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Abstract

We perform a comprehensive analysis of the strange–antistrange parton distribution function

(PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set

of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual

on-shell contributions previously discussed in the literature. We identify the presence of δ-function

contributions to the s̄ PDF at x = 0, with a corresponding valence-like component of the s-quark

PDF at larger x, which allows greater flexibility for the shape of s− s̄. Expanding the moments of

the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior

of the number and momentum integrals of the s and s̄ distributions, consistent with the chiral

symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV

anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.
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I. INTRODUCTION

Historically, the simplest quark models envisaged the nucleon’s properties and structure

being determined entirely in terms of its valence u- and d-quark constituents. The subsequent

development of QCD necessitated refinements of this picture, in which a sea of virtual

quark–antiquark (qq̄) pairs and gluons made the nucleon a far richer and more dynamic

environment. In this new paradigm, not only did the light-quark qq̄ sea display nontrivial

structure, but heavier quarks such as the strange or even charm quark could contribute

locally to the internal nucleon dynamics.

The role that strange quarks, in particular, play in the nucleon has been the focus of

attention in hadronic physics for nearly three decades. Early polarized deep-inelastic scat-

tering (DIS) experiments suggested that a surprisingly large fraction of the proton’s spin

might be carried by strange quarks [1], in contrast to the naive quark model expectations

[2]. Recognition that the spatial distributions of strange quarks and antiquarks could be

different further motivated searches for strange contributions to the nucleon’s electroweak

form factors [3–8]. Dedicated programs of strange form factor measurements through parity-

violating electron scattering at Jefferson Lab and other facilities [9–11] subsequently yielded

very precise determinations of both the strange electric and magnetic form factors of the

nucleon [12], enabling rigorous comparisons with lattice QCD and chiral effective theory

[13, 14], as well as fundamental tests of the Standard Model [15].

One of the guiding principles for understanding the nonperturbative features of strange

quarks and antiquarks in the nucleon sea has been chiral symmetry breaking in QCD. While

the generation of ss̄ pairs through perturbative gluon radiation typically produces symmetric

s and s̄ distributions (at least up to two loop corrections [16]), any significant difference

between the momentum dependence of the s and s̄ parton distribution functions (PDFs)

would be a clear signal of nonperturbative effects. In fact, insights from chiral symmetry

breaking in the nonstrange sector led to the prediction [17] of an excess of d̄ antiquarks over

ū in the proton, which was spectacularly confirmed in DIS [18, 19] and Drell-Yan [20, 21]

experiments more than a decade later. A similar mechanism, which can be intuitively

realized in the form of a pseudoscalar meson cloud surrounding a valence-quark nucleon

core, was subsequently used [22] to demonstrate the natural emergence of a nonzero s − s̄

asymmetry from the breaking of the chiral SU(3) symmetry of QCD.
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While the existence of an s − s̄ asymmetry is not, from the point of view of nonpertur-

bative QCD dynamics, terribly surprising in itself, the magnitude and even the sign of the

asymmetry has historically been far more difficult to determine. Experimentally, from an

analysis of ν and ν̄ DIS data from the BEBC, CDHS and CDHSW experiments, Barone et

al. [23] concluded that the s-quark PDF was somewhat harder than the s̄. Quantitatively,

the second moment of the asymmetry,

S− =

∫ 1

0

dx x
(
s(x)− s̄(x)

)
, (1)

where x is the light-cone momentum fraction of the nucleon carried by the strange parton,

was constrained to be S− ≈ (2± 3)× 10−3. Of course, by strangeness conservation the first

moment of s − s̄ must vanish identically, which, in the absence of contributions at x = 0,

would suggest the presence of at least one zero in the x dependence of s − s̄ at finite x.

Analysis of more recent CCFR [24] and NuTeV [25] data on opposite sign dimuon production

in neutrino–nucleus DIS yielded [25] a negative asymmetry, S− = (−2.7 ± 1.3) × 10−3, at

leading order, although a later, next-to-leading order analysis [26] found positive values,

S− = (1.96± 1.43)× 10−3 at Q2 = 16 GeV2.

Beyond extractions from individual experiments, global QCD analyses of charged lepton

and neutrino DIS, along with other high energy scattering data, have generally found pos-

itive values for S−. On the other hand, the various approximations made about nuclear

corrections to the neutrino data and the various functional forms chosen for the PDFs make

any current phenomenological analysis subject to sizeable uncertainties. Taking into account

some of these uncertainties, the phenomenological analysis of Bentz et al. [27] concluded

that S− = (0± 2)× 10−3 at Q2 = 16 GeV2.

While the current empirical situation with S− remains somewhat inconclusive, a number

of theoretical estimates have been made, based on perturbative and nonperturbative QCD

arguments. Catani et al. [16], for instance, showed that perturbative three-loop effects can

induce nonzero negative S− values, S− ≈ −0.5 × 10−3, through Q2 evolution of symmetric

s/s̄ distributions from a low input scale, Q0 ≈ 0.5 GeV. Nonperturbatively, the most com-

mon approach to computing the s− s̄ asymmetry has been in the framework of meson cloud

models, which focus on the role of the nucleon’s light-front wave function with Fock state

component consisting of kaons and hyperons, Y = Λ,Σ, . . . Here the asymmetric dissocia-
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tion of the nucleon into a hyperon (containing the s quark) and a kaon (containing the s̄

antiquark) automatically generates asymmetric distributions for the s and s̄ PDFs.

First estimated nearly 3 decades ago using phenomenological nucleon-kaon-hyperon ver-

tex form factors [22], subsequent kaon cloud model calculations have, however, at times

yielded conflicting results. Using a light-front formalism that enabled simultaneous compu-

tation of strange observables in both deep-inelastic and elastic scattering, the small experi-

mental values of the strange electromagnetic form factors were found [28, 29] to restrict the

magnitude of s − s̄ to be very small, with a shape strongly dependent on the choice of the

NKY vertex function. Cao and Signal [30] later observed that while fluctuations to KΛ

and KΣ states gave rise to a small positive asymmetry, S− = 0.143× 10−3, the inclusion of

the heavier K∗ mesons [31] changed the sign of the overall asymmetry, S− = −0.135×10−3,

with the magnitude remaining rather small. Considering KΛ fluctuations of the nucleon

with a Gaussian probability distribution whose parameters are constrained by inclusive DIS

data and normalization tuned to x(s + s̄) from the CCFR data [24], Alwall and Ingelman

[32] found a harder s PDF than s̄, with S− = 1.65× 10−3. In that model the fluctuations to

KΣ and K∗Λ states were argued to be implicitly included in the KΛ result, with the sign

of S− remaining positive.

Models with couplings to the mesons parametrized at the quark level have also been

considered by several authors. Using an effective chiral quark model with constituent quarks

coupling to Goldstone bosons, Ding et al. [33] found S− ≈ (4− 9)× 10−3, depending on the

input used for bare constituent quark distributions. Wakamatsu [34] used an SU(3) chiral

quark soliton model with an effective mass difference parameter between the strange and

nonstrange quarks to obtain the range S− = (2.5− 5.5)× 10−3. Most recently, Hobbs et al.

extended previous light-front calculations using a scalar tetraquark spectator model with

Gaussian and power-law wave functions [35], finding S− = (−1 to + 5)× 10−3.

In all these models, while the basic physics principles underlying the generation of the

s − s̄ asymmetry are similar, the ad hoc nature of some of the model assumptions and

ingredients have inevitably led to a fairly wide range of predictions, with a consequent lack

of consensus about the nature of the asymmetry. Clearly, if one is to make reliable predictions

for S−, a more systematic approach is needed, one which has a more direct connection to

the underlying QCD theory.

The first such unambiguous connection between the kaon cloud of the nucleon and QCD
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came with the realization [36] that in chiral expansions of moments of strange quark PDFs,

the coefficients of the leading nonanalytic (LNA) terms in the kaon mass, mK , are model

independent and can only arise from pseudoscalar meson loops. Starting from the most

general effective Lagrangian consistent with the chiral symmetry of QCD, at a given order in

the chiral expansion a unique set of diagrams can be identified and computed systematically

[37–39]. The long distance (mK → 0) effects in such expansions are thus dictated solely by

chiral symmetry and gauge invariance, while the short distance contributions are treated

with a particular regularization procedure. The choice of regularization scheme introduces

additional parameters into the calculation, which can be fixed by comparing with specific

observables.

This methodology was applied by Salamu et al. [40] to the case of pion loops and their

effects on the d̄ − ū asymmetry in the proton, using for illustration a simple sharp cutoff

on the transverse momentum of the pion k⊥ for the ultraviolet regulator. More recently

Wang et al. [41] generalized this approach to the SU(3) sector, using Pauli-Villars (PV)

regularization to compute the various lowest order diagrams in the chiral SU(3) expansion,

and obtain a range for S− consistent with available phenomenological constraints.

In the present work, we extend the analysis of Ref. [41], providing full details of the

calculation of the kaon loop contributions to the strange-quark PDF and its moments in the

chiral effective theory. We outline the formal derivation of the convolution representation,

and perform a numerical study of the various contributions from the lowest order diagrams.

We emphasize the importance of using regularization procedures that preserve the chiral and

gauge symmetries of QCD, and contrast these with previous calculations in the literature

using form factors at hadronic vertices.

We further explore the consequences of the δ-function contribution to the s̄ distribution

at zero momentum fraction that arises from the Weinberg-Tomozawa contact interaction in

the chiral theory, and identify a valence-like component of the strange PDF. Suggestions of

possible δ-function contributions to PDFs were raised earlier [42, 43] in discussions of the

unpolarized Schwinger term and proton spin sum rules. The practical implication of the δ-

function terms is to provide significantly greater flexibility in the allowed phenomenological

parametrization of the s − s̄ difference, suggesting that current forms used in global PDF

analysis may be too restrictive.

In addition to its intrinsic value, understanding the sign and magnitude of the s − s̄

5



asymmetry is also vital for the extraction of the Paschos-Wolfenstein ratio from neutrino–

nucleus DIS data. Specifically, it has been suggested that a large positive value of S− ∼

2× 10−3 could resolve much of the discrepancy between the sin2 θW value extracted by the

NuTeV Collaboration [44] and the Standard Model [27]. A negative value for S− would, in

contrast, exacerbate the disagreement. Thus, an accurate determination of the magnitude,

as well as the sign, of S− would be of significant practical value in resolving this issue.

In Sec. II we begin by defining the chiral SU(3) Lagrangian, identifying the terms at

the lowest order in the expansion that contribute to the strange quark distributions in the

nucleon. The details of the computation of nucleon PDFs and their moments within the

effective chiral theory framework are presented in Sec. III. Here we discuss the matching

of the quark-level operators with the corresponding hadronic operators, the coefficients of

which are related to moments of specific PDFs. The operator formalism is also shown to

lead to a natural represention of the nucleon PDFs in the form of convolutions of PDFs

of hadronic constituents and nucleon → hadron splitting functions (or hadronic light-cone

momentum distributions). Explicit expressions for the latter are derived in Sec. IV for each

kind of kaon and hyperon splitting function allowed at the lowest order, including the kaon

and hyperon rainbow, kaon bubble and tadpole, and Kroll-Ruderman vertex contributions.

In Sec. V the model-independent features of the kaon loop corrections to the s and s̄ PDFs

are discussed. Expanding the moments of the PDFs in powers of the kaon mass, we identify

the leading nonanalytic behavior of the lowest two moments, which is a unique and model-

independent feature of pseudoscalar loops that all calculations consistent with QCD must

respect.

The regularization of the hadronic splitting functions is discussed in Sec. VI. We review

the PV prescription, which was shown in Ref. [41] to be a viable method, consistent with

chiral and gauge symmetry, for obtaining consistent results in terms of a small number of

cutoff parameters fixed from phenomenology. In addition, we explore other regularization

schemes, such as using phenomenological vertex form factors. While naive application of

hadronic form factors leads to problems with gauge invariance, we illustrate a nonlocal

approach which allows the symmetry to be preserved. The numerical results for the strange

and antistrange PDFs in the nucleon are presented in Sec. VII. The magnitude and sign of the

strange–antistrange asymmetry are determined by cutoff parameters that are constrained by

other observables, such as hyperon production in inclusive pp scattering, that are sensitive to
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the presence of strangeness in the nucleon, as well as information from global PDF analyses.

Using all available constraints from data, we obtain upper and lower limits on the second

moment of s − s̄, and discuss its impact on the NuTeV anomaly. Finally, in Sec. VIII we

summarize our findings and outline possible future improvements in theory and experiment

that can lead to a better understanding of the strange asymmetry in the nucleon.

II. CHIRAL EFFECTIVE LAGRANGIAN

The effective Lagrangian for the interaction of octet baryons B through pseudoscalar fields

φ, consistent with chiral SU(3) symmetry, can be written at lowest order in the derivative

expansion as [45–47]

L = −D
2
B̄γµγ5 {uµ, B} −

F

2
B̄γµγ5 [uµ, B] + i B̄γµ [Dµ, B], (2)

where

uµ = i
(
u† ∂µu− u ∂µu†

)
, (3)

and the operator u is given in terms of the pseudoscalar fields by

u = exp

(
iφ√
2fφ

)
, (4)

with fφ the pseudoscalar decay constant. The covariant derivative Dµ is defined as

[Dµ, B] = ∂µB + [Γµ, B], (5)

and Γµ is the link operator,

Γµ =
1

2
[u†, ∂µu]. (6)

The constants D and F in Eq. (2) are the SU(3) flavor coefficients associated with the

anticommutator and commutator of uµ and B, respectively.

The pseudoscalar field φ can be written explicitly in matrix form in terms of the isovector
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π, isodoublet K, and isosinglet η fields as

φ =
8∑

a=1

λa√
2
φa =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η

 , (7)

where λa are the SU(3) Gell-Mann matrices, and the fields φa are given by

φ1 = (π+ + π−)/
√

2, φ2 = i(π+ − π−)/
√

2, φ3 = π0, φ4 = (K+ + K−)/
√

2,

φ5 = i(K+ −K−)/
√

2, φ6 = (K0 + K
0
)/
√

2, φ7 = i(K0 − K
0
)/
√

2, and φ8 = η. Simi-

larly, the octet baryon field B can be expressed in terms of the nucleon, the strangeness −1

hyperons Σ and Λ, and the strangeness −2 hyperon Ξ fields as

B =
8∑

a=1

λa√
2
Ba =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 , (8)

where the assignment of the individual baryon fields Ba is B1 = (Σ+ + Σ−)/
√

2,

B2 = i(Σ+ − Σ−)/
√

2, B3 = Σ0, B4 = (p+ Ξ−)/
√

2, B5 = i(p−Ξ−)/
√

2, B6 = (n+ Ξ0)/
√

2,

B7 = i(n− Ξ0)/
√

2, and B8 = Λ.

For practical applications, in the following we will restrict ourselves to the case of a

nucleon initial state, although the generalization to hyperon initial states is straightforward.

Using the representations (7) and (8), the chiral Lagrangian L in Eq. (2) can be expanded to

O((φ/fπ)2) as a sum of terms involving a single pseudoscalar meson coupling to the baryon

current, LφBB, and a Weinberg-Tomozawa term, LφφBB, in which two pseudoscalar mesons

couple to the baryon at the same point, L = LφBB + LφφBB. The former generates the

well-known “rainbow” diagram, in which a pseudoscalar meson is emitted and reabsorbed

8



by the baryon at different space-time points,

LφBB =
1

2fφ

{
(D + F )

[
p̄γµγ5p ∂µπ

0 − n̄γµγ5n ∂µπ
0 +
√

2(n̄γµγ5p ∂µπ
− + p̄γµγ5n ∂µπ

+)
]

+ (D − F )
[
Σ

0
γµγ5p ∂µK

− + p̄γµγ5Σ0 ∂µK
+ +
√

2(Σ
+
γµγ5p ∂µK

0
+ p̄γµγ5Σ+ ∂µK

0)
]

− (D − F )
[
Σ

0
γµγ5n ∂µK̄

0 + n̄γµγ5Σ0 ∂µK
0 −
√

2(Σ
−
γµγ5n ∂µK

− + n̄γµγ5Σ− ∂µK
+)
]

− 1√
3

(D + 3F )
[
Λγµγ5p ∂µK

− + p̄γµγ5Λ ∂µK
+ + Λγµγ5n ∂µK̄

0 + n̄γµγ5Λ ∂µK
0
]

− 1√
3

(D − 3F )
[
p̄γµγ5p ∂µη + n̄γµγ5n ∂µη

]}
. (9)

The latter term,

LφφBB =
i

(2fφ)2

×
{
p̄γµp

[
π+∂µπ

− − π−∂µπ+ + 2(K+∂µK
− −K−∂µK+) +K0∂µK

0 −K0
∂µK

0
]

+ n̄γµn
[
π−∂µπ

+ − π+∂µπ
− +K+∂µK

− −K−∂µK+ + 2(K0∂µK
0 −K0

∂µK
0)
]

+ p̄γµn
[√

2(π0∂µπ
+ − π+∂µπ

0) +K+∂µK
0 −K0

∂µK
+
]

+ n̄γµp
[√

2(π−∂µπ
0 − π0∂µπ

−) +K0∂µK
− −K−∂µK0

]}
, (10)

is necessary for the preservation of chiral symmetry, and is independent of the couplings D

and F . The effective interactions in Eqs. (9) and (10) then form the basis for the derivation

of the effective hadronic operators, whose matrix elements will be related to moments of

PDFs.

III. PDFS IN CHIRAL EFFECTIVE THEORY

From the effective chiral Lagrangian we can derive expressions for parton distributions in

the nucleon by matching twist-two quark operators with the hadronic operators in the effec-

tive theory. The matrix elements of these operators are then related through the operator

product expansion in QCD to moments of the PDFs. In this section we present the formal-

ism needed for the analysis of the PDF moments and identify the complete set of hadronic

operators relevant for the computation of the strange-quark distribution in the nucleon.
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A. Convolution formalism

We begin by defining the n-th Mellin moment (n ≥ 1) of a spin-averaged PDF q(x) in

the nucleon for a given flavor q (q = u, d, s, . . .) by

〈xn−1〉q =

∫ 1

−1

dx xn−1 q(x)

=

∫ 1

0

dx xn−1
(
q(x) + (−1)n q̄(x)

)
, (11)

where the sign on the antiquark contribution q̄(x) reflects the crossing symmetry properties

of the spin-averaged PDFs, q(−x) = −q̄(x), and for brevity we suppress explicit dependence

of the PDFs on the scale Q2. The operator product expansion allows these moments to be

related to the matrix elements of local twist-two operators Oµ1···µnq between nucleon states

with momentum p,

〈N(p)|Oµ1···µnq |N(p)〉 = 2 〈xn−1〉q pµ1 · · · pµn , (12)

where the spin-n operators are given by quark bilinears

Oµ1···µnq = in−1 q̄γ{µ1
←→
D µ2 · · ·

←→
D µn}q , (13)

with
←→
D = 1

2

(−→
D−
←−
D
)
, and the braces { · · · } indicate total symmetrization of Lorentz indices.

In the effective field theory, the quark operators Oq are matched to hadronic operators

Oj having the same quantum numbers (but not necessarily the same twist) [37],

Oµ1···µnq =
∑
j

c
(n)
q/j O

µ1···µn
j , (14)

where j labels different types of hadronic operators, and the coefficients c
(n)
q/j are the n-th

moments of the PDF qj(x) in the hadronic configuration j,

c
(n)
q/j =

∫ 1

−1

dx xn−1 qj(x) ≡ 〈xn−1〉q/j. (15)

The nucleon matrix elements of the hadronic operators Oµ1···µnj can be written in terms of
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moments of the hadronic N → j splitting functions fj(y),

〈N(p)|Oµ1···µnj |N(p)〉 = 2 f
(n)
j p{µ1 · · · pµn}, (16)

where the moment f
(n)
j is given by the integral

f
(n)
j =

∫ 1

−1

dy yn−1fj(y), (17)

with y the light-cone momentum fraction of the nucleon carried by the hadronic state j.

The Bose statistics of the meson fields require the splitting functions to be even functions of

y, fj(−y) = fj(y), so that the moments vanish, f
(n)
j = 0, for all even values of n = 2, 4, 6 . . .

[37]. From the definition of the PDF moments in Eq. (11) and the crossing symmetry of the

quark and antiquark PDFs, one can further write

〈xn−1〉q−q̄ =
(

1− (−1)n
)
〈xn−1〉q , (18)

which implies that for the q − q̄ difference the moments vanish, 〈xn−1〉q−q̄ = 0, for all even

n. Indeed, the matching equation (14) can be written in terms of the moments as

〈xn−1〉q−q̄ =
∑
j

f
(n)
j 〈xn−1〉q/j , (19)

with both sides vanishing for n even. The trivial equality for even n can be removed by

limiting the integration range of the splitting functions fj(y) to the physical region between

y = 0 and y = 1. To do this, we can define the “truncated” moments f̃
(n)
j for physical values

of y by

f̃
(n)
j =

∫ 1

0

dy yn−1fj(y), (20)

so that f
(n)
j =

(
1 − (−1)n

)
f̃

(n)
j by the crossing symmetry property of fj(y). Removing the

prefactor
(
1− (−1)n

)
from both sides of Eq. (19), one then obtains

〈xn−1〉q =
∑
j

f̃
(n)
j 〈xn−1〉q/j . (21)
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Changing the order of the integrations in f̃
(n)
j and 〈xn−1〉q/j, one can write the right-hand

side of Eq. (21) as

∑
j

f̃
(n)
j 〈xn−1〉q/j =

∫ 1

−1

dx xn−1
∑
j

∫ 1

0

dy fj(y)

∫ 1

0

dz δ(x− yz)
(
qj(z)− q̄j(z)

)
, (22)

so that the left-hand side of (21) is equal to

∫ 1

−1

dx xn−1q(x) =

∫ 1

−1

dx xn−1
∑
j

∫ 1

0

dy fj(y)

∫ 1

0

dz δ(x− yz) qvj (z), (23)

where qvj ≡ qj − q̄j is the valence distribution for quark flavor q in the hadron j. Since

Eq. (23) is satisfied for all n, the x-integrands of Eqs. (19) and (23) must be equivalent,

which leads to the convolution formula for the PDFs,

q(x) =
∑
j

(
fj ⊗ qvj

)
(x) ≡

∑
j

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) fj(y) qvj (z). (24)

The convolution expression (24) is the standard one used in calculations of chiral loop

corrections in meson cloud models; its appearance in the effective chiral theory is made

manifest here.

B. Twist-two quark operators

From the lowest-order interaction Lagrangians in Eqs. (9) and (10), one can derive a

set of hadronic operators with the symmetry properties corresponding to those of the local

twist-two operators in Eq. (13). Specifically, for each quark flavor q, the quark operators

can be written in terms of the hadronic operators according to

Oµ1···µnq = a(n)in
f 2
φ

4

{
Tr
[
U †λq+∂µ1 · · · ∂µnU

]
+ Tr

[
Uλq+∂µ1 · · · ∂µnU †

] }
+
[
α(n)(Bγµ1Bλq+) + β(n)(Bγµ1λq+B) + σ(n)(Bγµ1B) Tr[λq+]

]
pµ2 · · · pµn

+
[
ᾱ(n)(Bγµ1γ5Bλq−) + β̄(n)(Bγµ1γ5λ

q
−B) + σ̄(n)(Bγµ1γ5B) Tr[λq−]

]
pµ2 · · · pµn

+ permutations− Tr, (25)
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with a set of a priori unknown coefficients a(n) (for the purely mesonic operators),

{α(n), β(n), σ(n)} (for the baryonic vector operators), and {ᾱ(n), β̄(n), σ̄(n)} (for the baryonic

axial vector operators) for each n, and “Tr” represents the trace over the Lorentz indices.

Here, the operator B creates spin-1/2 octet baryons, and the three-index tensor representa-

tion of B is related to the octet baryon field matrix B by

Bijk =
1√
6

(
εijk′B

k′

k + εikk′B
k′

j

)
, (26)

with the corresponding conjugate representation

Bkji =
1√
6

(
εijk′B̄

k′

k + εikk′B̄
k′

j

)
. (27)

The flavor operator λq± in Eq. (25) is defined as

λq± =
1

2

(
uλ̄qu† ± u†λ̄qu

)
, (28)

with the 3× 3 diagonal matrices λ̄q given by

λ̄q = diag(δqu, δqd, δqs). (29)

Expanding up to O(φ2), this can be written as

λq+ = λ̄q +
1

4f 2
φ

(
2φλ̄qφ− φ2λ̄q − λ̄qφ2

)
+O

(
φ4
)
, (30a)

λq− =
i√
2fφ

(
φλ̄q − λ̄qφ

)
+O

(
φ3
)
. (30b)

The parentheses (B · · · B) in (25), involving the three-index tensor representation of the B

operator, are related to the ordinary traces of the baryon field matrix B using the identi-

ties [48]

(BB) = Tr
[
B̄B

]
, (31a)

(BBA) =
2

3
Tr
[
B̄AB

]
+

1

6
Tr
[
B̄B

]
Tr
[
A
]
− 1

6
Tr
[
B̄BA

]
, (31b)

(BAB) = −1

3
Tr
[
B̄AB

]
+

2

3
Tr
[
B̄B

]
Tr
[
A
]
− 2

3
Tr
[
B̄BA

]
. (31c)
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Using these relations, the hadronic operators for the u and d quark flavors relevant to the

nucleon initial and final states can be expanded as

Oµ1···µnu =
a(n)

2

(
Oµ1···µnπ+ +Oµ1···µnK+

)
+
[(5

6
α(n) +

1

3
β(n) + σ(n)

)
Oµ1···µnp +

(1

6
α(n) +

2

3
β(n) + σ(n)

)
Oµ1···µnn

+
(1

6
α(n) +

2

3
β(n) + σ(n)

)
Oµ1···µnΞ0 +

(1

4
α(n) +

1

2
β(n) + σ(n)

)
Oµ1···µnΛ

+
( 5

12
α(n) +

1

6
β(n) + σ(n)

)
Oµ1···µnΣ0 +

(5

6
α(n) +

1

3
β(n) + σ(n)

)
Oµ1···µnΣ+

+σ(n)
(
Oµ1···µnΣ− +Oµ1···µnΞ−

)
+

1

4
√

3

(
α(n) − 2β(n)

)(
Oµ1···µnΛΣ0 +Oµ1···µnΣ0Λ

)]
+
[ 1

12
(−4α(n) + 2β(n))Oµ1···µnp̄pπ+π− +

1

12
(−5α(n) − 2β(n))Oµ1···µnp̄pK+K−

+
1

12
(4α(n) − 2β(n))Oµ1···µnn̄nπ+π− +

1

12
(−α(n) − 4β(n))Oµ1···µnn̄nK+K−

]
+

1

3
√

2

(
2ᾱ(n) − β̄(n)

)
Oµ1···µnnpπ− −

√
3

4
ᾱ(n)Oµ1···µnΛpK−

− 1

12

(
ᾱ(n) + 4β̄(n)

)(
Oµ1···µnΣ0pK− +

√
2Oµ1···µnΣ−nK−

)
, (32)

and

Oµ1···µnd =
a(n)

2

(
Oµ1···µnπ− +Oµ1···µnK0

)
+
[(1

6
α(n) +

2

3
β(n) + σ(n)

)
Oµ1···µnp +

(5

6
α(n) +

1

3
β(n) + σ(n)

)
Oµ1···µnn

+
(1

6
α(n) +

2

3
β(n) + σ(n)

)
Oµ1···µnΞ− +

(1

4
α(n) +

1

2
β(n) + σ(n)

)
Oµ1···µnΛ

+
( 5

12
α(n) +

1

6
β(n) + σ(n)

)
Oµ1···µnΣ0 +

(5

6
α(n) +

1

3
β(n) + σ(n)

)
Oµ1···µnΣ−

+σ(n)
(
Oµ1···µnΣ+ +Oµ1···µnΞ0

)
− 1

4
√

3

(
α(n) − 2β(n)

)(
Oµ1···µnΛΣ0 +Oµ1···µnΣ0Λ

)]
+
[ 1

12
(4α(n) − 2β(n))Oµ1···µnp̄pπ+π− +

1

12
(−α(n) − 4β(n))Oµ1···µn

p̄pK0K̄0

+
1

12
(−4α(n) + 2β(n))Oµ1···µnn̄nπ+π− +

1

12
(−5α(n) − 2β(n))Oµ1···µn

n̄nK0K̄0

]
− 1

3
√

2

(
2ᾱ(n) − β̄(n)

)
Oµ1···µnnpπ− −

√
3

4
ᾱ(n)Oµ1···µn

ΛnK̄0

− 1

12

(
ᾱ(n) + 4β̄(n)

)(
−Oµ1···µn

Σ0nK̄0 +
√

2Oµ1···µn
Σ+pK̄0

)
, (33)
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respectively. For the twist-two strange quark operator, which is directly relevant to the

current analysis, one has

Oµ1···µns = −a
(n)

2

(
Oµ1···µnK+ +Oµ1···µnK0

)
+
[(1

2
α(n) + σ(n)

)
Oµ1···µnΛ +

(1

6
α(n) +

2

3
β(n) + σ(n)

)(
Oµ1···µnΣ+ +Oµ1···µnΣ0 +Oµ1···µnΣ−

)
+
(5

6
α(n) +

1

3
β(n) + σ(n)

)(
Oµ1···µnΞ− +Oµ1···µnΞ0

)
+ σ(n)

(
Oµ1···µnp +Oµ1···µnn

)]
+

1

12
(5α(n) + 2β(n))

(
Oµ1···µnp̄pK+K− +Oµ1···µn

n̄nK0K̄0

)
+

1

12
(α(n) + 4β(n))

(
Oµ1···µn
p̄pK0K̄0 +Oµ1···µnn̄nK+K−

)
+

1

6
(2α(n) − β(n))

(
Oµ1···µn
p̄nK+K̄0 +Oµ1···µnn̄pK0K−

)
+

√
3

4
ᾱ(n)

(
Oµ1···µnΛpK− +Oµ1···µn

ΛnK̄0

)
+

1

12

(
ᾱ(n) + 4β̄(n)

)(
Oµ1···µnΣ0pK− +

√
2Oµ1···µn

Σ+pK̄0

)
+

1

12

(
ᾱ(n) + 4β̄(n)

)(
−Oµ1···µn

Σ0nK̄0 +
√

2Oµ1···µnΣ−nK−

)
. (34)

The various hadronic operators in Eqs. (32) – (34) are defined as

Oµ1···µnφ = in
(
φ̄ ∂µ1 · · · ∂µnφ− φ ∂µ1 · · · ∂µnφ̄

)
, (35a)

Oµ1···µnB′B =
(
B̄′γµ1B

)
pµ2 · · · pµn , (35b)

Oµ1···µnBBφφ =
1

f 2
φ

(
B̄γµ1Bφ̄ φ

)
pµ2 · · · pµn , (35c)

Oµ1···µnB′Bφ =
i

fφ

(
B̄′γµ1γ5Bφ− B̄γµ1γ5B

′φ̄
)
pµ2 · · · pµn , (35d)

where for the B′B and B′Bφ operators in Eqs. (35b) and (35d) the fields B and B′ can in

principle be different.

From the operator structures in Eq. (34) we can identify several distinct contributions to

the nucleon matrix elements of the strange quark twist-two operators. These are illustrated

in Fig. 1, and include the kaon and hyperon rainbow diagrams, the kaon bubble and tadpole

contributions, and the Kroll-Ruderman terms that are necessary for the preservation of

gauge invariance. Each of these can be expressed in terms of a particular nucleon→ strange

hadron splitting function fj(y) and the corresponding PDF in the strange hadron. The

moments of the latter can be related to various combinations of coefficients of the hadronic

operators in Eq. (34), as we discuss next.

15



(a) (b)

(d)(c)

(e) (f)

N
Y

K

FIG. 1: Contributions to the s̄ PDF in the nucleon from (a) the kaon rainbow and (b) kaon

bubble diagrams, and contributions to the s PDF from (c) the hyperon rainbow, (d) kaon tadpole,

and (e), (f) Kroll-Ruderman diagrams. The kaons, K, and hyperon, Y , are represented by the

internal dashed and solid curves, respectively, and the crosses represent insertions of the operators

in Eq. (34).

C. Matching coefficients and PDF moments

Generally, the coefficients of the operators in Eq. (25) are not constrained by symmetries

and must be determined from elsewhere. Within the convolution formalism, Eq. (24), the

coefficient a(n) is related, for example, to the u-quark or s̄-antiquark distribution in the K+

meson,
a(n)

2
=

∫ 1

−1

dx xn−1 s̄K+(x), (36)

from which we have a(1) = 2. Within the chiral SU(3) framework, the kaon and pion PDFs

are related by s̄K+ = uK+ = s̄K0 = uπ+ = d̄π+ = dπ− = ūπ− for all x values.

The coefficients α(n), β(n) and σ(n), on the other hand, are related to the moments of the

16



u, d and s PDFs in the bare proton,

5

6
α(n) +

1

3
β(n) + σ(n) =

∫ 1

−1

dx xn−1 u(x), (37a)

1

6
α(n) +

2

3
β(n) + σ(n) =

∫ 1

−1

dx xn−1 d(x), (37b)

σ(n) =

∫ 1

−1

dx xn−1 s(x). (37c)

Solving Eqs. (37), these coefficients can be obtained in terms of the proton PDFs,

α(n) =

∫ 1

−1

dx xn−1
(4

3
u(x)− 2

3
d(x)− 2

3
s(x)

)
, (38a)

β(n) =

∫ 1

−1

dx xn−1
(
− 1

3
u(x) +

5

3
d(x)− 4

3
s(x)

)
, (38b)

with σ(n) given by Eq. (37c). Note that in the SU(3) symmetric limit, the strange quark

PDF s(x) in the nucleon is identically zero; for the time being, we keep it explicitly in

Eqs. (38) for generality. For n = 1, the coefficients are then fixed by the conservation of the

total charge and strangeness in the nucleon,

α(1) = 2, β(1) = 1, σ(1) = 0. (39)

To determine the coefficients ᾱ(n), β̄(n) and σ̄(n) of the axial vector operators, in contrast,

one needs to consider spin-dependent twist-two operators,

Oµ1···µn∆q = in−1q̄γ5γ
{µ1←→D µ2 · · ·

←→
D µn}q. (40)

In the effective field theory the spin-dependent twist-two operators can be matched to the

hadronic operators according to [47]

Oµ1···µn∆q =
[
ᾱ(n)(Bγµ1γ5Bλq+) + β̄(n)(Bγµ1γ5λ

q
+B) + σ̄(n)(Bγµ1γ5B) Tr[λq+]

]
pµ2 · · · pµn

+
[
α(n)(Bγµ1Bλq−) + β(n)(Bγµ1λq−B) + σ(n)(Bγµ1B) Tr[λq−]

]
pµ2 · · · pµn

+ permutations − Tr. (41)

According to the properties of Oµ1···µnq and Oµ1···µn∆q under parity transformations [49], the
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coefficients {α(n), β(n), σ(n)} and {ᾱ(n), β̄(n), σ̄(n)} are the same as for the spin-averaged op-

erators in Eq. (25). Expanding Eq. (41) to lowest order, the coefficients can then be related

to the moments of the spin-dependent PDFs in the bare proton by

5

6
ᾱ(n) +

1

3
β̄(n) + σ̄(n) =

∫ 1

−1

dx xn−1∆u(x), (42a)

1

6
ᾱ(n) +

2

3
β̄(n) + σ̄(n) =

∫ 1

−1

dx xn−1∆d(x), (42b)

σ̄(n) =

∫ 1

−1

dx xn−1∆s(x), (42c)

from which the individual coefficients can be determined according to

ᾱ(n) =

∫ 1

−1

dx xn−1

(
4

3
∆u(x)− 2

3
∆d(x)− 2

3
∆s(x)

)
, (43a)

β̄(n) =

∫ 1

−1

dx xn−1

(
−1

3
∆u(x) +

5

3
∆d(x)− 4

3
∆s(x)

)
. (43b)

As for the spin-averaged PDF in Eqs. (38), here we again keep the bare polarized strange

quark PDF ∆s(x) in the nucleon for generality, even though in the SU(3) limit it is zero.

For n = 1, the coefficients ᾱ(1) and β̄(1) are fixed from the SU(3) decay constants by

ᾱ(1) =
2

3
(D + 3F ), β̄(1) = −1

3
(5D − 3F ). (44)

Along with the nucleon and meson PDFs that appear the calculation of the PDFs in

Eq. (24), contributions from PDFs in strange baryons also enter the convolution integrals.

Within the chiral SU(3) framework, moments of the strange quark PDFs in the hyperons,

sY , are given in terms of the coefficients by

1

2
α(n) + σ(n) =

∫ 1

−1

dx xn−1sΛ(x), (45a)

1

6
α(n) +

2

3
β(n) + σ(n) =

∫ 1

−1

dx xn−1sΣ+(x) =

∫ 1

−1

dx xn−1sΣ0(x). (45b)

Combining with Eqs. (38), the strange PDFs in the Λ and Σ hyperons are then related to
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the u and d PDFs in the proton according to

sΛ(x) =
1

3

[
2u(x)− d(x) + 2s(x)

]
, (46a)

sΣ+(x) = sΣ0(x) = d(x). (46b)

In practice SU(3) symmetry violating effects [50] may give corrections to these relations

at the 10%–20% level [41], although a dedicated study of the phenomenological impact on

PDFs will be necessary for a more quantitative estimate.

For the strange PDFs associated with the Kroll-Ruderman vertices in Figs. 1(e) and (f),

s
(KR)
Y (x), one makes use of the moment relations

ᾱ(n)

ᾱ(1)
=

∫ 1

−1

dx xn−1s
(KR)
Λ (x), (47a)

ᾱ(n) + 4β̄(n)

ᾱ(1) + 4β̄(1)
=

∫ 1

−1

dx xn−1s
(KR)

Σ+ (x) =

∫ 1

−1

dx xn−1s
(KR)

Σ0 (x). (47b)

Combining with Eqs. (43), the Kroll-Ruderman strange-quark distributions can then be

written in terms of spin-dependent PDFs in the nucleon,

s
(KR)
Λ (x) =

1

D + 3F

[
2∆u(x)−∆d(x)

]
, (48a)

s
(KR)

Σ+ (x) = s
(KR)

Σ0 (x) =
1

F −D
∆d(x). (48b)

Finally, for the strange quark distributions relevant for the Weinberg-Tomozawa tadpole

contribution in Fig. 1(d), s
(tad)
K (y), one finds the moment relations

1

12

(
5α(n) + 2β(n)

)
=

∫ 1

−1

dx xn−1 s
(tad)

K+ (x), (49a)

1

6

(
α(n) + 4β(n)

)
=

∫ 1

−1

dx xn−1 s
(tad)

K0 (x). (49b)

Combining with Eqs. (38), the PDFs associated with the charged and neutral kaon loops

are given by

s
(tad)

K+ (x) =
1

2
u(x), (50a)

s
(tad)

K0 (x) = d(x). (50b)
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These relations provide the complete information on the PDFs in the strange hadrons

necessary for the computation of the loop diagrams of Fig. 1. The remaining ingredients

needed to evaluate the convolutions in Eq. (24) are the hadronic splitting functions fj(y). In

the next section we derive these from the matrix elements of the operators listed in Sec. III B.

IV. HADRONIC SPLITTING FUNCTIONS

The hadronic splitting functions fj(y) defined in Eqs. (16) and (17) can be thought of as

the effective theory analogs of the quark and gluon splitting functions of perturbative QCD

that enter in the PDF evolution equations [51]. In this case the nucleon → kaon + hyperon

splitting functions are evaluated for each of the hadronic level diagrams in Fig. 1, with the

interaction vertices given by the operators in Eqs. (34) and (35). In this section we give the

complete set of strange hadron splitting functions in the effective theory. Regularization of

the functions will be discussed in Sec. VI. In general we follow the notations introduced for

the pion loop corrections in Refs. [40, 41, 52, 53], with obvious extensions.

A. Kaon rainbow distribution

We begin with the light-cone distributions associated with the operator insertions on the

kaon loop. These give rise to two types of diagrams, illustrated in Fig. 1, involving the kaon

rainbow and contact interactions. For the kaon rainbow diagram in Fig. 1(a), the splitting

function is given by

f
(rbw)
KY (y) = M

C2
KY

f 2
φ

∫
d4k

(2π)4
ū(p)(/kγ5)

i(/p− /k +MY )

DY

(γ5/k)u(p)
i

DK

i

DK

2k+δ(k+ − yp+),

(51)

where p and k are the physical nucleon and virtual kaon four-momenta, and DK and DY

are the kaon and hyperon virtualities, given by

DK = k2 −m2
K + iε, (52a)

DY = (p− k)2 −M2
Y + iε, (52b)
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respectively, with mK and MY the corresponding kaon and hyperon masses. The spinors

u(p) are normalized such that ū(p)u(p) = 1. The coefficients C2
KY can be obtained from the

effective Lagrangian in Eq. (9),

C2
K+Λ =

(
D + 3F

2
√

3

)2

, C2
K0Σ+ = 2C2

K+Σ0 =

(
D − F√

2

)2

. (53)

Using the Dirac equation, the integrand in Eq. (51) can be decomposed into several terms,

f
(rbw)
KY (y) = −iC

2
KY

f 2
φ

∫
d4k

(2π)4

[
M

2
(p · k +M∆)

D2
KDY

+
MM

D2
K

+
p · k
D2
K

]
2y δ

(
y − k+

p+

)
, (54)

where the sum and difference of the hyperon and nucleon masses are defined as

M = MY +M, (55a)

∆ = MY −M, (55b)

respectively. (Note that M and ∆ should both have an index “Y ” to differentiate between

the Λ and Σ masses; for notational convenience, however, we suppress them in the following.)

Using the residue theorem to perform the k− integration and closing the contour in the upper

half plane to take the hyperon pole,

DY = (p+ − k+)

(
p− − k− − k2

⊥ +M2
Y − iε

p+ − k+

)
→ 0, (56)

one can show that the first term (∼ 1/D2
KDY ) in the brackets of Eq. (54) corresponds to

the on-shell hyperon contribution. This term contributes at y > 0, and is the contribution

usually associated with the “Sullivan process” [22, 54]. The second term (∼ 1/D2
K) in

Eq. (54) vanishes after integration by symmetry arguments [52]. Using the identity [53]

∫
d4k

2y p · k
D2
K

=

∫
d4k

1

DK

, (57)

the third term in Eq. (54) can be shown to give a singular contribution at y = 0 [52]. The

splitting function for the kaon rainbow diagram can then be written as a sum of the on-shell
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and contact (δ-function) contributions,

f
(rbw)
KY (y) =

C2
KYM

2

(4πfφ)2

[
f

(on)
Y (y) + f

(δ)
K (y)

]
. (58)

The on-shell function is given by

f
(on)
Y (y) = y

∫
dk2
⊥
k2
⊥ + (My + ∆)2

(1− y)2D2
KY

F (on), (59)

where

DKY = −
[
k2
⊥ + yM2

Y + (1− y)m2
K − y(1− y)M2

1− y

]
(60)

is the kaon virtuality for an on-shell hyperon intermediate state. Since the splitting functions

for point-particles are ultraviolet divergent, a regularization prescription needs to be used to

obtain finite results. Anticipating the discussion of the ultraviolet regularization in Sec. VI

below, we introduce in Eq. (59) a function F (on) that regularizes the ultraviolet divergence

of the k2
⊥ integration. The expression in Eq. (59) is identical to the one obtained in the

usual Sullivan process with pseudoscalar meson–nucleon–hyperon coupling [22, 28, 55].

The δ-function term f
(δ)
K arises from contributions from kaons with zero light-cone mo-

mentum (k+ = 0),

f
(δ)
K (y) =

1

M
2

∫
dk2
⊥ log ΩK δ(y)F (δ), (61)

where ΩK = k2
⊥ + m2

K , and F (δ) is the corresponding regulating function. Note that the

numerator in the on-shell function in Eq. (59) depends on the hyperon mass MY and not on

the kaon mass, and hence is labeled by the subscript Y . In contrast, the integrand in the

δ-function term is independent of the hyperon, and is labeled only by K.

B. Kaon bubble distribution

Unlike the pseudoscalar theory, where only the rainbow diagram appears, the pseudovec-

tor effective Lagrangian contains the Weinberg-Tomazawa interaction, involving two kaon

fields, which give rise to the bubble diagram in Fig. 1(b). For a K+ meson loop, the light-
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cone distribution associated with the bubble graph is given by

f
(bub)

K+ (y) =
M

f 2
φ

∫
d4k

(2π)4
ū(p)(−i/k)u(p)

i

DK

i

DK

2k+δ(k+ − yp+). (62)

Performing the trace over the spinor indices, this can be written as

f
(bub)

K+ (y) =
i

f 2
φ

∫
d4k

(2π)4

p · k
D2
K

2y δ

(
y − k+

p+

)
. (63)

Again using the identity in Eq. (57), the integrand can be expressed in terms of a single

kaon propagator, as for the δ-function term in Eq. (61),

f
(bub)

K+ (y) = 2f
(bub)

K0 (y) = − M
2

(4πfφ)2
f

(δ)
K (y), (64)

where the relation between the K+ and K0 contributions is made explicit.

C. Hyperon rainbow distribution

The coupling of the current to the hyperon in the rainbow diagram in Fig. 1(c) leads to

the hyperon distribution function given by

f
(rbw)
Y K (y) = M

C2
KY

f 2
φ

∫
d4k

(2π)4
ū(p)(/kγ5)

i(/p− /k +MY )

DY

γ+
i(/p− /k +MY )

DY

(γ5/k)u(p)

× i

DK

δ(k+ − yp+), (65)

where one has two hyperon propagators and one kaon propagator. Using the Dirac equation,

Eq. (65) can be recast in the reduced form

f
(rbw)
Y K (y) = −iC

2
KY

f 2
φ

∫
d4k

(2π)4

[
M

2
(k2 − 2y p · k − 2yM∆−∆2)

DKD2
Y

− 2MMy + 2M∆

DKDY

− 1

DK

]

× δ

(
y − k+

p+

)
. (66)

The first term (∼ 1/DKD
2
Y ) in Eq. (66) corresponds to the on-shell hyperon contribution,

in analogy with the on-shell term in the kaon rainbow contribution in Eq. (59). The second
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term (∼ 1/DKDY ) arises from the off-shell components of the hyperon propagator, while the

third term (∼ 1/DK) involves the single kaon propagator and contributes only at k+ = 0. It

is convenient therefore to write the total hyperon rainbow distribution function as a sum of

three splitting functions associated with the on-shell, off-shell and δ-function contributions,

f
(rbw)
Y K (y) =

C2
KYM

2

(4πfφ)2

[
f

(on)
Y (y) + f

(off)
Y (y)− f (δ)

K (y)
]
. (67)

The on-shell function f
(on)
Y is identical to that in Eq. (59), while the δ-function term f

(δ)
K is

given by Eq. (61). The additional off-shell splitting function in Eq. (67) is given by

f
(off)
Y (y) =

2

M

∫
dk2
⊥

My + ∆

(1− y)DKY

F (off), (68)

where F (off) is the corresponding off-shell regulating function. As with the on-shell function,

the off-shell term also contributes only at y > 0, and depends only on the hyperon (rather

than kaon) mass.

D. Tadpole distribution

The distribution function associated with the tadpole diagram in Fig. 1(d), involving an

operator insertion at the KKpp vertex, is given by

f
(tad)

K+ (y) = −M
f 2
φ

∫
d4k

(2π)4
ū(p)γ+u(p)

i

DK

δ(k+ − yp+), (69)

for the charged kaon loop, and f
(tad)

K0 = f
(tad)

K+ /2 for the neutral kaon loop contribution. Again

using the Dirac equation, this can be written in terms of the f
(δ)
K function as

f
(tad)

K+ (y) = 2f
(tad)

K0 (y) =
M

2

(4πfφ)2
f

(δ)
K (y), (70)

so that the tadpole and bubble diagrams are in fact equal and opposite [53],

f
(tad)
K (y) + f

(bub)
K (y) = 0. (71)
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E. Kroll-Ruderman distribution

Because of the derivative coupling in the pseudovector theory, by themselves the meson

and baryon rainbow diagrams in Figs. 1(a) and (c) are not gauge invariant (the sum of

the bubble and tadpole diagrams, on the other hand, is gauge invariant). To ensure gauge

invariance of all the chiral loop corrections to the twist-two matrix elements requires, in

addition, the Kroll-Ruderman diagrams in Figs. 1(e) and (f). Inserting the relevant pY

operators in Eq. (34), the light-cone momentum distribution associated with the Kroll-

Ruderman diagrams is given by

f
(KR)
Y K (y) = −iM C2

KY

f 2
φ

∫
d4k

(2π)4
ū(p)

[
/kγ5

i(/p− /k +MY )

DY

γ+γ5 + γ+γ5

i(/p− /k +MY )

DY

/kγ5

]
u(p)

× i

DK

δ(k+ − yp+). (72)

Applying the Dirac equation, the integrand can be decomposed into two terms,

f
(KR)
Y K (y) = −2iM

C2
KY

f 2
φ

∫
d4k

(2π)4

[
My + ∆

DKDY

+
1

MDK

]
δ

(
y − k+

p+

)
. (73)

These can be identified with the off-shell and δ-function contributions from Eqs. (68) and

(61), respectively, so that one has

f
(KR)
Y K (y) =

C2
KYM

2

(4πfφ)2

[
−f (off)

Y (y) + 2f
(δ)
K (y)

]
. (74)

Comparing the expressions for the kaon and hyperon rainbow diagrams in Eqs. (58) and

(67), one finds that the rainbow and KR splitting functions satisfy the identity

f
(rbw)
Y K + f

(KR)
Y K = f

(rbw)
KY . (75)

Together with Eq. (71), this guarantees that the nucleon has zero net strangeness. This will

be evident when we consider the convolution expressions for the strange and antistrange

PDFs in the nucleon in the next section.
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V. STRANGE PDFS IN THE NUCLEON: MODEL-INDEPENDENT FEATURES

Using the results for the nucleon → kaon + hyperon splitting functions in Sec. IV, the

generic convolution expression in Eq. (24) can be written explicitly for the strange and

antistrange PDFs in the nucleon, incorporating the contributions from all of the diagrams

shown in Fig. 1. In this section we provide the formulas for the contributions to the s and s̄

PDFs in terms of convolution of the rainbow, Kroll-Ruderman, bubble and tadpole splitting

functions and the s and s̄ PDFs in the strange hadrons derived in Sec. III. Following this

we discuss the model-independent chiral nonanalytic behavior of the moments of the s and

s̄ PDFs, which is required by the chiral symmetry of QCD.

A. s and s̄ distributions

In the following we will assume for simplicity that the strange and antistrange content of

the nucleon arises exclusively through the kaon loops in Fig. 1, and that the bare nucleon

is made up entirely of nonstrange quarks. In fact, strictly speaking this constraint is not

necessary for the discussion of the s− s̄ asymmetry; the only requirement is that any non-

chiral contributions (perturbative or nonperbative) are symmetric with respect to s and

s̄. The s̄ PDF in the nucleon can then be written in terms of convolutions of the kaon

rainbow and kaon bubble splitting functions from Figs. 1(a) and (b), respectively, with the

s̄ distribution in the kaon [41],

s̄(x) =
(∑
KY

f
(rbw)
KY +

∑
K

f
(bub)
K

)
⊗ s̄K , (76)

where the rainbow terms are summed over KY = K+Λ, K+Σ0 and K0Σ+, and the kaon

bubble terms are summed over K = K+ and K0 for the proton initial state.

For the s-quark distribution in the nucleon, on the other hand, the convolution involves

the hyperon rainbow, kaon tadpole and Kroll-Ruderman diagrams in Figs. 1(c), (d) and

(e)–(f), respectively,

s(x) =
∑
Y K

(
f̄

(rbw)
Y K ⊗ sY + f̄

(KR)
Y K ⊗ s(KR)

Y

)
+
∑
K

f̄
(tad)
K ⊗ s(tad)

K , (77)
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where the rainbow and Kroll-Ruderman contributions are again summed over all Y K com-

binations, while the tadpole involves a sum over K+ and K0. For notational convenience,

in Eq. (77) we define the functions f̄j(y) ≡ fj(1 − y). This is necessary since we work in

terms of the same momentum fraction y for all kaon and hyperon coupling diagrams in

Fig. 1. The strange quark hyperon PDFs, sY , are related to the u and d PDFs in the proton

using SU(3) symmetry, as in Eqs. (46), while the Kroll-Ruderman distributions, s
(KR)
Y , are

related through SU(3) symmetry to the spin-dependent PDFs in the proton in Eqs. (48).

The tadpole distributions, s
(tad)
K , are given in Eqs. (50). Note that with the convention of

Eq. (34), the lowest moments of all quark distribution functions in the hadronic states, s̄K ,

sY , s
(KR)
Y and s

(tad)
K , are normalized to unity.

B. Leading nonanalytic behavior

A defining feature of the chiral effective theory is the systematic expansion of observ-

ables in power series in the meson mass, with generally a priori undetermined coefficients.

However, coefficients of terms in the expansion that are not analytic in m2
K (such as odd

powers of mK or logarithms of mK) are independent of the short-distance behavior of the

theory and are determined entirely by its infrared properties. Any effective theory or model

of QCD must therefore reproduce exactly these coefficients, the most notable of which are

the leading nonanalytic (LNA) terms, if it is consistent with the symmetries of QCD. For

moments of PDFs, the LNA terms were found previously [36–38] to have a characteristic

m2
π logm2

π dependence (for pion loops), a feature which was applied [39] to analyze the chiral

behavior of lattice moments of the isovector quark PDFs.

In the present formulation, we can derive the LNA behavior of the n-th moments of the

individual s and s̄ PDFs, defined as

S(n−1) =

∫ 1

0

dx xn−1 s(x), (78a)

S
(n−1)

=

∫ 1

0

dx xn−1 s̄(x), (78b)

and hence those of the s − s̄ asymmetry, from the convolution formulas (76) and (77) and

the nonanalytic properties of the splitting functions. Of greatest phenomenological interest

will be the n = 1 and n = 2 moments of the PDFs, which correspond to the number and
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momentum sum rules. The LNA behavior of the PDF moments is determined by the LNA

behavior of the moments of the splitting functions, each of which can be expressed in terms

of the three basic functions f
(on)
Y , f

(off)
Y and f

(δ)
K derived in Sec. IV. We define the n-th

moments of these, integrated over the physical y range, as

f̃
(n)
on,Y =

∫ 1

0

dy yn−1 f
(on)
Y (y), (79a)

f̃
(n)
off,Y =

∫ 1

0

dy yn−1 f
(off)
Y (y), (79b)

f̃
(n)
δ,K =

∫ 1

0

dy yn−1 f
(δ)
K (y). (79c)

The LNA behavior is intrinsically infrared and is obtained by considering the lower bound

of the k⊥ integration, in each of the splitting functions. Expanding in powers mK/M and

∆/M , we find for the n = 1 moments,

M
2
f̃

(1)
on,Y

∣∣∣
LNA

= (4m2
K − 6∆2) logm2

K + 6R∆ log
∆−R
∆ +R

, (80a)

M
2
f̃

(1)
off,Y

∣∣∣
LNA

= −2m2
K logm2

K −
2R3

MY

log
∆−R
∆ +R

, (80b)

M
2
f̃

(1)
δ,K

∣∣∣
LNA

= −m2
K logm2

K , (80c)

where R =
√

∆2 −m2
K and O(mK/M,∆/M) corrections have been neglected. For the n = 2

moments of the splitting functions, we find the LNA behavior

M
2
f̃

(2)
on,Y

∣∣∣
LNA

=
4∆

3MY

(−6m2
K + 7∆2) logm2

K +
2R

3MY

(5m2
K − 14∆2) log

∆−R
∆ +R

, (81a)

M
2
f̃

(2)
off,Y

∣∣∣
LNA

=
2∆

3MY

(3m2
K − 2∆2) logm2

K −
4R3

3MY

log
∆−R
∆ +R

, (81b)

M
2
f̃

(2)
δ,K

∣∣∣
LNA

= 0. (81c)

Note that because the function f
(δ)
K (y) ∝ δ(y), its n = 2 and all higher moments vanish.

The LNA behavior of the n-th moments of the s̄ PDF is then given by

S
(n−1)

LNA =
M

2

(4πfφ)2

∑
KY

[
C2
KY f̃

(n)
on,Y +

(
C2
KY − 1

)
f̃

(n)
δ,K

]
LNA

S
(n−1)

K , (82)

where S
(n−1)

K are the moments of the s̄ PDF in the kaon, and the sums are taken over the
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appropriate hyperons and kaons.

For the strange-quark PDF in the nucleon, because the convolutions in Eq. (77) involve

the splitting functions evaluated at (1−y), the expressions for the moments involve binomial

sums over the moments. Specifically, one has

S
(n−1)
LNA =

M
2

(4πfφ)2

∑
KY

n∑
k=1

(
n− 1

k − 1

)
(−1)k−1

×
{
C2
KY

[
f̃

(k)
on,Y + f̃

(k)
off,Y − f̃

(k)
δ,K

]
LNA

S
(n−1)
Y + C2

KY

[
2f̃

(k)
δ,K − f̃

(k)
off,Y

]
LNA

S
(n−1)
(KR)Y −

[
f̃

(k)
δ,K

]
LNA

S
(n−1)
(tad)Y

}
.

(83)

The expressions in Eqs. (82) and (83) hold for any n, including n = 1 and 2. In particular,

from Eqs. (36), (39) and (44) each of the n = 1 moments of the PDFs in the strange hadrons

is normalized to unity. The LNA contributions to the n = 1 moments for the strange and

antistrange distributions in the proton are therefore equivalent,

S
(0)
LNA =

M
2

(4πfφ)2

∑
KY

[
C2
KY f̃

(1)
on,Y +

(
C2
KY − 1

)
f̃

(1)
δ,K

]
LNA

= S
(0)

LNA, (84)

as required by strangeness conservation. This is no longer the case for n = 2 and higher

moments, for which the various moments in the strange hadrons S
(n−1)
j are no longer related.

Furthermore, for n = 2 the antistrange quark moment S
(1)

depends on f̃
(2)
j , while the strange

quark moment S(1) depends on the combination f̃
(1)
j −f̃

(2)
j from the combinatorics in Eq. (83).

VI. REGULARIZATION

For point particles, the functions F (on), F (off) and F (δ) for the on-shell, off-shell and δ-

function distributions in Eqs. (59), (61) and (68), respectively, are each set to unity, and the

integrations over the kaon loop momenta k are ultraviolet divergent. In the effective theory

for the hadrons, which in nature always have finite size, some regularization prescription

must be adopted to render the integrals finite. In practice this is achieved by the regulating

functions aquiring momentum dependence such that the contributions from large momenta

are suppressed.

In the literature various prescriptions have been adopted, ranging from dimensional reg-
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ularization in traditional chiral perturbation theory [56] to sharp cutoffs in k⊥ [40] or form

factors in more phenomenological approaches [57]. Regularization with the help of a finite-

range regulator has been advocated [58–60] as a practical method which reflects the finite

size of the baryon to which the chiral field couples. The effectiveness of the various pre-

scriptions in providing accurate results for expansions of various static properties of hadrons

away from the chiral regime have been discussed in Refs. [61, 62].

In any chosen regularization scheme it is important to respect the symmetries of the

underlying hadronic field theory, including Lorentz invariance, gauge invariance, and chiral

symmetry. Schemes such as dimensional regularization and PV regularization are known

to preserve both chiral and Lorentz symmetries, while for other prescriptions some of these

symmetries are not satisfied. Simple application of hadronic form factors, for example,

can lead to problems with gauge invariance [53, 63], and (in the present application) with

strangeness conservation in the nucleon. Restoration of gauge invariance in the presence of

form factors requires the generalization of the chiral Lagrangian to include nonlocal terms

[63–65]. Following the approach adopted in Ref. [41], here we utilize the PV regularization

method, which offers many of the advantages of finite range regularization and preserves all

of the required symmetries.

A. Pauli-Villars regularization

The PV regularization scheme involves subtracting from the point-like amplitudes ex-

pressions in which the propagator mass is replaced by a cutoff mass µ1, such that in the

ultraviolet limit the differences between the amplitudes vanish. For the on-shell distribution

f
(on)
Y (y), for example, one replaces the 1/D2

KY propagator in Eq. (59) by 1/D2
KY − 1/D2

µ1
,

where Dµ1 = k2−µ2
1. This is equivalent to setting the regulating function F (on) in Eq. (59) to

F (on) = 1− D2
KY

D2
µ1

. (85)

Similarly for the off-shell hyperon function f
(off)
Y (y), one replaces the propagator 1/DKY in

Eq. (68) by 1/DKY − 1/Dµ1 , in which case the off-shell regulating function F (off) is given by

F (off) = 1− DKY

Dµ1

. (86)
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For the δ-function term f
(δ)
K (y), on the other hand, because both the k− and k2

⊥ integrations

are individually ultraviolet divergent, a single PV subtraction is not sufficient, and two

subtractions are necessary in the kaon propagator to render the integrals finite,

1

DK

→ 1

DK

− a1

Dµ1

− a2

Dµ2

. (87)

Here the two subtraction constants a1 and a2 are related to the cutoff masses µ1 and µ2 by

a1 =
µ2

2 −m2
K

µ2
2 − µ2

1

, a2 =
µ2

1 −m2
K

µ2
1 − µ2

2

, (88)

so that in the k →∞ limit the propagator term behaves as ∼ 1/k6. This leads to an effective

regularizing function in Eq. (61) given by

F (δ) = 1− a1 log Ωµ1 + a2 log Ωµ2

log ΩK

, (89)

with Ωµi = k2
⊥ + µ2

i . The free parameters in the calculation are then the two cutoffs µ1 and

µ2, the constraints on which we discuss in the following.

B. Constraints on cutoff parameters

Since the on-shell function, f
(on)
Y (y), depends only on the µ1 cutoff parameter, the natural

process to consider for constraining µ1 phenomenologically is the inclusive production of Λ

hyperons in pp collisions. For large values of the produced Λ momentum (1− y & 0.7) and

small k⊥ . 100 MeV, the dominant contribution to the production process is expected to

be from the exchange of a single K+ meson. At larger kaon momenta y (smaller 1 − y)

multiple meson exchanges and contributions from heavier meson and baryon intermediate

states will become more important [55, 66]. These, however, cannot be computed within

the chiral effective theory framework and will not be considered here.

The differential cross section for the pp→ ΛX reaction with K+ exchange is given by [55]

E
d3σ

d3p
=

C2
K+ΛM

2

16π3f 2
φ

y [k2
⊥ + (My + ∆)2]

(1− y)D2
K+Λ

F (on)(y, k2
⊥)σpK

+

tot (sy), (90)

where s is the pp center of mass energy squared, and the total pK+ cross section σpK
+

tot is
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FIG. 2: Differential cross section for inclusive Λ production in pp scattering as a function of the

momentum fraction 1−y carried by the hyperon, for k⊥ = 75 MeV [67]. The curves are fitted to the

data at 1− y > 0.7, with the best fit (solid line) obtained with the mass parameter µ1 = 545 MeV,

and the fit 2σ below the central values (dashed line) with µ1 = 526 MeV.

evaluated at the pK+ squared center of mass energy sy. In Fig. 2 the inclusive Λ production

cross section data from Ref. [67] are shown as a function of the hyperon momentum fraction

1 − y, for k⊥ = 75 MeV. Taking the standard, constant value σpK
+

tot = (19.9 ± 0.1) mb [68]

for the total pK+ cross section in Eq. (90), we fit the µ1 parameter in the calculated cross

section to the data at small y that are dominated by the lightest, kaon-exchange contribu-

tion. The best fit to data at y < 0.3 is obtained for the value µ1 = (0.545 ± 0.009) GeV,

where the error is statistical, giving a χ2
dof = 1.06. Extending the fitted range to y < 0.4

gives a significantly worse fit, with χ2
dof ≈ 3.7, suggesting the presence of other, non-kaonic

contributions already for y & 0.3, consistent with the findings of previous model-dependent

analyses [55, 66]. Including additional terms from non-kaonic backgrounds would in prac-

tice reduce the magnitude of the kaon contributions allowed by the data, so that the above

cutoff can be taken as an upper limit. As an estimate of the systematic uncertainty in this

procedure, we also consider a fit that lies two standard deviations below the best fit, for

which the cutoff parameter is µ1 = 526 MeV.

Additional constraints on the µ1 parameter can in principle be obtained from comparisons

of the s̄ PDF in Eq. (76) calculated from kaon loops with the phenomenological s̄ distribution
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extracted from global PDF fits. The availability of antineutrino DIS data [24, 44], for

example, can isolate the s̄ distribution from the s-quark PDF, which contributes through the

absorption of a W+ boson in neutrino DIS. In practice, however, the uncertainties on the ν/ν̄

data are typically considerably larger than those on the corresponding electromagnetic cross

sections. Furthermore, the neutrino measurements are usually performed on nuclear targets,

so that the cross sections must be corrected for nuclear effects, which are not completely

understood for neutrino scattering. Thus, in practice little direct information exists on the

s̄ PDF from global analyses, which in fact usually assume symmetric s and s̄ distributions.

On the other hand, the s-quark PDF is sensitive to the µ2 parameter in the F (δ) function

that regulates the kaon tadpole contribution in Eq. (77). Even though the splitting function

associated with the tadpole loop is a δ-function at the kaon momentum fraction y = 0,

Eq. (70), the fact that the convolution (77) involves a coupling at the hyperon vertex means

that this contribution to s(x) in the nucleon will be proportional to s
(tad)
K (x). Using the

SU(3) relations in Eq. (50), this term will then produce a valence-like shape that is nonzero

at x > 0. Comparisons with the phenomenological s-quark PDF as a function of x can then

constrain the value of the µ2 parameter.

In Fig. 3 the combined s+ s̄ distribution from kaon loops is compared with several recent

parametrizations from global PDF analyses [69, 70]. In the evaluation of the s̄ PDF in

Eq. (76), at the lowest order to which we work the strange quark PDF in the kaon is related

by SU(3) symmetry to the valence PDF in the pion, s̄K+ = s̄K0 = d̄π+ , with the latter

taken from a global PDF fit to πN Drell-Yan data by Aicher et al. [71]. For the strange

quark PDFs in the hyperons, sY , and the strange tadpole distributions, s
(tad)
K , the SU(3)

constraints in Eqs. (46) and (50), respectively, are used to relate these to the u and d PDFs

in the proton, for which the parametrization by Martin et al. [72] is utilized. For the strange

KR distributions s
(KR)
Y at the NKY vertex, on the other hand, Eqs. (48) are used to express

these in terms of the spin-dependent PDFs in the nucleon, and in practice we take the fit

from Ref. [73] for both the polarized PDFs and the D and F values. The results using

other parametrizations for the spin-averaged [69, 70, 74] or spin-dependent [75, 76] u and d

distributions yields very similar results.

The comparison of the s and s̄ PDFs in Fig. 3 calculated from kaon loops uses the

maximum value of µ1 allowed by the pp→ ΛX data in Fig. 2, and adjusts the maximum value

of µ2 to ensure that the sum x(s+ s̄) does not exceed the phenomenological parametrization
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FIG. 3: Strange quark xs (solid red curve) and antiquark xs̄ (dashed blue curve) PDFs from kaon

loops for the best fit parameters µ1 = 545 MeV and µ2 = 600 MeV, compared with the phenomeno-

logical x(s + s̄)/2 distribution from the MMHT14 [69] (black dotted curves) and NNPDF3.0 [70]

(green shaded band) global analyses at Q2 = 1 GeV2.

at Q2 = 1 GeV2 within the quoted uncertainties, (s+ s̄)loops ≤ (s+ s̄)tot. Interestingly, while

the MMHT14 parametrization [69] allows a slightly larger s+ s̄ at x . 0.3, it places stronger

constraints at larger x values. On the other hand, the NNPDF3.0 analysis, which uses a

somewhat different fitting methodology, gives slightly smaller strange PDFs at low x, but

permits a larger magnitude for s+ s̄ at x & 0.4. Taken as an approximately representative

sample of the current uncertainty on the strange quark PDF, the combined phenomenological

constraints in Fig. 3 allow a maximum value for the µ2 parameter of 600 MeV. If we were

to take the lower µ1 value from the inclusive Λ production data in Fig. 2, µ1 = 526 MeV,

corresponding to the 2σ deviation, the loop contributions to s+ s̄ would remain consistent

with the phenomenological PDF constraints for µ2 as large as 894 MeV.

34



VII. STRANGE ASYMMETRY IN THE NUCLEON

Having obtained contraints on the µ1 and µ2 parameters in our calculated s and s̄ PDFs

from existing data on inclusive Λ production in pp scattering and from phenomenologi-

cal PDFs, in this section we discuss in more detail the implications of our results for the

strange asymmetry in the nucleon both as a function of x and for the lowest moments.

We consider the two extremal cases for the cutoff parameters, with the maximal µ1 from

the pp data combined with the maximum µ2 from the comparison with the s + s̄ PDFs,

(µ1, µ2) = (545, 600) MeV, and with a lower µ1 value for the 2σ fit of the Λ production data

and a correpondingly higher µ2 value, (µ1, µ2) = (526, 894) MeV. This range will provide a

reasonable estimate of the systematic uncertainty in our calculation.

To illustrate the variation for this range of cutoffs of the KY splitting functions, in Fig. 4

we plot the on-shell and off-shell functions f
(on)
Λ and f

(off)
Λ in Eqs. (59) and (68) for the

p → K+Λ dissociation as a function of y. The on-shell distributions have a characteristic

shape that peaks around y ≈ 0.3 − 0.4, with an obviously larger magnitude for the higher

cutoff, µ1 = 545 MeV. Interestingly, the off-shell function is negative, with its magnitude

peaking at y ≈ 0.2, and remains nonzero at y = 0. The latter result can be understood from

the integrand of the f
(off)
Y function in Eq. (68): whereas for the on-shell function in Eq. (59)

the k⊥ dependence is multiplied by an overall factor y, for the off-shell function the term in

(68) proportional to ∆ remains finite in the y → 0 limit.

Note that the shape of the on-shell function in Fig. (4), with the PV regulator, is qualita-

tively similar to the splitting functions found in the literature which have been computed in

terms of form factors at the NKY vertex [57]. A comparison of the f
(on)
Λ splitting functions

computed with PV regularization with the results obtained using t-dependent [17, 77–80] or

s-dependent [28, 55, 81, 82] form factors for the function F (on) is shown in Fig. 5. For the

t-dependent form, the commonly used monopole shape is taken, so that the function F (on),

which is the square of the form factor, is a dipole,

F (on) =

(
Λ2
t −m2

K

Λ2
t − t

)2

, (91)

where t ≡ k2 = −[k2
⊥+y(M2

Y −(1−y)M2)]/(1−y). For the s-dependent form, an exponential
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FIG. 4: On-shell (solid lines) and off-shell (dashed lines) contributions to the proton → K+Λ

splitting functions for µ1 = 545 MeV (red curves) and µ1 = 526 MeV (blue curves).

shape is used,

F (on) = exp

(
M2 − s

Λ2
s

)
, (92)

where s ≡ (m2
K +k2

⊥)/y+(M2
Y +k2

⊥)/(1−y). The normaliation of each of the splitting func-

tions is fixed to be the same value as the PV-regulated form with cutoff mass µ1 = 0.545 GeV,

which is achieved with t-dependent monopole cutoff mass parameter Λt = 0.928 GeV and

s-dependent exponential mass Λs = 1.293 GeV.

The shape with the PV regulator is slightly harder compared with the other forms,

but is closer to the t-dependent monopole at low values of y. Because of the 1/y and

1/(1− y) exponential suppression in the s-dependent form factor, the result using Eq. (92)

is significantly damped as y → 0 and y → 1.

The s-dependent form in particular has been inspired in the literature by attempts to

satisfy y ↔ 1 − y symmetry relations between the splitting functions for the kaon rainbow

[Fig. 1(a)] and hyperon rainbow [Fig. 1(c)] diagrams [55, 81]. Namely, because of the kine-

matic relation s+t+u = M2 +m2
K+M2

Y , where u ≡ (p−k)2, form factors that are functions

of s automatically satisfy the t- and u-channel crossing symmetry. On the other hand, the

s-dependent form is generally not Lorentz invariant (it is invariant only under the light-cone
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µ1 = 545 MeV (red solid curve) with the function computed with a t-dependent monopole form

factor for Λt = 0.928 GeV (black dashed curve) and with an s-dependent form factor for Λs =

1.293 GeV (blue dotted curve), normalized to give the same value when integrated over y.

longitudinal and transverse boosts). Furthermore, the use of momentum dependent form

factors, whether funtions of t or s, is known to lead to a violation of gauge invariance,

requiring specific prescriptions to restore the gauge symmetry through the introduction of

nonlocal terms [63–65]. Calculations of PDFs using the splitting functions computed with

form factors on the basis of the local interactions in Fig. 1, let alone the rainbow diagrams

by themselves, are therefore in general not invariant under gauge or chiral transformations.

It is instructive to quantify the relative contributions to the strange-quark PDFs, as well

as to their moments, arising from the various diagrams in Fig. 1. As illustrated above in

Fig. 3, the respective magnitudes and shapes of the total contributions to s and s̄ at x > 0

are similar, with s slightly larger than s̄ at the peak around x ≈ 0.15. While only the

on-shell piece contributes to s̄ at x > 0 [Eq. (76)], there are 3 contributions to the s-quark
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PDF at nonzero x [Eq. (77)],

s(x) =
(
s(on) + s(off) + s(δ)

)
rbw

+ s
(δ)
tad +

(
s(off) + s(δ)

)
KR

= s
(on)
rbw︸︷︷︸

on−shell

+ s
(off)
rbw + s

(off)
KR︸ ︷︷ ︸

off−shell

+ s
(δ)
rbw + s

(δ)
tad + s

(δ)
KR︸ ︷︷ ︸

δ−function

, (93)

s̄(x) =
(
s̄(on) + s̄(δ)

)
rbw

+ s̄
(δ)
bub

= s̄
(on)
rbw︸︷︷︸

on−shell

+ s̄
(δ)
rbw + s̄

(δ)
bub︸ ︷︷ ︸

δ−function

, (94)

where we have suppressed the x dependence in each of the terms on the right-hand-side.

For the best fit parameters (µ1, µ2) = (545, 600) MeV (top panels in Fig. 6), the KR dia-

grams in Figs. 1(e)–(f) give the largest overall contribution to s(x), with the rainbow and

tadpole contributions relatively small. Closer inspection of the various diagrams shows large

cancellations between the off-shell terms in the rainbow and KR diagrams, and between

the δ-function terms arising from the rainbow, KR and tadpole diagrams. The net effect is

that the total s-quark distribution is well approximated by the on-shell part of the rainbow

diagram, with the total off-shell and δ-function terms being relatively small. This illustrates

the vital role played by the tadpole and KR diagrams, which are needed in a consistent

theory along with the rainbow contributions. It also explains the phenomenological suc-

cess of earlier calculations of meson loop corrections to PDFs in terms of on-shell rainbow

contributions only.

For the alternative fit parameters from Sec. VI, namely (µ1, µ2) = (526, 894) MeV (bottom

panels in Fig. 6), the magnitude of the total strange-quark PDF is slightly smaller, and

the cancellations between the various off-shell and δ-function terms are not as dramatic.

Nevertheless, even though the on-shell part of the rainbow diagram does not saturate the

total contribution as completely, a similar qualitative behavior is observed here also.

More quantitatively, the contributions of the various terms to the moments of the s and s̄

PDFs are listed in Tables I and II for the S(0), S
(0)

and S(1), S
(1)

moments, respectively. For

the lowest (n = 1) moments, the off-shell parts of the rainbow and KR contributions to S(0) in

fact cancel exactly, leaving the on-shell component as the dominant term, and the remaining

contributions distributed among the δ-function pieces. Strangeness conservation requires the

on-shell contribution to S
(0)

to be identical to that for S(0), with equivalent contributions

from the tadpole and bubble diagrams to the strange and antistrange moments, respectively.
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FIG. 6: Contributions to the xs distribution at Q2 = 1 GeV2 from various kaon loop diagrams

in Fig. 1, for (µ1, µ2) = (545, 600) MeV (top panels) and (µ1, µ2) = (526, 894) MeV (bottom

panels). The decomposition of the total into rainbow, tadpole and KR contributions (left panels)

is contrasted with the decomposition into on-shell, off-shell and δ-function contributions (right

panels), according to Eqs. (93)–(94).

For the second (n = 2) moments in Table II, similarly large cancellations are observed

between the off-shell contributions to the S(1) moment from the rainbow and KR diagrams.

Cancellations also occur between the positive δ-function parts of the rainbow and tadpole

diagrams with the negative δ-function component of the KR diagrams. In contrast, because

of the additional power of x in the n = 2 moment definition, only the on-shell part of

rainbow diagram contributes to the s̄ moment. The net effect is thus a positive difference

S− ≡ S(1) − S
(1)

. Note that while for the larger µ1 cutoff value both the S(1) and S
(1)

moments are bigger, the difference S− = 0.42 × 10−3 for µ1 = 545 MeV at Q2 = 1 GeV2
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(left panel) and (µ1, µ2) = (526, 894) MeV (right panel).

is smaller than for the lower cutoff µ1 = 526 MeV, for which S− = 1.12 × 10−3, as is also

apparent in Fig. 7. Here both the sum x(s + s̄) and difference x(s − s̄) are illustrated at

Q2 = 1 GeV2 for both sets of cutoff values. To display the sum and difference on the same

plot, we scale the much larger x(s+ s̄) distribution by a factor 1/4.

For the best fit parameters (µ1, µ2) = (545, 600) MeV, the x(s − s̄) distribution peaks

at around x ≈ 0.1, and has a zero crossing at x ≈ 0.45, resulting in some cancellation of

the positive distribution at low x and negative distribution at large x. Interestingly, for

the (µ1, µ2) = (526, 894) MeV cutoff values, the asymmetry stays positive for all values of

x, with no zero crossing evident at x > 0. While this would not have been possible in

previous kaon loop calculations based on the on-shell parts of the rainbow diagrams alone,

Fig. 1(a) and (c), in the full chiral analysis strangeness is conserved through the presence of

the δ-function contribution giving an overall positive s̄ at x = 0, as evident in Table I. This

feature is not present in phenomenological PDF analyses of data, which are sensitive only

to the x > 0 region. Our observation of nonzero s̄ contributions increases the flexibility of

data analyses, by allowing a nonzero s− s̄ distribution which does not need to integrate to
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zero for x > 0.

Note also that in Ref. [41] the smallest difference S− was found for the extreme case of

µ1 = 545 MeV and the minimal possible value of µ2 = mK . For this value, the (generally

positive) δ-function contribution to s is rendered zero, thereby minimizing the s− s̄ differ-

ence. While allowed phenomenologically, this scenario appears less likely than the two cases

considered above.

Finally, we can evaluate the effect of the s− s̄ asymmetry on the extraction of the weak

mixing angle sin2 θW from the NuTeV data [25]. Folding the calculated PDFs with the

NuTeV acceptance functional, we find a correction that lies in the range −7.7 × 10−4 ≤

∆(sin2 θW ) ≤ −3.3 × 10−4 at Q2 = 10 GeV2, corresponding to the range S− = (0.42 −

1.12)×10−3 found here. The negative ∆(sin2 θW ) correction reduces the overall discrepancy

between the NuTeV value for the weak mixing angle and the world average, but only by

. 0.5 σ. Our analysis therefore suggests that other explanations, possibly involving an

isospin dependent nuclear EMC effect [83] or charge symmetry violation in PDFs [84], may

be more relevant in resolving the discrepancy [27].

VIII. CONCLUSION

Even after decades of study the quark–antiquark sea of the nucleon offers both challenges

and the potential for surprises. The asymmetry between d̄ and ū antiquarks, with the

consequent violation of the Gottfried sum rule, is an obvious example [18, 21]. In this work

we have focussed on the potential for an asymmetry between the strange and antistrange

quark PDFs in the nucleon. Apart from relatively small effects arising at three-loop order in

perturbative QCD [16], the dissociation of a nucleon into a kaon and a hyperon, associated

with the spontaneous breaking of chiral SU(3) symmetry, is the natural source of such an

asymmetry.

We have extended earlier studies of non-strange chiral corrections to nucleon properties,

in which the requirements of gauge invariance and chiral symmetry were systematically

explored. Beyond leading order in the chiral expansion this necessitates the inclusion of

Kroll-Ruderman terms, in addition to the usual rainbow diagrams and tadpole contribu-

tions. We have carefully explained the derivation of and presented formulas for the total

contribution to the s and s̄ distributions at next-to-leading order in the chiral expansion.
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A novel feature of the calculation is the appearance of δ-function terms from kaon bubble

diagrams, which contribute to the s̄ distribution at x = 0. These terms are independent of

the ultraviolet regulator, and have the important practical consequence that, in any exper-

imental or phenomenological study in which x = 0 is inaccessible, the integral of s− s̄ will

not vanish.

A further phenomenologically important consequence of the δ-function terms from the

kaon tadpole diagram is that for the s-quark distribution the corresponding splitting function

is a δ-function at ȳ = 1, where ȳ is the fraction of the nucleon momentum carried by

the hyperon. This leads to a valence-like component of the strange sea, which cannot be

generated from gluon radiation in perturbative QCD alone.

With the help of experimental data from inclusive Λ production in pp scattering and

results from global PDF fits [69, 70], we have obtained constraints on the mass parameters for

the Pauli-Villars regulators used in the numerical calculation of the kaon loop contributions.

We find that s and s̄ quarks from this source contribute up to ∼ 1% of the total momentum

of the nucleon, or ∼ 30% − 50% of the phenomenological strange sea of the nucleon at a

scale of Q2 = 1 GeV2 [74]. In contrast, the magnitude of the strange asymmetry, s − s̄,

is about a factor of 10 smaller than the sum. Compared with other possible corrections to

the NuTeV anomaly [27], this is a relatively minor effect, reducing the discrepancy by less

than 0.5 σ. The sign is, however, such as to reduce the anomaly, which in itself answers a

long-standing uncertainty.

Future improvements in the empirical determination of s − s̄ could be obtained from

higher precision deep-inelastic neutrino and antineutrino scattering data from hydrogen

or deuterium. More immediately, perhaps, further constraints may be possible through

measurement of associated charm and weak boson production in pp scattering at the LHC

[85]. The theoretical framework utilized here can also be extended to systematically explore

the effects of kaon loops within the chiral theory on strange quark polarization, including

contributions from both octet and decuplet hyperons, which will be discussed in a separate

publication [65].
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TABLE I: Individual contributions to the first (n = 1) moments S(0) and S
(0)

of the s and

s̄ PDFs from the diagrams in Fig. 1 at Q2 = 1 GeV2 for the two extreme cases considered,

(µ1, µ2) = (545, 600) MeV and (526, 894) MeV. The moments are given in units of 10−2.

(µ1, µ2) (545, 600) MeV (526, 894) MeV

S(0) S
(0)

S(0) S
(0)

rbw (on) 4.91 4.91 2.97 2.97

rbw (off) −4.86 — −2.93 —

rbw (δ) 0.20 −0.20 0.47 −0.47

tad (δ) 0.59 — 1.36 —

bub (δ) — 0.59 — 1.36

KR off) 4.86 — 2.93 —

KR (δ) −0.40 — −0.94 —

Total 5.30 5.30 3.86 3.86

TABLE II: Contributions to the second (n = 2) moments S(1) and S
(1)

of the s and s̄ PDFs from

kaon loops at Q2 = 1 GeV2 for the two extreme cases considered, (µ1, µ2) = (545, 600) MeV and

(526, 894) MeV. The moments are given in units of 10−3.

(µ1, µ2) (545, 600) MeV (526, 894) MeV

S(1) S
(1)

S(1) S
(1)

rbw (on) 4.67 5.68 2.83 3.41

rbw (off) −5.41 — −3.28 —

rbw (δ) 0.34 0 0.79 0

tad (δ) 0.95 — 2.21 —

bub (δ) — 0 — 0

KR (off) 6.35 — 3.85 —

KR (δ) −0.81 — −1.87 —

Total 6.10 5.68 4.53 3.41
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