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We study the semi-classical interpretation of the x3 and x4 moments of twist-3 parton distribution
functions (PDFs). While no semi-classical interpretation for the higher moments of gT (x) and e(x)
was found, the x3 moment of the chirally odd spin-dependent twist-3 PDF h3

L(x) can be related to
the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally
polarized nucleons in a DIS experiment. We discuss how this result relates to the torque acting
on a quark in the same experiment. This has further implications for comparisons between the
Jaffe-Manohar and the Ji decompositions of the nucleon spin.

PACS numbers:

I. INTRODUCTION

In the Bjorken limit, cross sections in Deep-Inelastic Scattering (DIS) are usually dominated by twist-2 Parton
Distribution Functions (PDFs) which have a simple physical interpretation as number densities of quarks with a
certain momentum fraction x and polarization relative to that of the nucleon spin. For example, f q(x) represents
quarks carrying momentum fraction x, while g

q
1(x) counts quarks plus anti-quarks with spin in the same direction

as the nucleon spin (for a longitudinally polarized nucleon) minus those with spins opposite to the nucleon spin.
The chirally odd twist-2 PDF h

q
1(x) counts quarks (minus antiquarks) with transversity in the same direction as

the nucleon spin for a transversely polarized nucleon. For higher twist PDFs, whose contribution to cross sections
is usually suppressed in the Bjorken limit, no such simple interpretation in terms of number densities or differences
between number densities exists.
In polarized DIS from a transversely polarized target, the contribution from the leading twist PDF g1(x) is sup-

pressed and even in the Bjorken limit the twist-3 PDF gT (x) contributes equally to the longitudinal-transverse
double-spin asymmetry. This allows a clean experimental extraction without contamination from 1

Q
corrections to

the leading twist PDFs. Likewise, the longitudinal-transverse double-spin asymmetry in polarized Drell-Yan allows
access to the twist-3 PDF hL(x) [1].
Given that twist-3 PDFs can be measured raises the question of what can be learned from these functions. Using

the (free) equations of motion, one can identify the so-called Wandzura-Wilczek (WW) part of twist-3 PDFs which is
related to the corresponding twist-2 PDF. The remaining part of twist-3 PDFs is the most interesting as it contains
quark-gluon correlations.
In Ref. [2] it was shown that the x2 moment of the twist-3 part of gT (x) has a semi-classical interpretation as

the average transverse force that acts on an unpolarized quark in a transversely polarized nucleon in DIS. Likewise,
the x2 moment of the twist-3 part of the scalar PDF e(x) has an interpretation as the transverse force acting on a
transversely polarized quark in an unpolarized nucleon. Although these x2 moments only provide information about
local forces, these same forces, when integrated along the trajectories of the ejected quark, give rise to the Sivers and
Boer-Mulders funtions respectively that describe single-spin asymmetries in transverse momentum dependent parton
distributions.
The x2 moment of the twist-3 part of the chirally odd PDF hL(x) vanishes identically. Intuitively, this result can be

understood. If its x2 moment were nonzero, it would describe the transverse force on a transversely polarized quark
in a longitudinally polarized nucleon — which would violate parity.
In this work we consider the x3 and x4 moments of these PDFs in an attempt to extend these semiclassical

interpretations to higher moments.

II. MOMENT ANALYSIS

The chirally even spin-dependent PDFs are defined as

∫

dλ

4π
eiλx〈PS|q̄(q)γµγ5q(λn)|Q2 |PS〉 = g1(x,Q

2)pµ(~S · ~n) + gT (x,Q
2)Sµ

⊥ +M2g3(x,Q
2)nµ(~S · ~n) (1)
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where pµ and nµ are light-like vectors along the ’-’ and ’+’ light-cone direction with p · n = 1. For simplicity, the Q2

dependence will not be written explicitly. gT (x) can be decomposed as

gT (x) = g1(x) + g2(x) = g1(x) + gWW
2 (x) + ḡ2(x), (2)

where the Wandzura-Wilczek contribution reads

gWW
2 (x) = −g1(x) +

∫ 1

x

dy

y
g1(y). (3)

These relations, together with explicit expressions for the quark-gluon correlations embodied in ḡ2(x) can be derived
for each moment by using the equations of motion [12]

[

iγ+D+ + iγ−D− − iγxDx − iγyDy
]

q = 0, (4)

to eliminate terms involving the ’bad’ component q− ≡ 1
2γ

+γ−q of the field operators. Here we set the quark mass

m = 0 for simplicity. For the x2 moment this procedure results in

3

2
q̄γxγ5D

2
−q =

1

2
q̄
[

γ+γ5 (D−D
x +DxD−) + γxγ5D

2
−

]

q +
i

2
q̄γ+ [D−, D

y] q, (5)

where the first term on the r.h.s. is twist 2 and represented by the x2 moment of gWW
2 . The matrix elements of the

second term 1
2 q̄γ

+gG+yq have the semi-classical interpretation of the color Lorentz force in the y direction. Repeating

the same steps for the x3 moment results in

q̄γxγ5D3
−q =

1

4
q̄
[

γxγ5D3
− + γ+γ5

(

D2
−D

x +D−D
xD− +XxD2

−

)]

q +
1

8
q̄γ+γ5 [D−, [D−, D

x]] q +
3i

8
q̄γ+q̄γ+

[

D2
−, D

y
]

q,(6)

where again the first term is completely symmetric in its Lorentz indices and is represented by
∫

dx gWW
2 (x)x3.

The second term has the semi-classical interpretation as a force gradient, but we were not able to identify a simple
semi-classical interpretation for the third term. The situation is even more complex for the x4 moment.
In the case of the scalar twist 3 distribution e(x) the situation is similar. For the x2 moment of its twist-3 part

e(3)(x) one finds
∫

dxx2e(3)(x) =
1

4M
〈P |q̄σ+igG+iq|P 〉, (7)

which has the semi-classical interpretation of a transverse force on a transversely polarized quark in an unpolarized
nucleon. For the x3 moment one also finds a term that can be interpreted as a force gradient. However, just like the
case for the x3 moment of ḡ2, there is another term that does not have a simple interpretation.
In the case of the chirally odd spin-dependent twist 3 distribution hL(x) the situation is different. Its x2 moment

only yields a twist 2 term [1]
∫

dxhL(x)x
2 =

1

2

∫

dxh1(x)x
2. (8)

For the x3 moment one finds

2M

∫

dxx3h
(3)
L (x) = −

i

P+3

1

6

〈

P, S
∣

∣q̄γ+iγ5
{

γx
[

D−, gG
+x

]

+ γy
[

D−, gG
+y

]}

q
∣

∣P, S
〉

. (9)

Due to the Dirac matrix σ+iγ5 = iγ+γiγ5, the matrix element projects out the quark transversity asymmetry. G+i

represents the transverse color Lorentz force acting on a quark moving with the velocity of light in the −ẑ direction.
The right hand side of Eq. (9) thus describes the average longitudinal gradient of the transverse force that acts on
transversely polarized quarks. Although that force itself must vanish due to PT invariance, its gradient [D−, G

+i] is
in general nonzero and its sign provides insights about how the color magnetic field of the nucleon is correlated with
its spin.
To illustrate how this information is embodied in Eq. (9), consider a valence quark with transversity in the +x̂

direction. As explained in Ref. [9], and confirmed in Lattice QCD calculations [10], its distribution in the transverse
plane is shifted into the +ŷ direction. Suppose the color magnetic field due to the spectators is oriented as shown in
Fig. 1. In this example the gradient of the color Lorentz force would thus point, on average, in the −x̂ direction. If the
color magnetic field has opposite orientation, that force would point in the +x̂ direction. Measuring (or calculating

in Lattice QCD) the x3 moment of h
(3)
L allows one to probe the orientation of color-magnetic forces in the nucleon.
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ŷ

a.)

~v ~v

~F⊙ ⊗~F

b.)

~F

~F

~F

~F

~B

⊙
~v

⊙
~v

⊙
~v

⊙
~v

⊗ ẑ

FIG. 1: Illustration of the torque acting on a positron moving in the −ẑ direction through a magnetic dipole field caused by an
electron polarized in the +ẑ direction. a.) side view; b.) top view. In this example the ẑ component of the torque is negative
as the positron is ejected.

III. DISCUSSION

We find that the x3 moment of the twist-3 chirally odd spin-dependent PDF h3
L(x) embodies information on the

(longitudinal) force gradient acting on a transversely polarized quark in a longitudinally polarized nucleon as the
quark leaves the target in a DIS experiment. The local force in the same context vanishes due to an ensemble average
between quarks starting at the ’bottom’ of the nucleon and those that start at the ’top’ (bottom here refers to the
side at which the virtual photon enters the nucleon).
In Ref. [11], we explained that the difference between the definition of quark orbital angular momentum in the

nucleon given by Jaffe-Manohar [3] and that given by Ji [6, 7] can be expressed in terms of the change in orbital
angular momentum as the quark leaves the target. That change is due to the torque from the color forces and can be
expressed in terms of the matrix element

Lq
JM−L

q
Ji =

〈

P, S‖

∣

∣

∫

d2r⊥q̄(0
−, r⊥)γ

+
∫∞

0 dr− [xF+y(r−, r⊥)− yF+x(r−, r⊥)] q(0
−, r⊥)

∣

∣PS‖

〉

〈

P, S‖|PS‖

〉 .

(10)

Knowledge about the color-Lorentz forces from (9) also provides clues about the effects owing to the FSI torque
entering Eq. (10): the local matrix element

〈

P, S‖

∣

∣

∫

d2r⊥q̄(0
−, r⊥)γ

+ [xF+y(0−, r⊥)− yF+x(0−, r⊥)] q(0
−, r⊥)

∣

∣PS‖

〉

〈

P, S‖|PS‖

〉 (11)

vanishes due to PT invariance. In more physical terms this arises from a ‘top’ versus ‘bottom’ cancellation when
averaging over the nucleon volume (the volume averaging is implicit due to taking the matrix element in a plane wave
state). Neither Eq. (10) nor the matrix element of the ’torque gradient’

〈

P, S‖

∣

∣

∫

d2r⊥q̄(0
−, r⊥) [xD−F

+y(0−, r⊥)− yD−F
+x(0−, r⊥)] q(0

−, r⊥)
∣

∣PS‖

〉

〈

P, S‖|PS‖

〉 (12)

vanish as illustrated in Fig. 1. In an ensemble average, all positrons ejected in the −ẑ direction pass through the
region of magnetic field with an outward pointing radial component, but only those originating in the bottom portion
also move through regions of inward pointing radial component, i.e. for positrons ejected in the −ẑ direction the
regions of outward pointing radial component dominate. For the torque gradient a similar argument results in a
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non-vanishing ensemble average. Qualitatively, a similar argument applies for the torque acting on a quark moving
through the color-magnetic field caused by the spectators.
The similarity between the matrix elements of the transverse force and torque also points towards one potential

application of this work. Ref. [9] observed that there seems to be a universal sideways deformation of the impact
parameter distribution of transversely polarized quark. That result was based on studying a variety of models and
confirmed by lattice QCD calculations. That deformation should be independent on the longitudinal polarization due
to PT. Based on these works one knows the direction in which the distribution of quarks with a given transverse
polarization is shifted as well as the approximate magnitude of the shift. The sign of the matrix element for the
force gradient, in combination with the above shift, should thus provide information about the sign and approximate
magnitude of the torque gradient (12). If one makes the further assumption that the integrand in the integral over
dr− in Eq. (10) does not fluctuate in sign as an function of r− it would allow prediction of the sign of Lq

JM − L
q
Ji.

This would be invaluable when comparing the two corresponding decompositions of the nucleon spin.
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