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Recent studies suggest that coalescing neutron stars are subject to a fluid instability involving the
nonlinear coupling of the tide to p-modes and g-modes. Its influence on the inspiral dynamics and
thus the gravitational wave signal is, however, uncertain because we do not know precisely how the
instability saturates. Here we construct a simple, physically motivated model of the saturation that
allows us to explore the instability’s impact as a function of the model parameters. We find that for
plausible assumptions about the saturation, current gravitational wave detectors might miss > 70%
of events if only point particle waveforms are used. Parameters such as the chirp mass, component
masses, and luminosity distance might also be significantly biased. On the other hand, we find
that relatively simple modifications to the point particle waveform can alleviate these problems and
enhance the science that emerges from the detection of binary neutron stars.

I. INTRODUCTION

The detection of gravitational waves (GWs) from bi-
nary black holes [BH; 3, 5, 6] with the Laser Interferom-
eter Gravitational-wave Observatory [LIGO; 1] opens a
new window to our universe and provides the first tests
of strong field General Relativity (GR) in vacuum [3, 8].
In the coming years, LIGO also expects to detect GWs
from neutron stars (NSs) in coalescing binaries. Al-
though a NS can be treated as a point particle (PP)
to a first approximation, at some level tides will mod-
ify the rate of inspiral and thus the GW signal. The
impact of the tidal effects are, however, uncertain. In
part this is due to uncertainties in the NS equation of
state, and indeed there is hope that GW observations will
eventually provide precise constraints on the equation of
state [12, 21, 23, 28, 32, 44]. In addition, there are uncer-
tainties in the tidal fluid dynamics both near the merger
when matter and GR effects are strong [26, 45, 60] and
during the long inspiral phase when the tide is weakly
nonlinear [56–58].

Many previous studies considered the impact of the
linear tide, implicitly assuming that nonlinear effects are
negligible at GW frequencies below f ≈ 400 Hz. These
include studies of the linear equilibrium tide [12, 21, 23,
28, 32, 44] and the linear dynamical tide in non-rotating
NSs [29, 33, 46, 49, 61] and rotating NSs [27, 30, 34]. The
equilibrium and dynamical tide refer, respectively, to the
quasi-static and resonant response of a star to a tidal field
(see, e.g., [41]). Typically these studies conclude that lin-
ear tidal effects will be difficult to measure with current
instruments without a gold-plated detection (signal-to-
noise ratios & 50; [44]) or stacked data from dozens of
marginal events [12, 23, 32]. Moreover, because they find
that tidal effects only become significant during the late
inspiral, there are proposals to test vacuum GR using
waveforms from NS systems at f . 400 Hz [11].

Recently, it has been suggested that the tide is subject
to a weakly nonlinear fluid instability during the early in-

spiral [56–58, hereafter, VZH, W16, WAB, respectively].
The instability involves a non-resonant coupling between
the quasi-static equilibrium tide, pressure supported p-
modes, and buoyancy (i.e., gravity) supported g-modes.
Typically, modes first become unstable at f ≈ 50 Hz
and are driven thereafter to potentially large amplitudes.
This continuous transfer of energy from the orbit into
the modes increases the rate of inspiral and induces an
evergrowing phase shift relative to the PP waveform.
Although there has been disagreement in the literature
about the magnitude of the growth rates, all studies of
p-g coupling predict an instability. Furthermore, W16
find that non-static tidal effects (e.g., compressibility)
enhance the growth rates, enabling a very large number
of modes to reach significant amplitudes well before the
binary merges.

Studies of the p-g instability have mainly focused on
calculating the instability threshold and growth rates;
they have not attempted to study its saturation in any
detail. As a result, we do not know the rate at which
the instability extracts energy from the orbit and thus
we cannot say precisely how it will impact the GW sig-
nal. Because solving for the saturation is challenging and
likely subject to uncertainties of its own, here we set a
more modest goal. We construct a parametrized model
of the saturation and explore the instability’s impact as a
function of the model parameters. Our saturation model
is relatively simple, adding just three new parameters to
the 15 already present in the spinning PP model. It is
worth emphasizing, however, that although we believe
our saturation model adequately captures the range of
possibilities, without a proper saturation study we can-
not be certain.

The paper is structured as follows. § II reviews the
properties of the p-g instability and discusses the physics
of its saturation and the uncertainties therein. § III de-
scribes our parameterized model of the saturation which
we use to explore the tide-induced modifications to the
PP waveform. Using Bayesian methods, which we de-
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scribe in § IV, we then study how the modified wave-
forms affect source detectability and parameter bias if
the tidal effects are neglected (§ V) and how well we can
measure the tidal effects if they are included (§ VI). We
summarize and conclude in § VII.

II. NONLINEAR TIDAL INSTABILITY

As the NS inspirals and the amplitude of its tidal de-
formation increases, the tidal flow becomes susceptible to
nonlinear fluid instabilities. These will initially manifest
as weakly nonlinear interactions between the tide and in-
ternal oscillation modes of the star. WAB applied the
formalism developed in Weinberg et al. [59] to determine
the influence of such nonlinear interactions on the inspi-
ral of NS binaries. This revealed a new form of nonlinear
instability in which the tide excites a high-frequency p-
mode coupled to a low-frequency g-mode. Because the
p-mode’s (linear eigen-)frequency is much higher than the
tidal frequency, the p-g pair is not resonant with the tide.
This form of three-wave interaction is therefore very dif-
ferent from the well-known resonant parametric instabil-
ity in which the tide excites a pair of g-modes whose
frequencies approximately sum to the tidal frequency.1

In analyzing the growth rates of the p-g instability,
WAB considered only three-wave interactions between
the tide, a p-mode, and a g-mode. VZH showed that
four-wave interactions between the tide (twice) and two
g-modes enter the analysis at the same order as the three-
wave interactions. They found that the four-wave inter-
actions significantly cancel the three-wave interactions
and concluded that although the m = ±2 component
of the equilibrium tide can be p-g unstable, the growth
rates are too small to influence the inspiral in a measur-
able way.

However, the analysis in VZH assumes that the equi-
librium tide is incompressible. Although that is the case
for the static equilibrium tide (the m = 0 component),
the non-static equilibrium tide (m ± 2) is compressible.
W16 accounted for this compressibility and found that
it undoes the cancellation between the three- and four-
wave interactions, yielding rapid p-g growth rates even
during the early inspiral. Specifically, W16 found that
the instability turns on at gravitational wave frequencies

fi ' 45

(
ωg

10−4λω0

)1/2

Hz, (1)

where ωg is the g-mode’s linear eigenfrequency, ω0 =

(GM/R3)1/2 is the dynamical frequency of a NS with
radius R and mass M , and λ(a) ∼ 0.1 − 1 is a slowly
undulating function of binary separation a that depends

1 WAB showed that, although some g-modes are also susceptible
to the resonant parametric instability during the inspiral, their
growth rates are too small to influence the GW signal.

on how close the (quasi-static) equilibrium tide is to a
resonance (see Fig. 9 in W16). On resonance, the tide is
especially compressible and is more properly referred to
as the dynamical tide.

From Equation (1), we see that low frequency (i.e.,
high order) g-modes become unstable first. However, it
is not clear what sets the minimum ωg (the maximum
ωg is determined by the magnitude of the NS buoyancy
frequency ∼ ω0/10). W16 showed that, for ωg & 10−4ω0

(which corresponds to ` = 2 g-modes with radial order
n . 103), linear damping of the modes does not modify
the instability threshold nor the growth rates. However,
it is possible that other physical effects will limit the mini-
mum ωg (e.g., magnetic fields). As we describe in Section
III, our saturation model therefore includes a parameter
that accounts for the uncertainty in fi.

Once unstable, the coupled p-modes and g-modes are
continuously driven by the tide and their energy grows
at a rate

Γ ≈ 2λεω0 ' 20λ

(
M2

M1 +M2

)(
f

100 Hz

)2

Hz, (2)

where ε = (M2/M1)(R1/a)3 is the tidal amplitude pa-
rameter due to mass M2 acting on mass M1 and we as-
sume ω0 = 104 rad s−1 (cf. Equation (112) in W16; here
we include an additional factor of two to yield the growth
rate of the energy rather than the amplitude). This equa-
tion is valid regardless of the relative size of the objects
(i.e., both M1 > M2 and M1 < M2). Note that Γ is inde-
pendent of ωg, unlike fi. Because the modes have enough
time to grow by many tens of e-foldings before the binary
merges (see W16 Section 5.4), eventually they reach such
large energies that their growth saturates due to nonlin-
ear damping (i.e., by exciting secondary waves through
nonlinear wave-wave interactions). At saturation, there
is a balance between continuous driving by the tide and
decay through nonlinear damping. This suggests that the
excited modes will continuously dissipate orbital energy
at a rate

ĖNL ≈ ΓNEsat, (3)

where N is the number of independently unstable modes.
The value of N is uncertain, but because the modes do
not need to be resonant, N ∼ 103− 104 is possible based
on the modes’ typical radial order and angular degree
(n ∼ 1000, ` ∼ few).

Given ĖNL, we can calculate the cumulative phase
shift of the GW signal relative to the PP signal (see Ap-
pendix A for details)

∆φ(f) ≈ 2π

∫ f

fi

ĖNL

Ėgw

τdf, (4)

where Ėgw is the GW luminosity, τ = f/ḟ is the inspiral
timescale (both of which are dominated by the leading
order quadrupole formula for two point masses [43]), and

ḟ is the rate at which the gravitational-wave frequency
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FIG. 1. Time domain GW strain h(t) for a 1.4M�-1.4M� non-spinning binary NS system at three different stages of the
inspiral. The blue dotted curves are the PP waveforms and the green solid curves are the waveforms with nonlinear tidal effects
assuming A = 4× 10−8, f0 = 50 Hz, and n = 0.

increases with time. Note that if the binary contains two
NSs, the instability manifests in each star separately and
their individual ĖNL add to the system’s total ∆φ.

In general, Esat will be a complicated function of Γ, N ,
the properties of the unstable modes, the NS structure,
and the equation of state. Calculating Esat is therefore
challenging and beyond the scope of this paper. Nonethe-
less, we might expect wave breaking to set an approxi-
mate upper bound. A wave breaks when krξr ∼ 1, where
ξr is the amplitude of the wave’s radial displacement and
kr is its radial wavenumber. At wave breaking, a g-
mode overturns the local stratification and a p-mode in-
duces order unity density perturbations. WAB show that
g-modes in a NS break at an energy

Ebreak ∼ 10−8

(
ωg

10−4Λgω0

)2 ( r
R

)2
E0, (5)

where r is the radial location within the star at which
the breaking occurs, Λg = `g(`g + 1), and E0 = GM2/R.
This is lower than the energy at which the p-modes break
and thus the g-modes probably determine Esat for the p-
g instability. Although we use Ebreak ∼ 10−8E0 as a
reference value throughout our study, note that if the
g-modes break at r � R the actual value will be much
smaller.

These considerations motivate the ansatz Esat =
βEbreak, where β → 1 corresponds to saturation at the g-
mode wave breaking energy. Observations of g-mode in-
stabilities in the ocean, the atmosphere, and laboratory
experiments often find that saturation indeed occurs by
wave breaking (see the review by Staquet & Sommeria
[48]). Numerical studies of the dynamical tide in hot
Jupiter systems find that g-modes driven by the para-
metric instability also saturate at energies Esat ∼ Ebreak

[15, 16, 25]. This suggests that perhaps β ∼ 1 for the p-g
instability as well.

To summarize, ĖNL and therefore ∆φ are poorly con-
strained because of uncertainties in the minimum ωg, the
number of unstable modes N , and the saturation energy
Esat (or equivalently, β). We now describe how our pa-
rameterized model of the saturation accounts for these
uncertainties.

III. PARAMETERIZED MODEL OF THE
SATURATION

While the saturation of the p-g instability is likely to be
a complicated process, we construct a relatively simple
model motivated by the theoretical considerations dis-
cussed in § II. Given Eqs. (2) and (3), we model the
saturation with three parameters (A, f0, n) such that

ĖNL ∝ λf2NEsat ∝ Afn+2Θ (f − f0) , (6)

where Θ is the Heaviside function. The model assumes
that βNλ ∝ fn for f > f0. The parameters A and n de-
termine the overall amplitude and frequency dependence
of ĖNL while f0 is the frequency at which the modes
reach saturation. By allowing A, f0, and n to vary, we
can account for the uncertainties in fi, λ, N , and Esat

discussed in § II. In Appendix A we show that

A =

(
2πfref
ω0

)1/3(
ωg

Λgω0

)2

[βNλ]ref

' 4× 10−9

(
ωg

10−4Λgω0

)2

[βNλ]ref , (7)

where fref is a reference frequency that sets the dimen-
sionless scale of A but is otherwise arbitrary and [βNλ]ref
indicates the value of βNλ at f = fref . We choose
fref = 100 Hz throughout our study. Note that our
model ignores any dissipation that might occur when
fi < f < f0 and instead assumes that ĖNL turns on
as a step function at f0 (such discontinuities can cause
problems for Fisher-matrix studies [38] but not for our
analysis because we do not differentiate the GW phase).

By Eq. (4), the cumulative phase shift due to the tide
raised in M1 by M2 is then (see Appendix A),

∆φ(x > x0) = AFM

[
xn−3
0 − xn−3

n− 3

]
' 0.4

(
M

1.2M�

)−10/3(
A

10−8

)[
xn−3
0 − xn−3

n− 3

]
rad

(8)
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where x = f/fref , x0 = f0/fref , FM is given by

FM =
25

1536

(
2M1

M1 +M2

)2/3(
GMπfref

c3

)−10/3

, (9)

and M is the chirp mass (M = (M1M2)3/5/(M1 +
M2)1/5). The numerical result on the second line as-
sumes a NS-NS binary with M1 = M2 and n < 3 (note
M ' 1.2M� for M1 = M2 = 1.4M�). We again note
that this expression is valid both when M1 > M2 and
when M1 < M2.

The total phase shift accumulated by the time the NS
merges is ∆φ(f � f0) ∝ Afn−3

0 . Because the growth
rates are large compared to the inspiral time, f0 ' fi
and thus ∆φ(f � f0) ∝ ω

(n+1)/2
g , assuming [βNλ]ref is

independent of ωg. Because we expect n > −1, we see
that unstable modes with larger ωg contribute more to
∆φ at merger (as long as ωg is sufficiently small that
the modes reach saturation before the merger). This is
because modes with smaller ωg have smaller Ebreak (Eq.

5) and thus contribute less to the the total ĖNL despite
being unstable earlier in the inspiral (Eq. 1).

The phase shift depends on the component masses as
∆φ ∝ [1 + q]−2/3M−10/3, where q = M2/M1 is the mass
ratio.2 Highly asymmetric systems, such as NS-BH bina-
ries, therefore have much smaller ∆φ all else being equal.
This is because NS-BH orbits decay faster and there is
less time for the nonlinear tidal effects to accumulate
during the early inspiral. For example, ∆φ is approx-
imately 100 times smaller for a NS-BH binary with a
1.4M� NS and a 10M� BH compared to an NS-NS bi-
nary withM1 = M2 = 1.4M� (accounting for the ∆φ due
to both NSs). As we describe below, we expect A . 10−6

and a NS-BH binary has ∆φ . 1 rad. We show in § V A
that such a phase shift is at the margins of detectability.

In our analysis, we consider values of A in the range
10−9 . A . 10−6. From Eq. (7) we see that A ∼
10−6 corresponds to, e.g., N ∼ 10 (∼ 103) modes with
ωg/ω0 ∼ 10−3 (∼ 10−4) each saturating near their wave
breaking energy β ∼ 0.1 − 1. These values of N are
based on the radial and angular orders of such modes
(n ∼ 100 − 1000 and ` ≈ few). We therefore do not
expect A to be much larger than 10−6. Regarding the
low end of our A range, we will show that for A . 10−8

the phase shift is too small to be detectable.
Because we do not expect ĖNL to be a particularly

strong function of f , we consider values for n in the range
0 ≤ n ≤ 2. As the binary separation decreases, higher
frequency modes become unstable (Eq. 1), which sug-
gests that N and perhaps Esat increase with f , implying
n > 0. Finally, the rapid growth rates suggest that f0

2 Normally, we only consider q ≤ 1 because of a symmetry under
the interchange M1 ↔M2, but this is not the case for ∆φ caused
by only the tide in M1 raised by M2. If we included the phase
shift induced by both the tide in M1 raised by M2 and vice versa,
as we do later in this study, the symmetry is restored.

FIG. 2. Cumulative phase shift ∆φ as a function of GW
frequency f and its dependence on the model parameters A,
f0, and n (top, middle, and bottom panels, respectively).

is close to fi. We therefore consider values in the range
30 . f0 . 80 Hz.

The saturation parameters may depend on the stellar
structure and thus the component masses. We therefore
allow each star in a binary NS system to have its own A,
n, and f0. Following previous work [23], we expand all
the parameters around a reference mass. To wit,

A(Mi) ≡ A(0) +A(1)(Mi − 1.4M�) + · · · . (10)

In our analyses, we keep only the 0th and 1st order terms
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and although we marginalize over both orders, we focus
on the 0th order terms throughout this study, dropping
the superscript unless otherwise indicated. For simplicity
we consider only the mass dependence; future improve-
ments to the model might allow for dependencies on other
stellar parameters (e.g., spin and magnetic fields).

In Fig. 1 we show the time domain waveform, with
and without the nonlinear corrections to the PP solu-
tion, assuming a non-spinning 1.4M�-1.4M� binary NS
system. Although both waveforms are identical at early
times (f < f0), a phase shift accumulates throughout
the inspiral. For these parameters, the cumulative phase
shift at f ' 200Hz is ∆φ ' 200◦. As we show in § V A,
the nonlinear tidal effects begin to be detectable at such
phase shifts.

In Fig. 2 we show ∆φ(f) for a range of A, f0, and
n. Large A implies large total phase shift ∆φ(f → ∞)
whereas large f0 or n imply the opposite. We also see that
although ∆φ(f → ∞) depends on all three parameters,
the slope is mostly determined by A and n. Moreover,
because we expect n < 3, ∆φ accumulates most rapidly
at low frequencies and asymptotes to a constant value at
large frequencies. Since the PP models can account for a
constant overall phase shift, detecting the nonlinear tidal
effects depends primarily on the low-frequency sensitivity
of the detectors.

Assuming a parameterized post-Einsteinian formalism,
Cornish et al. [18] study modifications to PP GR wave-
forms that are, in some ways, similar to ours. In partic-
ular, they assume a power-law form for the phase shift,
∆φ(f) ∼ Afn, and explore a range of power-law ampli-
tudes and exponents. However, they do not include a
turn-on frequency f0. Furthermore, they focus on high
frequencies because they find that solar-system tests are
more sensitive to deviations from GR than GW measure-
ments at low frequencies. Nonetheless, their conclusions
are consistent with ours to the extent that they can be
compared.

IV. BAYESIAN INFERENCE

We use Bayesian methods to assess how our model of
the nonlinear tidal effects impacts the GW data analy-
sis. Specifically, we use Nested Sampling [47, 54] within
LALInference [55] to compute posterior distributions and
evidences. In the most general PP case, the GW signal
emitted by a binary in a circular orbit depends on 15
parameters, including the two component masses, source
location, orientation, distance, and six degrees of freedom
for the two spins. We collectively refer to the unknown

parameters as ~θ. In a Bayesian framework, the evidence
Z of data d given a model H is

Z ≡ p(d|H) =

∫
d~θ p(d|~θ,H)p(~θ|H), (11)

where the first term in the integral is the likelihood and
the second is the prior, both of which depend on the

model. The multi-dimensional posterior distribution of ~θ
can be written using Bayes’ theorem as

p(~θ|d,H) =
p(d|~θ,H)p(~θ|H)

Z
. (12)

Furthermore, if two (or more) competing models are
available, odds ratios between pairs of models can be cal-
culated as

OA
B =

p(HA|d)

p(HB |d)
=
p(HA)ZA

p(HB)ZB
, (13)

where the ratio of priors reflects the initial relative belief
in each model. We assume that no model is preferred a
priori and therefore OA

B → ZA/ZB .
When the gravitational waveform’s shape is known a

priori, we use templates to represent the expected sig-

nal. These templates are parameterized by ~θ and form
a manifold onto which we project the data. By measur-
ing how well different points on the manifold match the
data, we construct posterior distributions for each signal
parameter. This is effectively what is done within Equa-
tions (11) and (12). However, if the manifold does not
accurately capture the full range of possible signals, bi-
ases may be introduced. Furthermore, if no point on the
manifold represents the data well, we may not be able
to recover the signal at all (small Z). This effect, com-
monly referred to as template mismatch, can occur if the
phase shift introduced by nonlinear tides is sufficiently
large and neglected.

In what follows, we consider two models: HPP treats
the two objects as point particles, whereas HNL includes
nonlinear tidal effects. The HPP model uses a simple
inspiral-only analytic approximant [TaylorF2; 17]. The
HNL model augments the TaylorF2 phase evolution with
a tide-induced phase evolution given by Eq. (8).

We focus on a single, optimally-oriented, non-
spinning3 binary NS system, analyzed at distances cor-
responding to network signal-to-noise ratios ρnet near 12,
25 and 50. These roughly correspond to marginal, con-
fident, and gold-plated detections, respectively. We also
neglect linear tides, which we expect to decouple from the
NL effects because the former are significant at high fre-
quencies while the latter are most significant at relatively
low frequencies (see Fig. 2). We include the LIGO Han-
ford and Livingston detectors in addition to Virgo [9],
assuming expected sensitivities for the second observing
run [O2; 7]. While these may not be realized exactly,
they should approximate the relative sensitivities of the
detectors. Because detections will be driven by the two
LIGO instruments, which are expected to be more sen-
sitive than Virgo, we place our signal directly overhead
North America [7]. Virgo will mostly just improve lo-
calization through triangulation, although it could also

3 We briefly consider aligned spins in § V A.
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help constrain intrinsic parameters for loud, precessing
systems through improved polarization constraints. Fi-
nally, we use a zero-noise realization for our simulations,
which is equivalent to taking the expected value of the
evidence and posterior distributions from many noise re-
alizations [52]. Details of our priors on all parameters are
provided in Appendix B.

V. DETECTABILITY AND BIASES WHEN
NONLINEAR TIDES ARE NEGLECTED

We begin by investigating the impact of neglecting
nonlinear tidal effects. We do this by injecting signals
that include the tide-induced phase shift but then fit the
data using only the PP waveforms. This causes signif-
icant template mismatch if the tidal effects are large,
impairing our ability to detect events and biasing the
inferred parameters.

Detectability and bias are related but subtly differ-
ent [20, 37]. For example, the best fit may not be very
good but nevertheless remain near the true parameters
(i.e., unbiased but impaired detection). Alternatively, we
may be able to find a good fit but only with parameters
that are far from the true values (i.e., biased but unim-
paired detection). Depending on the magnitude of ∆φ
and its frequency evolution, we observe one or both ef-
fects.

A. Detectability

As ∆φ increases, the template mismatch worsens. We
generally find that when A & 10−8 nonlinear tidal ef-
fects begin to be noticeable for current detector sensi-
tivities. From Fig. 2, we see that this corresponds to
∆φ & 1 radian, which is similar to other estimates of the
minimum measureable ∆φ (e.g., [14, 19]). In terms of
the saturation model described in § III (see Eq. 7), A ∼
10−8 corresponds to, e.g., N ∼ 10 unstable modes with
ωg ∼ 10−4ω0 saturating at Esat ∼ Ebreak or equivalently
N ∼ 103 such modes saturating at Esat ∼ 0.01Ebreak.

We illustrate this result in Fig. 3 for signals that in-
clude nonlinear tidal effects injected with ρnet ' 25. We
show the odds ratio OPP

N of a PP waveform model rela-
tive to pure Gaussian noise as a function of A for different
values of n and f0. For small A, OPP

N plateaus at large
values because the PP signal model matches the data
well. However, as A increases the PP model matches the
data less and less, thereby decreasing the evidence for
the existence of a signal. OPP

N can be mapped into the
recovered ρnet (called ρrec), and we see that for A ∼ 10−6

more than half of the signal is lost (ρrec < ρnet/2). In that
case, the horizon distance shrinks in half and we miss ap-
proximately 1− (1/2)3 ' 90% of NS merger events. For
ρnet ' 12, extreme values of A can produce OPP

N < 1,
which implies that Gaussian noise is preferred over the

FIG. 3. Odds ratio OPP
N for injected signals that include

nonlinear tidal effects but are recovered using PP waveforms.
The signals are injected at ρnet ' 25. The right axis shows the
recovered signal-to-noise ratio ρrec, computed from OPP

N in
the Laplace approximation as OPP

N = ρ2rec/2.

PP signal model even though we use a zero-noise realiza-
tion.

We injected similar signals with three different ρnet (12,
25, and 50), although we only show the results for
ρnet ' 25 because we find that all ρnet yield very similar
results modulo the usual broadening of posteriors asso-
ciated with lower ρnet signals. For example, all ρnet pro-
duce nearly identically shaped OPP

N curves and simply
scale OPP

N up or down. Signal loss due to template mis-
match produces this behavior because we lose a fixed
fraction of the inner product between the template and
the data regardless of the overall amplitude.

As Fig. 3 shows, the decrease of OPP
N with increasing

A depends only mildly on n and f0. We can see this in
more detail in Figure 4, which shows OPP

N as a function
of n and f0 for two values of A. Typically, small n imply
more rapid accumulation of phase shift and small f0 im-
ply more total phase shift, both of which produce larger
template mismatch and lower OPP

N . We also see that
OPP

N depends more strongly on A for high f0 injections
than for low f0 injections.

1. Effects of spin

We also briefly investigated the effects of spins with
TaylorF2 approximants. These signals allow the com-
ponents to spin either aligned or anti-aligned with the
orbital angular momentum, and therefore do not include
precession effects. Spins can change the waveform’s du-
ration, which may be confused with the analogous ef-
fect from nonlinear tidal interactions. Searches often
use TaylorF2 for low-mass systems involving NSs and
restrict themselves to only relatively small spins (dimen-
sionless spin parameters |χ1,2| ≤ 0.05; [4]). We per-
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FIG. 4. Surface plots of OPP
N as a function of n and f0 at

A = 6.3 × 10−8 (top panel) and A = 4.0 × 10−7 (bottom
panel). The signals are injected at ρnet ' 25.

formed a grid-based calculation to determine the possi-
ble improvements in detectability provided by spins up to
|χ1,2| ≤ 0.1. We find that including spins only marginally
increases ρrec/ρnet (e.g., from 0.30 to 0.34 for A = 10−6).
The slight improvement is likely due to spins compensat-
ing somewhat at high frequencies for the biases in chirp
mass (see § V B and Appendix A) induced at low fre-
quencies by the NL effects. Although we did not fully
explore the effect of spins, our analysis suggests that mea-
surements of the spin may be biased, which could have
implications for population synthesis inferences [2].

Full spinning waveforms may increase the match fur-
ther, but it is unlikely that they will recover a significant
fraction of the lost ρnet. We conclude that spin may be
important for studies of populations of marginally de-
tectable sources with marginally relevant values of A.
However, when A is large, we see a dramatic reduction
in our ability to recover signals even when using spinning
PP waveforms.

B. Biases

When A is small, PP models fit the true waveform
well and the posterior distributions are centered on the
true values. At A ∼ 10−8 we begin to observe biases

in the recovered parameters even though OPP
N has de-

creased by only a few percent. This is sometimes called
a “stealth bias” [18, 53]. Figure 5 shows the joint and
marginal posterior distributions of the chirp mass M
and the mass ratio (q = M2/M1) as a function of A for
n = 0, f0 = 50 Hz with ρnet ' 25. Here and throughout
the rest of this study, we follow the standard convention
M1 ≥ M2 so that 0 < q ≤ 1, reflecting a symmetry
under the interchange M1 ↔M2. M is measured partic-
ularly well because it dominates the frequency evolution
of inspirals [43]. We observe a clear bias in M as A
increases. This is because larger A imply faster orbital
decay, which can be confused with heavier systems that
also decay faster. Even at A = 10−8, we observe a statis-
tically significant bias in M even though OPP

N is essen-
tially identical to the A = 0 result. Therefore, nonlinear
tidal effects can bias parameter estimation even before
they impact detection. However, we note that although
the bias in M can be much larger than the statistical
uncertainty, in absolute terms it remains small (. 1%)
even for large values of A.

Nonlinear tides also introduce biases in the mass ra-
tio q, particularly when the impact on detectability is
marginal. For A . 5 × 10−8, q is biased toward more
asymmetric component masses. This is because asym-
metric systems also decay faster. In fact, for large f0, q
is biased so much that M is inferred to be smaller than
it really is (see Appendix C). For our 1.4M�-1.4M� sys-
tem, we find that at A ∼ few×10−8 the larger mass may
be inferred to be as much as 1.6M� and the smaller mass
as little as 1.2M�. For different values of n, the bias in
q can be even more extreme than this. Although we are
not likely to misclassify a NS-NS binary as a NS-BH sys-
tem for canonical 1.4M�-1.4M� systems, there might be
some confusion for masses near the maximal NS mass.

As Fig. 5 shows, the bias in q is large for intermedi-
ate values of A ∼ 10−8 but small for A � 10−8 and
A � 10−8. By contrast, we find that the bias in M
increases nearly monotonically with A. Apparently, for
A . 10−8, which corresponds to ∆φ . 1 radian, the PP
model can still approximate the data reasonably well,
but only with a substantially biased q. We find that
this trend holds for all values of f0 and n. However, for
A� 10−8, OPP

N decreases significantly and even though
no set of PP parameters captures the data well, the true
parameter values again offer the best fit (with the excep-
tion of M, which remains biased at large A).

Despite the potential for biases, the posteriors for the
component masses M1 and M2 almost always have some
support near the true value, even if it corresponds to a
long tail relative to the mode of the distribution. We
also find that heavier systems with larger M (including
NS-BH systems) are less biased by NL effects because
∆φ ∝ M−10/3 (see Eqs. 8 and 9 and the discussion in
§ III). Such systems have smaller ∆φ because they decay
faster and spend less time in the slow inspiral phase where
nonlinear tides make their greatest impact. Therefore,
for the same A, the posteriors and odds ratios of NS-BH
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FIG. 5. (top) Joint and marginal posterior distributions ofM
and q for injected signals that include nonlinear tidal effects
but are recovered using PP waveforms. (bottom) Marginal
distributions for the individual component masses, which are
restricted to M1 ≥ M2. The different curves show results for
different values of A. We take f0 = 50 Hz and n = 0, and
inject the signals at ρnet ' 25.

systems more closely resemble the PP model.

Nonlinear tides can also bias the luminosity distance
DL. In Fig. 6 we show the posterior distributions of DL

and orbital inclination θjn (the angle between the sys-
tem’s total angular momentum and the line of sight to
the source). As we showed above, the PP model com-
pensates for increasing A by increasing M. However,
systems with larger M are intrinsically more luminous
and therefore are inferred to come from larger DL. De-
spite the bias, we find that the posterior distribution of
DL is broad enough to cover the true value for our injec-
tions.

The other extrinsic parameters, such as θjn and source
position, are unbiased by nonlinear tides. This is be-
cause the phase shift affects both polarizations equally
and these other extrinsic parameters depend primarily on
the ratio of the two polarizations. Although not biased,
the decrease in OPP

N with increasing A does broaden the
posteriors of all extrinsic parameters.

FIG. 6. Posterior distributions for luminosity distance DL

and inclination θjn for injected signals that include nonlinear
tidal effects but are recovered using PP waveforms. We take
f0 = 50 Hz, and n = 0, and inject the signals at ρnet ' 25,
corresponding to DL ' 100 Mpc.

VI. MEASURABILITY AND MODEL
SELECTION WITH NONLINEAR TIDES

Having quantified the impact of neglecting nonlinear
tidal effects in § V, we now consider how well they can
be measured when they are included in the analysis. In
§ VI A we evaluate the statistical evidence for their exis-
tence and in § VI B we assess how well we can constrain
the nonlinear tide parameters from the data. To do this,
we repeat the simulations in § V but now use a model
that does include the nonlinear effects when recovering
the signal. We thereby obtain posterior distributions for
A, n, and f0 as well as odds ratios ONL

N comparing the
nonlinear tide model to Gaussian noise.

A. Model selection

By computing both OPP
N and ONL

N , we obtain an
odds ratio comparing the two signal models lnONL

PP =
lnONL

N − lnOPP
N . This provides a statistical measure of

the evidence for each model. If ONL
PP is large, the nonlin-

ear (NL) model is favored.
In Figure 7 we show ONL

PP as a function of A. For
A . 10−8, we find ONL

PP < 1 which implies that the
model neglecting nonlinear tides is favored. This is due
to Occam’s razor, which penalizes the more complicated
models that include nonlinear tides because they do not
match the data significantly better than the simpler mod-
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FIG. 7. Odds ratio ONL
PP for the same parameters as Fig. 3.

els that ignore them. Typically, the Occam factor cor-
responds to lnONL

PP ∼ −0.1 and is not strongly de-
pendent on ρnet. For ρnet ' 25, this corresponds to
less than 0.05% of OPP

N . However, when A & 10−8,
the NL models are strongly favored. Comparing with
Fig. 3, we see that A ∼ 10−8 is also where OPP

N be-
gins to decrease. This is not a coincidence. The NL
models are able to reconstruct the signal equally well
regardless of A and thus ONL

N ' constant. Therefore,
lnONL

PP ' constant− lnOPP
N and the critical values of A

for detectability and model selection are the same. Fig-
ure 8 shows that the trend continues as a function of n
and f0 as well. Figures 8 and 4 are inverses; areas that
were ‘hot’ become ‘cold’ and vice versa. Therefore, the
regions of parameter space where the PP models fail cor-
respond to the regions where the models with nonlinear
tides are most favored. It also means that we can re-
cover all of the ρnet that is lost when nonlinear tides are
neglected by using a more complete model.

1. Tests of GR (with only linear tides)

While it is clear that we can distinguish NL models
from PP models for large A, it is also interesting to
consider whether we can detect deviations from the PP
model without the correct alternative model. TIGER
(Test Infrastructure for GEneral Relativity; [11, 35, 36])
is designed to answer exactly this question and computes
odds ratios between the PP model and generic devia-
tions from vacuum GR (O!PP

PP ). It does so by allowing the
post-Newtonian (PN) coefficients to vary away from their
GR predictions and computing evidences for the modi-
fied models. Furthermore, TIGER is agnostic about the
effects of linear tides and only considers f . 400Hz [12].
In this way, it focuses on the early inspiral alone, dur-
ing which the PP model is expected to be correct. We
used TIGER to analyze a single injection (A = 1.6×10−7,
f0 = 50 Hz, n = 2) and observed large evidences for mod-

FIG. 8. Surface plots of ONL
PP as a function of n and f0 at (top

panel) A = 6.3 × 10−8 and (bottom panel) A = 4.0 × 10−7.
The signals are injected at ρnet ' 25.

els allowing the first four PN coefficients to vary. They
correspond to lnO!PP

PP ' 45 when ρnet ' 25 and strong
evidence in favor of the alternative hypothesis. By com-
parison, when we use the NL model rather than TIGER
to recover the same injection we find lnONL

PP ' 53. We
also note that n = 2 corresponds to some of the smaller
ONL

PP observed; other parameters are likely to produce
even larger evidences in favor of TIGER’s alternative hy-
pothesis.

Various studies have shown TIGER to be insensitive
to most uncertainties associated with compact binary co-
alescences and interferometric observatories (e.g., linear
tides and calibration uncertainties; [10, 11]). However,
we find that nonlinear tide effects, if large and ignored,
can fool the TIGER machinery and suggest that GR is
not the correct theory of gravity when, in fact, we have
simply neglected relevant physics within the NSs. To our
knowledge, this is the first example of an effect that, if ig-
nored, could fool TIGER. This therefore emphasizes the
implicit assumption within the TIGER analysis that all
relevant physics has already been included in the model.

In summary, although we only analyzed a single event
with TIGER, the results suggest that even imperfect
models of the nonlinear tidal effects can significantly im-
prove our ability to recover signals.
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FIG. 9. Posterior distributions for A when the injected signal
does not include nonlinear tide effects.

B. Measureability

We found that neglecting nonlinear tides when A &
10−8 can significantly hamper detection and bias param-
eter estimation. Conversely, we found that if A & 10−8,
there will be strong statistical evidence for nonlinear
tides. We now consider how well we can measure the
nonlinear parameters with data from a single event.

We first evaluate what upper bound on A is achieved
when nonlinear effects are extremely small (i.e., for in-
jected signals with A→ 0). In Fig. 9 we show the poste-
rior distributions ofA for different values of ρnet assuming
a uniform prior for logA. We find that the upper bound
is near A ∼ 10−8, with a slight decrease with increasing
ρnet. This is not surprising given that at this A the tidal
effects begin to be noticeable (§ V).

In Figure 10 we show the marginal posterior distribu-
tions for A, n, and f0 for injections at ρnet ' 25. When
A . 10−8, we cannot measure n or f0. However, for
A & 10−8, we can measure both n and f0 to relatively
high precision even at ρnet ∼ 12. Typically, we mea-
sure A and f0 comparably, based on a comparison of the
Kullback-Leibler divergence [31, 42] from the prior to the
posterior and the entropy of the posteriors. Measuring
n, however, requires either larger A or ρnet.

There are also degeneracies between many of the pa-
rameters in our model. The strongest degeneracy is
between A and M, which we show in Fig. 11. When
A ∼ 10−8 and nonlinear tides are marginally detectable
we find a negative correlation between M and A (larger
M favor smaller A and vice versa). This is because a bias
towards largerM shortens the inspiral and thereby mim-
ics the effects of the nonlinear tide. When A & 10−8, the
degeneracy between M and A is present but truncated
because A� 10−8 is ruled out.

We also find degeneracies between the nonlinear tidal
parameters. A has a strong positive correlation with n

FIG. 10. Measurability of (top) A, (middle) f0, and (bottom)
n as a function of A. Vertical dashed lines show injected
values. We take f0 = 50 Hz and n = 0, and inject the signals
at ρnet ' 25.

because ∆φ ∝ A/(n − 3). Interestingly, this forces A to
have a weak negative correlation with f0 because larger
A imply larger n, which then requires a smaller f0 to
maintain roughly the same ∆φ. However, this correlation
breaks down for large f0, because ∆φ then depends more
strongly on f0, weakening the correlation between n and
A and strengthening the correlation between f0 and A.
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FIG. 11. Joint and marginal posterior distributions ofM and
A for various values of A. We take f0 = 50 Hz and n = 0, and
inject the signals at ρnet ' 25.

1. Dependence on component mass

So far, we have focused on only the leading order terms
in our Taylor expansions of A, f0, and n (see Equation
10). However, our reconstructions also sampled the 1st

order terms. We do not find any strong correlations be-
tween the 0th and 1st order terms. Nonetheless, while
most marginal posterior distributions for the 1st order
terms are completely unconstrained, occasionally we ob-
serve weak constraints on df0/dm near the boundary of
its prior.

If this result holds more generally and we are able to
measure f0 as a function of component mass from a se-
ries of detections, we may be able to use f0 to make
cosmological measurements using GWs alone. This is be-
cause f0 provides an intrinsic frequency scale that gives
a handle on the redshift of the otherwise conformal inspi-
ral [38, 39]. Indeed, if we can measure f0 as a function of
mass, we may extract both the redshift and the luminos-
ity distance directly from the GW signal without recourse
to an electromagnetic counterpart. Similar approaches
already exist in the literature including when one knows
the NS EOS [24, 39], when the post-merger signal is ob-
served [40], when the shape of the NS mass distribution
is known [50, 51], and when no EM counterpart is found
but there is a reliable galaxy catalog [22]. Further studies
will be needed, however, to test the usefulness of f0 and
to evaluate the robustness of our saturation model.

We also carried out analyses in which we allow each
body to have independent values of A, f0, and n (as an
alternative to the Taylor series expansions in component
mass). Because there is a relatively weak dependence on
mass ratio q in the phase shift (Appendix A) and because
binary NS systems should have q ∼ 1, we find a strong
degeneracy between A1 and A2. Generally, the poste-
rior supports large A for one mass and small A for the

other, disfavoring nearly equal A for both masses (even if
the masses are similar). The Taylor expansion approach,
by contrast, ensures similar values of A for similar mass
NSs. We therefore consider it a better method. Most
importantly, the weak constraints placed on the 1st or-
der terms suggests that we capture most of the nonlinear
tidal effects with just the 0th order terms.

VII. SUMMARY AND CONCLUSIONS

By constructing a parameterized model of the satu-
ration of the p-g instability in coalescing binary NSs, we
explored how the instability might impact GW signals for
current detector sensitivities. Our model contains three
parameters (A, f0, and n), where A and n determine
the magnitude and frequency dependence of the nonlin-
ear dissipation rate ĖNL, and f0 is the GW frequency
at which the unstable modes saturate. Applying a full
Bayesian analysis, we determined as a function of A, f0,
and n the extent to which nonlinear tidal effects: (1) in-
fluence the detectability of merger events, (2) bias binary
parameters such as the chirp mass M, the mass ratio q,
the component masses, and the luminosity distance DL,
and (3) can be measured. We also examined, albeit in
less detail, how the instability might be confused with
NS spin and generic deviations from vacuum GR when a
point-particle model is assumed at low frequencies.

We find that neglecting nonlinear tidal effects can sig-
nificantly impair our ability to detect events. For ex-
ample, if A ∼ 10−7, n = 0, and f = 50 Hz, we would
lose ' 30% of ρnet. This means that if we neglect non-
linear tides, we would miss 1 − (0.70)3 ' 70% of NS
merger events. If A ∼ 10−6, n = 0, and f = 50 Hz, and
we neglect nonlinear tides, we would miss ' 95% of NS
merger events. More generally, we find that nonlinear
effects are detectable if A & 10−8. An A ∼ 10−8 yields a
phase shift relative to the PP waveform of ∆φ ∼ 1 radian
and corresponds to, e.g., N ∼ 1 (∼ 100) modes with
ωg/ω0 ∼ 10−3 (∼ 10−4) saturating at Esat ∼ 0.1Ebreak

(see Eq. 7). Although N and Esat, and therefore A, are
highly uncertain, values as large as A ∼ 10−6 and thus
∆φ ∼ 102 radian are a possibility (see § II and § III).

We also found that intrinsic parameter biases can
be significant if nonlinear tidal effects are neglected.
For example, we found that for A ∼ few × 10−8, a
1.4M� − 1.4M� NS-NS binary could be strongly biased
to 1.6M� − 1.2M�. Interestingly, at this A the loss in
signal ρnet is relatively mild (. 10%) and the PP wave-
form model would appear to be a good match to the
data, an example of a “stealth bias”. For larger A, the
biases in many of the parameters tend to actually de-
crease with increasing A (the bias in M does not follow
this pattern, however). Nonetheless, the quality of the
PP model match always worsens with increasing A.

We also used TIGER to investigate whether we can
detect deviations from the PP model without knowing
the precise form of the nonlinear effects. Although the
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evidence in favor of TIGER’s alternative hypothesis is
less than the evidence in favor of the exact nonlinear
model, it does provide a significantly better match than
the PP model if A & 10−8. This suggests that we may
not need to know the precise form of the nonlinear effects
in order to improve the match to the data. Moreover, it
highlights the fact that neglected NS physics can produce
apparent deviations from GR.

For heavier systems, such as NS-BH systems, nonlinear
effects are significantly less important. This is because
their orbits decay faster, giving the nonlinear tides less
time to modify the inspiral. Therefore, for the same A,
f0, and n, their waveform phase shifts are much smaller.

Assuming that we observe a cosmological population
of sources, nonlinear tides may provide a way to extract
distance-redshift information directly from GW wave-
forms without identification of an electromagnetic coun-
terpart. This is because they provide a characteristic fre-
quency f0 that breaks the otherwise conformal waveform.
By measuring f0, we can extract the redshift directly and
associate it with the corresponding DL. Other studies of
tidal effects have suggested similar approaches [38, 39].
However, we will need to tightly constrain the possible
values of f0 a priori in order to make such cosmological
measurements.

Our study only analyzed single events and in the fu-
ture it might be interesting to consider the impact of the
p-g instability on a population of sources. Such a study
would benefit greatly from first improving the theoretical
constraints on A, n, and f0. A first-principles calculation
of the saturation should therefore be very valuable. In

addition to helping further assess the potential impact of
nonlinear tides, it might also aid parameter estimation
and detection pipelines by reducing the amount of pa-
rameter space that must be searched. Although a full sat-
uration calculation would be ideal, even relatively small
improvements could be useful, such as confirming the ex-
pected growth rates of the p-g instability and more accu-
rately determining the instability threshold and number
of unstable modes.
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Appendix A: Phase shift due to the nonlinear tide

We compute the tidal phase shift ∆φ(f) relative to the
non-spinning PP model using a 0th order post-Newtonian
(PN) expansion. We expect that higher order PN terms
will simply add to the PP result without significantly
modifying the effects from nonlinear tidal interactions.
Moreover, any correction from higher order PN terms
will be small compared to the 0th order term since the
phase shift accumulates predominantly at low frequencies
(f . 100 Hz).

We assume a circular, quasi-Keplerian orbit that loses
energy due to gravitational radiation and dissipative tidal
interactions (between star 1 and star 2)

Ėorb = −Ėgw − Ė1 − Ė2, (A1)

where

Ėorb = −G
2/3π2/3M5/3ḟ

3f1/3
, (A2)

M = (M1M2)3/5/(M1 + M2)1/5 is the chirp mass, f =
Ω/π is the GW frequency, Ω = [G(M1 + M2)/a3]1/2 is
the Keplerian frequency, and [43]

Ėgw =
32π10/3

5

G7/3M10/3

c5
f10/3. (A3)

We model the dissipation due to the tide raised in M1

by M2 as

Ė1 = Γ1N1Esat,1 (A4)

(and similarly for the tide raised in M2 if both objects
are NSs), where Γ is the growth rate of the instability, N
is the number of unstable modes, and Esat is the energy
at which the unstable modes saturate. As we describe in
§ II,

Γ1 = 2λ1ε1ω0,1 = 2λ1
M2

M1

(
R1

a

)3

ω0,1, (A5)

Esat,1 = β1Ebreak,1 = β1

(
ωg,1

Λg,1ω0,1

)2

E0,1, (A6)

where ω2
0 = GM/R3 and E0 = GM2/R. Thus,

Ė1 = 2π2 M1M2

M1 +M2
(GM1)2/3

×

[
ω
−1/3
0,1

(
ωg,1

Λg,1ω0,1

)2

β1N1λ1

]
f2. (A7)

As the orbit decays, the fraction of the breaking ampli-
tude at which the instability saturates (β) may increase
and there may be more unstable modes (N). Therefore,
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we expect these parameters to vary with frequency and
for simplicity we assume

β1N1λ1 = [β1N1λ1]ref

(
f

fref

)n1

Θ1, (A8)

i.e., a power law dependence with a sudden onset of the
dissipation at f = f0,1 as captured by the Heaviside func-
tion Θ1 = Θ (f − f0,1) (the latter assumption is moti-
vated by the rapid growth rates relative to the inspiral
rate as described in § 5.4 of W16). We define the mag-
nitude of β1N1λ1 relative to the value at an arbitrary
reference frequency fref . Throughout our study we set
fref = 100 Hz (for both star 1 and star 2). Then

Ė1 =
(2GM1)

2/3
M1M2

M1 +M2
(πfref)

5/3
A1

(
f

fref

)2+n1

Θ1,

(A9)
where

A1 =

(
2πfref
ω0,1

)1/3(
ωg,1

Λg,1ω0,1

)2

[β1N1λ1]ref

' 4× 10−9

(
ωg,1

10−4Λg,1ω0,1

)2

[β1N1λ1]ref (A10)

is a dimensionless amplitude parameter that depends on
the equation of state and how the instability saturates.
The three parameters of our saturation model are there-
fore A1, n1, and f0,1 for star 1 and similarly for star 2.
We expand each of these parameters about a 1.4M� refer-
ence mass as, e.g., A1 = A(0) +A(1) (M1 − 1.4M�) + · · · ,
where the A(i) are the same for both NSs. In practice,
we keep only the 0th and 1st order terms in our model.

Equation (A1) then implies

ḟ = 3πf2refx
7/3
[
Bx4/3 + C1x

n1 + C2x
n2

]
(A11)

where x = f/fref ,

B =
32

5

(
GMπfref

c3

)5/3

, (A12)

C1 =

(
2M1

M1 +M2

)2/3

A1Θ1, (A13)

and similarly for C2. The phase of the GW signal dφ =
2πfdt = 2πfdf/ḟ and

φ(f) =
2

3

f/fref∫
0

x−4/3dx

Bx4/3 + C1xn1 + C2xn2
. (A14)

For typical NS parameters, B ∼ 10−4 and B � C1,2 ≈
A1,2 as long as

[βNλ]ref � 105
(

10−4Λgω0

ωg

)2

. (A15)

which we expect to be satisfied. Thus, the tidal decay
due to gravitational radiation always strongly dominates
and we can expand the φ(f) integrand as a power series.
The phase shift relative to the PP waveform is therefore

∆φ(f) ' − 2

3B2

f/fref∫
0

dx
[
C1x

n1−4 + C2x
n2−4

]
' 0.4

(
M

1.2M�

)−10/3(
C1,2

10−8

)[
xn−3
0 − xn−3

n− 3

]
rad,

(A16)

where in the second line x0 = f0/fref , and we assumed
n < 3 and M1 = M2. The phase shift is negative which
means that the orbit reaches a given frequency in fewer
orbits than in the PP model.

Appendix B: Priors on the Model Parameters

We use a Bayesian framework to compute evidences
and posterior distributions. In Table I, we list the priors
on all our model parameters. Only a few corner cases
produced posteriors which railed against these priors, and
those only manifested for extremely biased vaules of q.
In these few cases, the lower bound on M2 acted as an
effective bound on q.

Appendix C: Correlations when n = 2

In the main text we show the correlation between M,
q, and A only for the n = 0 case (see Figs. 5 and 11).
However, as we show here, the trends are somewhat dif-
ferent when n = 2. Thus, the correlations can change
their behavior depending on the values of the injected
parameters.

The left panel of Figure 12 shows the joint and
marginal distributions for M and q for injections with
n = 2, f0 = 50 Hz, and ρnet ' 50. Unlike in Figure 5
where M is biased to larger values as A increases, here
we see thatM is biased to smaller values as A increases.
This is because the bias in q is much stronger and pushes
the posterior backward along the degeneracy betweenM
and q [13].

The right panel of Figure 12 shows the correlation be-
tween M and A when n = 2. We see that it is reverse
from the n = 0 case shown in Figure 11. In particular,
larger A imply larger M. This is because at smaller A,
the model compensates with a more asymmetric q and a
decrease in M.
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TABLE I. Prior distributions for the model parameters

parameter minimum maximum distribution

PP

M1 1M� 10M� dN ∝ dM1

M2 1M� 10M� dN ∝ dM2

DL 0 Mpc 300 Mpc dN ∝ D2
LdDL

cos θjn -1 1 dN ∝ d cos θjn

α 0 2π dN ∝ dα
cos δ -1 1 dN ∝ d cos δ

NL

A(1.4M�) 10−10 10−5 dN ∝ d logA
1
A
dA/dm(1.4M�) -1M−1

� 1M−1
� dN ∝ d(logA/dm)

f0(1.4M�) 10 Hz 100 Hz dN ∝ df0
df0/dm(1.4M�) -10 Hz/M� 10 Hz/M� dN ∝ d(df0/dm)

n(1.4M�) -1 3 dN ∝ dn
dn/dm(1.4M�) -1M−1

� 1M−1
� dN ∝ d(dn/dm)

FIG. 12. Joint and marginal posterior distributions of M, q, and A for various values of A. We take f0 = 50 Hz and n = 2,
and inject the signals at ρnet ' 50.


