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Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing
and near-future CMB Stage-III and IV surveys, which will yield reconstructed CMB lensing maps
with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctua-
tions receive non-negligible contributions from nonlinear structure in the late-time density field.
These fluctuations are not fully characterized by traditional two-point statistics, such as the power
spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two
higher-order statistics: the lensing convergence one-point probability distribution function (PDF)
and peak counts. We show that these statistics contain significant information not captured by the
two-point function, and provide specific forecasts for the ongoing Stage-III Advanced Atacama Cos-
mology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction
estimator, we forecast 9σ (PDF) and 6σ (peaks) detections of these statistics with AdvACT. Our
simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which
is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for
AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈ 30%, compared to using
the power spectrum alone.

PACS numbers: 98.80.-k, 98.62.Sb, 98.70.Vc

I. INTRODUCTION

After its first detection in cross-correlation nearly a
decade ago [1, 2] and subsequent detection in auto-
correlation five years ago [3, 4], weak gravitational lens-
ing of the cosmic microwave background (CMB) is now
reaching maturity as a cosmological probe [5–14]. On
their way to the Earth, CMB photons emitted at red-
shift z = 1100 are deflected by the intervening matter,
producing new correlations in maps of CMB temperature
and polarization anisotropies. Estimators based on these
correlations can be applied to the observed anisotropy
maps to reconstruct a noisy estimate of the CMB lensing
potential [15–18]. CMB lensing can probe fundamental
physical quantities, such as the dark energy equation of
state and neutrino masses, through its sensitivity to the
geometry of the universe and the growth of structure (see
Refs. [19, 20] for a review).

In this paper, we study the non-Gaussian informa-
tion stored in CMB lensing observations. The Gaussian
approximation to the density field breaks down due to
nonlinear evolution on small scales at late times. Thus,
non-Gaussian statistics (i.e., statistics beyond the power
spectrum) are necessary to capture the full information
in the density field. Such work has been previously per-
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formed (theoretically and observationally) on weak grav-
itational lensing of galaxies, where galaxy shapes, instead
of CMB temperature/polarization patterns, are distorted
(hereafter “galaxy lensing”). Several research groups
have found independently that non-Gaussian statistics
can tighten cosmological constraints when they are com-
bined with the two-point correlation function or angu-
lar power spectrum.1 Such non-Gaussian statistics have
also been applied in the CMB context to the Sunyaev-
Zel’dovich signal, including higher-order moments [50–
53], the bispectrum [52–55], and the one-point probabil-
ity distribution function (PDF) [52, 53, 56]. In all cases,
substantial non-Gaussian information was found, yield-
ing improved cosmological constraints.

The motivation to study non-Gaussian statistics of
CMB lensing maps is three-fold. First, the CMB lensing
kernel is sensitive to structures at high redshift (z ≈ 2.0,
compared to z ≈ 0.4 for typical galaxy lensing sam-
ples); hence CMB lensing non-Gaussian statistics probe
early nonlinearity that is beyond the reach of galaxy sur-
veys. Second, CMB lensing does not suffer from some
challenging systematics that are relevant to galaxy lens-
ing, including intrinsic alignments of galaxies, photomet-

1 For example, higher order moments [21–27], three-point func-
tions [28, 29], bispectra [30–33], peak counts [34–43], Minkowski
functionals [27, 44–46], and Gaussianized power spectrum [47–
49].
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ric redshift uncertainties, and shape measurement bi-
ases. Therefore, a combined analysis of galaxy lensing
and CMB lensing will be useful to build a tomographic
outlook on nonlinear structure evolution, as well as to
calibrate systematics in both galaxy and CMB lensing
surveys [57–61]. Finally, CMB lensing measurements
have recently entered a regime of sufficient sensitivity
and resolution to detect the (stacked) lensing signals of
halos [58, 62, 63]. This suggests that statistics sensitive
to the nonlinear growth of structure, i.e., non-Gaussian
statistics, will also soon be detectable. We demonstrate
below that this is indeed the case, taking as a reference
experiment the ongoing Advanced Atacama Cosmology
Telescope (AdvACT) survey [64].

Non-Gaussian aspects of the CMB lensing field have
recently attracted attention, both as a potential signal
and a source of bias in CMB lensing power spectrum es-
timates. Considering the lensing non-Gaussianity as a
signal, a recent analytical study of the CMB lensing bis-
pectrum by Ref. [65] forecasted its detectability to be 40σ
with a CMB Stage-IV experiment. Ref. [66] performed
the first calculation of the bias induced in CMB lens-
ing power spectrum estimates by the lensing bispectrum,
finding non-negligible biases for Stage-III and IV CMB
experiments. Refs. [67] and [68] considered CMB lensing
effects arising from the breakdown of the Born approx-
imation, with the former study finding that post-Born
terms substantially alter the predicted CMB lensing bis-
pectrum, compared to the contributions from nonlinear
structure formation alone. We emphasize that the N -
body ray-tracing simulations used in this work naturally
capture such effects — we do not use the Born approxi-
mation. However, we consider only the lensing potential
φ or convergence κ here (related by κ = −∇2φ/2), leav-
ing a treatment of the curl potential or image rotation for
future work (Ref. [67] has demonstrated that the curl po-
tential possesses non-trivial higher-order statistics). In a
follow-up paper, the simulations described here are used
to more precisely characterize CMB lensing power spec-
trum biases arising from the bispectrum and higher-order
correlations [69].

We consider the non-Gaussianity in the CMB lensing
field as a potential signal. We use a suite of 46 N -body
ray-tracing simulations to investigate two non-Gaussian
statistics applied to CMB lensing convergence maps —
the one-point PDF and peak counts. We examine the
deviation of the convergence PDF and peak counts from
those of Gaussian random fields. We then quantify the
power of these statistics to constrain cosmological mod-
els, compared with using the power spectrum alone.

The paper is structured as follows. We first intro-
duce CMB lensing in Sec. II. We then describe our
simulation pipeline in Sec. III and analysis procedures
in Sec. IV. We show our results for the power spec-
trum, PDF, peak counts, and the derived cosmological
constraints in Sec. V. We conclude in Sec. VI.

II. CMB LENSING FORMALISM

To lowest order, the lensing convergence (κ) is a
weighted projection of the three-dimensional matter
overdensity δ = δρ/ρ̄ along the line of sight,

κ(θ) =

∫ ∞
0

dzW (z)δ(χ(z)θ, z), (1)

where χ(z) is the comoving distance and the kernel W (z)
indicates the lensing strength at redshift z for sources
with a redshift distribution p(zs) = dn(zs)/dz. For CMB
lensing, there is only one source plane at the last scat-
tering surface z? = 1100; therefore, p(zs) = δD(zs − z?),
where δD is the Dirac delta function. For a flat universe,
the CMB lensing kernel is

Wκcmb(z) =
3

2
ΩmH

2
0

(1 + z)

H(z)

χ(z)

c

× χ(z?)− χ(z)

χ(z?)
. (2)

where Ωm is the matter density as a fraction of the critical
density at z = 0, H(z) is the Hubble parameter at red-
shift z, with a present-day value H0, and c is the speed of
light. Wκcmb(z) peaks at z ≈ 2 for canonical cosmologi-
cal parameters (Ωm ≈ 0.3 and H0 ≈ 70 km/s/Mpc, [70]).
Note that Eq. (1) assumes the Born approximation, but
our simulation approach described below does not — we
implement full ray-tracing to calculate κ.

III. SIMULATIONS

Our simulation procedure includes five main steps: (1)
the design (parameter sampling) of cosmological models,
(2) N -body simulations with Gadget-2,2 (3) ray-tracing
from z = 0 to z = 1100 to obtain (noiseless) convergence
maps using the Python code LensTools [71],3 (4) lensing
simulated CMB temperature maps by the ray-traced con-
vergence field, and (5) reconstructing (noisy) convergence
maps from the CMB temperature maps after including
noise and beam effects.

A. Simulation design

We use an irregular grid to sample parameters in the
Ωm-σ8 plane, within the range of Ωm ∈ [0.15, 0.7] and
σ8 ∈ [0.5, 1.0], where σ8 is the rms amplitude of linear
density fluctuations on a scale of 8 Mpc/h at z = 0. An

2 http://wwwmpa.mpa-garching.mpg.de/gadget/
3 https://pypi.python.org/pypi/lenstools/
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FIG. 1. The design of cosmological parameters used in our
simulations (46 models in total). The fiducial cosmology
(Ωm = 0.296, σ8 = 0.786) is circled in red. The models for
which AdvACT-like lensing reconstruction is performed are
circled in blue. Other cosmological parameters are fixed at
H0 = 72 km/s/Mpc, w = −1, ns = 0.96, and Ωb = 0.046.

optimized irregular grid has a smaller average distance
between neighboring points than a regular grid, and no
parameters are duplicated. Hence, it samples the param-
eter space more efficiently. The procedure to optimize
our sampling is described in detail in Ref. [27].

The 46 cosmological models sampled are shown in
Fig. 1. Other cosmological parameters are held fixed,
with H0 = 72 km/s/Mpc, dark energy equation of state
w = −1, spectral index ns = 0.96, and baryon density
Ωb = 0.046. The design can be improved in the future by
posterior sampling, where we first run only a few models
to generate a low-resolution probability plane, and then
sample more densely in the high-probability region.

We select the model that is closest to the stan-
dard concordance values of the cosmological parameters
(e.g., [70]) as our fiducial model, with Ωm = 0.296 and
σ8 = 0.786. We create two sets of realizations for this
model, one for covariance matrix estimation, and another
one for parameter interpolation. This fiducial model is
circled in red in Fig. 1.

B. N-body simulation and ray-tracing

We use the public code Gadget-2 to run N -body simu-
lations with Nparticles = 10243 and box size = 600 Mpc/h
(corresponding to a mass resolution of 1.4× 1010M�/h).

To initialize each simulation, we first obtain the lin-
ear matter power spectrum with the Einstein-Boltzmann
code CAMB.4 The power spectrum is then fed into the
initial condition generator N-GenIC, which generates ini-
tial snapshots (the input of Gadget-2) of particle po-
sitions at z = 100. The N -body simulation is then
run from z = 100 to z = 0, and we record snap-
shots at every 144 Mpc/h in comoving distance between
z ≈ 45 and z = 0. The choice of z ≈ 45 is determined
by requiring that the redshift range covers 99% of the
WκcmbD(z) kernel, where we use the linear growth fac-
tor D(z) ∼ 1/(1 + z).

We then use the Python code LensTools [71] to gen-
erate CMB lensing convergence maps. We first slice the
simulation boxes to create potential planes (3 planes per
box, 200 Mpc/h in thickness), where particle density
is converted into gravitational potential using the Pois-
son equation. We track the trajectories of 40962 light
rays from z = 0 to z = 1100, where the deflection
angle and convergence are calculated at each potential
plane. This procedure automatically captures so-called
“post-Born” effects, as we never assume that the deflec-
tion angle is small or that the light rays follow unper-
turbed geodesics.5 Finally, we create 1,000 convergence
map realizations for each cosmology by randomly rotat-
ing/shifting the potential planes [72]. For the fiducial
cosmology only, we generate 10,000 realizations for the
purpose of estimating the covariance matrix. The conver-
gence maps are 20482 pixels and 12.25 deg2 in size, with
square pixels of side length 0.1025 arcmin. The maps
generated at this step correspond to the physical lens-
ing convergence field only, i.e., they have no noise from
CMB lensing reconstruction. Therefore, they are labeled
as “noiseless” in the following sections and figures.

We test the power spectra from our simulated maps
against standard theoretical predictions. Fig. 2 shows
the power spectrum from our simulated maps versus that
from the HaloFit model [73, 74] for our fiducial cosmol-
ogy. We also show the linear-theory prediction, which
deviates from the nonlinear HaloFit result at ` & 700.
The simulation error bars are estimated using the stan-
dard deviation of 10,000 realizations. The simulated and
(nonlinear) theoretical results are consistent within the
error bars for multipoles ` < 2, 000, which is sufficient for
this work, as current and near-future CMB lensing sur-
veys are limited to roughly this ` range due to their beam
size and noise level (the filtering applied in our analysis
below effectively removes all information on smaller an-
gular scales). We find similar consistency between the-
ory and simulation for the other 45 simulated models.

4 http://camb.info/
5 While the number of potential planes could be a limiting factor

in our sensitivity to these effects, we note that our procedure
uses ≈ 40-70 planes for each ray-tracing calculation (depending
on the cosmology), which closely matches the typical number of
lensing deflections experienced by a CMB photon.



4

102 103

`

10-4

10-3

10-2

`(
`
+

1
)C

`
/
2
π

Smith03 +Takahashi12

linear

simulation

FIG. 2. Comparison of the CMB lensing convergence power
spectrum from the HaloFit model and that from our simu-
lation (10243 particles, box size 600 Mpc/h, map size 12.25
deg2), for our fiducial cosmology. We also show the prediction
from linear theory. Error bars are the standard deviation of
10,000 realizations.

We test the impact of particle resolution using a smaller
box of 300 Mpc/h, while keeping the same number of
particles (i.e. 8 times higher resolution), and obtain ex-
cellent agreement at scales up to ` = 3, 000. The lack
of power on large angular scales is due to the limited
size of our convergence maps, while the missing power
on small scales is due to our particle resolution. On very
small scales (` & 5 × 104), excess power due to finite-
pixelization shot noise arises, but this effect is negligible
on the scales considered in our analysis.

C. CMB lensing reconstruction

In order to obtain CMB lensing convergence maps with
realistic noise properties, we generate lensed CMB tem-
perature maps and reconstruct noisy estimates of the
convergence field. First, we generate Gaussian random
field CMB temperature maps based on a ΛCDM con-
cordance model temperature power spectrum computed
with CAMB. We compute deflection field maps from the
ray-traced convergence maps described in the previous
sub-section, after applying a filter that removes power in
the convergence maps above ` ≈ 4, 000.6 These deflection
maps are then used to lens the simulated primary CMB
temperature maps. The lensing simulation procedure is
described in detail in Ref. [75].

6 We find that this filter is necessary for numerical stability (and
also because our simulated κ maps do not recover all structure
on these small scales, as seen in Fig. 2), but our results are
unchanged for moderate perturbations to the filter scale.

After obtaining the lensed temperature maps, we apply
instrumental effects consistent with specifications for the
ongoing AdvACT survey [64]. In particular, the maps
are smoothed with a FWHM = 1.4 arcmin beam, and
Gaussian white noise of amplitude 6µK-arcmin is then
added.

We subsequently perform lensing reconstruction on
these beam-convolved, noisy temperature maps using the
quadratic estimator of Ref. [17], but with the replacement
of unlensed with lensed CMB temperature power spectra
in the filters, which gives an unbiased reconstruction to
higher order [20]. The final result is a noisy estimate of
the CMB lensing convergence field, with 1,000 realiza-
tions for each cosmological model (10,000 for the fiducial
model).

We consider only temperature-based reconstruction in
this work, leaving polarization estimators for future con-
sideration. The temperature estimator is still expected
to contribute more significantly than the polarization to
the signal-to-noise for Stage-III CMB experiments like
AdvACT, but polarization will dominate for Stage-IV
(via EB reconstruction). For the AdvACT-like exper-
iment considered here, including polarization would in-
crease the predicted signal-to-noise on the lensing power
spectrum by ≈ 35%. More importantly, polarization re-
construction allows the lensing field to be mapped out
to smaller scales than temperature reconstruction [17],
and is more immune to foreground-related biases at high-
` [76]. Thus, it could prove extremely useful for higher-
order CMB lensing statistics, which are sourced by non-
Gaussian structure on small scales. Clearly these points
are worthy of future analysis, but we restrict this work
to temperature reconstruction for simplicity.

In addition to the fiducial model, we select the near-
est eight points in the sampled parameter space (points
circled in blue in Fig. 1) for the reconstruction analysis.
We determine this selection by first reconstructing the
nearest models in parameter space, and then broadening
the sampled points until the interpolation is stable and
the forecasted contours (see Sec. V E) are converged for
AdvACT-level noise. At this noise level, the other points
in model space are sufficiently distant to contribute neg-
ligibly to the forecasted contours. In total, nine models
are used to derive parameter constraints from the recon-
structed, noisy maps. For completeness, we perform a
similar convergence test using forecasted constraints from
the noiseless maps, finding excellent agreement between
contours derived using all 46 models and using only these
nine models.

In Fig. 3, we show an example of a convergence map
from the fiducial cosmology before (“noiseless”) and after
(“noisy”) reconstruction. Prominent structures seen in
the noiseless maps remain obvious in the reconstructed,
noisy maps.
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FIG. 3. Example of a simulated convergence map in the fiducial cosmology, before (left panel) and after (right panel) reconstruc-
tion, assuming AdvACT-like experimental specifications (6 µK-arcmin noise, 1.4 arcmin beam). The maps are smoothed with a
FWHM= 8 arcmin Gaussian window function for visual purposes. The color scale is set to ±3σnoiseless

κ , where σnoiseless
κ = 0.025

is the rms of the noiseless map (in comparison, the rms of the noisy map is σnoisy
κ = 0.034).

D. Gaussian random field

We also reconstruct a set of Gaussian random fields
(GRF) in the fiducial model. We generate a set of GRFs
using the average power spectrum of the noiseless κmaps.
We then lens simulated CMB maps using these GRFs,
following the same procedure as outlined above, and sub-
sequently perform lensing reconstruction, just as for the
reconstructed N -body κ maps. These noisy GRF-only
reconstructions allow us to examine the effect of recon-
struction (in particular the non-Gaussianity of the recon-
struction noise itself), as well as to determine the level
of non-Gaussianity in the noisy κ maps.

E. Interpolation

To build a model at points where we do not have
simulations, we interpolate from the simulated points in
parameter space using the Clough-Tocher interpolation
scheme [77, 78], which triangulates the input points and
then minimizes the curvature of the interpolating surface;
the interpolated points are guaranteed to be continuously
differentiable. In Fig. 4, we show a test of the interpola-
tion using the noiseless κ maps: we build the interpola-
tor using all of the simulated cosmologies except for the
fiducial model (i.e., 45 cosmologies), and then compare
the interpolated results at the fiducial parameter values
with the true, simulated results for that cosmology. The
agreement for all three statistics is excellent, with de-
viations . few percent (and well within the statistical
precision). Finally, to check the robustness of the inter-

polation scheme, we also run our analysis using linear
interpolation, and obtain consistent results.7

IV. ANALYSIS

In this section, we describe the analysis of the sim-
ulated CMB lensing maps, including the computation
of the power spectrum, peak counts, and PDF, and the
likelihood estimation for cosmological parameters. These
procedures are applied in the same way to the noiseless
and noisy (reconstructed) maps.

A. Power spectrum, PDF, and peak counts

To compute the power spectrum, we first estimate the
two-dimensional (2D) power spectrum of CMB lensing
maps (Mκ) using

Cκκ(`) = M̂κ(`)∗M̂κ(`) , (3)

where ` is the 2D multipole with components `1 and `2,
M̂κ is the Fourier transform of Mκ, and the asterisk de-
notes complex conjugation. We then average over all the

7 Due to our limited number of models, linear interpolation is
slightly more vulnerable to sampling artifacts than the Clough-
Tocher method, because the linear method only utilizes the near-
est points in parameter space. The Clough-Tocher method also
uses the derivative information. Therefore, we choose Clough-
Tocher for our analysis.
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FIG. 4. Fractional differences between interpolated and
“true” results for the fiducial power spectrum (top), PDF
(middle), and peak counts (bottom). Here, we have built the
interpolator using results for the other 45 cosmologies, and
then compared the interpolated prediction at the fiducial pa-
rameter values to the actual simulated results for the fiducial
cosmology. The error bars are scaled by 1/

√
Nsims, where the

number of simulations Nsims = 1, 000. The agreement for all
three statistics is excellent.

pixels within each |`| ∈ [` −∆`, ` + ∆`) bin, for 20 log-
spaced bins in the range of 100 < ` < 2, 000, to obtain
the one-dimensional power spectrum.

The one-point PDF is the number of pixels with values
between [κ−∆κ, κ+ ∆κ) as a function of κ. We use 50
linear bins with edges listed in Table I, and normalize
the resulting PDF such that its integral is unity. The
PDF is a simple observable (a histogram of the data),
but captures the amplitude of all (zero-lag) higher-order
moments in the map. Thus, it provides a potentially
powerful characterization of the non-Gaussian informa-
tion.

Peaks are defined as local maxima in a κ map. In a
pixelized map, they are pixels with values higher than the
surrounding 8 (square) pixels. Similar to cluster counts,
peak counts are sensitive to the most nonlinear structures
in the Universe. For galaxy lensing, they have been found
to associate with halos along the line of sight both with

Smoothing scale PDF bins edges Peak counts bin edges
(arcmin) (50 linear bins) (25 linear bins)

0.5 (noiseless) [-0.50, +0.50] [-0.18, +0.36]
1.0 (noiseless) [-0.22, +0.22] [-0.15, +0.30]
2.0 (noiseless) [-0.18, +0.18] [-0.12, +0.24]
5.0 (noiseless) [-0.10, +0.10] [-0.09, +0.18]
8.0 (noiseless) [-0.08, +0.08] [-0.06, +0.12]

1.0, 5.0, 8.0 (noisy) [-0.12, +0.12] [-0.06, +0.14]

TABLE I. PDF and peak counts bin edges for each smoothing
scale (the full-width-half-maximum of the Gaussian smooth-
ing kernel applied to the maps).

simulations [37] and observations [79]. We record peaks
on smoothed κ maps, in 25 linearly spaced bins with
edges listed in Table I.

B. Cosmological constraints

We estimate cosmological parameter confidence level
(C.L.) contours assuming a constant (cosmology-
independent) covariance and Gaussian likelihood,

P (d|p) =
1

2π|C|1/2
exp

[
−1

2
(d− µ)C−1(d− µ)

]
, (4)

where d is the data array, p is the input parameter ar-
ray, µ = µ(p) is the interpolated model, and C is the
covariance matrix estimated using the fiducial cosmol-
ogy, with determinant |C|. The correction factor for an
unbiased inverse covariance estimator [80] is negligible in
our case, with (Nsims −Nbins − 2)/(Nsims − 1) = 0.99 for
Nsims = 10, 000 and Nbins = 95. We leave an investi-
gation of the impact of cosmology-dependent covariance
matrices and a non-Gaussian likelihood for future work.

Due to the limited size of our simulated maps, we must
rescale the final error contour by a ratio (rsky) of simu-
lated map size (12.25 deg2) to the survey coverage (20,000
deg2 for AdvACT). Two methods allow us to achieve this
— rescaling the covariance matrix by rsky before comput-
ing the likelihood plane, or rescaling the final C.L. con-
tour by rsky. These two methods yield consistent results.
In our final analysis, we choose the former method.

V. RESULTS

A. Non-Gaussianity in noiseless maps

We show the PDF of noiseless N -body κ maps (PDFκ)
for the fiducial cosmology in Fig. 5, as well as that of GRF
κ maps (PDFGRF) generated from a power spectrum
matching that of the N -body-derived maps. To better
demonstrate the level of non-Gaussianity, we also show
the fractional difference of PDFκ from PDFGRF. The
error bars are scaled to AdvACT sky coverage (20,000
deg2), though note that no noise is present here.
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FIG. 5. PDFs (left panels) of the N -body-derived convergence maps and of the Gaussian random fields (labeled “GRF”) for
the noiseless fiducial model, for various smoothing scales (FWHM = 0.5–8 arcmin, top to bottom). Their fractional difference
is shown in the right panels. The error bars are scaled to AdvACT sky coverage (20,000 deg2), and are only shown in the right
panels for clarity. Note that no noise is present here, and thus the error bars correspond to a sample-variance-limited survey
covering roughly half the sky.

The departure of PDFκ from the Gaussian case is
significant for all smoothing scales examined (FWHM
= 0.5–8.0 arcmin), with increasing significance towards
smaller smoothing scales, as expected. The excess in high
κ bins is expected as the result of nonlinear gravitational
evolution, echoed by the deficit in low κ bins.

We show the comparison of the peak counts of N -body
κ maps (Nκ

peaks) versus that of GRFs (NGRF
peaks) in Fig. 6.

The difference between Nκ
peaks and NGRF

peaks is less signifi-
cant than the PDF, because the number of peaks is much
smaller than the number of pixels — hence, the peak
counts have larger Poisson noise. A similar trend of ex-
cess (deficit) of high (low) peaks is also seen in κ peaks,
when compared to the GRF peaks.

B. Covariance matrix

Fig. 7 shows the correlation coefficients of the total
covariance matrix for both the noiseless and noisy maps,

ρij =
Cij√
CiiCjj

(5)

where i and j denote the bin number, with the first 20
bins for the power spectrum, the next 50 bins for the
PDF, and the last 25 bins for peak counts.

In the noiseless case, the power spectrum shows lit-
tle covariance in both its own off-diagonal terms (<
10%) and cross-covariance with the PDF and peaks
(< 20%), hinting that the PDF and peaks contain inde-
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FIG. 6. Same as Fig. 5 but for peak counts.

pendent information that is beyond the power spectrum.
In contrast, the PDF and peak statistics show higher
correlation in both self-covariance (i.e., the covariance
within the sub-matrix for that statistic only) and cross-
covariance, with strength almost comparable to the di-
agonal components. They both show strong correlation
between nearby κ bins (especially in the moderate-|κ| re-
gions), which arises from contributions due to common
structures amongst the bins (e.g., galaxy clusters). Both
statistics show anti-correlation between positive and neg-
ative κ bins. The anti-correlation may be due to mass
conservation — e.g., large amounts of mass falling into
halos would result in large voids in surrounding regions.

In the noisy case, the off-diagonal terms are generally
smaller than in the noiseless case. Moreover, the anti-
correlation seen previously between the far positive and
negative κ tails in the PDF is now a weak positive cor-
relation — we attribute this difference to the complex

non-Gaussianity of the reconstruction noise. Interest-
ingly, the self-covariance of the peak counts is signifi-
cantly reduced compared to the noiseless case, while the
self-covariance of the PDF persists to a reasonable de-
gree.

C. Effect of reconstruction noise

To disentangle the effect of reconstruction noise from
that of nonlinear structure growth, we compare the three
statistics before (noiseless) and after (noisy) reconstruc-
tion, using only the GRF κ fields. Fig. 8 shows the
power spectra, PDFs, and peak counts for both the noise-
less (solid curves) and noisy (dashed curves) GRFs, all
smoothed with a FWHM = 8 arcmin Gaussian window.
The reconstructed power spectrum has significant noise
on small scales, as expected (this is dominated by the
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usual “N (0)” noise bias).
The post-reconstruction PDF shows skewness, defined

as

S =

〈(
κ− κ̄
σκ

)3
〉
, (6)

which is not present in the input GRFs. In other words,
the reconstructed maps have a non-zero three-point func-
tion, even though the input GRF κ maps in this case do
not. While this may seem surprising at first, we recall
that the three-point function of the reconstructed map
corresponds to a six-point function of the CMB tem-
perature map (in the quadratic estimator formalism).
Even for a Gaussian random field, the six-point function
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FIG. 8. We demonstrate the effect of reconstruction noise on
the power spectrum (top), the PDF (middle), and peak counts
(bottom) by using Gaussian random field κ maps (rather
than N -body-derived maps) as input to the reconstruction
pipeline. The noiseless (solid curves) and noisy/reconstructed
(dashed curves) statistics are shown. All maps used here have
been smoothed with a Gaussian kernel of FWHM = 8 arcmin.

contains non-zero Wick contractions (those that reduce
to products of two-point functions). Propagating such
terms into the three-point function of the quadratic es-
timator for κ, we find that they do not cancel to zero.
This result is precisely analogous to the usual “N (0) bias”
on the CMB lensing power spectrum, in which the two-
point function of the (Gaussian) primary CMB temper-
ature gives a non-zero contribution to the temperature
four-point function. The result in Fig. 8 indicates that
the similar PDF “N (0) bias” contains a negative skewness
(in addition to non-zero kurtosis and higher moments).
While it should be possible to derive this result analyti-
cally, we defer the full calculation to future work. If we
filter the reconstructed κ maps with a large smoothing
kernel, the skewness in the reconstructed PDF is signifi-
cantly decreased (see Fig. 11). We briefly investigate the
PDF of the Planck 2015 CMB lensing map [14] and do
not see clear evidence of such skewness — we attribute
this to the low effective resolution of the Planck map
(FWHM ∼ few degrees). Finally, we note that a non-zero
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three-point function of the reconstruction noise could
potentially alter the forecasted κ bispectrum results of
Ref. [65] (where the reconstruction noise was taken to
be Gaussian). The non-Gaussian properties of the small-
scale reconstruction noise were noted in Ref. [17], who
pointed out that the quadratic estimator at high-` is con-
structed from progressively fewer arcminute-scale CMB
fluctuations.

Similarly, the κ peak count distribution also displays
skewness after reconstruction, although it is less dramatic
than that seen in the PDF. The peak of the distribution
shifts to a higher κ value due to the additional noise in
the reconstructed maps. We note that the shape of the
peak count distribution becomes somewhat rough when
large smoothing kernels are applied to the maps, due to
the small number of peaks present in this situation (e.g.,
≈ 29 peaks in a 12.25 deg2 map with FWHM = 8 arcmin
Gaussian window).

D. Non-Gaussianity in reconstructed maps

We show the PDF and peak counts of the reconstructed
κ maps in Figs. 9 and 10, respectively. The left panels of
these figures show the results using maps with an 8 ar-
cmin Gaussian smoothing window. We further consider a
Wiener filter, which is often used to filter out noise based
on some known information in a signal (i.e., the noiseless
power spectrum in our case). The right panels show the
Wiener-filtered results, where we inverse-variance weight
each pixel in Fourier space, i.e., each Fourier mode is
weighted by the ratio of the noiseless power spectrum to
the noisy power spectrum (c.f. Fig. 8),

fWiener(`) =
Cnoiseless
`

Cnoisy
`

. (7)

Compared to the noiseless results shown in Figs. 5
and 6, the differences between the PDF and peaks from
the N -body-derived κ maps and those from the GRF-
derived κ maps persist, but with less significance. For
the Wiener-filtered maps, the deviations of the N -body-
derived κ statistics from the GRF case are 9σ (PDF) and
6σ (peaks), where we derived the significances using the
simulated covariance from the N -body maps 8. These de-

8 We note that the signal-to-noise ratios predicted here are compa-
rable to the ≈ 7σ bispectrum prediction that would be obtained
by rescaling the SPT-3G result from Table I of Ref. [67] to the
AdvACT sky coverage (which is a slight overestimate given Ad-
vACT’s higher noise level). The higher significance for the PDF
found here could be due to several reasons: (i) additional con-
tributions to the signal-to-noise for the PDF from higher-order
polyspectra beyond the bispectrum; (ii) inaccuracy of the nonlin-
ear fitting formula used in Ref. [67] on small scales, as compared
to the N-body methods used here; (iii) reduced cancellation be-
tween the nonlinear growth and post-Born effects in higher-order
polyspectra (for the bispectrum, these contributions cancel to a
large extent, reducing the signal-to-noise [67]).

viations capture the influence of both nonlinear evolution
and post-Born effects.

While the differences between the N -body and GRF
cases in Figs. 9 and 10 are clear, understanding their de-
tailed structure is more complex. First, note that the
GRF cases exhibit the skewness discussed in Sec. V C,
which arises from the reconstruction noise itself. We
show the skewness of the reconstructed PDF (for both
the N -body and GRF cases) compared with that of the
noiseless (N -body) PDF for various smoothing scales
in Fig. 11. The noiseless N -body maps are positively
skewed, as physically expected. The reconstructed, noisy
maps are negatively skewed, for both the N -body and
GRF cases. However, the reconstructed N -body results
are less negatively skewed than the reconstructed GRF
results (bottom panel of Fig. 11), presumably because the
N -body PDF (and peaks) contain contributions from the
physical skewness, which is positive (see Figs. 5 and 6).
However, the physical skewness is not large enough to
overcome the negative “N (0)”-type skewness coming from
the reconstruction noise. We attribute the somewhat-
outlying point at FWHM = 8 arcmin in the bottom panel
of Fig. 11 to a noise fluctuation, as the number of pix-
els at this smoothing scale is quite low (the deviation is
consistent with zero). The decrease in |S| between the
FWHM = 2 arcmin and 1 arcmin cases in the top panel of
Fig. 11 for the noisy maps is due to the large increase in
σκ between these smoothing scales, as the noise is blow-
ing up on small scales. The denominator of Eq. (6) thus
increases dramatically, compared to the numerator.

Comparisons between the reconstructed PDF in the
N -body case and GRF case are further complicated by
the fact that higher-order “biases” arise due to the recon-
struction. For example, the skewness of the reconstructed
N -body κ receives contributions from many other terms
besides the physical skewness and the “N (0) bias” de-
scribed above — there will also be Wick contractions in-
volving combinations of two- and four-point functions of
the CMB temperature and κ (and perhaps an additional
bias coming from a different contraction of the three-
point function of κ, analogous to the “N (1)” bias for the
power spectrum [81]). So the overall “bias” on the re-
constructed skewness will differ from that in the simple
GRF case. This likely explains why we do not see an ex-
cess of positive κ values over the GRF case in the PDFs
shown in Fig. 9. While this excess is clearly present in
the noiseless case (Fig. 5), and it matches physical intu-
ition there, the picture in the reconstructed case is not
simple, because there is no guarantee that the reconstruc-
tion biases in the N -body and GRF cases are exactly the
same. Thus, a comparison of the reconstructed N -body
and GRF PDFs contains a mixture of the difference in
the biases and the physical difference that we expect to
see. Similar statements hold for comparisons of the peak
counts.

Clearly, a full accounting of all such individual biases
would be quite involved, but the key point here is that
all these effects are fully present in our end-to-end simu-
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lation pipeline. While an analytic understanding would
be helpful, it is not necessary for the forecasts we present
below.

E. Cosmological constraints

Before we proceed to present the cosmological con-
straints from non-Gaussian statistics, it is necessary to
do a sanity check by comparing the forecasted contour
from our simulated power spectra to that from an ana-

lytic Fisher estimate,

F αβ =
1

2
Tr

{
C−1Gauss

[(
∂C`
∂pα

)(
∂C`
∂pβ

)T
+ (α↔ β)

]}
,

(8)

where {α, β} = {Ωm, σ8} and the trace is over ` bins.
CGauss is the Gaussian covariance matrix, with off-
diagonal terms set to zero, and diagonal terms equal to
the Gaussian variance,

σ2
` =

2(C` +N`)
2

fsky(2`+ 1)∆`
(9)

We compute the theoretical power spectrum C` us-
ing the HaloFit model [73, 74], with fractional param-
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eter variations of +1% to numerically obtain ∂C`/∂p.
N` is the reconstruction noise power spectrum, origi-
nating from primordial CMB fluctuations and instru-
mental/atmospheric noise (note that we only consider
white noise here). The sky fraction fsky = 0.485 cor-
responds to the 20,000 deg2 coverage expected for Ad-
vACT. (F−1αα )

1
2 is the marginalized error on parameter α.

Both theoretical and simulated contours use the power
spectrum within the ` range of [100, 2,000]. The com-
parison is shown in Fig. 12. The contour from full N -
body simulations shows good agreement with the ana-
lytical Fisher contour. This result indicates that approx-
imations made in current analytical CMB lensing power
spectrum forecasts are accurate, in particular the neglect
of non-Gaussian covariances from nonlinear growth. A
comparison of the analytic and reconstructed power spec-
tra will be presented in Ref. [69].

Fig. 13 shows contours derived using noiseless maps for
the PDF and peak count statistics, compared with that
from the noiseless power spectrum. We compare three
different smoothing scales (1.0, 5.0, 8.0 arcmin), and find
that smaller smoothing scales have stronger constraining
power. However, even with the smallest smoothing scale
(1.0 arcmin), the PDF contour is still significantly larger
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0.80

σ
8
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Analytical Theory

FIG. 12. 68% C.L. contours from an AdvACT-like CMB lens-
ing power spectrum measurement. The excellent agreement
between the simulated and analytic results confirms that non-
Gaussian covariances arising from nonlinear growth and re-
construction noise do not strongly bias current analytic CMB
lensing power spectrum forecasts (up to ` = 2, 000).

than that of the power spectrum. Peak counts using 1.0
arcmin smoothing show almost equivalent constraining
power as the power spectrum. However, we note that 1.0
arcmin smoothing is not a fair comparison to the power
spectrum with cutoff at ` < 2, 000, because in reality,
the beam size and instrument noise is likely to smear out
signals smaller than a few arcmin scale (see below).

At first, it may seem surprising that the PDF is not at
least as constraining as the power spectrum in Fig. 13,
since the PDF contains the information in the variance.
However, this only captures an overall amplitude of the
two-point function, whereas the power spectrum con-
tains scale-dependent information.9 We illustrate this in
Fig. 14, where we compare the fiducial power spectrum
to that with a 1% increase in Ωm or σ8 (while keeping
other parameters fixed). While σ8 essentially re-scales
the power spectrum by a factor σ2

8 , apart from a steeper
dependence at high-` due to nonlinear growth, Ωm has a
strong shape dependence. This is related to the change
in the scale of matter-radiation equality [14]. Thus, for a
noiseless measurement, the shape of the power spectrum
contains significant additional information about these
parameters, which is not captured by a simple change
in the overall amplitude of the two-point function. This
is the primary reason that the power spectrum is much
more constraining than the PDF in Fig. 13.

Fig. 15 shows contours derived using the reconstructed,
noisy κ maps. We show results for three different fil-

9 Note that measuring the PDF or peak counts for different
smoothing scales can recover additional scale-dependent infor-
mation as well.
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solid line), compared to the fiducial power spectrum. Other
parameters are fixed at their fiducial values.

ters — Gaussian windows of 1.0 and 5.0 arcmin and the
Wiener filter. The 1.0 arcmin contour is the worst among
all, as noise dominates at this scale. The 5.0 arcmin-
smoothed and Wiener-filtered contours show similar con-
straining power. Using the PDF or peak counts alone, we
do not achieve better constraints than using the power
spectrum alone, but the parameter degeneracy directions
for the statistics are slightly different. This is likely due
to the fact that the PDF and peak counts probe non-
linear structure, and thus they have a different depen-

Combination ∆Ωm ∆σ8

PS only 0.0065 0.0044
PDF + Peaks 0.0076 0.0035
PS + PDF + Peaks 0.0045 0.0030

TABLE II. Marginalized constraints on Ωm and σ8 for an
AdvACT-like survey from combinations of the power spec-
trum (PS), PDF, and peak counts, as shown in Fig. 16.

dence on the combination σ8(Ωm)γ than the power spec-
trum does, where γ specifies the degeneracy direction.

The error contour derived using all three statistics is
shown in Fig. 16, where we use the 5.0 arcmin Gaus-
sian smoothed maps. The one-dimensional marginal-
ized errors are listed in Table II. The combined contour
shows moderate improvement (≈ 30% smaller error con-
tour area) compared to the power spectrum alone. The
improvement is due to the slightly different parameter
degeneracy directions for the statistics, which break the
σ8-Ωm degeneracy somewhat more effectively when com-
bined. It is worth noting that we have not included in-
formation from external probes that constrain Ωm (e.g.,
baryon acoustic oscillations), which can further break the
Ωm-σ8 degeneracy.

VI. CONCLUSION

In this paper, we use N -body ray-tracing simulations
to explore the additional information in CMB lensing
maps beyond the traditional power spectrum. In partic-
ular, we investigate the one-point PDF and peak counts
(local maxima in the convergence map). We also apply
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realistic reconstruction procedures that take into account
primordial CMB fluctuations and instrumental noise for
an AdvACT-like survey, with sky coverage of 20,000 deg2,
noise level 6 µK-arcmin, and 1.4 arcmin beam. Our main
findings are:

1. We find significant deviations of the PDF and peak
counts of N -body-derived κ maps from those of
Gaussian random field κ maps, both in the noise-
less and noisy reconstructed cases (see Figs. 5, 6, 9,

and 10). For AdvACT, we forecast the detec-
tion of non-Gaussianity to be ≈ 9σ (PDF) and
6σ (peak counts), after accounting for the non-
Gaussianity of the reconstruction noise itself. The
non-Gaussianity of the noise has been neglected in
previous estimates, but we show that it is non-
negligible (Fig. 8).

2. We confirm that current analytic forecasts for CMB
lensing power spectrum constraints are accurate
when confronted with constraints derived from our
N -body pipeline that include the full non-Gaussian
covariance (Fig. 12).

3. An improvement of ≈ 30% in the forecasted Ωm-
σ8 error contour is seen when the power spectrum
is combined with PDF and peak counts (assuming
AdvACT-level noise), compared to using the power
spectrum alone. The covariance between the power
spectrum and the other two non-Gaussian statis-
tics is relatively small (with cross-covariance < 20%
of the diagonal components), meaning the latter is
complementary to the power spectrum.

4. For noiseless κ maps (i.e., ignoring primordial CMB
fluctuations and instrumental/atmospheric noise),
a smaller smoothing kernel can help extract the
most information from the PDF and peak counts
(Fig. 13). For example, peak counts of 1.0 arcmin
Gaussian smoothed maps alone can provide equally
tight constraints as from the power spectrum.

5. We find non-zero skewness in the PDF and peak
counts of reconstructed GRFs, which is absent from
the input noiseless GRFs by definition. This skew-
ness is the result of the quadratic estimator used
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for CMB lensing reconstruction from the temper-
ature or polarization maps. Future forecasts for
non-Gaussian CMB lensing statistics should in-
clude these effects, as we have here, or else the
expected signal-to-noise could be overestimated.

In this work, we have only considered temperature-
based reconstruction estimators, but in the near fu-
ture polarization-based estimators will have equally (and,
eventually, higher) signal-to-noise. Moreover, the polar-
ization estimators allow the lensing field to be mapped
out to smaller scales, which suggests that they could be
even more useful for non-Gaussian statistics.

In summary, there is rich information in CMB lens-
ing maps that is not captured by two-point statistics,
especially on small scales where nonlinear evolution is
significant. In order to extract this information from fu-
ture data from ongoing CMB Stage-III and near-future
Stage-IV surveys, such as AdvACT, SPT-3G [82], Simons
Observatory10, and CMB-S4 [83], non-Gaussian statis-
tics must be studied and modeled carefully. We have
shown that non-Gaussian statistics will already contain
useful information for Stage-III surveys, which suggests
that their role in Stage-IV analyses will be even more im-
portant. The payoff of these efforts could be significant,

such as a quicker route to a neutrino mass detection.
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