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The Light-Front Tamm-Dancoff method of finding the nonperturbative solutions in field theory
is based on the Fock decomposition of the state vector, complemented with the sector-dependent
nonperturbative renormalization scheme. We show in detail how to implement the renormalization
procedure and to solve the simplest nontrivial example of the scalar Yukawa model in the two- and
three-body Fock space truncations incorporating scalar “nucleon” and one or two scalar “pions”.

I. INTRODUCTION7

Light-Front Tamm-Dancoff method is a promising nonperturbative Hamiltonian approach to quantum field theo-8

ries [1]. It is based on the Fock decomposition of the state vector, which schematically reads9

φ(p) = ψ1 |1〉+ ψ2 |2〉+ ψ3 |3〉+ . . . , (1)

where p is the total four-momentum of the physical system considered, |n〉 represents a state with the fixed number n10

of particles (the n-body Fock sector, n = 1, 2, 3, . . .), and the coefficients ψn are relativistic wave functions (or Fock11

components). The interaction between constituents, generally speaking, does not conserve the number and type of12

particles, so that the state vector is a mixture of an infinite number of Fock sectors. Light-Front Dynamics (LFD)13

proposed by Dirac [2] represents an effective formalism to calculate state vectors in Fock space. LFD defines the state14

vector on a null plane, also known as a light front. In covariant notations, this plane is given by the equation ω·x = 0,15

where ω is a null four-vector, ω2 = 0 (see, e.g., Ref. [3] for a review). It is traditional to choose the light front to be16

x+ ≡ t + z = 0, corresponding to ω = (1, 0, 0,−1) [4, 5]. The state vector of a physical particle can be obtained by17

diagonalizing the light-front Hamilton operator which is the minus-component of the four-momentum operator:18

P̂−φ(p) = p−φ(p). (2)19

The symbol “hat” hereafter indicates that the corresponding quantity is an operator. The standard LFD minus-, plus-,20

and transverse components of the four-momentum are, respectively, p− ≡ p0 − p3 = (p2
⊥ + M2)/p+, p+ ≡ p0 + p3,21

p⊥ ≡ (p1, p2), and M is the mass of the physical system considered. The eigenvector φ(p) can be used to calculate22

observables, such, e.g., as the electromagnetic form factors. The light-front Tamm-Dancoff method does not rely23

on the expansion in powers of coupling constants and thus is nonperturbative in nature. Wave functions obtained24

in this process provide direct information on the structure of the system [3]. The light-front Hamiltonian approach25

also enjoys some other advantages that makes it particularly appealing as an alternative method to nonperturbative26

Lagrangian approaches such as Lattice gauge theory [4].27

In practical calculations however one can not retain the whole (infinite) set of the Fock sectors and one has to28

truncate the Fock decomposition of the state vector by omitting Fock sectors which contain more than a finite29

number N of constituents. We will refer to such an approximation as the Fock space truncation of order N , or,30

equivalently, the N -body truncation. In truncated Fock space, the Hamiltonian eigenvalue equation (2) reduces to a31

finite system of coupled linear integral equations for the wave functions ψ1, ψ2, . . . , ψN . It is convenient to represent32

this equation in a diagrammatic form by using the LFD graph techniques [3]. Fock space truncation means that one33

should neglect all diagrams containing more than N particles in intermediate states.34

Quantum field theory suffers from divergences, with no exception for LFD. As a consequence, they appear in the35

eigenvalue problem Eq. (2) as well. Regularization and renormalization have to be carried out wherein the bare36
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coupling and bare masses, or the corresponding counterterms, are fixed via the physical coupling and physical masses.37

The divergences are then absorbed into the counterterms which are not observable. In nonperturbative approaches38

such as the light-front Tamm-Dancoff method, the renormalization, of course, is also nonperturbative. A particular39

challenge faced in the light-front Tamm-Dancoff method is how to guarantee the exact cancellation of the divergences.40

In perturbation theory, the divergences are canceled order-by-order in the coupling constant g. If some perturbative41

diagrams of a certain order are absent, the cancellation of divergences of that order may be destroyed. Such a situation42

takes place, when calculating the state vector in truncated Fock space. Indeed, the light-front Tamm-Dancoff method43

sums over an infinite number of diagrams with no more than N intermediate particles, while all diagrams with (N+1)44

and more intermediate particles are omitted. Consider the perturbative expansion of any calculated observable. Since45

the light-front Tamm-Dancoff method is nonperturbative, this expansion contains contributions of all orders in g but46

not an exhaustive set in a given order (say, in the order n). The contributions of the order gn corresponding to (N+1)47

and more intermediate particles are absent because of truncation (do not confuse here the order n of perturbative48

expansion with the Fock space truncation of the order N). Starting with some finite order n of perturbative expansion,49

we would see that divergences are not canceled, because a part of the divergent contributions related to the omitted50

diagrams is missed. The reason is that diagrams which are of the same order in g may correspond to different51

Fock sectors. Since higher Fock sectors are excluded from consideration, we inevitably omit a part of (divergent)52

contributions needed to cancel those coming from the Fock sectors involved. As a consequence, the cancellation of53

divergences may not occur when following the standard renormalization procedure.54

Fock sector-dependent renormalization (FSDR) was proposed [1] and systematically developed [6] to address this55

issue. While in perturbation theory the counterterms are determined order-by-order in the coupling constant, in56

the FSDR scheme the counterterms are determined sector-by-sector in Fock space expansion. That is, we first57

find the counterterms in the leading, e.g., two-body, Fock space truncation. They provide renormalization and58

cancellation of infinities in the leading Fock sector. However, they are not sufficient to cancel infinities in the three-59

body (next-to-leading) sector truncation, as it contains both the two- and three-body intermediate states. The60

three-body intermediate states require new counterterms — the three-body counterterms, which are found from the61

renormalization performed within the three-body Fock space truncation. The same procedure is continued in the62

four-body and higher order truncations.63

Strict mathematical proof that this procedure eliminates infinities is complicated by the nonperturbative nature of64

the equations and does not yet exist. However, the validity of FSDR is strongly supported by numerical calculations.65

For instance, in Ref. [7] the FSDR scheme was applied to the coupling constant and fermion mass renormalization66

in the Yukawa model up to the three-body (one fermion plus two scalar bosons) truncation. Numerical calculations67

of renormalized observables demonstrated their good stability with the increase of the regularization parameters —68

the Pauli-Villars (PV) masses. In Refs. [8, 9], very good stability of calculated observables was found in the scalar69

Yukawa model up to the four-body truncation (one heavy scalar boson plus three light scalar bosons). These highly70

nontrivial numerical calculations provide good arguments in favor of FSDR as an effective method of nonperturbative71

renormalization and show a prospect for a broader range of its applications.72

Recent studies of the scalar Yukawa model [8, 9] also give one more dimension of support for the light-front73

Tamm-Dancoff method equipped with the FSDR scheme. Comparison of the electromagnetic form factors obtained74

successively within two-, three-, and four-body truncations shows their rather fast convergence with respect to the75

order of truncation. This result indicates that, at least in the given model, the four-body truncation almost saturates76

the state vector and the calculated value of the electromagnetic form factor is already close to the exact one.77

Originally, the FSDR scheme was formulated on the basis of the “true” Yukawa model with a spin-1/2 fermion [6].78

Meanwhile, renormalization of a theory of particles with spin in LFD encounters many technical difficulties having no79

direct relation to FSDR (more complicated spin structure of wave functions, appearance of additional counterterms80

depending on the light front orientation, sensitivity of results to the choice of regularization, etc.) The complexity of81

attendant mathematical derivations conceals, to some extent, the basic ideas of FSDR, which are rather general and82

applicable to a variety of realistic quantum field theories. For this reason, in the present paper we give a detailed83

exposition how to apply FSDR scheme in practice, using the scalar Yukawa model in truncated Fock space. This84

allows us to illustrate the FSDR method in a simple but nontrivial example. We will present in detail the solution of85

the scalar Yukawa model in the two- and three-body truncations. Another purpose of the paper concerns the following.86

According to the FSDR scheme, in recent studies of the scalar Yukawa model [8, 9] in the four-body truncation, the87

values of the bare coupling constant and the heavy boson mass counterterm from the three-body truncation were88

used. However, the details of their derivation were omitted. This paper serves to fill the gap. The bare coupling89

constant and the mass counterterm obtained below can also be used in the future for solving a relativistic bound state90

problem up to four-body truncation (two heavy plus two light scalar bosons).91
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FIG. 1. Amplitude of elastic scattering of two scalar nucleons (double solid lines) near the scalar pion (wavy line) pole q2 = µ2.
In the vicinity of this pole the amplitude has the form Mχχ→χχ = −g2/(q2 − µ2 + i0).

Note that the renormalized scalar Yukawa model in the three-body truncation was also studied in Ref. [10], but92

without reference to FSDR. Though such an approach led to acceptable results for the particular model and the93

particular order of truncation, it does not seem universal from the point of view of divergence cancellation, in contrast94

to FSDR.95

The paper is organized as follows. We start in Sec. II with a brief description of the scalar Yukawa model. In96

Sec. III a general equation for the state vector in LFD is formulated. In Sec. IV we expose the main features of FSDR.97

Solutions for the state vector in the scalar Yukawa model are found in the two- and three-body truncations in Secs. V98

and VI, respectively. In Sec. VII we calculate an observable quantity — the scalar heavy boson electromagnetic form99

factor — in the two- and three-body truncations, successively. In Sec. VIII we discuss the properties of the bare100

coupling constant determined by the renormalization. Sec. IX contains concluding remarks.101

II. SCALAR YUKAWA MODEL102

We consider an electrically charged heavy scalar boson (χ) with the physical mass m, dressed by lighter neutral103

scalar bosons (ϕ) with the physical mass µ. To mimic somehow real nucleon-pion physics, we tentatively assign them,104

respectively, the nucleon and pion masses1, m = 0.94, µ = 0.14, and will call them scalar nucleon and scalar pion,105

omitting sometimes the word “scalar”, for shortness. The corresponding Lagrangian reads106

L = ∂νχ
†∂νχ−m2χ†χ+ 1

2∂νϕ∂
νϕ− 1

2µ
2ϕ2 + g0χ

†χϕ+ δm2χ†χ, (3)

where the bare coupling constant g0 and the nucleon mass counterterm δm2 are renormalization constants to be107

determined by the renormalization procedure. We denote the physical coupling constant as g which is found from108

typical scattering experiments, e.g., by the analytic continuation of the measured two scalar nucleon elastic scattering109

amplitude, as a function of the momentum transfer square, to the scalar pion pole in the nonphysical kinematical110

region (see Fig. 1). For convenience, we introduce a dimensionless coupling constant111112

α ≡ g2

16πm2
, (4)

which appears as the coupling constant of the nonrelativistic Yukawa potential U(r) = −αe−µr/r between two scalar113

nucleons. The electromagnetic interaction is not explicitly included into the Lagrangian (3) because it is assumed much114

weaker than the interaction between scalar nucleons and pions. We will need it only for the calculation of the nucleon115

electromagnetic form factor, where it will be taken into account perturbatively. In contrast to the electromagnetic116

fine structure constant e2, the coupling constant α is not implied to be small and no expansions in it are used.117

To regularize the theory, we introduce a PV scalar pion field ϕpv with a large mass µpv � m, µ. The PV pion field118

is enough to regularize rather weak (logarithmic) divergences which appear in the scalar Yukawa model, i.e., there is119

no need to introduce an analogous PV nucleon field. Since PV fields have negative metric, the Lagrangian becomes120

L = ∂νχ
†∂νχ−m2χ†χ+ δm2χ†χ+ 1

2

1∑
j=0

(−1)j
[
∂νϕj∂

νϕj − µ2
jϕ

2
j

]
+

1∑
j=0

g0χ
†χϕj , (5)

1 The masses are in GeV. However in this model, only the ratio µ/m matters, and we will suppress all units.



4

where the index j denotes a type of particle: the values j = 0 and j = 1 correspond, respectively, to the physical and121

PV scalar pion fields, µ0 ≡ µ, µ1 ≡ µpv. Similar procedure was used in Ref. [11].122

Our main goal is to calculate the state vector φ(p) of the scalar nucleon. Then it can be used for calculating123

observables. The Fock space generated by the Lagrangian (3) embraces all Fock sectors composed of scalar nucleons,124

antinucleons, and pions. Each Fock sector contains one nucleon plus an arbitrary number of nucleon-antinucleon pairs125

plus arbitrary number of pions. It is known however that the contribution from the nucleon-antinucleon loops causes126

the instability of the vacuum [12, 13]. We therefore truncate away all Fock sectors with antinucleons and construct a127

truncated Fock space from a set of Fock sectors with one scalar nucleon and increasing number of scalar pions. This128

procedure, however, comes with a penalty, as we will discuss below.129

The introduction of PV scalar pions into the Lagrangian (5) extends the Fock space, which impacts the rule of130

particle counting inside Fock sectors. We postulate that PV scalar pions come to the theory on equal grounds with131

the physical ones. This means that any pion is counted as one particle, regardless to its type.132

III. STATE VECTOR IN LIGHT-FRONT DYNAMICS133

The explicitly covariant form of LFD, as a more general approach mentioned in the Introduction, has many technical134

advantages in comparison with its noncovariant forms [3]. In particular, the four-vector ω serves as an indicator of135

possible dependence of calculated results on the light front orientation. This is especially important in approximate136

nonperturbative calculations, where such dependence may appear in calculated observables due to rotational symmetry137

breaking. For particles with spin, covariant LFD facilitates studying the spin structure of scattering amplitudes. In138

spite of these merits, for the case of scalar particles, these different forms of LFD are almost equivalent, even from139

the technical point of view. For this reason, we will not distinguish them below and, retaining in some instances the140

four-vector ω in explicit form, we will assume that it has definite components (1, 0, 0,−1). If so, we have ω+ = 0,141

ω⊥ = 0, ω− = 2, and ω·a = a+ for an arbitrary four-vector a.142

In LFD the state vector of a physical state is a solution of the eigenvalue equation (2) which can be written in an143

invariant form:144

P̂ 2φ(p) = M2φ(p), (6)

where P̂ 2 = P̂+P̂− − P̂ 2
⊥. The plus- and transverse components of the momentum operator in LFD do not contain145

the interaction; so they can be substituted, respectively, by the p+ and p⊥ components of the total four-momentum146

p. The interaction is only contained in the minus-component of the momentum operator which can be represented147

as a sum of the free and interacting parts: P̂− = P̂−0 + P̂−int. The interacting part, in its turn, tightly relates to the148

light-front interaction Hamiltonian Hint(x):149

P̂−int = 2

∫
Hint(x)δ(ω · x)d4x = 2

∫ +∞

−∞
H̃int(ωτ)

dτ

2π
, (7)

where H̃int is a Fourier transform of the interaction Hamiltonian:150

H̃int(ωτ) =

∫
Hint(x)e−i(ω·x)τd4x. (8)

In covariant form, the four-momentum operator can be written as151

P̂ ν = P̂ ν0 + ων
∫ +∞

−∞
H̃int(ωτ)

dτ

2π
. (9)

Since ω2 = 0, we have ω·P̂ = ω·P̂0 = p+. In Ref. [10] it was proven that the operators ω·P̂0 and P̂−int commute. We152

thus get153

P̂ 2 = P̂ 2
0 + 2p+

∫ +∞

−∞
H̃int(ωτ)

dτ

2π
. (10)

Substituting this result into Eq. (6), we finally obtain [10]154 [
P̂ 2

0 −M2
]
φ(p) = −2p+

∫ +∞

−∞
H̃int(ωτ)

dτ

2π
φ(p). (11)



5

The interaction Hamiltonian can be derived from the corresponding Lagrangian. We need the Hamiltonian in the155

interaction representation, i.e., that expressed through the free fields. For particles with spin or if the interaction156

depends on field derivatives the procedure may be, generally speaking, very nontrivial. The reason is that in LFD157

some of the equations of motion for field components are not dynamical equations but constraints. Exclusion of the158

non-dynamical degrees of freedom give rise to specific (contact) terms in the Hamiltonian. This point is explained159

in more detail in Ref. [14]. Fortunately, all that does not concern the case of scalar Yukawa model we consider here,160

because each scalar field has only one component. If so, one can simply identify the Hamiltonian with the interaction161

part of the Lagrangian taken with the opposite sign:162

Hint(x) = −g0 χ
†χϕ− δm2χ†χ. (12)

To avoid overload with notations, we do not show explicitly the contribution of PV particles. They can be introduced163

later directly in the equations for the Fock components.164

To solve Eq. (11), we make use of the Fock decomposition of the state vector φ(p), as given schematically by Eq. (1).165

We define the n-body Fock sector as a state containing one free scalar nucleon with the four-momentum k1 plus (n−1)166

free scalar pions with the four-momenta k2, . . . , kn. This state is obtained by acting with the corresponding creation167

operators on the vacuum:168

|n〉 = â†(k1)ĉ†(k2) . . . ĉ†(kn)|0〉. (13)

The creation operators satisfy the standard commutation relation [â(k), â†(k′)] = δ(3)(k − k′) (for ĉ and ĉ† analo-169

gously). Due to the interaction, the total four-momentum p of the physical nucleon is not equal to the sum of the170

constituent four-momenta: k1 + . . . + kn 6= p, i.e., momentum conservation is violated. Within LFD, only plus- and171

transverse components of the total four-momentum are conserved:172

k+
1 + . . .+ k+

n = p+, k1⊥ + . . .+ kn⊥ = p⊥. (14)

In the following, we will set p⊥ = 0. This can be safely done due to the invariance of LFD with respect to transverse173

boosts. Using the four-vector ω introduced above, the relations (14) can be written in an explicitly covariant form174

which looks like the momentum conservation law:175

k1 + . . .+ kn = p+ ωτn. (15)

The scalar parameter τn (the off-shell light-front energy) can be expressed through the particle momenta by squaring176

both sides of Eq. (15):177

τn =
sn −M2

2p+
, (16)

where sn is the invariant mass squared of the n-body Fock sector:178

sn ≡ (k1 + . . .+ kn)2. (17)

By definition, s1 = m2. Note that sn is an eigenvalue of the free four-momentum operator squared P̂ 2
0 = p+P̂−0 − p2

⊥:179

P̂ 2
0 |n〉 = sn|n〉. (18)

The Fock decomposition of the physical scalar nucleon state vector can be written as [10]:180

φ(p) =

∞∑
n=1

2p+(2π)3/2

(n− 1)!

∫
dτn

(
n∏
i=1

d3ki
(2π)3/2

√
2εki

)
ψn(k1, . . . kn; p) δ(4)(k1 + . . .+ kn − p− ωτn) |n〉, (19)

where εki =
√
k2
i +m2

i and mi is the mass of the i-th constituent. All the four-momenta are on their mass shells,181

k2
i = m2

i . The combinatorial factor 1/(n − 1)! takes into account the identity of scalar pions. The Dirac’s delta-182

function accounts for the four-momentum conservation law (15). Note that Eq. (19) may be considered as an exact183

definition of the light-front wave functions ψn.184

The state vector satisfies the normalization condition185

φ†(p′)φ(p) = 2εpδ
(3)(p− p′) (20)
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FIG. 2. Diagram for the n-body vertex function Γn(k1, k2, . . . , kn; p). The scalar pions are represented by the wavy lines. The
constituent and physical scalar nucleons are represented by the single and double straight lines, respectively.

which reduces to186

∞∑
n=1

In = 1, (21)

where187

In =
2p+

(2π)3(n−1)(n− 1)!

∫
dτn

(
n∏
i=1

d3ki
2εki

)
|ψn(k1, . . . , kn; p)|2δ(4)(k1 + . . .+ kn − p− ωτn) (22)

is the n-body Fock sector contribution to the full norm equal to unity. By its physical sense, In is the probability188

that the physical state appears in the n-body Fock sector.189

It is useful to introduce the light-front vertex functions Γn related to the wave functions by190

Γn ≡ (sn −M2)ψn (23)

and the new state vector191

G(p) = 2p+τ̂φ(p), (24)

where the operator τ̂ acting on each Fock component ψn yields τnψn. G(p) has the same Fock decomposition (19),192

changing the wave functions ψn by the corresponding vertex functions Γn. Using Eqs. (18) and (16), and the defini-193

tion (23), the main dynamical equation (11) for the state vector can be rewritten as [10]194

G(p) =
1

2π

∫ +∞

−∞

[
−H̃int(ωτ)

] dτ
τ
G(p). (25)

The vertex function Γn is closely related to the full transition amplitude [11]. This connection allows us to represent195

the system of equations for the vertex functions using the light-front time-ordered diagrams via the so-called covariant196

LFD graphical rules [3]. An n-body vertex diagram is shown in Fig. 2.197198

For practical applications, it is convenient to transform the dependence of the wave and vertex functions on the con-199

stituent four-momenta k1, . . . , kn into their dependence on the light-front variables which are the transverse momenta200

ki⊥ and the longitudinal momentum fractions xi ≡ k+
i /p

+ (i = 1, . . . , n). The n pairs of the arguments (ki⊥, xi) are201

constrained by the conditions202

n∑
i=1

xi = 1,

n∑
i=1

ki⊥ = 0, (26)

directly following from Eqs. (14). We thus have (n − 1) pairs of independent kinematical variables (ki⊥, xi) in the203

n-body Fock sector. The invariant mass squared sn of the n-body Fock sector is expressed through the light-front204

variables as205

sn =

n∑
i=1

k2
i⊥ +m2

i

xi
. (27)

The dependence of the wave and vertex functions on the total four-momentum p reduces to their dependence on206

p2 = M2. It is convenient to exclude, by means of Eqs. (26), the scalar nucleon momenta k1⊥ and x1 and to choose207

the scalar pion momenta as a set of independent variables. We thus write208

Γn = Γn(k2⊥, x2, . . . ,kn⊥, xn;M2) (28)

and analogously for ψn. For simplicity, we will further suppress the dependence of Fock components on M2 for the209

physical particle (M2 = m2), whenever there is no danger of confusion.210
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δm2
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N − l

g0l

N − l
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FIG. 3. Assignment of Fock sector dependent bare parameters. Here N is the maximal number of particles allowed by the
truncation [one scalar nucleon plus (N − 1) scalar pions] and N − l is the number of pion spectators which are intersected by
the dashed line.

IV. FOCK SECTOR DEPENDENT RENORMALIZATION211

Fock sector dependent renormalization (FSDR) is a systematic scheme to renormalize light-front Hamiltonian field212

theory in truncated Fock space [6]. In this approach, the bare parameters (i.e., the full set of parameters entering213

into the interaction Hamiltonian and used for renormalization, such as bare coupling constants, bare masses, various214

counterterms, etc.) explicitly depend on the Fock sector, where they appear in the equations for the Fock components.215

For example, instead of the unique bare coupling constant g0 one should assign to each interaction vertex in light-216

front diagrams the factor g0l, where the index l equals the difference between the order of Fock space truncation N217

and the total number of other particles “in flight” at the instant which corresponds to the given vertex. The same218

concerns the mass counterterm δm2. Actually, one has to deal with a whole series of bare coupling constants and219

mass counterterms being different for different Fock sectors:220

g0 → g0l, δm2 → δm2
l , (l = 1, 2, . . . , N). (29)

In the general case, l = (N − ns), where ns is the number of pion spectators. The assignment of the Fock sector221

dependence is illustrated in Fig. 3.222223

These sector dependent bare parameters can be determined successively, by increasing the order of truncation N .224

The trivial case N = 1 yields g01 = 0 and δm2
1 = 0, since the only particle allowed is the scalar nucleon with no225

interactions and mass renormalization. Then, g02 and δm2
2 are determined in the two-body truncation (N = 2),226

where the state vector is a superposition of the single scalar nucleon and one scalar nucleon plus one scalar pion227

Fock sectors. g03 and δm2
3 are determined in the three-body (N = 3) truncation, where the scalar nucleon plus two228

scalar pions Fock sector is added. The bare parameters g02 and δm2
2 appearing in this approximation as well are229

used untouched, as they have been found from the N = 2 case. The process repeats, until one’s desired Fock sector230

truncation is reached. Therefore, in order to find the state vector for the N -body truncation, one has to solve first231

the two-, three-, ..., (N − 1)-body problems. Below, to distinguish from each other the same quantities calculated232

in different approximations, we will supply the former ones by the superscript “(N)” indicating the order of Fock233

space truncation. Thus Γ
(N)
n means the n-body vertex function found within the N -body Fock space truncation, I

(N)
n234

stands for the n-body Fock sector norm obtained in the same approximation, etc.235

The bare parameters relate to the physical ones by the renormalization conditions. The scalar nucleon mass236

counterterm is determined from the requirement that the physical and constituent nucleon masses coincide, i.e.,237

M = m. In other words, one demands that the interaction does not change the nucleon mass. The bare coupling238

constant is obtained from the standard condition that the “dressed” two-body on-energy-shell vertex function turns239

into the physical coupling constant (see, e.g., Ref. [15]):240 √
Zχ Γ̃on-shell

2

√
Zχ
√
Zϕ = g, (30)

where Z’s are the so-called field strength renormalization factors taking into account “radiative” corrections to the241

two-body vertex external legs and Γ̃ denotes the two-body vertex amputated from all radiative corrections to its242

external legs. The factor Zχ tightly relates to the corresponding scalar nucleon self-energy Σ(p2) by243

Zχ =
[
1−Σ′(m2)

]−1
, (31)

where the prime means the derivative244

Σ′(m2) ≡ ∂

∂p2
Σ(p2)

∣∣∣
p2=m2

. (32)



8

The self-energy is given by a sum of amplitudes of all irreducible diagrams with one-body initial and final states. For245

the scalar pion factor Zϕ a formula analogous to Eq. (31) can be written down.246

Note that the factorization of the “dressed” vertex into a product of the “bare” vertex Γ̃2 and the external leg247

factors
√
Z’s, which appears automatically in the four-dimensional Feynman approach, is a very nontrivial fact in the248

framework of LFD. First, such a factorization in LFD takes place on the energy shell only, while in the Feynman case249

it holds for the off-mass-shell vertex as well. Second, the factorization may be destroyed by approximations, e.g., the250

Fock space truncation. Fortunately, the LFD two-body vertex function enters into the renormalization condition (30)251

just being taken on the energy shell, where it coincides with the corresponding Feynman on-mass-shell two-body252

vertex. In addition, we do not consider here antinucleon contributions to the state vector, that leaves scalar pion253

a point-like particle, so that Zϕ ≡ 1. Under these conditions, one can safely accept Eq. (30) as a starting point254

of the bare coupling constant renormalization, even in truncated Fock space. Below we relate Γ̃2 to the previously255

introduced two-body vertex function Γ2.256

The condition that the nucleon-pion state is on the energy shell means that the constituent four-momenta satisfy257

the conservation law k1 + k2 = p and, hence, s2 = (k1 + k2)2 = m2. Going over to the light-front variables, we have258

x1 + x2 = 1 and k1⊥ + k2⊥ = 0. So, the two-body vertex function depends on the two variables which we denote as259

k⊥ ≡ |k2⊥| = |k1⊥|, x ≡ x2 = 1− x1. (33)

The invariant two-body mass squared in terms of these variables has the form260

s2 =
k2
⊥ + µ2

x
+
k2
⊥ +m2

1− x . (34)

On the energy shell, where s2 = m2, we get261

k⊥ = k∗⊥(x) ≡ i
√
m2x2 + µ2(1− x) (35)

(the choice of the sign, +i
√
. . . or −i√ . . ., is not important, since the two-body vertex function depends in fact on262

k2
⊥) and263

Γ̃on-shell
2 = Γ̃2(s2 = m2) = Γ̃2(k∗⊥(x), x). (36)

Since the field strength renormalization factors are constants (i.e., they do not depend on any kinematical variables),264

the renormalization condition (30) implies that the two-body vertex function taken on the energy shell must turn into265

a constant too. This is indeed so in perturbation theory. It would be true in exact nonperturbative calculations, if they266

were possible. In approximate nonperturbative approach however such a property is not automatically guaranteed267

and the calculated two-body vertex keeps x-dependence even on the energy shell. If so, one may consider Eq. (30)268

to be true for some particular value of x = x∗ only, choosing x∗ at our own will [16, 17]. An evident flaw here is the269

dependence of calculated observables on the extra nonphysical parameter x∗. Since there are not any strict arguments270

in favor of some preset value x∗, whether this dependence is weak or not is a matter of chance. An alternative way271

proposed in Ref. [7] seems more justified. It demands Eq. (30) to be true for all 0 ≤ x ≤ 1, but admits x-dependence272

of the bare parameters, uniquely determined directly from the system of equations for the Fock components. Now273

the nonphysical dependence of the on-energy-shell two-body vertex function on kinematical variables, caused by the274

Fock space truncation, shifts to unobserved quantities, while the renormalization condition (30) becomes fully self-275

consistent. One may also expect that this method improves the stability of calculated observables as a function of the276

regularization parameters (PV masses), as, e.g., the calculations of the spin-1/2 fermion anomalous magnetic moment277

in the Yukawa model, obtained in Ref. [7], show.278

We emphasize: by making a truncation, we approximate the initial field-theoretical Hamiltonian by a matrix of279

finite dimension (in terms of the particle number), acting in Fock space. This is the reason, why in “new” dynamics280

the on-shell two-body vertex function (36) calculated with constant bare parameters acquires dependence on the281

variable x. Assuming appropriate x-dependence of the bare coupling constant which implicitly enters into Γ̃on-shell
2282

allows the latter to be x-independent. So, x-dependence of bare parameters compensates, to some extent, the effect283

of missed (because of the Fock space truncation) contributions. In Sec. VIII below, by using an example, we will284

demonstrate explicitly that after taking into account the contribution eliminated by truncation the x-dependence of285

the on-shell two-body vertex function does completely disappear.286

Upon adoption within a truncated Fock space, the general renormalization condition (30) should be reformulated287

according to the FSDR requirements. The factor
√
Zχ in front of Γ̃on-shell

2 comes from the “dressing” of a single288
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scalar nucleon line. For the Fock space truncation of order N it should be thus substituted by

√
Z

(N)
χ . The analogous289

factor behind Γ̃on-shell
2 corresponds to the “dressing” of a scalar nucleon line in the two-body (nucleon plus pion) state.290

Since the total number of particles in any Fock sector can not exceed N , this factor should be calculated in the lower291

(N − 1) approximation. Taking into account that
√
Zϕ ≡ 1, we obtain292 √

Z
(N)
χ Γ̃

(N)
2 (s2 = m2)

√
Z

(N−1)
χ = g. (37)

To make practical use of Eq. (37) one should relate the “amputated” two-body vertex Γ̃2 to the previously introduced293

two-body Fock component Γ2. This relation has the form [16]2294

Γ
(N)
2 (s2 = m2) =

√
I

(N)
1 Γ̃

(N)
2 (s2 = m2)Z(N−1)

χ , (38)

where I
(N)
1 is the one-body Fock sector normalization integral in the N -body truncated Fock space. Its calculation295

according to Eq. (22) yields I
(N)
1 = |ψ(N)

1 |2. Note that the normalization condition (21) for the state vector now296

acquires the form297

N∑
n=1

I(N)
n = 1. (39)

In terms of the light-front variables, I
(N)
n is expressed through the corresponding vertex function as298

I(N)
n =

2

(2π)3(n−1)(n− 1)!

∫ n∏
i=1

d2ki⊥dxi
2xi

[
Γ

(N)
n

sn −M2

]2

δ(2)

(
n∑
i=1

ki⊥

)
δ

(
n∑
i=1

xi − 1

)
. (40)

In Ref. [16] it was proven that the field strength renormalization factor for a spin-1/2 fermion exactly coincides with299

the corresponding one-body normalization integral. The proof can be easily reduced to the scalar case. Applying this300

result to the quantities in truncated Fock space means301

Z(N)
χ = I

(N)
1 . (41)

Combining Eqs. (37), (38), and (41) together gives the final form of the renormalization condition for the bare coupling302

constant:303

Γ
(N)
2 (s2 = m2) = g

√
I

(N−1)
1 . (42)

On introducing PV particles, one has to supply the vertex functions with additional indices pointing out the types
of scalar pions in the corresponding Fock sectors. We will denote the pion type by the superscript jl, l = 2, 3, . . . , n:

Γ(N)
n (k2⊥, x2, . . . ,kn⊥, xn)→ Γ(N)j2...jn

n (k2⊥, x2, . . . ,kn⊥, xn).

According to the notations accepted in Sec. II, jl = 0 stands for a physical pion, while jl = 1 corresponds to a PV304

one. The renormalization condition (42) is imposed on the physical component Γ
(N)j2=0
2 of the two-body vertex.305

V. SCALAR NUCLEON STATE VECTOR IN THE TWO-BODY (N = 2) TRUNCATION306

A. Equations for the Fock components and their solution307

In the two-body truncation, we keep up to two particles (one scalar nucleon plus one scalar pion) in the Fock space.308

The system of equations for the vertex functions, obtained from the general equation (25) for the state vector, is309

shown graphically in Fig. 4. The rules of the LFD graph techniques are exposed, in covariant form, e.g., in Ref. [3].310311

Applying them to the system of equations considered, one gets312

2 Though in Ref. [16] the Yukawa model with a spin-1/2 “nucleon” was considered, some results obtained there are rather general and
can be applied to the scalar case as well.
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= +
Γ
(2)
1 Γ

(2)
1 Γ

(2)
2

=

Γ
(2)
1Γ

(2)
2

δm2
2 g02

g02

FIG. 4. System of equations for the vertex functions in the two-body truncation.

Γ
(2)
2

δm2
1

FIG. 5. Contribution from the mass counterterm, which is absent in the two-body truncation.

Γ
(2)
1 = δm2

2

Γ
(2)
1

m2 −M2
+ g02

1∑
j=0

(−1)j
∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

Γ
(2)j
2 (k⊥, x)

sj2 −M2
, (43)

Γ
(2)j
2 (k⊥, x) = g02

Γ
(2)
1

m2 −M2
, (44)

where313

sj2 =
k2
⊥ + µ2

j

x
+
k2
⊥ +m2

1− x (45)

is the invariant mass squared of the two-body state made from the one scalar nucleon and one scalar pion of the314

j-th type [cf. with Eq. (34)]. The arguments of the two-body vertex function are defined by Eqs. (33). The factor315

(−1)j takes into account the negative norm of the PV scalar pion. Note that Γ
(2)
1 /(m2 −M2) = ψ

(2)
1 is a constant in316

the sense that it does not depend on kinematical variables. The bare parameters are assigned to the vertices of the317

diagrams, according to the FSDR requirements. This is the reason why Eq. (44) does not contain, on its right-hand318

side, a contribution from the scalar nucleon mass counterterm. In principle, one should add such a contribution (it is319

shown in Fig. 5), because it is generated by the interaction Hamiltonian (12). At the same time, within the two-body320

truncation, one has to assign the factor δm2
1 to the corresponding vertex given by the mass counterterm, since there321

is already one scalar pion in flight in the two-body state. Due to the fact that δm2
1 = 0, the diagram in Fig. 5 does322

not contribute to Eq. (44).323324

In the limit M → m the one-body vertex function Γ
(2)
1 ∼ (m2−M2)→ 0, while ψ

(2)
1 has a constant value determined325

from the normalization condition (39) for the state vector. The system of equations (43) and (44) thus reduces to326

0 = δm2
2ψ

(2)
1 −g2

02Σ̄(2)(m2)ψ
(2)
1 , (46)

Γ
(2)j
2 (k⊥, x) = g02ψ

(2)
1 , (47)

where Σ̄(2) is nothing but the scalar nucleon self-energy in the two-body approximation, Σ(2), amputated from the327

coupling constant squared. For an arbitrary value of its argument p2, this function is given by328

Σ̄(2)(p2) = −
1∑
j=0

(−1)j
∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

1

sj2 − p2
. (48)
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By definition, Σ̄(2)(p2) = Σ(2)(p2)/g2
02. It enters into Eq. (46) at p2 = m2. When the PV scalar pion mass µ1 tends329

to infinity, Σ̄(2)(p2) diverges like log(µ1/m). The function Σ̄(2)(p2) is calculated in an explicit form in Appendix A.330

Equation (46) determines the mass counterterm:331

δm2
2 = g2

02Σ̄(2)(m2), (49)

while ψ
(2)
1 still remains a free constant. δm2

2 is not immediately needed for the two-body truncation and will be332

analyzed later. The two-body vertex function, as follows from Eq. (47), is a constant too: it depends neither on333

kinematical variables nor on the index j. This fact is a direct consequence of the two-body Fock space truncation334

and, generally speaking, it does not hold in higher order truncations. The renormalization condition (42) at N = 2335

reads simply336

Γ
(2)j=0
2 (k∗⊥(x), x) = g, (50)

where we have used I
(1)
1 = 1 (free theory). Since Γ

(2)j
2 (k⊥, x) ≡ Γ

(2)
2 is a constant, one gets337

Γ
(2)
2 = g. (51)

The one-body wave function ψ
(2)
1 is now defined by the state vector normalization:338

ψ
(2)
1 =

√
I

(2)
1 =

√
1− I(2)

2 , (52)

where339

I
(2)
2 =

1∑
j=0

(−1)j
∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

[
Γ

(2)
2

sj2 −m2

]2

=
g2

16π2m2

∫ 1

0

dx

[
x(1− x)

(1− x)µ2/m2 + x2
− x(1− x)

(1− x)µ2
1/m

2 + x2

]
. (53)

The two-body Fock sector norm I
(2)
2 (and, hence, I

(2)
1 ) is finite even after removing the ultraviolet regulator, i.e., at340

µ1 → ∞. It is convenient to introduce the two-body norm Ī
(2)
2 amputated from the coupling constant squared. By341

definition, Ī
(2)
2 = I

(2)
2 /g2. It does not depend on g. Note that the following identity is valid:342

Ī
(2)
2 = −Σ̄(2)′(m2). (54)

This result can be checked by differentiating the right-hand side of Eq. (48) and comparing the result with the right-343

hand side of Eq. (53). The derivative Σ̄(2)′(m2) is calculated analytically in Appendix A. Now we obtain for the344

one-body wave function345

ψ
(2)
1 =

√
1− g2Ī

(2)
2 . (55)

Eqs. (51) and (55) determine the normalized (and renormalized) Fock components of the scalar nucleon state vector346

in the two-body truncation.347

The two-body wave function is348

ψ
(2)j
2 (k⊥, x) =

Γ
(2)
2

sj2 −m2
=

gx(1− x)

k2
⊥ + µ2

j (1− x) +m2x2
. (56)

In contrast to the vertex function, it depends on both kinematical variables and on the index j.349

B. Renormalization Parameters350

To fix all the renormalization parameters, one should relate the bare coupling constant g02 with the physical one.351

Once the Fock components are available, the relation desired can be obtained from Eq. (47):352

g02 =
g

ψ
(2)
1

=
g√

1− g2Ī
(2)
2

. (57)
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Substituting Eq. (57) into Eq. (49), we find the mass counterterm:353

δm2
2 =

g2Σ̄(2)(m2)

1− g2Ī
(2)
2

. (58)

Then, the field strength renormalization factor defined by Eq. (31),354

Z(2)
χ =

[
1−g2

02Σ̄(2)′(m2)
]−1

= 1+g2Σ̄(2)′(m2) = 1− I(2)
2 = I

(2)
1 , (59)

as expected. In the limit of infinite PV scalar pion mass µ1 the quantities g02 and Z
(2)
χ tend to finite values, while δm2

2355

diverges logarithmically, like the self-energy Σ̄(2). The bare parameters g02 and δm2
2 defined by Eqs. (57) and (58),356

respectively, will be used as an input in the next order (N = 3) approximation.357

C. Critical coupling associated with the Landau pole358

From Eq. (57) it is seen that g2
02 considered as a function of g2 becomes singular at g2 = 1/Ī

(2)
2 . A similar singularity359

arises in the bare coupling of QED and is called the Landau pole3. The critical coupling constant α = αl associated360

with the Landau pole is determined by361

α−1
l = 16πm2Ī

(2)
2 =

1

π

∫ 1

0

dx

[
x(1− x)

(1− x)µ2/m2 + x2
− x(1− x)

(1− x)µ2
1/m

2 + x2

]
, (60)

where α relates to g by Eq. (4). If α > αl, the bare coupling constant g02 becomes imaginary. In principle, one can362

always adjust the PV scalar pion mass µ1 to make αl large enough for the mathematical self-consistency of the model.363

From physical considerations however it is evident that one has to take µ1 � m to claim that the renormalization364

procedure allows one to eliminate the regularization parameters. In the limit µ1 →∞ Eq. (60) reduces to365

αl = π

[
ξ(3− ξ2)√

4− ξ2
arctan

(√
4− ξ2

ξ

)
− 1 + (1− ξ2) log

1

ξ

]−1

, (61)

where ξ = µ/m. For µ/m = 0.14/0.94, αl ' 2.630. Above the critical coupling, the scalar Yukawa theory becomes366

ill-defined. At the same time, the threshold of the coupling constant may not be apparent in calculated observables367

within the two-body truncation, which are well-defined for arbitrary strong coupling. The critical coupling (61)368

however brings real restrictions on admitted values of α in the three-body truncation, where the renormalized Fock369

components do not exist at α > αl. We will discuss these points in more detail below.370

VI. SCALAR NUCLEON STATE VECTOR IN THE THREE-BODY (N = 3) TRUNCATION371

A. Equations for the Fock components and their solution372

The system of equations for the vertex functions in the three-body Fock space truncation (N = 3) is graphically373

shown in Fig. 6. It differs from that in the N = 2 case by the presence of three-body intermediate states which374

complicate the equations to some extent. According to the FSDR rules [6], the elementary interaction vertices inside375

full three-body states, (i.e., the vertices appearing simultaneously with a scalar pion spectator), contain the bare376

coupling constant g02 or the mass counterterm δm2
2. The interaction vertices with no pion spectator above them377

correspond to the factors g03 or δm2
3. The appearance, in different intermediate states, of the sector dependent bare378

coupling constants, either g02 or g03, and the mass counterterms, either δm2
2 or δm2

3, is the very essence of the sector379

dependent renormalization scheme.380

3 In QED, due to the Ward Identity, the renormalization of the charge entirely comes from the vacuum polarization. Our case is different:
we exclude the vacuum polarization and, because of the Fock space truncation, the coupling constant renormalization is fully caused by
the self-energy correction.
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= +
Γ
(3)
1 Γ

(3)
1 Γ

(3)
2

=

Γ
(3)
2

δm2
3 g03

δm2
2

Γ
(3)
2

g02
Γ
(3)
3

=

+

Γ
(3)
2

g02

Γ
(3)
2

+
g02

1

2

1

2

1

2Γ
(3)
3

Γ
(3)
1

+
g03

FIG. 6. System of equations for the Fock components in the three-body truncation.

When we solve the problem in the three-body truncation, the values g02 and δm2
2 are assumed to be known — they381

were obtained in the two-body truncation [see Eqs. (57) and (58)]. The new renormalization parameters g03 and δm2
3382

will be found by applying the renormalization conditions again. So, in the framework of FSDR, the refinement of383

these quantities from sector to sector is analogous to their refinement, from order to order, in perturbation theory.384

As explained in Sec. IV, we need the sector dependent renormalization scheme in order to eliminate divergences for385

any given truncation.386

Applying the rules of the LFD graph techniques, we cast the system of equations for the vertex functions in the
three-body truncation in an analytical form:

Γ
(3)
1 =

δm2
3 Γ

(3)
1

m2 −M2
+ g03

1∑
j=0

(−1)j
∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

Γ
(3)j
2 (k⊥, x)

sj2 −M2
, (62)

Γ
(3)j
2 (k⊥, x) =

g03 Γ
(2)
1

m2 −M2
+

δm2
2 Γ

(3)j
2 (k⊥, x)

(1− x)(sj2 −M2)

+g02

1∑
j′=0

(−1)j
′

1−x∫
0

dx′

2x′(1− x− x′)

∫
d2k′⊥
(2π)3

Γ
(3)jj′

3 (k⊥, x, k
′
⊥, x

′)

sjj
′

3 −M2
, (63)

Γ
(3)jj′

3 (k⊥, x, k
′
⊥, x

′) =
g02 Γ

(3)j
2 (k⊥, x)

(1− x)(sj2 −M2)
+

g02 Γ
(3)j
2 (k′⊥, x

′)

(1− x′)(s′j′2 −M2)
, (64)

where sj2 is defined by Eq. (45), s′
j′

2 is given by the same formula, changing k⊥ → k′⊥, x→ x′, and j → j′, and387

sjj
′

3 =
k2
⊥ + µ2

j

x
+
k′

2
⊥ + µ2

j′

x′
+

(k⊥ + k′⊥)2 +m2

1− x− x′ (65)

is the three-body invariant mass squared.388

As before, the mass eigenvalue M is implied to be identical to the physical nucleon mass m, i.e., the limit M → m

should be taken in Eqs. (62)–(64). The three-body vertex function Γ
(3)
3 is expressed through the two-body vertex.

Therefore, it can be excluded by substituting Eq. (64) into Eq. (63). The corresponding analytical expression reads

[
1− g2

02Σ̄(2)(`2)−δm2
2

`2 −m2

]
Γ

(3)j
2 (k⊥, x) = g03ψ

(3)
1 + g2

02

1∑
j′=0

(−1)j
′

1−x∫
0

dx′

2x′(1− x′)(1− x− x′)

∫
d2k′⊥
(2π)3

× Γ
(3)j′

2 (k′⊥, x
′)

(s′j
′

2 −m2)(sjj
′

3 −m2)
. (66)
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=

Γ
(3)
2

+

g02
Γ
(3)
2

δm2
2

Γ
(3)
2g02

Γ
(3)
2

Γ
(3)
1

+
g03

+

g02

g02

FIG. 7. Equation for the two-body component after the exclusion of the three-body component.

where `2 = m2− (1− x)(sj2 −m2). The term proportional to the self-energy Σ̄(2)(`2) is generated by the substitution389

of the first addendum on the right-hand side of Eq. (64) into the integral term of Eq. (63). Indeed, the result of this390

substitution has the form391

g2
02Γ

(3)j
2 (k⊥, x)

(1− x)(sj2 −m2)

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′

2x′(1− x− x′)

∫
d2k′⊥
(2π)3

1

sjj
′

3 −m2
. (67)

Making the sequential change of the integration variables x′ → (1− x)x′ and then k′⊥ → k′⊥ − x′k⊥, we can cast the392

expression (67) in the form393

g2
02Γ

(3)j
2 (k⊥, x)

(1− x)(sj2 −m2)

1∑
j′=0

(−1)j
′
∫ 1

0

dx′

2x′(1− x′)

∫
d2k′⊥
(2π)3

1

s′j
′

2 − `2
=
g2

02Γ
(3)j
2 (k⊥, x)Σ̄(2)(`2)

`2 −m2
, (68)

as follows from Eq. (48) and the definition of the quantity `2. The latter is nothing else than the square of the394

off-shell four-momentum of the constituent scalar nucleon in the two-body state: `2 = (p−k2)2, where k2 is the scalar395

pion spectator four-momentum. Note that both the self-energy g2
02Σ̄(2)(`2) and the mass counterterm δm2

2 diverge396

logarithmically at large mass µ1 of the PV scalar pion, but their combination397

g2
02Σ̄(2)(`2)−δm2

2 = g2
02

[
Σ̄(2)(`2)− Σ̄(2)(m2)

]
(69)

entering into Eq. (66) is finite in this limit, provided `2 is of order of physical masses squared. This cancellation of398

divergent terms is just an important feature of FSDR. The equation (66) determining the two-body vertex function399

Γ
(3)j
2 (k⊥, x) in the three-body truncation is a three-body counterpart of Eq. (47). When k⊥ → ∞, it turns into400

Γ
(3)j
2 → g03ψ

(3)
1 , which differs from Γ

(2)j
2 by the replacement of the index pointing out the order of truncation.401

The substitution of Eq. (64) into Eq. (63), which has been done analytically, could be realized diagrammatically as402

well. In such a way, we would obtain the graphical equation for the two-body vertex function, shown in Fig. 7. Using403

the LFD graph techniques rules leads to the same analytical equation (66).404405

Now we make use of Eqs. (57), (54), and (58) in order to get rid of the second order bare parameters g02 and δm2
2406

in Eq. (66). After simple transformations, we arrive at the following equation407

[
1− g2Σ̄

(2)
r (`2)

`2 −m2

]
Γ

(3)j
2 (k⊥, x) = g03ψ

(3)
1

[
1− g2Ī

(2)
2

]
+
g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥ V

jj′(k⊥, x, k
′
⊥, x

′)Γ
(3)j′

2 (k′⊥, x
′),

(70)

where408

Σ̄(2)
r (`2) = Σ̄(2)(`2)− Σ̄(2)(m2)− Σ̄(2)′(m2)(`2 −m2) (71)
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is the renormalized scalar nucleon self-energy in the two-body truncation, its argument409

`2 = −k
2
⊥
x

+ (1− x)m2 − µ2
j

(
1− x
x

)
, (72)

and410

V jj
′
(k⊥, x, k

′
⊥, x

′) =
1

2πx′(1− x′)(1− x− x′)(s′j′2 −m2)

∫ 2π

0

dφ′

sjj
′

3 −m2

=
1

k′2⊥ + µ2
j′(1− x′) +m2x′2

×

(1− x− x′)2

(
k2
⊥ + µ2

j

x
+
k′

2
⊥ + µ2

j′

x′
+
k2
⊥ + k′

2
⊥ +m2

1− x− x′ −m2

)2

− 4k2
⊥k
′2
⊥

−1/2

. (73)

The integration over the azimuthal angle φ′ has been done analytically by using the formula411

2π∫
0

dφ′

A+B cosφ′
=

2π√
A2 −B2

, (A2 > B2). (74)

Eq. (70) contains the undefined bare coupling constant g03. To fix it, one should apply the renormalization condi-412

tion (42) which now becomes413

Γ
(3)j=0
2 (k∗⊥(x), x) = g

√
I

(2)
1 = g

√
1− g2Ī

(2)
2 (75)

with k∗⊥(x) given by Eq. (35). We thus set k⊥ = k∗⊥(x) and j = 0 on both sides of Eq. (70) and demand the
condition (75) to hold for arbitrary 0 ≤ x ≤ 1. The argument of the self-energy `2 turns into m2 at the renormalization
point. Taking into account that

Σ̄(2)
r (`2)

`2→m2

∼ (`2 −m2)2,

we get414

g03ψ
(3)
1 =

[
1− g2Ī

(2)
2

]−1

×

g√1− g2Ī
(2)
2 − g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥ V

0j′(k∗⊥(x), x, k′⊥, x
′)Γ

(3)j′

2 (k′⊥, x
′)

 . (76)

An immediate observation is that the right-hand side of Eq. (76) depends on the longitudinal momentum fraction of415

the scalar pion x. Therefore, we allow g03 to depend on x in order to satisfy the condition Eq. (75) for any value of x416

[7] (see the detailed discussion below, in Sec. VIII). Substituting the combination g03ψ
(3)
1 back into Eq. (70), we find417

a closed renormalized equation for the two-body vertex function:418 [
1− g2Σ̄

(2)
r (`2)

`2 −m2

]
Γ

(3)j
2 (k⊥, x) = g

√
1− g2Ī

(2)
2

+
g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥∆V jj

′
(k⊥, x, k

′
⊥, x

′)Γ
(3)j′

2 (k′⊥, x
′),

(77)

where419

∆V jj
′
(k⊥, x, k

′
⊥, x

′) = V jj
′
(k⊥, x, k

′
⊥, x

′)− V 0j′(k∗⊥(x), x, k′⊥, x
′). (78)
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In fact, Eq. (77) is a system of two inhomogeneous linear integral equations for the two components of Γ
(3)j
2 (i.e., those420

with j = 0 and j = 1). These equations are fully nonperturbative. On solving them, we obtain a properly normalized421

two-body vertex function Γ
(3)j
2 (k⊥, x). Eq. (64) taken for M = m uniquely determines the three-body vertex function422

Γ
(3)jj′

3 (k⊥, x, k
′
⊥, x

′) in terms of the two-body vertex function. The one-body wave function ψ
(3)
1 is then found from423

the normalization condition for the whole state vector:424

ψ
(3)
1 =

√
I

(3)
1 =

√
1− I(3)

2 − I(3)
3 , (79)

where the two- and three-body Fock sector norms are calculated according to Eq. (40) with N = 3, taking into account425

PV particle contributions:426

I
(3)
2 =

1∫
0

dx

2x(1− x)

∫
d2k⊥
(2π)3

1∑
j=0

(−1)j

[
Γ

(3)j
2 (k⊥, x)

sj2 −m2

]2

, (80)

I
(3)
3 =

1

2

1∫
0

dx

2x

∫
d2k⊥
(2π)3

1−x∫
0

dx′

2x′(1− x− x′)

∫
d2k′⊥
(2π)3

1∑
j,j′=0

(−1)j+j
′

[
Γ

(3)jj′

3 (k⊥, x, k
′
⊥, x

′)

sjj
′

3 −m2

]2

. (81)

We emphasize that all Fock components of the scalar nucleon state vector in the three-body truncation can be427

calculated without any reference to Eq. (62) which determines the mass counterterm δm2
3. Together with the bare428

coupling constant g03, it will be needed in higher order (N ≥ 4) truncations only. This feature reflects a general429

property of FSDR: the highest order bare parameters g0N and δm2
N found in the N -body truncation are actually430

needed, starting from the (N + 1)-body truncation.431

If we restrict our consideration of the scalar Yukawa model to calculations of observables inside the three-body432

approximation, we may completely get rid of PV particles, assuming the limit µ1 →∞. Once logarithmic divergences433

coming from the self-energy and the mass counterterm are mutually canceled in their combination (69), one can434

take the limit µ1 → ∞ directly in Eq. (77) by omitting all contributions with either j = 1 or j′ = 1. The reason435

is that the kernel V 00, Eq. (73) at j = j′ = 0, does not produce new divergences requiring regularization by PV436

particles. This does not mean that we would automatically get Γ
(3)j=1
2 = 0 in the limit µ1 →∞. The PV components437

of the vertex functions may tend to a finite nonzero limit, but they do not affect the physical components or the438

calculated observables, or the Fock sector norms (79)–(81). This statement relates to both the two- and three-body439

vertices and reasonably simplifies subsequent numerical calculations. Note that in the spinor Yukawa model, where440

divergences are stronger, such a procedure does not work and one has to retain PV particle contributions till the end441

of calculations [7, 16].442

The inhomogeneous linear integral equation (77) was solved numerically for various values of the physical coupling443

constant α defined by Eq. (4) and the physical particle masses m = 0.94 and µ = 0.14. To find the solution we444

employ an iterative method. We first approximate the integrals by using Gauss-Legendre quadratures. We start with445

an educated guess for Γ
(3)j
2 and substitute it onto the right-hand side of Eq. (77). We solve for Γ

(3)j
2 on the left-hand446

side on the quadrature grid, interpolating as needed. The obtained Γ
(3)j
2 then serves as the input for the next round447

of iterations. We update Γ
(3)j
2 until the point-by-point total deviation is sufficiently small.448

Representative solutions for Γ
(3)j=0
2 (k⊥, x) are shown in Fig. 8. We removed the PV mass by taking the limit449

µ1 →∞. 4 The curves in Fig. 8 reflect typical behavior of Γ
(3)j=0
2 (k⊥, x) as a function of its arguments.450451

Our calculations distinctly indicate that the physical coupling constant α cannot be taken arbitrarily large. If we452

fix x and consider Γ
(3)j=0
2 as a function of k⊥, its limiting (k⊥ → ∞) value rapidly increases in magnitude with the453

increase of α. The same happens in the limit x → 0 at fixed k⊥. At certain α = αc it seems that Γ
(3)j=0
2 becomes454

unbounded. Further increase of α leads to the absence of stable numerical solutions of Eq. (77). Numerical estimations455

give αc ' 2.630. In the next section we will explain the reason why the critical coupling appears in the given physical456

model and calculate αc exactly.457

4 The limiting solution for Γ
(3)j=0
2 is sufficient for calculations within the three-body Fock space truncation, but the solution with a finite

PV mass is useful in the four-body truncation, where the PV mass cannot be easily removed.
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FIG. 8. The vertex function Γ
(3)j=0
2 (k⊥, x) as a function of x at fixed k⊥ (left panel), and as a function of k⊥ at fixed x (right

panel), calculated in the three-body truncation for several values of the physical coupling constant α. The PV mass has been
removed by taking the limit µ1 →∞.
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FIG. 9. Fock sector norms in the three-body truncation as a function of the physical coupling constant α.

To estimate relative contributions of different Fock sectors to the full state vector norm, we calculated the corre-458

sponding sector norms as a function of the coupling constant which varies from zero up to the critical value. The459

results are presented in Fig. 9. One observes that the one-body sector always dominates, though its contribution460

monotonically decreases with the increase of the coupling constant. The behavior of the two-body sector contribution461

looks nontrivial: it increases to a maximum and then decreases as a function of the coupling constant. The three-body462

sector contribution increases monotonically, but it does not reach the value of the one-body sector contribution.463
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FIG. 10. Ratio g03(x)/m as a function of x for a few values of α.

B. Renormalization Parameters464

Having found Γ
(3)j
2 (k⊥, x) and ψ

(3)
1 , we can calculate the bare coupling constant g03 =g03(x) from Eq. (76):465

g03(x) =
1√
I

(3)
1

 g√
1− g2Ī

(2)
2

− g2

8π2
[
1− g2Ī

(2)
2

] 1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′ x′
∫ ∞

0

k′⊥dk
′
⊥

k′2⊥ + µ2
j′(1− x′) +m2x′2

× Γ
(3)j′

2 (k′⊥, x
′)√

[k′2⊥(1− x) +m2x′2(1 + x)− µ2x′2 + µ2
j′(1− x− x′)]2 + 4k′2⊥[m2x2 + µ2(1− x)]x′2

 . (82)

Note that the integrand in Eq. (82) is not singular even without PV regularization and the term with j′ = 1 in the sum466

vanishes in the limit µ1 → ∞. Therefore, g03(x) does not contain divergences. As outlined above, it does explicitly467

depend on x.468

In Fig. 10 we show the dependence of g03, in units m, on the kinematical variable x for several values of the469

physical coupling constant α. If rotational symmetry was not broken by the Fock space truncation, g03 would be a470

true constant independent of x. As is seen from Fig. 10, this is not the case: g03 depends on x; the larger the value471

of α the stronger is the x-dependence. Such a property is a price we pay to have the renormalization condition (75)472

satisfied for arbitrary x. The question of x-dependence of g03 is discussed below in a special Sec. VIII.473

Similarly, the three-body mass counterterm δm2
3 can be found from Eq. (62) in the limit M → m, taking into474

account the x-dependence of g03:475

δm2
3 = − 1

8π2

√
I

(3)
1

1∑
j=0

(−1)j
∫ 1

0

dx g03(x)

∫ ∞
0

dk⊥ k⊥
Γ

(3)j
2 (k⊥, x)

k2
⊥ + µ2

j (1− x) +m2x2
. (83)

In contrast to g03(x), the mass counterterm δm2
3 is a true constant independent of kinematical variables. If µ1 →∞,476

δm2
3 diverges like log(µ1/m), i.e., one cannot avoid PV particle contributions, when calculating it.477

A question may arise, why one should insert g03(x) into the integrand in Eq. (83), rather than to leave it as a478

free factor [like it appears originally in Eq. (62)], making δm2
3 to be x-dependent as well. An answer can not be479

found in the framework of the three-body Fock space truncation, and the above recipe appears as an ansatz. The480

rule is however justified in the four-body truncation [8, 9], where g03(x) and δm2
3 are necessary to calculate the Fock481
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components. It can be easily seen that g03(x) enters into amplitudes of light-front diagrams constructed according to482

the FSDR requirements, being integrated over dx.483

It is instructive to consider not only the mass counterterm δm2
3, but also the three-body self-energy [cf. Eq. (48)]:484

Σ(3)(p2) = − 1√
I

(3)
1

1∑
j=0

(−1)j
∫ 1

0

dx g03(x)

2x(1− x)

∫
d2k⊥
(2π)3

Γ
(3)j
2 (k⊥, x; p2)

sj2 − p2
(84)

with δm2
3 = Σ(3)(m2). Γ

(3)j
2 (k⊥, x; p2) is the fully off-energy-shell two-body vertex function, i.e., that introduced in485

Eq. (28) with M2 = p2 6= m2. It satisfies the same integral equation (63), changing M2 to p2, with the renormalization486

condition Γ
(3)j=0
2 (k∗⊥(x), x;m2) = g

√
I

(3)
1 . After simple transformations, fully analogous to those made above, one487

can derive the following renormalized equation for it:488 [
1− g2Σ̄

(2)
r (`2p)

`2p −m2

]
Γ

(3)j
2 (k⊥, x; p2) = g

√
1− g2Ī

(2)
2

+
g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥

×
[
V jj

′
(k⊥, x, k

′
⊥, x

′; p2)Γ
(3)j′

2 (k′⊥, x
′; p2)

−V 0j′(k∗⊥(x), x, k′⊥, x
′;m2)Γ

(3)j′

2 (k′⊥, x
′;m2)

]
, (85)

where `2p = −k
2
⊥
x + p2(1− x)− µ2

j

(
1−x
x

)
and489

V jj
′
(k⊥, x, k

′
⊥, x

′; p2) =
1

k′2⊥ + µ2
j′(1− x′) +m2x′ − p2x′(1− x′)

×

(1− x− x′)2

(
k2
⊥ + µ2

j

x
+
k′

2
⊥ + µ2

j′

x′
+
k2
⊥ + k′

2
⊥ +m2

1− x− x′ − p2

)2

− 4k2
⊥k
′2
⊥

−1/2

.

(86)

The derivative Σ(3)′(m2) is related to the field strength renormalization factor490

Z(3)
χ =

[
1−Σ(3)′(m2)

]−1

. (87)

In spite of both Σ(3)(p2) and Γ
(3)j
2 (k⊥, x; p2) having a three-body “origin”, they are actually not needed within the491

three-body truncation, like δm2
3 and g03. So, without going beyond the N = 3 case, one may ignore the properties of492

these off-shell quantities. The latter quantities however naturally appear, when finding the Fock components in the493

four-body truncation, where they affect the calculated results in full measure. In particular, the fully off-energy-shell494

two-body vertex function Γ
(3)j
2 (k⊥, x; p2) is a source of the critical value of the coupling constant for N = 4. This495

point is discussed in more detail in the next section.496497

The comparison of the calculated value of the field strength renormalization factor Z
(3)
χ with the one-body normal-498

ization integral I
(3)
1 serves as an additional test of our numerical computations. As is seen from Fig. 11, these two499

quantities do coincide with each other within the numerical precision.500

C. Critical coupling501

The parameters entering into the linear integral equation (77) — the coupling constant g and the particle masses502

— should be chosen to allow a physically proper solution for the two-body vertex function. We will not perform here503
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FIG. 11. Comparison of the one-body norm I
(3)
1 and the field strength renormalization factor Z

(3)
χ . Nrad and Nlfx are,

respectively, the numbers of Gaussian integration nodes in the variables k⊥ and x. I
(3)
1 is obtained from the wave function

normalization, Eq. (79). Z
(3)
χ is obtained from the self-energy (84) by means of Eq. (87). These two quantities agree within the

numerical precision. The dashed lines mark the positions of the critical coupling constants αnr
c ' 2.190 (see Sec. VI C below)

and αc ' 2.630.

the full analysis, but study the behavior of Γ
(3)j
2 as a function of g for fixed values of the particle masses m and µ.504

Some of our conclusions can be proven analytically, while we will rely on the results of numerical computations for505

the remainder.506

For simplicity, we consider the case of an infinite PV mass µ1. As discussed above, this limit is reached by omitting507

the term with j′ = 1 in the sum in Eq. (77). We thus obtain a single linear integral equation for Γ
(3)j=0
2 (k⊥, x) which508

we will denote here simply Γ2, for brevity. Then we represent Eq. (77) in the following operator form:509

Γ2 = f + ÂΓ2, (88)

where f = g

√
1− g2Ī

(2)
2 is the inhomogeneous part, and the operator Â is represented as a sum of the two contributions510

Â = Â′ + K̂, (89)

where511

Â′Γ2 = F(`2)Γ
(3)j=0
2 (k⊥, x), (90)

K̂Γ2 =
g2

8π2

∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥∆V 00(k⊥, x, k

′
⊥, x

′)Γ
(3)j=0
2 (k′⊥, x

′), (91)

collect, respectively, all nonintegral and integral terms coming from the interaction in the three-body states. The512

function513

F(`2)≡g
2Σ̄

(2)
r (`2)

`2 −m2
, (92)

where `2 is given by Eq. (72) with j = 0, is generated by the scalar nucleon self-energy. The formal solution of514

Eq. (88), which can be written as Γ2 = (1 − Â)−1f , is regular, if the operator (1 − Â) is nonsingular. To find out515

conditions when this is satisfied, we consider a more general eigenvalue problem for the operator Â:516

λΓ2 = ÂΓ2. (93)

Varying the physical coupling constant, we can trace the behavior of the eigenvalues λ. As soon as we encounter at517

least one eigenvalue λ = 1, the solution of Eq. (88) becomes singular.518
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FIG. 12. Eigenvalue spectrum of Eq. (93) as a function of the physical coupling constant α. The cross-hatched region represents
the continuous part of the spectrum, while λ0 is a discrete eigenvalue.

For numerical analysis, we represent the operator Â in a matrix form. It can be achieved by discretizing the integrals519

in Eq. (91) by means of the Gaussian procedure. The same is done for the operator Â′ which is reduced to a diagonal520

matrix. We thus approximate the operator Â by a finite nA × nA matrix with the dimension nA = nknx, where nk521

and nx are the numbers of the integration nodes in the variables k′⊥ and x′, respectively. After this transformation,522

we calculate all the nA eigenvalues λ. Gradually increasing nA, we analyze the spectrum each time till the eigenvalues523

which are interesting for us become stable.524

It is more convenient to work with the dimensionless coupling constant α related to g2 by Eq. (4). Evidently, at525

α = 0 we have a trivial result Â = 0 and the only eigenvalue is λ = 0. Once α starts increasing, the eigenvalues are526

concentrated in a region of a finite size. We are interested in the maximal real eigenvalue λmax. Varying α, we get a527

function λmax(α). The minimal positive root of the equation λmax(α) = 1 just gives the critical coupling constant αc.528

The calculated spectrum includes one discrete eigenvalue λ0(α) and a set of (nA−1) eigenvalues distributed, almost529

uniformly, in the interval530

λmin(α) < λ < λmax(α). (94)

λ0(α) is always negative and therefore has no relation to the critical coupling. Note that all the three functions531

λ0(α), λmin(α), and λmax(α) are very stable as nA increases, while the density of λ’s between λmin(α) and λmax(α)532

grows. This provides a hint that the exact spectrum consists of two parts: a discrete one including the only eigenvalue533

λ0(α) plus a continuous one given by the interval [λmin(α), λmax(α)]. The results of the numerical calculation of the534

spectrum for m = 0.94 and µ = 0.14 are shown in Fig. 12. Note that the functions λ0(α), λmin(α), and λmax(α) are535

linear, because the operator Â is proportional to α. The relative computational precision is about 10−5, corresponding536

to nA ∼ 104. When α increases, λmax(α) reaches unity at α = αc ' 2.630.537538

Our calculation revealed an interesting fact: the continuous part (94) of the spectrum is insensitive to the integral539

part (91) of the operator Â. In other words, if we calculate the eigenvalue spectrum of Â′ by means of the matrix540

equation541

λ′Γ′2 = Â′Γ′2, (95)

then we see that all nA eigenvalues are confined into an interval with the same boundaries λmin(α) and λmax(α), in542

spite of the fact that the eigenvectors Γ2 and Γ′2 are different. The coincidence of the continuous parts of the spectra543
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λ and λ′ is not caused by chance but originates from some common property of Eqs. (93) and (95), which will be clear544

now. The merit of Eq. (95) consists in that it can be trivially solved analytically. Indeed, because of the diagonal545

form of the matrix Â′ the eigenvalues λ′ are simply the values of the function F(`2) at the node points. If nA →∞,546

the spectrum becomes continuous:547

λmin(α) < λ′ < λmax(α), (96)

where548

λmin(α) = min`2F(`2), (97)

λmax(α) = max`2F(`2). (98)

It is easy to check that for 0 ≤ k⊥ <∞ and 0 ≤ x ≤ 1 we have −∞ < `2 ≤ (m− µ)2.549

The condition (96) has very simple meaning. It means that there always exists such a point (k⊥, x) where the550

solution of the inhomogeneous equation551

λ′Γ′2 = f + Â′Γ′2, (99)

which is552

Γ′2 =
f

λ′ −F(`2)
, (100)

becomes singular. The corresponding equation with the whole operator Â, Eq. (89),553

λΓ2 = f + ÂΓ2, (101)

which is a generalization of our initial equation (88), can not be solved in a similar trivial way, but its formal “solution”554

can be written555

Γ2 =
f + K̂Γ2

λ−F(`2)
. (102)

Both expressions on the right-hand sides of Eqs. (100) and (102) have denominators of the same type. Assume we556

take some value λ inside the interval (94) with the boundaries defined by Eqs. (97) and (98). Then the equation557

F(`2) = λ determines a point `2 [or a set of points (k⊥, x)] where the denominator in Eq. (102) vanishes. The solution558

is singular, unless559

K̂Γ2 = −f (103)

at the same point. As our analysis shows, this condition is not satisfied. Hence, the stability of the solution of Eq. (77)560

relates to the function F(`2) only. The critical coupling constant is derived from the equation561

max`2F(`2) = 1, (104)

where −∞ < `2 ≤ (m− µ)2. To find the maximum, we make use of the explicit form of F(`2):

F(`2) = −g2Σ̄(2)′(m2) + g2 Σ̄(2)(`2)− Σ̄(2)(m2)

`2 −m2
.

Since Σ̄(2)′(`2)<0 [this is distinctly seen, e.g., from Eq. (48)], the difference Σ̄(2)(`2) − Σ̄(2)(m2) is always positive,
while the difference `2 −m2 is negative. So, the quantity [Σ̄(2)(`2) − Σ̄(2)(m2)]/(`2 −m2) is negative. Its maximal
(asymptotic) value equals zero, being achieved at `2 → −∞. Hence,

max`2F(`2) = −g2Σ̄(2)′(m2)

and562

αc = −
[
16πm2Σ̄(2)′(m2)

]−1

. (105)
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Substituting here the explicit form (A8) of the derivative of the self-energy, it is easy to see that αc is identical to the563

critical coupling constant αl associated with the Landau pole (61). For m = 0.94 and µ = 0.14 we obtain αc ' 2.630,564

in full agreement with the value found numerically.565

Note that αl naturally appears within the two-body approximation, where it nevertheless does not impose any566

restrictions on the calculated renormalized Fock components. In the three-body case discussed here it appears again567

but now it substantially affects the behavior of the Fock components. Indeed, for coupling constants above αc the568

equation (77) has no physically acceptable solutions. An attempt to calculate the vertex functions numerically for569

α > αc fails: the calculated results oscillate strongly, when the number of integration nodes nA increases, without570

any tendency to converge. At α = αc the solution of Eq. (77) is stable.571

We emphasize that the result αc = αl obtained above should be considered as a feature of the Yukawa model572

rather than a fundamental property of FSDR in the given approximation. The value of the critical coupling constant573

depends on the particular form of the interaction and can hardly be predicted before analyzing the equations for the574

Fock components. Indeed, the full eigenvalue spectrum of the equation (93) is determined by the behavior of the575

self-energy Σ̄(2) and the kernel ∆V as a function of their arguments. In the Yukawa model, the integral part (91) of the576

operator Â generates the only eigenvalue λ0(α) [in addition to the continuous spectrum governed by the self-energy577

contribution (90)] having no influence on the stability of the solution. As a result, αc is fully determined by the578

two-body self-energy, which just makes αc identical to αl. For another dynamical model, different from the Yukawa579

model, the situation may be different.580

Going over to a finite PV particle mass does not change the qualitative conclusions, but the numerical value of the581

critical coupling constant increases. This is not surprising due the fact that each PV subtraction effectively reduces582

the interaction strength. So, the case µ1 →∞ analyzed above brings the tightest limitations on admissible values of583

the coupling constant.584

We thus establish that the solution of the renormalized equation (77) is nonsingular at α ≤ αc. This statement585

however does not concern the initial, nonrenormalized, equation (70), if the inhomogeneous part g03ψ
(3)
1 [1− g2Ī

(2)
2 ] is586

considered as a free parameter (or an independent function of kinematical variables). Numerical computations show587

that its solution becomes singular at a lower value of the coupling constant α = αnr
c , where αnr

c < αc. The new588

critical coupling constant now essentially depends on the kernel V of the integral term in Eq. (70). If we perform the589

eigenvalue analysis of Eq. (70) (more precisely, of the corresponding homogeneous equation), we will see the following.590

The self-energy contribution which is the same as in the renormalized equation (77) generates the continuous part of591

the eigenvalue spectrum (94), as previously, but the discrete eigenvalue λ0(α) now is different from that found for the592

renormalized equation. Moreover, it is positive and always exceeds the upper boundary of the continuous spectrum593

λmax(α), in contrast to the situation shown in Fig. 12. The critical coupling constant αnr
c is found as a root of the594

equation λ0(αnr
c ) = 1. Numerical calculations performed for m = 0.94, µ = 0.14, and an infinite PV mass µ1 give595

αnr
c ' 2.190. One may conclude that the renormalization removes the singularity of the solution for the two-body596

vertex function, which appears in the original nonrenormalized equation at α = αnr
c .597

Considering the renormalized equation (85) for the fully off-energy-shell two-body vertex Γ
(3)j
2 (k⊥, x; p2), we en-598

counter a critical coupling constant α = αoff
c (p2), depending on p2, which makes Γ

(3)j
2 (k⊥, x; p2) singular. This599

singularity exists only if p2 6= m2. On the mass shell, when we take p2 = m2, the singularity of Γ
(3)j
2 (k⊥, x;m2) vs. α600

is absent. Without discussing all technical details, we briefly explain below the origin of αoff
c (p2) and reveal its role in601

the calculation of Fock components within the FSDR scheme.602

Eq. (85) can be solved in two steps. First, we pay attention that setting p2 = m2 returns us to the renormalized603

equation (77), because Γ
(3)j
2 (k⊥, x;m2) ≡ Γ

(3)j
2 (k⊥, x). In the second step, on finding the latter function, we can604

reduce Eq. (85) to605

[
1− g2Σ̄

(2)
r (`2p)

`2p −m2

]
Γ

(3)j
2 (k⊥, x; p2) = G0(x) +

g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′

×
∫ ∞

0

dk′⊥ k
′
⊥V

jj′(k⊥, x, k
′
⊥, x

′; p2)Γ
(3)j′

2 (k′⊥, x
′; p2), (106)
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where the inhomogeneous part given by606

G0(x) = g

√
1− g2Ī

(2)
2 − g2

8π2

1∑
j′=0

(−1)j
′
∫ 1−x

0

dx′
∫ ∞

0

dk′⊥ k
′
⊥V

0j′(k∗⊥(x), x, k′⊥, x
′;m2)Γ

(3)j′

2 (k′⊥, x
′;m2) (107)

is already known. As advocated above, the function Γ
(3)j
2 (k⊥, x;m2) is nonsingular at α ≤ αc. Under this condition,607

the function G0(x) is also a finite quantity. Eq. (106) now has the same shape as the nonrenormalized equation (70)608

for the half-off-shell two-body vertex function Γ
(3)j
2 (k⊥, x), excepting the fact that the kernel parametrically depends609

on p2. Applying the same eigenvalue analysis, as for Eq. (70) above, we calculate the critical coupling constants610

αoff
c (p2). Note that611

αnr
c = αoff

c (m2). (108)

The right-hand side of Eq. (108) should be understood as a limit αoff
c (p2 → m2), because at p2 = m2, as has been612

mentioned above, the two-body vertex function is smooth, even at α = αoff
c (m2). Then, since the critical coupling613

constant αc defined by Eq. (105) always exists for any of Eqs. (70), (77), and (85), the coupling constant αoff
c (p2)614

brings new information, only if αoff
c (p2) < αc. We emphasize that if α ≤ αc and α 6= αoff

c (p2), the solutions of615

Eqs. (70), (77), and (85) are nonsingular.616

The critical coupling constants considered above may generate some peculiarities in α-dependence of numerically617

calculated quantities, especially when using rough computational grids. Indeed, while the exact result is nonsingular,618

the cancellation of pole contributions may not occur in full measure, due to approximate character of numerical619

calculations. For instance, sharp behavior of the field strength renormalization factor Z
(3)
χ in the vicinity of the point620

α = αnr
c = 2.190 for a relatively small number of Gaussian integration nodes (see Fig. 11) is a probable manifestation621

of this effect.622

The situation with the simultaneous existence of several types of critical coupling constants looks, at first glance,623

rather confusing. In order to make it more transparent, in Appendix B we discuss an explicitly solvable toy model which624

mimics relevant features of the scalar Yukawa model in the three-body truncation. This illustrates our conclusions in625

a very simple and clear manner.626

Within the three-body truncation, all calculated observables are expressed through the renormalized two-body Fock627

component found for p2 = m2, while the fully off-shell two-body Fock component Γ
(3)j
2 (k⊥, x; p2) with p2 6= m2 is628

not needed for this purpose. Thus, it may seem that a set of critical constants αoff
c (p2) is a sort of peculiarity having629

no relation to practical computations of physical quantities, while all actual restrictions imposed on the value of the630

coupling constant reduces to the requirement α ≤ αc. The importance of the function Γ
(3)j
2 (k⊥, x; p2) becomes evident631

as one goes to the four-body truncation, where the former enters, as an internal block, into the system of equations632

for the Fock components [8]. In this sense, the fully off-shell two-body vertex function serves as a “bridge” between633

the three- and four-body truncations. Respectively, the critical coupling constants αoff
c (p2) propagate, together with634

Γ
(3)j
2 (k⊥, x; p2), to the four-body problem as well. The parameter p2 in the four-body truncation varies continuously635

from −∞ up to (m− µ)2. Our computations for m = 0.94, µ = 0.14, and an infinite PV mass µ1 show that αoff
c (p2)636

is a decreasing function of p2. It reaches its minimal value at the maximal available p2, i.e., p2 = (m−µ)2. Hence, in637

the four-body truncation, one may expect the critical coupling constant to be not greater than αoff
c ((m−µ)2) ' 2.382.638

At the same time, one cannot exclude the possibility of appearance of a new, purely “four-body”, critical coupling639

constant. Numerical estimations [8, 9] based on an iterative procedure show that the iterations stop converging at640

α about 2.14 or larger. Exact calculation of the critical coupling constant in the four-body truncation however goes641

beyond the scope of the present paper. The above example with the hierarchy of the critical coupling constants is642

given to demonstrate that some of them originated from a given order truncation as mathematical peculiarities may643

then propagate to higher order truncations and then introduce further physical restrictions on the parameters of the644

model.645

VII. CALCULATION OF THE ELECTROMAGNETIC FORM FACTOR646

Form factors are fundamental for the study of hadron structures. They are defined from the electromagnetic vertex647

(EMV) Gρ(p, p′) which is expressed through the matrix element of the current operator Ĵρem(x):648

Gρ(p, p′) = e0〈p′|Ĵρem(0)|p〉, (109)
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FIG. 13. n-body electromagnetic vertex in the truncation of order N . The dashed line corresponds to a photon. The nucleon-
photon interaction vertex is given by e0(N−n+1)(k1 + k′1)ρ.

where p and p′ are the initial and final particle four-momenta, e0 is the bare electromagnetic coupling constant, and649

ρ is an arbitrary Lorentz index. The bra and ket vectors here are the same as the state vectors φ†(p′) and φ(p),650

respectively. The elastic electromagnetic form factor F (Q2) for a scalar particle is defined as651

Gρ(p, p′) = e(p+ p′)ρF (Q2), (110)

where e is the physical electromagnetic coupling constant (physical charge), Q2 = −q2, q = p′ − p is the four-652

momentum transfer. The necessity to distinguish the physical and bare electromagnetic coupling constants follows653

from the fact that the elementary electromagnetic vertex, generally speaking, is renormalized due to its “dressing” by654

scalar pion lines. The standard renormalization condition known from QED demands that the renormalized EMV at655

zero momentum transfer must coincide with that for the free particle:656

Gρ(p, p) = 2epρ. (111)

This condition yields a relation between e0 and e.657

The structure of the EMV (110) is a consequence of general physical symmetries of the interaction. In approximate658

nonperturbative calculations in the framework of LFD these symmetries may be broken because of the rotational659

symmetry violation. This fact may lead to appearance, in the EMV, of nonphysical contributions explicitly depending660

on the light front orientation [18]. In the spinless case the problem is however absent for the plus-component of the661

EMV, provided an additional requirement q+ = 0 is imposed on the momentum transfer. After that, the form factor662

can be expressed through the EMV by663

eF (Q2) =
G+(p, p′)

2p+
. (112)

The renormalization condition (111) is implied to refer to the plus-component of the EMV as well. With Eq. (112),664

it can be written in a very simple form665

F (0) = 1. (113)

With the Fock representation of the state vector in N -body truncated Fock space, the total EMV is a sum of n-body
contributions (n = 1, 2, . . . , N) shown in Fig. 13. According to the FSDR rules, the bare electromagnetic coupling
constant e0 must be a sector-dependent quantity

e0 → e0l, (l = 1, 2, . . . , N),

similar to the bare coupling constant g0 which determines the interaction between the constituents of the state vector666

[see Eq. (29)]. However, in contrast to g0 treated nonperturbatively, e0 is considered as being small, so that the EMV667

is calculated in the leading order in e0 (at the same time, the renormalization of e0 due to its “dressing” by scalar668

pion lines is nonperturbative!). Then, since e0 has no relation to the interactions “inside” the state vector, we will669

refer to it as an external bare coupling constant [6]. Now the photon as an external particle should be excluded from670

the particle counting, and the Fock sector content is fully determined by the number of scalar pion-spectators plus671

one scalar nucleon. We thus have the following rule to calculate the index l for the n-body Fock sector: l = N − ns,672

where ns = n−1 is the number of pion-spectators. The lowest order external bare coupling constant e01 = e, because673

the trivial case N = 1 describes the interaction of a photon with a point-like scalar nucleon.674675
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Applying the LFD graph techniques rules to the diagram in Fig. 13 and using Eq. (110), we obtain for the form676

factor within the N -body Fock space truncation:677

eF (N)(Q2) =

N∑
n=1

e0(N−n+1)F
(N)
n (Q2), (114)

where678

F (N)
n (Q2) =

2

(2π)3(n−1)(n− 1)!

∫ n∏
i=1

d2ki⊥dxi
2xi

×
[

Γ
(N)
n (k2⊥, x2, . . . ,kn⊥, xn)Γ

(N)
n (k′2⊥, x2, . . . ,k

′
n⊥, xn)

(sn −m2)(s′n −m2)

]
δ(2)

(
n∑
i=1

ki⊥

)
δ

(
n∑
i=1

xi − 1

)
.

(115)

The primed transverse momenta are defined as

k′i⊥ = ki⊥ − xiq⊥,

s′n is given by Eq. (27), changing ki⊥ by k′i⊥. Note that, due to the condition q+ = 0, we have Q2 = q2
⊥. Comparison679

of Eqs. (115) and (40) gives680

F (N)
n (0) = I(N)

n , (116)

i.e., the n-body contribution to the form factor at zero momentum transfer coincides with the n-body Fock sector681

norm. Setting Q2 = 0 in Eq. (114) and making use of the renormalization condition (113) which writes simply682

F (N)(0) = 1 in truncated Fock space, we get683

e =

N∑
n=1

e0(N−n+1)I
(N)
n . (117)

This formula, together with the normalization condition (39) leads to the following result:684

e0l = e (118)

for arbitrary l. So, the electromagnetic coupling constant in the framework of FSDR is not renormalized at all.685

Eq. (114) now becomes686

F (N)(Q2) =

N∑
n=1

F (N)
n (Q2). (119)

The one-body contribution is687

F
(N)
1 (Q2) =

[
ψ

(N)
1

]2
= I

(N)
1 = 1−

N∑
n=2

I(N)
n . (120)

It does not depend on Q2. With Eq. (116), the final expression for the form factor reads688

F (N)(Q2) = 1 +

N∑
n=2

[
F (N)
n (Q2)− F (N)

n (0)
]
. (121)

Note that the general formula (115) for the n-body Fock sector contribution to the form factor does not take into689

account PV particles, since the corresponding integrals do not need regularization in the scalar Yukawa model without690

antiparticles. One may thus consider Eq. (115) to be related to the limiting case µ1 →∞.691

In the two-body truncation the form factor is692

F (2)(Q2) = 1 + F
(2)
2 (Q2)− F (2)

2 (0). (122)
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FIG. 14. Electromagnetic form factor calculated in the two-, three- and four-body truncations for α = 1.0 (left panel) and
α = 2.0 (right panel), at m = 0.94, µ = 0.14, and µ1 = 15. The results for the four-body truncation are adopted from Ref. [9].
The form factor in the two-body truncation admits an analytic expression. For the three- and four-body truncations, the
obtained results (symbols) are fitted to a function (lines) f(Q2) = I1 + (1 − I1)/(1 + c1Q

2)/(1 + c2Q
2), where c1 and c2 are

some constants depending on α and on the order of truncation.

Substituting the solution (51) into Eq. (115) for n = N = 2, we arrive at693

F
(2)
2 (Q2) =

g2

16π3

∫ 1

0

dxx(1− x)

∫
d2k⊥

[k2
⊥ + µ2(1− x) +m2x2][(k⊥ − xq⊥)2 + µ2(1− x) +m2x2]

. (123)

The integrals can be expressed in terms of elementary functions. It is interesting to note that the formulas (122)694

and (123) exactly reproduce the familiar perturbative result, though our approach does not rely on perturbation695

theory. This rather surprising fact can be explained by the simplicity of the two-body approximation. Already in the696

three-body truncation both two- and three-body vertex functions have rather complex dependence on the physical697

coupling constant, determined by Eqs. (77) and (64).698

The form factor F (N)(Q2) calculated numerically for N = 2, N = 3, and N = 4 is shown in Fig. 14. The calculations699

were carried out for m = 0.94, µ = 0.14, µ1 = 15, and two different values of the coupling constant: α = 1.0 and700

α = 2.0. Here we retain a finite PV mass in the two- and three-body truncations in order to compare with the701

results in the four-body truncation obtained with the same PV mass [9]. This value of µ1 is large enough to make the702

calculated results almost insensitive (in the scale of the plots) to its further increase. In principle, in the three-body703

truncation, one might take a bigger α, up to αc' 2.630, inclusive. However, keeping in mind stronger limitations on704

the coupling constant in the four-body truncation (see the end of Sec. VI C), we took a lower value of α, in order705

to have the possibility to compare with each other the results for the form factor, obtained in the successive N = 2,706

N = 3, and N = 4 truncations.707

Note that the functions F
(N)
n (Q2), Eq. (115), with n ≥ 2 fall rapidly in the asymptotic region Q2 � {m, µ} and708

tend to zero if Q2 →∞. The limiting value of the form factor thus coincides with the one-body Fock sector norm:709

F (N)(Q2 →∞) = I
(N)
1 , (124)

that is, generally speaking, a finite nonzero quantity.710

VIII. DISCUSSION FOR THE x-DEPENDENCE OF g03(x)711

The x-dependent bare coupling constant g03(x) was introduced in Ref. [7]. This x-dependence which, at first glance,712

seems to be an oddity, is a consequence of truncation. As it was already mentioned, by truncating Fock space, we713

replace the initial light-front Hamiltonian (12) by a finite matrix. Finding, with this finite matrix, the vertex function714
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Γ
(N)
2 (k⊥, x) and solving the renormalization condition (42) relative to g0N , we find that the latter becomes dependent715

on x: g0N = g0N (x) [see Eq. (82) for the N = 3 case].716

More precisely, the mechanism for the appearance of the x-dependent g0N (x) is the following. The renormalization717

condition (42) contains the vertex function Γ
(N)
2 (k⊥, x) calculated in N -body truncated Fock space and dependent on718

the two kinematical variables k⊥ and x. The on-energy-shell condition s2 = m2 does not fix both variables, but gives719

a relation between them. We express from this relation the value k⊥ = k∗⊥(x) which is given by Eq. (35). So, the value720

of the vertex function which appears on the left-hand side of the renormalization condition (42) is Γ
(N)
2 (k∗⊥(x), x), i.e.,721

it depends on x via k∗⊥(x) and also via its “own” argument x. Since the right-hand side of Eq. (42) is a constant, this722

condition can be satisfied identically only if the bare coupling constant g0N , which the two-body vertex depends on,723

becomes a function of x as well.724

g g
g

(a) Γ2,a

g

g

g

(b) Γ2,b

FIG. 15. Full set of perturbative contributions to the two-body vertex function at order O(g3). The thinner straight lines
represent the scalar nucleon. The thicker straight line represents the antinucleon. The wavy lines represent the scalar pions.

As discussed in Sec. IV, the x-dependence of the on-energy-shell two-body vertex function must disappear, if the725

latter was calculated in full (i.e., not truncated) Fock space. This general property is based on fundamental physical726

symmetries. To illustrate how the cancellation of x-dependence happens in practice, within LFD, there is no need to727

perform nonperturbative calculations of Γ
(N)
2 (k∗⊥(x), x) involving contributions from all possible Fock sectors (i.e., for728

N →∞). One may use the perturbative expansion of the two-body vertex function, which can be written as729

Γ
(N→∞)
2 (k∗⊥(x), x) =

∞∑
n=1

gnΓ
(gn)
2 (k∗⊥(x), x). (125)

If Γ
(N→∞)
2 (k∗⊥(x), x) = const, then any coefficient Γ

(gn)
2 (k∗⊥(x), x) of the perturbation series is also x-independent.730

We emphasize that Γ
(gn)
2 involves contributions from all possible Fock sectors at order gn of perturbation theory.731

The simplest nontrivial case is the third order of perturbation theory. All the contributions to Γ
(g3)
2 (k∗⊥(x), x) are732

exhausted by the two shown in Fig. 15. The graph (a) generated by the three-body Fock sector (one scalar nucleon733

plus two scalar pions) represents a contribution incorporated in our nonperturbative three-body calculations of Γ
(3)
2734

in Sec. VI A. The graph (b) represents a contribution from another three-body Fock sector (one scalar nucleon plus735

one nucleon-antinucleon pair), which was omitted in the truncation we used. Below we will demonstrate that the full736

Γ
(g3)
2 (k∗⊥(x), x), determined by the sum of two contributions (a) and (b), is indeed a constant with respect to x.737

The amplitude of the diagram in Fig. 15(a) reads738

739

Γ
(g3)
2,a (k⊥, x) =

g3

(2π)3

1−x∫
0

dx′

2x′(1− x′)(1− x− x′)

∫
d2k′⊥

(s′2 −m2)(s3 −m2)
. (126)740

The amplitude of the diagram in Fig. 15(b) reads741

Γ
(g3)
2,b (k⊥, x) =

g3

(2π)3

1∫
1−x

dx′

2x′(1− x′)(x+ x′ − 1)

∫
d2k′⊥

(s′2 −m2)(s̄3 −m2)
. (127)
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FIG. 16. Dependence of the on-energy-shell two-body vertex function in the g3-order of perturbation theory on the kinematical

variable x. The dashed curve is Γ
(g3)
2,a (k∗⊥(x), x), Fig. 15(a); the dotted curve is Γ

(g3)
2,b (k∗⊥(x), x), Fig. 15(b); the solid curve

represents their sum which is a constant.

The quantities s′2 and s3 defined by Eqs. (34), changing k⊥ → k′⊥, x → x′, and (65) with j = j′ = 0, respectively,742

are the invariant mass squared of each of the intermediate states of Fig. 15(a): nucleon plus pion and nucleon plus743

two pions. The quantity s̄3 is the invariant mass squared of the three-body state of Fig. 15(b), i.e., the nucleon plus744

nucleon-antinucleon pair:745

s̄3 =
k2
⊥ +m2

1− x +
k′

2
⊥ +m2

1− x′ +
(k⊥ + k′⊥)2 +m2

x+ x′ − 1
. (128)

Since each of the amplitudes (126) and (127) converge, we omit the PV particle contributions. To calculate the746

integrals, it is convenient to use the Feynman parametrization:747

1

ab
=

∫ 1

0

dv

[va+ (1− v)b]2
.748

Then both integrals over d2k′⊥ can be calculated analytically. The integrals over dv are also calculated analytically.749

We substitute k⊥ = k∗⊥(x) with the imaginary value k∗⊥(x) from Eq. (35) and calculate the residual one-dimensional750

integrals over dx′ numerically.751

The calculated results are shown in Fig. 16. The dashed curve is Γ
(g3)
2,a (k∗⊥(x), x), the contribution shown in

Fig. 15(a). It depends on x. This x-dependence generates the x-dependence of g03(x), Eq. (82). The dotted curve is

Γ
(g3)
2,b (k∗⊥(x), x), the contribution shown in Fig. 15(b). It also depends on x. The solid line is the sum

Γ
(g3)
2 (k∗⊥(x), x) = Γ

(g3)
2,a (k∗⊥(x), x) + Γ

(g3)
2,b (k∗⊥(x), x).

It does not depend on x. In the Yukawa model with spin, also in the perturbative framework, the same result was752

found in Ref. [7].753

This example clearly shows that the origin of the x-dependence of the bare coupling constant g03(x) is the Fock754

space truncation. Taking into account the previously omitted contribution with an antinucleon we restore the constant755

value of g03.756

In principle, antiparticle degrees of freedom can be included into Fock space within the nonperturbative approach757

based on FSDR. This was done in Refs. [17] (within the scalar Yukawa model) and [7] (within the spinor Yukawa model758

in the quenched approximation, i.e., neglecting fermion-antifermion loop contributions). The results of numerical759

nonperturbative calculations of the on-energy-shell two-body vertex function Γ
(3)
2 (k∗⊥(x), x) or the bare coupling760

constant g03(x) in the three-body truncation with the nucleon-nucleon-antinucleon Fock sector included show that761

the latter makes the x-dependence of the calculated quantities much weaker, even for rather large coupling constant762

values.763
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IX. CONCLUSION764

With the interaction Hamiltonian Hint(x) = −g χ†χϕ, where χ and ϕ are spinless fields referred as a “scalar765

nucleon” and “scalar pion”, respectively, in the framework of light-front dynamics, we found nonperturbatively the766

Fock components of the state vector in truncated Fock space including one-body (χ), two-body (χ+ϕ), and three-body767

(χ +2ϕ) states (Fock sectors). The sector dependent renormalization of the coupling constant and the scalar nucleon768

mass was used. In this transparent example, we exposed the general principles of nonperturbative renormalization769

in truncated Fock space and demonstrated, by practical application, the main steps required to solve the problem.770

The procedure contains the principal ingredients of more general applications, and, especially, the main features771

of the sector dependent renormalization – appearance of the sector dependent renormalization parameters, i.e., the772

bare coupling constants like g02, g03 and the mass counterterms like δm2
2, δm2

3, related to different Fock sectors,773

simultaneously in one system of equations for the Fock components. Though the constant g03 is not a true constant774

– it depends on the kinematical variable x, – this and other constants do not contain any uncertainties and are found775

unambiguously.776

The case of the true Yukawa model (or other field theories), incorporating spin, differs from the example considered777

here by technical details only (the form of propagators, the spin structure of the wave functions, etc.), but contains778

the same steps. The case of higher order truncation is more complicated technically, since it requires the solution of779

a more complicated system of equations, but it uses the same solution procedure.780

This work presents the detailed theoretical framework that underlines the successful solution of the scalar Yukawa781

model in four-body truncation when the (χ+3ϕ) Fock sector is added to the three listed above [8, 9]. Comparison of782

results in the three-body truncation with those in four-body truncation [8, 9] shows that convergence with respect to783

the number of Fock sectors involved is achieved.784
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Appendix A: Two-body self-energy792

The two-body scalar nucleon self-energy is given by Eq. (48) which can be written as793

Σ̄(2)(p2) = − 1

16π2

1∑
j=0

(−1)j
∫ 1

0

dx

∫ ∞
0

dk2
⊥

k2
⊥ + µ2

j (1− x) +m2x− p2x(1− x)
. (A1)

Without PV regularization, the integral over dk2
⊥ diverges logarithmically at the upper limit. It is convenient to define794

the regular function795

a(p2,m1,m2) ≡
∫ 1

0

dx

∫ ∞
0

dk2
⊥

[
1

k2
⊥ +m2

1(1− x) +m2
2x− p2x(1− x)

− 1

k2
⊥ +m2

]
. (A2)

Then796

Σ̄(2)(p2) = − 1

16π2

[
a(p2, µ,m)− a(p2, µ1,m)

]
. (A3)

The integrals in Eq. (A2) are easily calculated. We introduce the notation

D ≡ p4 − 2(m2
1 +m2

2)p2 + (m2
1 −m2

2)2.
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Then797

a(p2,m1,m2) = 2− log
m1m2

m2
+
m2

1 −m2
2

p2
log

m2

m1
+

√
|D|
p2

Φ(p2,m1,m2), (A4)

where798

Φ(p2,m1,m2) =


log
(
m2

1+m2
2−p

2+
√
D

2m1m2

)
, if D ≥ 0,

− arctan

( √
|D|

m2
1+m2

2−p2

)
, if D < 0.

(A5)

The function a(p2,m1,m2) is symmetric with respect to the permutation of m1 and m2. At p2 < (m1 + m2)2 it is799

real.800

In the limit of infinite PV mass µ1 the difference Σ̄
(2)
c (p2) = Σ̄(2)(p2)− Σ̄(2)(m2) tends to a finite value:801

Σ̄(2)
c (p2) = − 1

16π2

[
a(p2, µ,m)− a(m2, µ,m)

]
. (A6)

At p2 → −∞ we get the following asymptotic behavior:802

Σ̄(2)
c (p2) ≈ 1

16π2
log
|p2|
m2

+ . . . , (A7)

where the dots designate finite terms.803

In contrast to the self-energy, its derivative over p2 does not need regularization, so, Σ̄(2)′(m2) is finite in the limit
of infinite PV mass. Its limiting value is calculated as

Σ̄(2)′(m2) = − 1

16π2

∂a(p2, µ,m)

∂p2

∣∣∣∣
p2=m2

.

The calculation of the derivative is straightforward. It yields804

Σ̄(2)′(m2) = − 1

16π2m2

[
ξ(3− ξ2)√

4− ξ2
arctan

(√
4− ξ2

ξ

)
− 1 + (1− ξ2) log

1

ξ

]
, (A8)

where ξ = µ/m. Eq. (A8) is valid for µ < 2m.805

Appendix B: Critical coupling constant in explicitly solvable model806

In this section we consider, as an illustration, an explicitly solvable model which reflects all important properties of807

Eqs. (70), (77), and (85), related to the existence of the critical coupling constant. We will not analyze the “Landau808

pole” type critical coupling constant (60) caused by the two-body self-energy contribution but, instead, focus on the809

critical coupling originating from the kernel of the integral term in each of the equations discussed. According to the810

terminology of Sec. VI C, we are interested in the critical coupling constant coming from the discrete eigenvalue λ0811

which strongly depends on the particular form of the integration kernel.812

Each of the equations is a Fredholm integral equation of the second kind, which can be written schematically in813

the form (88). The integral operator Â depends on the coupling constant α. The critical coupling constant αc is a814

solution of the matrix equation det(Â− I) = 0, where I is a unity matrix. If α = αc, the solution Γ2 as a function of815

α becomes singular: it has a pole ∼ 1/(α− αc).816

Let us first summarize what is already known about, concerning the critical coupling in the equations mentioned817

above. The equation (70) for the nonrenormalized Γ
(3)j
2 (k⊥, x), where the inhomogeneous part g03ψ

(3)
1 [1 − g2Ī

(2)
2 ] is818

treated as an independent quantity (a constant or a function of x), has a critical coupling constant. For the physical819

particle masses m = 0.94, µ = 0.14, and an infinite PV mass µ1 its value is αnr
c ' 2.190. After the renormalization820

leading to Eq. (77), this critical coupling disappears, i.e., the renormalized Γ
(3)j
2 (k⊥, x) is smooth at α = αnr

c . We see821
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that the role of renormalization in deleting infinities is two-fold: the renormalization not only deletes field theoretical822

divergences (e.g., the logarithmic ultraviolet divergence in the two-body self-energy Σ(2)), but also removes the pole823

singularity of the Fock components at α = αnr
c . In the generalized equation (85) for the fully off-shell two-body vertex824

function Γ
(3)j
2 (k⊥, x; p2) the critical coupling constant arises again, now as a function of p2. We will show that all825

these properties can be easily traced and explained by using a toy model which admits analytic solution.826

We start with the equation827

F (k, x) = g0(x)ψ1 +

∫
K(k, x, k′, x′)F (k′, x′)dk′dx′ (B1)

with the separable kernel828

K(k, x, k′, x′) = αh(k, x)h(k′, x′). (B2)

Here F is an unknown function to be found, g0 and h are smooth bounded functions of their arguments, and ψ1 is a829

constant. We do not specify the limits of integration, assuming that all integrals hereafter are convergent (e.g., due to830

proper regularization). Eq. (B1) is an analog of the equation (70) for the nonrenormalized two-body vertex function.831

Its solution is easily found and has the form832

F (k, x) = g0(x)ψ1 +
αh(k, x)

1− α
αc

∫
h(k′, x′)g0(x′)ψ1dk

′dx′, (B3)

where833

1

αc
=

∫
h2(k′, x′)dk′dx′. (B4)

It is seen that F (k, x) is singular at α = αc. The latter quantity is a full analog of the critical coupling constant αnr
c834

(see Sec. VI C).835

Now we apply a “renormalization” procedure to the function F (k, x). In the Yukawa model we imposed the836

renormalization condition on the function Γ
(N)
2 (k⊥, x) at s2 = m2 which corresponds to an x-dependent point k⊥ =837

k∗⊥(x) given by Eq. (35). We will keep this analogy and impose the renormalization condition on F (k, x) in some838

point k = k∗(x):839

F (k∗(x), x) = g (B5)

and demand its fulfillment for all values of x. Now the function g0(x) can not be considered as being fixed a priori840

and should be found along with the renormalized F (k, x). Substituting F (k, x) from Eq. (B3) into Eq. (B5), we get841

g0(x)ψ1 +
αh(k∗(x), x)

1− α
αc

∫
h(k′, x′)g0(x′)ψ1dk

′dx′ = g. (B6)842

This equation is easily solved relative to g0(x). After that, we find the relation between the “bare” (x-dependent)843

coupling constant g0(x) and the “physical” one, g:844

g0(x)ψ1 = g

(
1− α

αc
+ α

∫ [
h(k∗(x′), x′)− h(k∗(x), x)

]
h(k′, x′)dk′dx′

1− α
αc

+ α
∫
h(k∗(x′), x′)h(k′, x′)dk′dx′

)
. (B7)845

Substituting this expression for g0(x)ψ1 into Eq. (B3), we obtain the renormalized solution846

F (k, x) = g +
gα[h(k, x)− h(k∗(x), x)]

∫
h(k′, x′)dk′dx′

1− α
αc

+ α
∫
h(k∗(x′), x′)h(k′, x′)dk′dx′

. (B8)847

It satisfies the equation848

F (k, x) = g +

∫
[K(k, x, k′, x′)−K(k∗(x), x, k′, x′)]F (k′, x′)dk′dx′ (B9)

analogous to the equation (77) for the renormalized two-body vertex function. Note that after the renormalization849

F (k, x) has no any singularity at α = αc.850



33

The mechanism for the removal of the singularity at α = αc is nontrivial, since it is not reduced to the cancellation851

of factors like (α − αc). Such a cancellation would take place if g0(x) did not depend on x. To explain this point,852

consider, for a moment, another form of the renormalization condition, as compared to Eq. (B5). Namely, we impose853

it not for all values of x simultaneously, but for a particular value x = x∗ only: F (k∗(x∗), x∗) = g. Now, expressing854

the product g0ψ1 via α, we obtain that the former is a true constant proportional to (α−αc). It cancels the 1/(α−αc)855

singularity of the nonrenormalized solution. At α = αc the inhomogeneous term vanishes and the renormalized F (k, x)856

becomes a solution of the homogeneous equation, which exists just at this critical value of α. After the x-dependence857

of g0(x) is taken into account (as it should be), the function g0(x) does not turn into zero at α = αc, in contrast to the858

case g0(x) = const. The cancellation of the singularity 1/(α − αc) in Eq. (B3) takes place only after the calculation859

of the double integral. Due to this fact the renormalized solution becomes nonsingular and smooth at α = αc.860

It is also instructive to find the corresponding “off-shell” solution satisfying the equation [cf. with Eq. (B1)]:861

F (k, x; p) = g0(x)ψ1(p) +

∫
K(k, x, k′, x′; p)F (k′, x′; p)dk′dx′, (B10)

where862

K(k, x, k′, x′; p) = αh(k, x; p)h(k′, x′; p). (B11)

The “off-shell” continuation is given by the additional dependence of all parts of the equation on the parameter p.
The “on-shell” equation, completely equivalent to Eq. (B1), is obtained at p = m. The renormalization condition is
still imposed on the mass shell p = m:

F (k∗(x), x;m) = g,

whereas Eq. (B10) determines the solution F (k, x; p) for arbitrary p. After the renormalization, Eq. (B10) becomes863

an analog of Eq. (85). Its solution can be found in a similar fashion to the on-shell solution (B8) and has the form864

F (k, x; p) = g
ψ1(p)

ψ1(m)

{
1− αJ1(m)h(k∗(x), x;m)

1− α
αc(m) + αJ2(m)

+ α

[
1− α

αc(m)

1− α
αc(p)

]
J1(p)h(k, x;m)

1− α
αc(m) + αJ2(m)

+ α

[
J1(p)J2(m)− J1(m)J2(p)

1− α
αc(p)

]
h(k, x; p)

1− α
αc(m) + αJ2(m)

}
, (B12)

where865

J1(p) =

∫
h(k′, x′; p)dk′dx′,

J2(p) =

∫
h(k′, x′; p)h(k∗(x′), x′;m)dk′dx′,

and

1

αc(p)
=

∫
h2(k′, x′; p)dk′dx′.

A peculiarity of the solution (B12) consists in the fact that, in contrast to the on-shell renormalized solution (B8), it866

is singular at α = αc(p), in spite of renormalization. A similar peculiarity happens with the fully off-shell two-body867

vertex function Γ
(3)j
2 (k⊥, x; p2) which is singular at α = αoff

c (p2).868

On the mass shell p = m, we find that869 [
1− α

αc(m)

1− α
αc(p)

]
p=m

⇒ 1,

[
J1(p)J2(m)− J1(m)J2(p)

1− α
αc(p)

]
p=m

⇒ 0.
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Then the solution (B12) coincides with the on-shell solution (B8) and it is nonsingular at α = αc(m).870

It is interesting to trace how the singularity at α = αc(p) disappears, when p → m. Extracting the pole term871

∼ [α− αc(p)]−1 from Eq. (B12) in this limit, we get, up to terms of order (p−m), inclusive:872

F (k, x; p→ m) = c · h(k, x;m)(p−m)

α− αc(p)
+ . . . , (B13)

where

c =
g {αc(m)[J1(m)J ′2(m)− J ′1(m)J2(m)] + α′c(m)J1(m)}

J2(m)
,

the primes denote the corresponding derivatives and the dots designate all nonpole contributions. At α = αc(p) the873

solution (B13) vs. α is singular for arbitrary p 6= m, though the residue at the pole reduces when p approaches m.874

The singularity disappears only if p exactly equals m. So, the cancellation of the singularity in the on-shell solution875

F (k, x;m) happens due to subtle balance between different terms in the equation, caused by the renormalization.876

The above analysis distinctly shows that there exists one-to-one correspondence between the properties of this toy877

model and the scalar Yukawa model, concerning the behavior of their solutions as a function of the coupling constant.878

Thus, in each of the two models879

(i) the nonrenormalized solution has a pole at a certain (critical) value of the coupling constant α = αc;880

(ii) the singularity 1/(α−αc) disappears after the renormalization and the renormalized solution is smooth at α = αc;881

(iii) both the “off-shell” solution like the two-body vertex Γ
(3)j
2 (k⊥, x; p2) introduced in Sec. VI B and the function882

F (k, x; p) satisfying Eq. (B10) are singular at some (critical) value of the coupling constant α = αc(p) depending on883

the parameter p, even after renormalization;884

(iv) the pole 1/[α− αc(p)] of the “off-shell” solution exists for an arbitrary value of p, not equal to its on-mass-shell885

value m, and disappears identically for p = m only.886
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