect.”) One might therefore choose
to disregard the subject entirely. On the other hand,
if the anomalies are not mere flukes, the consequences
would be of the highest importance. It therefore seems
reasonable to examine them closely while maintaining
skepticism.
When faced with the problem of a posteriori statistics,

the natural solution is to seek a new data set for which
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the questions can be addressed a priori. The large-angle
CMB intensity has already been measured to the limit of
cosmic variance, but CMB polarization on the largest an-
gular scales have not yet been thoroughly characterized.
In this paper, we examine the degree to which all-sky or
partial-sky polarization data could help us to determine
the significance of the dipolar modulation in fluctuation
power.
Although measurements of CMB polarization have

been made, there are none that have reliable information
on the large angular scales of chief interest to us. We
therefore do not use existing polarization data to con-
strain theories. (In constrast, see [23, 24].) Rather, our
focus is on the question of how much light future polar-
ization data, with reliable large-angle information, would
shed on the modulation.
We focus specifically on the dipolar power modulation

– that is, the observation that the fluctuations in one half
of the sky appear to be slightly larger in amplitude than
in the other half. We choose to examine this anomaly
because it appears in some ways more robust than the
others. In particular, when maps that have been filtered
to contain non-overlapping multipole ranges are used to
calculate the modulation direction, the results are re-
markably consistent [17]. Under the hypothesis of sta-
tistical isotropy, these directions would be independent
random variables. Even if we regard the first of these de-
terminations as besmirched with the stain of a posteriori

statistics, the remainder are untainted.
Possible explanations for any of the anomalies come

in three categories: an anomaly can be a fluke, the re-
sult of a systematic error, or a sign of new physics. In
this paper, we disregard the possibility of systematic er-
ror, as the modulation appears robustly in different data
sets (WMAP and Planck), analyzed in different ways.
We are therefore interested in the question of how well
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future polarization data could distinguish between the
fluke hypothesis and the new-physics hypothesis.
Under the fluke hypothesis, the Universe is described

by the standard statistically-isotropic Gaussian model,
and the probability distribution for polarization obser-
vations is straightforward to calculate. Note that the
relevant probability distribution is the conditional prob-
ability for the future polarization data, constrained by
the existing anisotropy data, as emphasized in [25–27].
Previous work [25–27] has assessed the ability of polar-

ization data to test the fluke hypothesis. In this paper,
we go further by comparing this hypothesis with an alter-
native in which statistical isotropy is broken. The most
straightforward candidates for the new-physics hypothe-
sis involve modulating the the primordial perturbations
with a long-wavelength mode [28–34], although there are
other possibilities as well [35]. Such a modulation can be
produced in inflationary scenarios with a curvaton field,
among other ways. Rather than committing to a specific
physical model, we represent the new-physics hypothe-
sis with a phenomenological model originally explored
by Dvorkin et al. [28]. We suppose that the primor-
dial Newtonian curvature fluctuation Φ is modulated by
a multiplicative perturbation that breaks statistical ho-
mogeneity and isotropy. To be specific, we suppose that

Φ(r) = g1(r)[1 + h(r)] + g2(r). (1)

Here g1 and g2 are homogeneous and isotropic Gaus-
sian random processes, of the sort found in the stan-
dard model. The modulating field h contains only very
long-wavelength terms. In fact, to explain the dipolar
modulation of the CMB, it can be taken to be a simple
gradient

h(r) =
w · r

RLSS
(2)

for some constant vector w. Here RLSS is the distance to
the last-scattering surface and is introduced to make w

dimensionless. Note that the magnitude of w differs from
the parameter w1 of ref. [28] by a fixed normalization

factor w ≡ |w| =
√

3/(4π) w1.
The reason for the two fields g1, g2 is that the modula-

tion does not appear to persist to arbitrarily small length
scales [36, 37]. As a result, we place the large-scale, mod-
ulated Fourier modes in g1 and the small-scale, unmod-
ulated modes in g2. We adopt the simplest possible pre-
scription: we let g1 contain all Fourier modes below a
fixed wavenumber cutoff kmax, and place all modes with
k > kmax in the unmodulated field g2. The power spectra
of g1 and g2 are taken to be the standard power spectrum
P (k) = Akn−4 with spectral index n = 1, for k < kmax

and k > kmax respectively.
We wish to quantify the new information that could be

gained about this theory by a future polarization data
set. Because CMB polarization is correlated with the
temperature anisotropy, which has already been well-
measured, we should consider the conditional probabil-
ity distribution of the future polarization data, given the

temperature anisotropy data we already have. In the the-
ories under consideration, all of the probability distribu-
tions are Gaussian. To be specific, the joint probability
distribution for temperature and polarization (whether
expressed in position space or in the spherical harmonic
basis) is a multivariate normal distribution with zero
mean. The conditional probability for polarization given
temperature is then a normal distribution with nonzero
mean. Both the mean and the covariance matrix of
this distribution depend on the theory under consider-
ation. To assess the ability of this data set to distinguish
among competing theories, we will examine the theory-
dependence of the distribution.
In particular, we will calculate the Fisher information

for the parameter w, and show that for sufficiently large
kmax a polarization data set could measure a w value at
the level suggested by the temperature data with ∼ 3σ
significance, even with incomplete sky coverage. We will
also show that a significant fraction of the information in
such a data set is contained in a single mode, resulting
from the correlation of the polarization with the known
temperature data.

II. FORMALISM

A. Constrained Gaussian random processes

We begin by summarizing some results regarding con-
strained Gaussian random processes [38–43]. To be spe-
cific, we consider a set of data that can be modeled as
a sample of a Gaussian random process with zero mean.
Suppose that a subset of the data, represented by the

vector ~d1, has been measured, and that measurement of

an additional data set ~d2 is planned. In the following

sections of this paper, ~d1 will be the CMB intensity data

already measured by Planck, and ~d2 will be a future set
of polarization data. We combine the two data sets into
a single vector

~dall =

(

~d1
~d2

)

(3)

The combined data is a sample from a Gaussian random
process with mean zero and covariance matrix

Mall = 〈~dall ~d
T
all〉 =

(

M11 M
T
21

M21 M22

)

, (4)

where T denotes transpose and Mjk = 〈~dj ~d
T
k 〉. The ma-

trix Mall depends on a set of theory parameters ~θ. The

likelihood function is p(~dall|~θ) ∝ e−χ2/2, with

χ2 = ~dTallM
−1
all

~dall. (5)

Because we have already measured ~d1, we wish to know

the conditional probability p(~d2|~d1, ~θ). This is still pro-

portional to e−χ2/2, but now we regard ~d1 as fixed.
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Let

M
−1
all = N =

(

N11 N
T
21

N21 N22

)

. (6)

Then

χ2 = ~dT1 N11
~d1 + ~dT1 N

T
21
~d2 + ~dT2 N21

~d1 + ~dT2 N22
~d2 (7)

= (~d2 − ~µ)TN22(~d2 − ~µ) + constant, (8)

where

~µ = −N
−1
22 N21

~d1. (9)

In summary, when we take ~d1 as fixed, our theory gives

a Gaussian likelihood function for ~d2 with mean ~µ and
covariance matrix Mc ≡ N

−1
22 , both of which depend on

the theory parameters ~θ.

It is often convenient to use the block inversion formu-
lae,

N
−1
22 = M22 −M21M

−1
11 M

T
21, (10)

N
−1
22 N21 = −M21M

−1
11 , (11)

to write

~µ = M21M
−1
11

~d1, (12)

Mc = M22 −M21M
−1
11 M

T
21. (13)

The full expression for the constrained likelihood is

p(~d2|~d1, ~θ) =
exp

(

− 1
2 (
~d2 − ~µ(~θ))TMc(~θ)

−1(~d2 − ~µ(~θ))
)

(2π)N/2det1/2Mc(~θ)
,

(14)

where N is the dimension of ~d2.

Because we will in general be interested only in this
constrained likelihood, we will simplify the notation by

writing ~d instead of ~d2 and M instead of Mc wherever
there is no risk of ambiguity.

B. Fisher information

Suppose that we are interested in measuring a single
parameter θ, such as the modulation level w. The ex-
pected error on θ is F−1/2, where the Fisher information
is

F ≡ −〈(ln f)′′〉 =
1

2
Tr(M−1

M
′
M

−1
M

′) + ~µ′T
M

−1~µ′,

(15)
and the primes denote derivatives with respect to θ. In
this expression all quantities are to be evaluated at the
“true” value of θ.

C. Information-maximizing Modes

It may be of interest to know what aspects of the new
data are most useful in measuring θ. Is it most useful to
know large-scale or small-scale information, for instance?
Are some parts of the sky more helpful than others? One
way to address this sort of question is to suppose that,
instead of measuring the entire N -dimensional data vec-

tor ~d, we measure only its projection onto a small set of
normal modes. To be specific, imagine that we measure

δj ≡ ~vj · ~d for some small set of mode vectors ~v1, ~v2, . . ..
We can then ask which modes maximize the information
in the resulting data set.
For a Gaussian random process whose mean is zero (or

more generally, whose mean is independent of θ), the an-
swer to this question is the Karhunen-Loève transform
[44], which has a long history in cosmology [45–49]. The
best modes are the “signal-to-noise eigenmodes” with
largest eigenvalues. For the constrained data we are con-
sidering, the situation is more complicated, as the mean
of the distribution depends on the parameter θ.
If there are K mode vectors ~vj , arranged in the

columns of an N × K matrix V, then the Fisher infor-

mation in the data set ~δ is

FV =
1

2
Tr(M−1

V M
′

V M
−1
V M

′

V ) + ~µ′T
VM

−1
V V

T ~µ′, (16)

where

MV = V
T
MV, M

′

V = V
T
M

′
V. (17)

The information depends only on the subspace spanned
by the vectors; i.e., it is invariant under any invertible
transformation V → VA. We can therefore without loss
of generality choose the vectors to be orthonormal with
respect to the inner product

〈~x, ~y〉 = ~xT
M~y. (18)

With this choice, MV is the identity matrix, and

FV =
1

2
Tr((VT

M
′
V)2) + |VT ~µ′|2, (19)

Consider first the case of a single mode (K = 1), for
which

FV =
1

2
(~vTM′~v)2 + (~v · ~µ′)2, (20)

subject to the constraint ~vTM~v = 1. (When consider-
ing the case K = 1, we omit the subscript on ~v1.) We
can solve the problem of maximizing FV by a variety of
standard numerical methods, but if one of the two terms
in this expression is much larger than the other, then
an approximate solution is easily found. The first term
satisfies

1

2
(~vTM′~v)2 ≤

1

2
λ2
max, (21)
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where λmax is the largest eigenvalue in the generalized
eigenvalue problem M

′~u = λM~u, with equality when ~v is
the corresponding eigenvector. The second term satisfies

(~v · ~µ′)2 ≤ (~µ′T
M

−1~µ′)2 (22)

with equality when

~v =
M

−1~µ′

√

~µ′TM−1~µ′
. (23)

If one of the two expressions on the right side of these
inequalities is much larger than the other, then a good ap-
proximation to the information-maximizing mode is the
mode that saturates that inequality.
As we will describe in detail in the next section, for all

of the cases we consider, the second term is much larger
than the first one, and the information-maximizing mode
is therefore well-approximated by equation (23). More-
over, this mode often contains a significant fraction of
the total information. This mode fully captures all of
the information that is contained in the way the mean of
the probability distribution varies as the parameter θ is
changed. All of the remaining modes will contain infor-
mation associated only with variations in the covariance
matrix.
Having chosen the first mode, we can then seek a sec-

ond mode that supplies the most additional information.
To be specific, let ~v1 be given by equation (23), and let
~v2 be orthonormal to ~v1 according to the inner product
(18). Then equation (19) can be rewritten

FV = F~v1 +
1

2
(~vT2 M

′

⊥~v2)
2 + (~v2 · ~w)

2. (24)

Here F~v1 is the information contained in mode ~v1 alone.
The matrixM

′

⊥
is the projection ofM′ onto the subspace

orthogonal to ~v1, and ~w = M
′~v1. Choosing the optimal

~v2 therefore involves a maximization precisely analogous
to that required to find ~v1 [equation (20)]. This time,
however, as we will see in the next section, the two con-
tributions are comparable for the cases we consider, so
neither simple approximate vector is a good solution.
By an argument analogous to that which led to in-

equalities (21) and (22), the new information is bounded
by

F~v2 ≤
1

2
λ2
⊥max + (~wT

M
−1
⊥

~w)2, (25)

where λ⊥max is the maximum eigenvalue for the general-
ized eigenvalue problem M

′

⊥
~u = λM⊥~u. As we will see,

this quantity is small in the cases we will consider, so the
second-best mode is of little interest in comparison to the
first.

D. Application to CMB polarization

We will take the previously-measured data ~d1 ≡ ~t to
be CMB temperature data, measured over a masked sky.

The jth measurement can be written

tj =
∑

l,m

aTlmYlm(r̂j) + nT
j , (26)

where aTlm are the spherical harmonic coefficients, r̂j is
the location of the jth pixel, and nT

j is the noise. (For
the low-resolution maps we will consider, noise is quite
small. Its primary effect is to regularize the inversion of
the covariance matrix.) We write this compactly as

~t = Y~a+ ~nT . (27)

Here the vector ~a contains the real and imaginary parts of
the spherical harmonic coefficients aTlm, and the matrixY

contains the real and imaginary parts of the correspond-
ing spherical harmonics evaluated at the pixel locations.
The covariance matrix is

M11 ≡ 〈~t~tT 〉 = YC
TT

Y
T +NT , (28)

where NT is the noise covariance matrix and C
TT is the

covariance matrix of the aTlm coefficients.

The polarization data ~d2 will consist of polarization
measurements, which can be written

~d2 = Z~e + ~nP . (29)

Here ~e contains the real and imaginary parts of the E-
mode polarization coefficients aElm, and ~nP is the noise.

(We neglect the contribution of B modes.) The vector ~d2
contains the Stokes parameters Q,U for each pixel. The
matrix Z contains the real and imaginary parts of the
contributions of the spin-2 spherical harmonics to each
Q and U value.
The remaining blocks of the covariance matrix are

M22 = ZC
EE

Z
T +NP , (30)

M21 = ZC
ET

Y
T . (31)

The matrices CEE and C
ET characterize the covariances

of the E coefficients and the ET cross-covariance, and
NP is the noise covariance matrix.
In the standard, statistically-isotropic model,

C
TT ,CEE , and C

ET are diagonal matrices con-
taining the three power spectra. When isotropy is
broken, these matrices acquire off-diagonal elements,
which are computed according to the detailed recipe
in ref. [28]. In a coordinate system aligned with the
direction of isotropy breaking, the off-diagonal elements
are nonzero only when the two m values are equal and
the l’s differ by 1.

III. RESULTS

We have performed computations for future polariza-
tion data sets, constrained by the existing Planck temper-
ature maps [1]. To be specific, we used the Planck COM-
MANDER CMB map with HEALPix [50] Nside = 256,
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downgraded to Nside = 32 and smoothed with a Gaussian
beam of width σbeam = 2◦. We keep all pixels within the
HFI Galactic emission mask, retaining 80% of the pixels.
We imagine future polarization data with the same

smoothing and Nside, with signal-to-noise per pixel of
3. We consider five different sky coverage scenarios:

• An all-sky map.

• A map with sky coverage fsky = 0.8, with a straight
Galactic latitude cut, in which all pixels whose
Galactic latitude satisfies |b| > sin−1(1− fsky).

• A map with fsky = 0.6, with a similar Galactic
latitude cut.

• Two maps with fsky = 0.3, consisting of spheri-
cal caps centered on the North and South Galactic
poles. (These two maps combined cover the same
area as the fsky = 0.6 map.)

For the broken-isotropy hypothesis, we consider five
values for the cutoff wavenumber, namely kmaxc/H0 =
10, 20, 30, 40, 50. We hold the modulation direction fixed
at Galactic coordinates (l, b) = (226◦,−17◦). All compu-
tations are performed after rotating the maps to a coor-
dinate system with this direction at the pole, so that the

covariances among the a
(T,E)
lm coefficients are as simple as

possible.
The solid curves in Figure 1 shows the projected error

∆w ≡ F−1/2, where F is the Fisher information. The
long-dashed line is the value w = 0.07, which is roughly
the best-fit value from the temperature data. For kmax &
30H0/c, a strong detection is possible even with relatively
low sky coverage.
The dashed curves in the figure show the pro-

jected error in the hypothetical scenario where only the
information-maximizing mode ~v1, defined in equation
(23), is measured. Although this single mode is never
enough to provide a definitive measurement, it contains a
significant fraction of the total Fisher information, rang-
ing from approximatly 48% when kmax = 10H0/c to 9%
when kmax = 50H0/c.
As noted in Section II C, ~v1 is in fact an approxima-

tion to the information-maximizing mode. The quality
of the approximation is determined by the ratio of the
two bounds in inequalities (21) and (22). For the mod-
els plotted in the figure, this ratio always exceeds 30,
which implies that the information contained in mode ~v1
is within 3% of the maximum possible.
The information contained in the second-best mode

is bounded by the inequality (25). In almost all of the
cases plotted, the ratio of this bound to the information
contained in the first mode is less than 8%, indicating
that far more information is contained in the first mode
than in any other individual mode. The only exceptions
occur when kmax = 10H0/c and fsky = 0.3, in which case
the total information is quite low. In all cases considered,
the two terms in (25) are comparable, differing by no
more than a factor of 3, so neither simple approximation

10 20 30 40 50
kmax c / H0

0.00

0.05

0.10

0.15

0.20

∆w

FIG. 1. The error forecast ∆w. From bottom to top, the solid
curves correspond to polarization data sets with fsky = 1
(black), 0.8 (red), 0.6 (blue), 0.3 (green). For fsky = 0.3,
two virtually identical curves are shown, corresponding to the
northern and southern caps. The dashed curves show the
error forecasts for a hypothetical experiment in which only
the single “best” mode of the polarization data is measured.
The horizontal long-dashed line shows the value preferred by
the existing temperature data.

would work well for finding the second-best mode. Since
this mode is known to contain little information, we do
not pursue its calculation further.
The information-maximizing modes themselves are

shown in Figures 2 and 3. Note that these maps are
oriented with the modulation direction, rather than the
Galactic north pole, at the top. Because these modes
are measuring primarily the correlation with the existing
temperature data, they have little power in the Galactic
plane. Unsurprisingly, they also have little power in the
plane perpendicular to the modulation direction, where
the modulation is zero.

IV. DISCUSSION

We have presented Fisher matrix calculations and re-
sulting error forecasts for a future large-scale CMB polar-
ization data set, to assess the degree to which such a data
set can shed light on the puzzling large-scale power mod-
ulation in the CMB temperature anisotropy. The calcu-
lations are based on the probability distribution of the
polarization data, conditioned on the already-measured
temperature data.
If the observed hemispherical modulation in CMB

anisotropy power is not a fluke, a detection of it in CMB
polarization should be possible. In the model we have
considered, a roughly 3σ detection is possible with a data
set that covers at least ∼ 60% of the sky, as long as
the modulation affects modes with wavenumbers up to
∼ 30H0/c. Because these calculations are for the po-
larization data conditioned on the existing temperature
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FIG. 2. The single mode that best constrains w, for an all-sky polarization data set. The top panel shows Stokes Q, and the
bottom is Stokes U . These modes are for an all-sky polarization data set, constrained by the existing temperature data with
80% sky coverage as described in the text. The maps are oriented so that the modulation direction is at the top. The two
bands where the mode is nearly zero are the region of zero modulation (horizontal) and the vicinity of the Galactic plane. The
mode has little power near the Galactic plane because this region is unconstrained by temperature data. From left to right,
kmax = 10H0/c, 30H0/c, 50H0/c.

FIG. 3. The best w-constraining mode for polarization data sets with sky coverage fsky = 0.8, 0.6, 0.3. For fsky = 0.3, the data
are assumed to cover a spherical cap centered on the Galactic north pole; in the other cases, a cut in |b| is used. The maps are
oriented as in the previous figure.

data, this error is associated with the additional infor-
mation available in polarization, on top of what we have
already seen in temperature.

The future of CMB polarization measurement on large
scales is uncertain, but plans are underway for a ground-
based initiative known as CMB-S4 [51]. This experiment
would be based in the Atacama desert and would survey
a large fraction of the southern sky. The experimenters
are also considering including a second telescope in the
northern hemisphere to increase the sky coverage. With
only southern sky coverage, this experiment would be
roughly comparable to our fsky = 0.3 calculations. With
the addition of a northern instrument, the sky coverage
would be closer to our fsky = 0.6. The calculations for

larger sky fractions would correspond roughly to a hypo-
thetical satellite mission, which would be in the more dis-
tant future. These comparisons are of course extremely
rough, as we have not tailored our calculations to match
any particular experiment design in detail.

Although the calculations presented herein are based
on a simple phenomenological model, we may expect
qualitatively similar results from any model in which
the observed temperature power modulation is caused
by modulation of the large-scale density perturbation
modes.

We have presented a formalism for identifying the spa-
tial modes in the data that best constrain the theory. A
significant fraction (9% or more) of the information in
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such a data set is contained in the single “information-
maximizing” mode that optimally captures the correla-
tion between the known temperature data and the polar-
ization. The rest of the information is contained in the
covariances of the polarization measurements (e.g., the
predicted mean-square amplitudes of the various modes),
although no single mode in this category contains an
amount of information comparable to the information-
maximizing mode. Because the correlation with the
anomalous temperature data is the source of much of

the available information, it is necessary to perform con-
strained calculations as we have done in order to get re-
liable forecasts.
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