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In the earliest stages of evaluating new collider data, especially if a small excess may be present,
it would be useful to have a method for comparing the data with entire classes of models, to get an
immediate sense of which classes could conceivably be relevant. In this paper, we propose a method
that applies when the new physics invoked to explain the excess corresponds to the production and
decay of a single, relatively narrow, s-channel resonance. A simplifed model of the resonance allows
us to convert an estimated signal cross section into general bounds on the product of the branching
ratios corresponding to the dominant production and decay modes. This quickly reveals whether a
given class of models could possibly produce a signal of the required size at the LHC. Our work sets
up a general framework, outlines how it operates for resonances with different numbers of production
and decay modes, and analyzes cases of current experimental interest, including resonances decaying
to dibosons, diphotons, dileptons, or dijets. If the LHC experiments were to report their searches
for new resonances beyond the standard model in the simplified limits variable ζ defined in this
paper, that would make it far easier to avoid blind alleys and home in on the most likely candidate
models to explain any observed excesses.

I. INTRODUCTION

Reams of data are flowing from LHC-13. Some will be used to explore 2→ 2 scattering processes where a narrow
resonance arising from physics Beyond the Standard Model (BSM) is produced in the s-channel and immediately
decays to visible final state particles. At present, data is generally compared with theory by showing how the
predictions of a benchmark model with specific parameter choices compare to the observed limits on the cross-section
(σ) times branching fraction (BR) for the process as a function of the resonance mass. A given experimental paper
reporting new upper limits on σ · BR provides comparisons with just a handful of specific models. However, in the
earliest stages of evaluating new data, especially when a small excess may be present, it would be far more useful to
compare the data with entire classes of models, to get an immediate sense of whether a given class could conceivably
be relevant. In this paper, we introduce method for doing so.

At present most “model-independent” analyses reported in searches for narrow BSM resonances are cast as a
plot of the experimental upper limit on σ · BR plotted as a function of the mass of the new resonance. A set of
theoretical prediction curves are overlaid on the data. Generally each theory curve corresponds to a different choice
of spin, electric charge, weak charge, and color charge for the new resonance; in that very general sense, the set of
curves might be thought to span the theoretical possibilities. But in reality, for a given choice of spin and charges,
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there will be multiple detailed theoretical realizations corresponding to very different strengths and chiralities of the
resonance’s couplings to the initial partons through which it is produced and to the final states into which it decays.
The single realization of a W ′ or coloron shown in the analyses generally corresponds to a long-familiar example from
the literature that is convenient to use because it has already been coded into PYTHIA [1] or similar analysis tools.
Some such examples (like the leptophobic Z’ boson) have no actual realization in any self-consistent models, but are
used because they tend to have relatively large production rates.

In contrast, we propose that reporting the results of collider searches for BSM resonances in terms of a different
set of variables would make it possible to immediately discern whether an entire class of resonances with particular
dominant production modes and/or decay patterns (e.g., a spin-zero state produced through gluon fusion and decaying
to diphotons) could conceivably be responsible for a given deviation in cross-section data relative to standard model
predictions. When the answer is “no”, one need waste no further time proposing models based on that type of new
resonance as an explanation for the excess. When the answer is “yes,” one also obtains information on the range of
masses and branching fractions a model would need to provide for the state in order for it to be compatable with the
data; again, this could guide model-building into profitable directions.

This work builds off of our previous results on identifying the color [2, 3] and spin [4] properties of new resonances
decaying to dijet final states. In those papers, we noted how the color and spin of different resonances impacted
the state’s width, relative to fixed values of the production cross-section and mass. This was encapsulated in the
dimensionless color discriminant variable Dcol ≡ σM3/Γ. Here we extend these ideas to a much wider variety of final
states and to situations in which a resonance has not been measured, but rather a small deviation possibly indicative
of a resonance has been observed.

Evidence for or observation of an excess would generally be reported within a specific channel or set of a few
channels. Often, the BSM possibilities invoked to explain the excess correspond to the production and decay of a
single, relatively narrow, s-channel resonance. In this context, a simplifed model of the resonance allows us to convert
any estimated signal cross section into general constraints on the properties of the resonance. More specifically, if
resonance production occurs dominantly through a single process, we can obtain model-independent upper bounds
on the product of the branching ratios corresponding to production and decay for that process. This can make it
immediately clear whether a given class of models could possibly produce a signal of the required size at the LHC.
As we shall detail below, one can readily extend this to situations with more than one production or decay channel.

Other previous work in the literature is also relevant here. For example, EHLQ [5] used parton luminosities to assist
in assessing the potential reach of proposed new colliders; here, in contrast, we assess the ability of a specific resonance
to explain a potential signal at an existing collider. Carena et al. [6] classified Z ′ bosons according to the BR to
leptons and average couplings to quarks in order to compare multiple models with Tevatron data simultaneously;
this was limited to Z ′ bosons, was more model-dependent in its approach, and was aimed at determining discovery
reach. Dobrescu & Yu [7] presented discovery limits on dijet resonances in a coupling vs. mass plane to facilitate
comparison of results from different colliders; while our method could be used at a variety of colliders, we will give
examples for the LHC. Our work is focused on establishing a method for understanding the implications of current
exclusion curves (not establishing discovery reaches) for entire classes of models; we find that using branching ratios,
rather than couplings, is more effective in this context.1

The next section sets up our general framework for the case of a narrow resonance and notes how the upper bounds on
products of branching ratios are impacted by whether the initial partons are identical and whether the initial and final
states differ from one another. It then sketches how the upper bounds work for several cases with different numbers
of resonance production and decay modes. It closes by introducing a new dimensionless variable, ζ, that is related
to the product of branching ratios but further simplifies analyses by reducing the impact of the resonance’s width.
Section 3 analyzes a number of cases of current experimental interest, including resonances decaying to dibosons,
diphotons, dileptons, or dijets. Comparisons between observed and expected limits set by recent data and the upper
limits on ζ yield a straightforward way of concluding whether a given class of resonance could explain a particular
signal; extending the comparison to predictions of a specific model within a promising class then readily indicate
whether that model is a viable candidate. Section 4 discusses our results and future directions. Some underlying
technical details of our calculations are summarized in the Appendices. We suggest that if the LHC experiments were
to report their searches for new resonances beyond the standard model in the simplified limits variable ζ defined in
this paper, that would make it far easier to avoid blind alleys and home in on the most likely candidate models to
explain any observed excesses.

1 A more recent example with similarity to our approach is given in [8], in an analysis of potential sources for a potential diphoton signal
[9–15] at the LHC.
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II. NARROW RESONANCES

We aim to establish a framework for discussing the broad implications of experimental exclusion curves, which
generally are couched in terms of specific sets of production and decay channels. We will start by writing the cross-
sections in terms of the branching ratios of the resonance to relevant final states.

The tree-level partonic production cross-section for an arbitrary s-channel resonance R produced by collisions of
particular initial state partons i, j and decaying to a single final state x, y at the LHC can be written [16, 17]

σ̂ij→R→xy(ŝ) = 16π(1 + δij) · N ·
Γ(R→ i+ j) · Γ(R→ x+ y)

(ŝ−m2
R)2 +m2

RΓ2
R

, (1)

where N is a ratio of spin and color counting factors2

N =
NSR

NSi
NSj

· CR
CiCj

, (2)

where NS and C count the number of spin- and color-states for initial state partons i and j and for the resonance R.
In the narrow-width approximation, one can simplify this further, using the expression3

1

(ŝ−m2
R)2 +m2

RΓ2
R

≈ π

mRΓR
δ(ŝ−m2

R) . (3)

Integrating over parton densities, and summing over incoming partons and over the outgoing partons which produce
experimentally indistinguishable final states (e.g., over final state light quarks qq̄, with q = u, d, s that produce
untagged two-jet final states), we then find the tree-level hadronic cross section to be

σXYR ≡ σR ×BR(R→ X + Y ) = 16π2 · N · ΓR
mR
×∑

ij

(1 + δij)BR(R→ i+ j)

[
1

s

dLij

dτ

]
τ=

m2
R
s

 ·
 ∑
xy ∈XY

BR(R→ x+ y)

 . (4)

Here dLij/dτ corresponds to the luminosity function for the ij combination of partons4, and X Y label the set of
experimentally indistinguishable final states.

This way of writing the cross-section lends itself well to judging which classes of models are capable of producing
a given observable excess. We will now walk through a variety of situations from the simplest, with resonances only
produced and decaying in one way, through more complicated situations involving multiple production and decay
modes. In Section III, we will treat specific instances of these scenarios in more detail.

It is important to note that while we have been calculating total cross-sections, some experimental results are given
as limits on the total cross-section and others as limits on the cross-section times the acceptance due to kinematic cuts.
Where we have encountered the latter, we have used simulations performed with MadGraphMC@NLO [19] to evaluate
the acceptance.5

2 We note here that N depends on the color and spin properties of the incoming partons i, j. We will neglect this in what follows,
assuming that this factor is the same for all relevant production modes in a given situation – see discussion at the end of subsection
II C. In fact, this assumption is valid in the great majority of cases.

3 In detail, resonance limits derived from observations will depend on whether ΓR/mR lies below the experimental resolution for the
invariant mass of the final state particles. As discussed in Appendix A, however, these effects are expected to be only of order a factor
of two – meaning they are not relevant for the preliminary investigations envisioned here.

4 In particular, [
dLij

dτ

]
≡

1

1 + δij

∫ 1

τ

dx

x

[
fi
(
x, µ2F

)
fj

( τ
x
, µ2F

)
+ fj

(
x, µ2F

)
fi

( τ
x
, µ2F

)]
, (5)

where here, for the purposes of illustration, we calculate these parton luminosities using the CTEQ6L1 [18] parton density functions,
setting the factorization scale µ2F = m2

R. More details are given in Appendix B.
5 The acceptance due to kinematic cuts depends on the angular distribution of the final states, which in turn depends on the spin of the

particles involved in the process. In cases with multiple production and decay modes, the acceptance therefore can change depending
on the spins of the initial and final states [20, 21]. In particular, if there are multiple production modes with substantially different
acceptances, one would have to consider these modes seperately. Note however, this does not affect any of the examples we have
considered here.
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A. Simplest Case: one production and one decay mode

Let us first consider the simplest possible case in which only one set of initial (i, j) and final (x, y) states is relevant for
production and decay of a new resonance R. A concrete example would be production of an up-flavored excited quark:
it will essentially be produced only through ug fusion and decay predominantly back to ug, modulo contributions from
modes accessible only via very small mixing angles (lest there be large flavor-changing neutral currents). Production
or decay through uγ (or dW ) would be suppressed by the smaller uγ (dW ) coupling and the relatively small γ (W )
parton luminosity.

We can write down the signal cross-section for pp-collisions as follows (here XY reduces to xy because there is only
one decay mode),

σxyR = σR ×BR(R→ x+ y) =

∫ smax

smin

dŝ σ̂(ŝ) ·
[
dLij

dŝ

]
, (6)

and hence, in the narrow-width approximation,

σxyR = 16π2 · N · ΓR
mR
· (1 + δij)BR(R→ i+ j)

[
1

s

dLij

dτ

]
τ=

m2
R
s

·BR(R→ x+ y) . (7)

This can be reframed as an expression for the product of branching ratios:

BR(R→ i+ j)(1 + δij) ·BR(R→ x+ y) =
σxyR

16π2N ΓR

mR

[
1
s
dLij

dτ

]
τ=

m2
R
s

. (8)

This equation essentially tells us that if an arbitrary s-channel resonance with a given value of ΓR/mR produced from
partons ij is to produce a signal of a particular size, then the product of the resonance’s branching ratios must attain
a certain value. Significantly, this value depends only on the properties of the resonance and the partonic luminosity
of the initial state partons. It can therefore be used to distinguish among potential theoretical descriptions of any
new resonance.

At the same time, since the sum of all branching ratios of a resonance equals one, we can set a theoretical upper
bound on the value of the product of branching ratios discussed above. There are four possibilities. First, assume the
incoming partons are not identical, so that i 6= j. There are two sub-cases:

• If the initial and final states differ from one another (ij 6= xy, as in the process gu → R → gt), we necessarily
find that the LHS of Eqn. 8, namely BR(R→ i+ j)(1 + δij) ·BR(R→ x+ y) has a value ≤ 1/4.

• If the initial (ij) and final(xy) states are the same, (ij = xy, as in WZ → R → WZ), then the LHS of Eqn. 8
is ≤ 1.

In contrast, if we assume the incoming partons are identical (i = j) then (1 + δij) = 2. This raises the upper bounds:

• If the initial and final states differ (ij 6= xy, as in gg → R→ γγ), then the LHS of Eqn. 8 is ≤ 1/2.

• If they are the same (ij = xy, as in γγ → R→ γγ) , then the LHS of Eqn. 8 is ≤ 2.

Experimental searches for a narrow resonances R→ x+ y are generally reported in terms of expected and observed
upper bounds in the σxyR ≡ σ(pp→ R) ·BR(R→ x+ y) vs. mR plane. A potential narrow resonance appears initially
(prior to a 5σ discovery) as a deviation in which the observed limit is weaker than the expected limit. When such
a deviation is seen, one immediately asks what kinds of resonances R → x + y could potentially explain this excess.
The tendency has been to make comparisons with very specific models.

We suggest that a more general approach based on Eqn. 8 can be far more informative. Specifically, the value of
the product of branching ratios required to achieve a given σR can be plotted on the same plane for various choices of
ij and R and compared with the upper bounds on that product of branching ratio (either 1/4, 1/2, 1, or 2) derived
above. One will immediately see which classes of resonances could potentially give rise to the observed deviation. We
will illustrate this in detail in Section III.
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B. Nearly-Simplest Case: one production mode, multiple decay modes

Here, at most one of the decay modes is available as a production mode because the other decay modes involve
states with negligible parton distribution functions. An example could be a colored scalar with significant couplings
to gg and tt̄. Because the top quark PDFs are so small, the scalar will be produced overwhelmingly via gg fusion;
but it may have significant branching fractions to both gg and tt̄ final states.

The single production mode is handled as above. The sum of the outgoing branching ratios now plays the role that
the single decay branching ratio played earlier. In particular, Eqn. 8 now takes the form

BR(R→ i+ j)(1 + δij) ·
∑

xy ∈XY
BR(R→ x+ y) =

σXYR

16π2N ΓR

mR

[
1
s
dLij

dτ

]
τ=

m2
R
s

. (9)

Since all branching ratios are positive and the sum over all branching ratios is 1, we still have the same four
possibilities for upper bounds on the combination of branching ratios as before. We therefore find

BR(R→ i+ j)(1 + δij) ·
∑

xy ∈XY
BR(R→ x+ y) ≤


1/4 i 6= j, ij 6= xy ∈ XY
1 i 6= j, ij = xy ∈ XY
1/2 i = j, x = y, ij 6= xy ∈ XY
2 i = j, x = y, ij = xy ∈ XY

(10)

Now one would use these upper bounds in combination with Eqn. 9 as the basis of comparing theory with experiment.
Applications will be discussed in Section III.

C. General Case: Multiple production and decay modes

This situation is complicated by the fact that the branching ratio for each initial state (ij) is associated with the
luminosity function for that particular pair of partons. An important example is in the case of the production of a Z ′

which can proceed through either uū or dd̄ annhilation, two modes with comparable partonic luminosities. We will
need to rewrite Eqn. 4 in order to relate theoretical upper limits on products of branching ratios to the value of the
cross-section, resonance properties, and parton luminosities.

The sum over branching ratios times luminosities for incoming partons ij in the lower line of Eqn. 4 may be usefully
reframed by simultaneously multiplying and dividing it by a sum over just incoming parton branching ratios (now
labeled as i′j′), specifically:

∑
i′j′(1 + δi′j′)BR(R→ i′ + j′)

∑
ij

(1 + δij)BR(R→ i+ j)

[
1

s

dLij

dτ

]
τ=

m2
R
s

= (11)∑
ij

ωij

[
1

s

dLij

dτ

]
τ=

m2
R
s

 ·
∑
i′j′

(1 + δi′j′)BR(R→ i′ + j′)


where

ωij ≡
(1 + δij)BR(R→ i+ j)∑

i′j′(1 + δi′j′)BR(R→ i′ + j′)
. (12)

The fraction ωij lies in the range 0 ≤ ωij ≤ 1 and by construction
∑
ij ωij = 1. Essentially, ωij tells us the weighting

of each set of parton luminosities Lij .
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Returning now to the expression for the cross-section in Eqn. 4, we have6

σXYR = 16π2 · N · ΓR
mR
·

∑
ij

ωij

[
1

s

dLij

dτ

]
τ=

m2
R
s

 · (13)

·

∑
i′j′

(1 + δi′j′)BR(R→ i′ + j′)

 ·
 ∑
xy ∈XY

BR(R→ x+ y)

 ,

which we can re-arrange to give an expression for the product of the sums of incoming and outgoing branching ratios:∑
i′j′

(1 + δi′j′)BR(R→ i′ + j′)

 ·
 ∑
xy ∈XY

BR(R→ x+ y)

 = (14)

σXYR

16π2 · N · ΓR

mR
×
[∑

ij ωij

[
1
s
dLij

dτ

]
τ=

m2
R
s

] ,
which generalizes Eqns. 8 and 9. The upper bound on the product of sums over branching ratios will be 1/4, 1/2, 1 or
2, depending on the identities of the incoming (i′j′) and outgoing (x, y) partons, in a straightforward generalization
of Eqn. 10.

In closing this subsection, let us return to consider a limitation of the analysis that has been presented above.
Namely, our analysis has implicitly assumed that all relevant production modes of a given resonance have the same
color and spin properties – i.e. that the value of N defined in Eq. 2 is the same for all relevant production modes.
In general, this need not be the case: consider, for instance, a neutral scalar boson that couples to both gluons
and photons. The total production cross section would include both a gg luminosity factor with N = 1/256, and
a γγ one with N = 1/4. The formalism described above in Eqn. 14 would not work. However, the corresponding
luminosity functions for gluon and photon fusion differ by many orders of magnitude. In practice, therefore, one
would consider gg and γγ fusion separately (each as a case with one production mode and multiple decay modes);
only if both production mechanisms turned out to be potentially relevant to the data would one need to undertake a
more sophisticated analysis simultaneously involving both production modes.

D. Simplified Language

Finally, we note that it is actually easier to make comparisons between data and theory if one re-arranges Eqn. 14
(and analogously Eqns. 8 and 9) slightly so that the left-hand side includes the ratio of resonance width to mass. This
enables us to define a useful dimensionless quantity which we will call ζ:

ζ ≡

∑
i′j′

(1 + δi′j′)BR(R→ i′ + j′)

 ·
 ∑
xy ∈XY

BR(R→ x+ y)

 · ΓR
mR

= (15)

σXYR

16π2 · N ×
[∑

ij ωij

[
1
s
dLij

dτ

]
τ=

m2
R
s

] .
Because we are working in the narrow width approximation, and assuming that Γ/M ≤ 10%, the upper bounds on
the products of branching ratios mentioned earlier may now be translated into upper limits on ζ that are a factor of
ten smaller.

In the examples below, we will first illustrate how to think about a few cases in terms of branching ratios, and then
translate into making comparisons based on ζ. Subsequent examples will be explored in terms of ζ alone, because it
is more versatile.

6 Again, as noted in footnote 1 above, we are assuming that all relevant production modes share the same value of the color and spin
factor N .
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III. APPLICATIONS

We will now apply the simplified limits technique to various situations of general theoretical and experimental
interest. These will include scalars decaying to diphotons, dijets, or tt̄; a spin-1 state decaying to dibosons or dijets;
a spin-2 state decaying to diphotons or dijets; a W ′ boson decaying to WZ or dijets; and a Z ′ decaying to charged
dileptons or dijets. We will organize this work according to the categorization above by number of production and
decay modes.

For instance, if faced by an apparent excess in a diboson final state, one might wonder whether any model of a
W ′ decaying to dibosons could be the cause. To answer that question, it would be important to distinguish between
(a) the case in which a strictly fermiophobic W ′ is produced by diboson fusion, (b) the case in which a W ′ couples
sufficiently to dijets to be produced by quark/anti-quark annihilation, and (c) the variation of the latter in which the
W ′ also has a significant decay fraction into dijets. The first would be an instance of the simplest case where the
single production and decay modes match; the second, the simplest case where the unique production and decay modes
differ; the third, the nearly-simplest case where there are two decay modes of consequence. As we will see, the analysis
and conclusions can be quite different in these cases, which would give crucial guidance for further model-building
and phenomenological work.

A few technical details that are neglected in this section are discussed in the appendices. First, the width of the
resonance can have an impact on the limits and we discuss this in Appendix A. Second, the calculation of the parton
luminosities is discussed in Appendix B.

A. Examples of The Simplest Case: one production and one decay mode

We will start with examples in which only one set of initial (i, j) and final (x, y) states is relevant for production
and decay of a new resonance R. In some cases, those initial and final states may be identical; in others, they will
differ.

1. Fermiophobic W ′: W±L ZL →W ′ →W±L ZL

Our first example will be a charged spin-one color-neutral vector resonance – a technirho or a W ′ – that is primarily
produced by vector boson fusion and primarily decays to W±L ZL. Because the initial and final states are identical (but
the two incoming partons differ from one another), the signal cross section (in this simplified model) is determined
entirely by BR(R→WLZL), which cannot exceed 1.

It is interesting to inquire whether such a resonance could have been responsible for the diboson excesses reported
in the summer 2015 data from ATLAS and CMS (see, e.g., refs 1-14 of [22]). In the analysis reported in [23] based
on hadronically-decaying dibosons, the most significant discrepancy in the WZ channel from the background-only
hypothesis occurs at an invariant mass of order 2 TeV; the local significance is 3.4σ and the global significance
including the look-elsewhere effect in all three channels (WZ,WW,ZZ) is 2.5σ.

In the left pane of 1, we have applied Eq. 8 to the observed and expected experimental upper limits [23] on the
production cross-section for a resonance produced by WZ fusion and decaying back to the same state.7 As this requires
one to assume a specific value for the resonance’s width/mass ratio, we show the results for ΓR/MR = 1%, 10%. In
the region around a resonance mass of 2 TeV, the observed upper bound is weaker than expected, indicating that
an excess may be present. From the plot, it is clear that the squared branching ratio [BR(R → WZ)]2 required to
produce the excess production rate would be of order a few hundred to a few thousand. This greatly exceeds the
maximum possible value of 1; allowed values of the squared branching ratio fall in the shaded region towards the
bottom of the pane. Therefore, longitudinal vector boson fusion cannot be the dominant production mode for any
W ′ resonance responsible for the observed possible diboson excess.

The same comparison is made in the left pane of Figure 2 using the variable ζ on the vertical axis. Using ζ removes
the need to show separate curves for different values of Γ/M . We see that the value of ζ corresponding to the possible
excess production around 2 TeV would be ζ ∼ 100; this is far above the maximum value of 0.1 that forms the upper
boundary of the shaded allowed region in the plot; hence, a fermiophobic resonance would not be a viable candidate
for producing such an excess.

7 We estimate the WZ parton luminosities using the Effective W approximation [24–26], details of which can be found in Appendix B.
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FIG. 1: Left: The experimental ATLAS [23] upper limits (solid red curves) and expected limits (dashed blue curves) yield
these upper bounds on the branching ratio product [BR(R → WLZL)]2 assuming production of an s-channel resonance R
via vector boson fusion alone; results are shown for two values of Γ/mR. As discussed in the text, since the apparent excess
lies well outside the allowed (shaded) region, this scenario is disfavored. Right: The experimental ATLAS [23] upper limits
(solid red curves) and expected limits (dashed blue curves) yield these upper bounds on the branching ratio product [BR(R→
ud̄ + dū)][BR(R → WLZL)] assuming production of an s-channel resonance R via ud̄ + dū annihilation alone, shown for two
values of Γ/mR. As discussed in the text, since the apparent excess lies well within the allowed (shaded) region, this scenario
was viable.

2. Non-fermiophobic W ′ decaying to dibosons: ud→W ′ →W±Z

Next, consider a charged spin-one color-neutral vector resonance – a technirho or a W ′ – that couples to both
quark/anti-quark pairs and to vector boson pairs. Since the parton luminosities for (c, s,W±, Z) are small, those
initial states can be neglected. Thus, we have a resonance produced via qq̄ (in this case primarily ud̄ or dū) annihilation
and capable of decaying to vector boson pairs. Since the 2015 data [23] showed a potential excess in diboson pairs but
not one in dijets, we restrict ourselves to the situation in which the W’ couples to qq̄′ far more weakly than to WZ,
so that dijet decays will not be significant. Therefore, the W ′ effectively has one production mode and a different
single decay mode.

In this case, the signal cross section is determined entirely by BR(R→ qq̄) ·BR(R→WZ), which is bounded from
above by 1/4, since the two incoming partons differ from one another.

In the right pane of Figure 1, we have applied Eq. 8 to the observed and expected experimental ATLAS upper limits
on the production cross-section [23] to obtain an upper bound on the product of branching ratios of the resonance into
the ud initial state and W±Z final state. As doing so requires one to assume a value for the resonance’s width/mass
ratio, we show the results for for ΓR/MR = 1%, 10%. In contrast to the results for the fermiophobic W ′ from the left
pane of this figure, here we see that a W ′ produced via qq̄ annhilation can be consistent with the observed excesses
so long as the corresponding product of the branching ratios to WZ and qq̄ lies within the shaded region.

The same comparison is made in the left pane of Figure 2 using the variable ζ on the vertical axis. This removes
the need to show separate curves for different values of Γ/M . Now we see that the value of ζ corresponding to the
possible excess production around 2 TeV would be ζ ∼ 10−4; this is well below the maximum value of 0.025 that forms
the upper boundary of the shaded allowed region in the plot, leaving a non-fermiophobic W ′ as a viable possibility.
The W ′ boson of the extended gauge model (EGM) [27] with the coupling factor c set to 1 predicts a value of ζ well
below what would be required to explain the apparent excess.

When comparing the observed upper bound curves (solid red) in the left and right panes of Figure 1 or the left
and right panes of Figure 2, it is clear that they are similar but not identical. They are similar because they are
derived from the same data set, an upper bound on the rate of WZ events at LHC. However, the curves in the
left and right panes of these figures are produced under different assumptions about the incoming partons whose
fusion produced the WZ final state: incoming WZ for the left panes and incoming quark/anti-quark pairs for the
right panes. Because parton luminosities for W and Z bosons are far smaller than for first generation quarks, the
constraints on the product of branching ratios or the quantity ζ is much more stringent in the right panes. At the
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FIG. 2: Left: The experimental ATLAS [23] upper limits and expected limits on the production cross-section for WZ →
R→WZ yield these upper bounds on ζ assuming production of the s-channel resonance R via vector boson fusion alone. Since
the potential excess (the difference between the curves) near 2 TeV corresponds to ζ ∼ 100, it lies well outside the allowed
(shaded) region. Right: The experimental ATLAS [23] upper limits and expected limits on the production cross-section for
ud̄ + dū) → R → WZ yield these upper bounds on ζ assuming production of the s-channel resonance R via ud̄ + dū alone.
Since the apparent excess corresponds to ζ ∼ 10−4, it lies well within the allowed (shaded) region. The extended gauge model
(EGM) [27] with the coupling factor c set to 1 predicts a value of eta well below what would be required to explain the apparent
excess.

same time, because the PDFs for the light quarks have a different energy dependence than those for the W and Z
(the difference varies logarithmically with energy), the dependence on resonance mass of the upper bound curves in
the left and right panes is also slightly different.

3. Photophillic Resonance: γγ → R→ γγ

Let us move on to resonances that may be relevant to the hints of a new diphoton resonance at 750 GeV reported
in winter 2015 [9–15]. First, we consider a new state (either spin-0 or spin-2) produced by photon fusion and
decaying only to diphotons. Conceptually, this case resembles the fermiophobic W ′ in that the unique initial and
final states are identical; note, however, that the two initial state partons are identical, so that the upper limit on
(1 + δij)[BR(R → γγ)]2 is 2 rather than 1. This example would be of phenomenological interest if a new resonance
were seen only in a diphoton decay channel.

The γγ luminosities are produced using the CT14 photon pdfs [28]. Results are reported in Figure 3. The solid
curve shows the observed upper bound, while the expected upper bound is denoted by the dashed curve. We will take
the difference between the observed and expected upper limits as an indication of the value of ζ required to produce
the excess tentatively seen at a mass of 750 GeV; that points to a value of ζ of order 10−4.

For comparison, the predicted value of ζ as a function of resonance mass in the Renormalizable Coloron Model
(RCM)is shown (dotted green curve), assuming that the pseudoscalar state is produced via diphoton fusion and
decays back to diphotons.8 The RCM was proposed in [30] and has also been studied extensively in [29, 31–36].
Unfortunately, we can see from the figure that the RCM would provide an ζ value five orders of magnitude too small.
A pseudoscalar produced by photon fusion in the RCM cannot account for the apparent excess.

The right pane shows a comparison with the theoretically predicted value of ζ in the RS Graviton model [37, 38]
for a spin-2 graviton produced by photon fusion and having (k/M̄Pl = 0.05 (dotted green curve). Since the prediction
lies a factor of five below the value required to account for the apparent excess events at 750 GeV, it is not obvious

8 The values of the parameters of the model are the same as in ref. [29]. The number of generations of singlet and doublet vector like
quarks are chosen to be nq = 3 and NQ = 3.
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that the model, with this choice of parameters, could provide an explanation – although larger values of k/M̄Pl could
potentially accommodate the excess.

FIG. 3: Experimental observed (solid red) and expected (dashed blue) upper bounds [39] on ζ for production of an s-channel
resonance R via photon fusion and subsequent decay to diphotons. Since the contours lie in the (shaded) region where ζ is below
the maximum value for this process, photon fusion alone may be the dominant production mode of such a narrow resonance.
Left: Spin-0 resonance. The green-dotted curve indicates the predicted value of ζ for the Renormalizable Coloron Model [29];
it lies several orders of magnitude below the value required to account for the apparent excess events at 750 GeV. Right:
Spin-2 resonance. The green-dotted curve indicates the predicted value of ζ for the RS Graviton model [38] with the parameter
value as indicated; it lies about a factor of five below the value required to account for the apparent excess events at 750 GeV.

4. Boson-Phillic Resonance: gg → R→ γγ

Alternatively, we may consider a (spin-0 or spin-2) resonance that can be produced via gluon fusion and still decays
to photons. Conceptually, this resembles the non-fermiophobic W ′ in that the unique initial and final states differ from
one another. Since the two incoming partons are identical, the upper limit on (1 + δij)BR(R → gg)BR(R → γγ) is
1/2. Again, this case is of interest if a diphoton resonance is seen without a corresponding dijet signal; the resonance’s
branching fraction to dijets must be small enough to avoid a dijet signal yet still large enough that gluon fusion is the
dominant production mode.

Results are reported in Figure 4. The solid (red) curve shows the observed upper bound, while the expected upper
bound is denoted by the dashed (blue) curve. Note that the upper bound on ζ as a function of resonance mass
is far more stringent for a resonance produced by gluon fusion (Figure 4) than for one produced by photon fusion
(Figure 3)), because the gluons’ parton luminiosity is so much larger. Similarly, because the PDFs of the gluon and
photon have different energy dependences, the slopes of the upper bound curves are also slightly different from one
another.

For comparison, in the left pane the predicted value of ζ as a function of resonance mass in the Renormalizable
Coloron Model (RCM) is shown (dotted green curve), assuming that the pseudoscalar state characteristic of that
model is produced via gluon fusion and decays back to diphotons.9 If we take the difference between the observed
and expected upper limits as an indication of the value of ζ required to produce the excess tentatively seen at a mass
of 750 GeV, that points to a value of ζ of order 10−6, which is in line with the RCM prediction. Thus, as discusssed
in Ref. [29], the RCM is a viable candidate model to explain such a diphoton excess.

In the right pane, comparison with the theoretically predicted value of ζ in the RS Graviton model with (k/M̄Pl =
0.05 is shown (dotted green curve). This illustrates that the RS graviton predicts a value of ζ that is excluded

9 For the RCM, we choose the same parameter values as in ref. [29], and set the number of generation of doublets and singlet to be three
each (NQ = nq = 3).
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for resonance masses below about 2.5 TeV, setting a lower bound on the graviton mass. It is therefore not a good
candidate to explain a diphoton excess at 750 GeV (the predicted value of ζ lies several orders of magnitude above
the upper bound at that mass).

FIG. 4: Experimental observed (solid red) and expected (dashed blue) upper bounds [39] on ζ for production of an s-channel
resonance R via gluon fusion and subsequent decay to diphotons. Since the contours lie in the (shaded) region where ζ is below
the maximum value for this process, gluon fusion alone may be the dominant production mode of such a narrow resonance.
Left: Spin-0 resonance. The green-dotted curve indicates the predicted value of ζ for the Renormalizable Coloron Model [29];
it crosses through the window between the observed and expected upper bounds on eta at a resonance mass of order 750 GeV,
indicating that the RCM could explain the apparent excess of diphoton events. Right: Spin-2 resonance. The green-dotted
curve indicates the predicted value of ζ for the RS Graviton model [38] with the parameter value as indicated; it is excluded
for resonance masses below about 2.5 TeV, setting a lower bound on the graviton mass.

B. Examples of the Nearly-Simplest Case: a single production mode, multiple decay modes

Here, at most one of the significant decay modes is available as a production mode because the other decay modes
involve states with negligible parton distribution functions.

One example would be a W ′ boson with multiple decay modes. The positively charged state would be produced
through ud̄ fusion and would decay to dijets or charged lepton plus neutrino or WZ. The product of the production
BR and the summed decay BR’s would be bounded from above by 1/4 since the incoming partons are not identical.

Another example would be a neutral scalar produced through gluon fusion, which decays both to diphotons and
to Zγ. The product of the production BR and the summed decay BR’s would be bounded from above by 1/2 since
the incoming partons are identical. Building on the previous analysis of diphoton resonances, we show in Figure 5,
limits [40] on ζ that arise due to a scalar resonance produced predominantly through gluon fusion and decaying to
a Z boson and a photon. The green dotted curve represents the RCM which lies well below the observed (solid red
curve) and expected (blue dashed curve) limits, indicating that the RCM is not excluded by this ATLAS data [40]. At
the same time, if any of the small excursions of the observed limit above the expected limit were taken as a possible
indication of an excess, a model purporting to account for that excess would have to produce a ζ of order 10−6 to
10−4; given its small ζ values, the RCM would not be able to provide an explanation.

C. Examples of the General Case: Multiple production and decay modes

1. Z′ boson: uū, dd̄→ Z′ → jj, bb̄, `+`−

Production of a Z ′ boson belongs in this category, since many proposed Z ′ bosons have significant couplings to both
up and down quarks, giving uū and dd̄ annihilation as separate production channels with distinct parton luminosities.
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FIG. 5: Experimental observed (solid red) and expected (dashed blue) upper bounds [40] on ζ for production of an s-channel
resonance R via gluon fusion and subsequent decay to Zγ. Since the contours lie in the (shaded) region where ζ is below the
maximum value for this process, gluon fusion alone may be the dominant production mode of such a narrow resonance. The
green-dotted curve indicates the predicted value of ζ for the Renormalizable Coloron Model [29]; it lies well below the observed
and expected upper bounds on ζ, indicating that the RCM is not excluded by this data.

• A leptophobic Z ′ coupling only to light quarks, and being detected through its decays to dijets, would have the
product of its summed incoming and summed outgoing branching ratios bounded from above by 1.

• A leptophobic Z ′ coupling far more to the third generation than the first and second generations would have
the product of [the sum of the dominant incoming BR (uū, dd̄, cc̄, ss̄)] and [the sum of the dominant outgoing
BR (bb̄, tt̄)] bounded from above by 1/4. However, in practice, searches for a new resonance capable of decaying
to both bb̄ and tt̄ final states are conducted separately in these two channels, since they appear so different in
the detector – and each product of BR’s would be bounded by 1/4.

• If a Z ′ coupling to both quarks and leptons were studied in its decays to charged leptons, the product of the
summed (over quarks) production BR’s and the summed leptonic decay BR’s would be bounded from above by
1/4.

To facilitate the comparison with models, we show ζ on the vertical axis of the plots showing our results. Since
we are studying narrow resonances, with ΓR/MR ≤ 10%, the upper bound on ζ in each of the three cases discussed
above would be one tenth the bound on the product of branching ratios. The shaded region in each plot of Figure 6
corresponds to the region obeying that bound in the ζ vs. resonance mass plane. The observed (red solid) and
expected (blue dashed) upper bounds on ζ as a function of resonance mass are shown in each pane. The thick (thin)
solid red and blue dashed curves correspond to the situation in which the Z ′ couples only to up-flavor (down-flavor)
quarks. The shaded band between the two red curves represents the range of variation of the observed upper bound
on ζ as the Z ′ ranges between the coupling extremes represented by the two red curves. This covers the full range of
possibilities for Z ′ bosons coupling to first-generation quarks.

The upper left pane of Figure 6 shows the observed upper bounds on ζ for a leptophobic Z ′ produced via light
quark/anti-quark annihilation and decaying to dijets (red solid) alongside the expected upper limit (blue dashes)
[41]. The value of ζ for a Sequential Standard Model (SSM) Z ′ boson [42] (green dots) is shown for comparison.
If one suspected that the difference between the observed and expected upper limit near 1.75 TeV, for instance,
corresponded to an excess of events stemming from the presence of a resonance, then the SSM Z ′ would provide a
value of ζ consistent with that required of the resonance. However, if one made a similar comparison around 3 TeV,
it would be clear that the SSM Z ′ had too small an ζ value to be the source of such a postulated excess.

The upper right pane of Figure 6 shows the upper bounds on ζ for a leptophobic Z ′ produced via light quark/anti-
quark annihilation and decaying to b-quarks (red solid) alongside the expected upper limit (blue dashes) [43] and the
value of ζ for the SSM Z ′ (green dots). In this channel, the value of ζ provided by the model lies well below the
current upper limits for resonance masses above about 2 TeV. Note also that the values of ζ probed by the data for
resonance masses above about 3 TeV lie outside the allowed (shaded) region – and, hence, if an excess of bb̄ events
with an invariant mass had been observed in this region, it could not have arisen from a model of this type. We find
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that the SSM Z ′ is not bounded by experiments for the mass range shown in the figure. This is consistent with the
results in Ref. [43].

The lower pane of Figure 6 shows the upper bounds on ζ for a Z ′ produced via light quark/anti-quark annihilation
and decaying to dileptons (red solid) alongside the expected upper limit (blue dashes) [44] and the value of ζ for the
SSM Z ′ (green dots). In this channel, the value of ζ provided by the model is excluded by the data for masses below
about 3.5 TeV; this provides a lower bound on the SSM Z ′ boson mass. A similar bound of about 3.5 TeV, is also
obtained for the SSM Z ′ in Ref. [44].

FIG. 6: In these plots in the ζ vs. resonance mass plane, the shaded region corresponds to values of ζ consistent with upper
bounds on branching ratios as described in the text (1 for the upper left pane and 1/4 for the other panes) and Γ/M ≤ 10%.
The observed (red solid) and expected (blue dashed) upper bounds on ζ as a function of resonance mass are shown in each pane.
The thick solid red and blue dashed curves correspond to the situation in which the Z′ couples only to up-flavor (down-flavor)
quarks. The shaded band between the two red curves represents the range of variation of the upper bound on ζ as the Z′ ranges
between the coupling extremes represented by the two red curves. Upper Left: Upper bounds on ζ for a leptophobic Z′

produced via light quark/anti-quark annihilation and decaying to dijets (red solid curve) compared with expected upper limit
(blue dashes) and the size of ζ provided by a Sequential Standard Model Z′ boson (green dots). If a significant excess were
deemed present at masses below 2 TeV, the contribution of this Z′ boson would be consistent with it. Upper Right: Upper
bounds on ζ for a leptophobic Z′ produced via light quark/anti-quark annihilation and decaying to third generation quarks,
compared with expected upper limit (blue dashes) and SSM Z′ (green dots). Lower: Upper bounds on ζ for a Z′ produced
via light quark/anti-quark annihilation and decaying to dileptons, compared with expected upper limit (blue dashes) and SSM
Z′ (green dots).



14

IV. DISCUSSION

We are proposing a model-independent method for quickly determining whether a small excess observed in collider
data could potentially be attributable to the production and decay of a single, relatively narrow, s-channel resonance
belonging to a generic category, such as a leptophobic Z ′ boson or a fermiophobic W ′ boson. Using a simplifed
model of the resonance allows us to convert an estimated signal cross section into general bounds on the product of
the dominant branching ratios corresponding to production and decay. This quickly reveals whether a given class of
models could possibly produce a signal of the required size at the LHC and circumvents the present need to make
laboreous comparisons of many individual theories with the data. Moreover, the dimensionless variable ζ, which
multiplies the product of branching ratios by the width-to-mass ratio of the resonance as defined in Eqn. 15, does an
even better job at producing compact and easily interpretable results.

In this work, we began by setting up the general framework for obtaining simplified limits and outlining how it
applies for narrow resonances with different numbers of dominant production and decay modes. We then analyzed
applications of current experimental interest, including resonances decaying to dibosons, diphotons, dileptons, or
dijets. In section III A 1 we demonstrated that no fermiophobic W ′ boson could have conceivably explained the
diboson excess spotted in the LHC data in summer 2015. In contrast, we showed that a generic W ′ produced through
quark/anti-quark annihilation could have readily fitted the bill. We further illustrated how easy it was to compare
the calculated value of ζ for a specific instance of such a W ′ state (using the left-hand side of Eqn. 15) with the
experimental upper bound on ζ in order to determine whether that particular instance was a viable candidate to
explain the excess. While those analyses involved resonances with only a single dominanat production mode and
either one or two significant decay modes, the analyses of scalars, our subsequent discussions of gravitons, and Z ′

bosons demonstrated how readily the simplified limits method may be used in more general cases with multiple
significant production and decay modes.

If the LHC experiments report their searches for resonances beyond the standard model in terms of the simplified
limits variable ζ, alongside the commonly used σ · BR now employed, this would make it far easier and swifter for
the community to discern what sorts of BSM physics might underly any observed deviations from SM predictions.
Instead of sifting through very specific theories one by one, we could first winnow the general classes of resonances and
pursue only models incorporating the viable classes of resonances. Moreover, for a given model, it is straightforward
to calculate the value of ζ for the candidate resonances and do a quick comparison with the data.

Since situations may well arise where new physics makes its first appearance as a scattering excess that is not
obviously due to a narrow s-channel resonance that can be fully reconstructed, we are presently extending our analysis.
We are generalizing our simplified limits framework to handle resonances of moderate width treated in the Breit-
Wigner approximation and cases where invisible final-state particles necessitate the use of a transverse mass variable
(rather than invariant mass). We are also exploring the boundary between describing the transtion between the
initial partons and final state particles in terms of an unresolved four-body contact interaction and in terms of an
intermediate resonant state. These results will be presented in forthcoming work.
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Appendix A: Impact of Resonance Width on the Simplified Limits

We have worked in the narrow width approximation in establishing limits on the value of ζ. This encompasses widths
ranging from well below the detector resolution up to about ten percent of the resonance’s mass. The experimental
limits on production cross-sections do depend on the precise width assumed for one of these narrow resonances. One
may see this by comparing, for instance, the limits that ATLAS has established on a diphoton resonance in [39];
the limits on a narrow (4 MeV width) resonance are clearly stronger than those on a resonance assumed to have
Γ/M = 10%. As illustrated in Figure 7, we estimate that for scalars produced via photon fusion and decaying to
diphotons, the upper limit on ζ for a resonance with a width equal to 1% of the mass is about a factor of two stronger
than that for a resonance of 10% width, across the range of masses included in our analysis. This variation reflects
the precision of the simplified limits discussed here.
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FIG. 7: Variation with resonance width of the observed upper bound on ζ for a scalar produced by photon fusion and decaying
to diphotons, across a range of scalar masses; based on data in [39]. The upper limit on ζ for a scalar with Γ/M = 1% (blue
dashed curve) is about a factor of two stronger than that for a scalar with Γ/M = 10% (upper (green) solid curve).

Appendix B: Parton Luminosity

The first step in calculating the cross-section given in Eqn. 7, is to evaluate parton luminosities. For this purpose
we use LHAPDF6 [45] as the interface to various parton distribution functions.

1. Quark and Gluon luminosities

When the two incoming partons at a p-p collider are some combination of quarks or gluons, the parton luminosity
is defined as follows:

dLij
dŝ

=
1

s

∫ 1

ε=ŝ/s

1

1 + δij
[(fi(x1, ŝ)× fj(ε/x1, ŝ)) + (i←→ j)]

dx1

x1
. (B1)

Here x1 is the parton momentum fraction, ŝ = m2
R and s is the square of the energy of the two colliding protons.

2. W and Z boson luminosities

The W and Z boson parton luminosities can be calculated using the Effective W Approximation [24–26, 46].
However a few limitations of this approach should be considered carefully. In this approximation, transverse and
longitudinally polarized gauge bosons are considered separately and it is not possible to calculate the contribution to
the cross-section from the interference between the longitudinal and transverse component. Therefore the effective W
approximation is useful only when the amplitude of a process is dominated either by the longitudinal or transverse
component.

Furthermore, the effective W approximation requires (a) taking the intermediate vector bosons on-shell and (b)
that the intermediate bosons are produced at small angles to the incoming quarks and (c) that the momentum fraction
x of either incoming parton satisfy

x� 2MV√
ŝ
. (B2)

For resonant production of a particle with mass M , this last constraint translates to M � 2MV .
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a. Transverse gauge bosons

In the high energy limit, when the quark energy E � Mv the probability distribution of transverse W ’s or Z’s in
a quark can be written down as [25]

fq/V t(x) ' C2
v + C2

a

8π2x

(
x2 + 2(1− x)

)
log

(
4E2

M2
V

)
. (B3)

For V = W

Cv = Ca =
g2√

2
, (B4)

g2 = e/ sin θW

and for V = Z

Cv =
g2

cos θW

(
1

2
T3L −Q sin2 θW

)
, (B5)

Ca =
g2

cos θW

(
1

2
T3L

)
.

T3L is the third component of weak isospin of the quark off which the V -boson is being radiated and Q is its electric
charge.

To obtain the distribution of vector-bosons inside the proton (fp/V t(x)), one must fold the pdf in Eqn. B3 with the
quark pdf (fi(x)).

fp/V t(x) =
∑
i

∫ 1

x

dx1

x1
fi(x1)fqi/V t

(
x

x1

)
, (B6)

where the sum over i runs over all relevant partons. The luminosity for the two intermediate vector bosons can be
found using

dLqiqj/V tV t

dτ
=

∫ 1

τ

dx

x
(fqi/V t(x)fqj/V t(τ/x) (B7)

=

(
C2
vi + C2

ai

8π2

)(
C2
vj + C2

aj

8π2

)
1

τ
(B8)

×
[
(2 + τ)2 log(1/τ)− 2(1− τ)(3 + τ)

]
log

(
4E2

i

M2
V

)
log

(
4E2

j

M2
V

)
. (B9)

Convoluting the above result with the quark pdfs gives the vector boson luminosity in proton-proton collisions:

dLpp/V tV t

dτ
=
∑
i,j

1

1 + δij

∫ 1

τ

dx1

x1

∫ 1

τ/x1

dx2

x2

(
fi(x1)fj(x2)

dLqiqj/V tV t

dτ̂
+ i←→ j

)
, (B10)

where τ̂ = τ/(x1x2). This can be derived from

dLpp/V tV t

dτ
=

∫
dx1dx2

∫
dy1dy2

(
fi(x1)fj(x2)fqi/V t(y1)fqj/V t(y2)δ(x1y1x2y2 − τ)

)
=

∫
dx1dx2

x1x2
fi(x1)fj(x2)

∫ 1

τ̂

dy1

y1

(
fqi/V t(y1)fqj/V t(τ̂ /y1) .

)
Alternatively the expression in Eqn. B10 can be derived by convoluting the pdfs defined in Eqn. B6.

dLpp/V tV t

dτ
=

∫ 1

τ

dx

x
fp/V t(x)fp/V t(τ/x). (B11)
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b. Longitudinal Gauge Bosons

The probability distribution of Longitudinal gauge bosons in a quark (when the energy of the quark E �MV ) can
be written as follows

fq/V t(x) ' C2
v + C2

a

4π2x

1− x
x

. (B12)

The luminosity for the two intermediate vector bosons is given by

dLqiqj/V LV L

dτ
=

∫ 1

τ

dx

x

(
fqi/V L(x)fqj/V L(τ/x)

)
(B13)

=

(
C2
vi + C2

ai

4π2

)(
C2
vj + C2

aj

4π2

)
1

τ
[(1 + τ) log(1/τ)− 2(1− τ)] . (B14)

Note that unlike the transverse polarization luminosity, the longitudinal luminosity (in the large energy limit) is
independent of the energy of the quarks.
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