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Abstract

Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear ra-

diation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form

αlW logn(Q2/M2
W,Z ), where αW = α/(4π sin2θW ) and n ≤ 2l − 1. The inclusion of EW corrections

in predictions for hadron colliders is therefore especially important when searching for signals of

possible new physics in distributions probing the kinematic regime Q2 � M2
V . Next-to-leading

order (NLO) EW corrections should also be taken into account when their size (O(α)) is compa-

rable to that of QCD corrections at next-to-next-to-leading order (NNLO) (O(α2
s )). To this end

we have implemented the NLO weak corrections to the Neutral-Current Drell-Yan process, top-

quark pair production and di-jet production in the parton-level Monte-Carlo program MCFM. This

enables a combined study with the corresponding QCD corrections at NLO and NNLO. We pro-

vide both the full NLO weak corrections and their Sudakov approximation since the latter is often

used for a fast evaluation of weak effects at high energies and can be extended to higher orders.

With both the exact and approximate results at hand, the validity of the Sudakov approximation

can be readily quantified.
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I. Introduction

As the CERN Large Hadron Collider (LHC) is operating at an unprecedented high en-

ergy and is reaching unrivalled precision, the inclusion of electroweak (EW) corrections

becomes increasingly important. This is equally true in tests of the Standard Model (SM)

and in searches for signals of new physics, in particular in the high-energy and high-

momentum regimes of kinematic distributions (see, for example, Ref. [1] for a review).

Electroweak corrections at high energies may also play a significant role in the extraction

of parton distribution functions (PDFs), for instance in constraining the gluon PDF at

high momentum fraction in di-jet production (see, for example, Refs. [2, 3]). The impor-

tance of weak corrections at high energies is due to the occurrence of soft and collinear

radiation of virtual and realW and Z bosons. These give rise to Sudakov-like corrections

that take the form [4],

αlW logn(Q2/M2
W,Z) where αW =

α

4π sin2θW
and n ≤ 2l − 1 , (1)

and Q2 denotes a typical energy scale of the hard process. Electroweak O(α) corrections

have been calculated for a number of processes relevant to LHC physics, and are now

becoming more widely available, also in combination with QCD corrections, thanks to

automated tools such as RECOLA [5], SHERPA/MUNICH+OPENLOOPS [6, 7], GOSAM [8], and

MADGRAPH5 aMC@NLO [9, 10]. Recent progress in this area is reviewed in Ref. [11]. How-

ever, dedicated and efficient computations for specific processes, including also QCD

corrections in the same way, is still highly desirable for LHC studies.

In this paper we present such calculations in the framework of the widely used, pub-

licly available parton-level Monte Carlo (MC) program MCFM [12–15]. We will concentrate

on the implementation of the weak one-loop corrections to three key SM processes at the

LHC: the Neutral-Current (NC) Drell-Yan (DY) process, pp → γ,Z → e+e−,µ+µ−, and

strong top-anti-top-quark pair (tt̄) and di-jet production. At leading order (LO) these

processes are of O(α2) (NC DY) and O(α2
s ) (tt̄ and di-jet production), and we provide the

cross sections due to the full set of W and Z exchange diagrams at O(α3) (NC DY) and

O(α2
s α) (tt̄ and di-jet production). These contributions represent a gauge-invariant subset

of the next-to-leading-order (NLO) EW corrections and thus can be studied separately.

They provide the dominant EW effects in the Sudakov kinematic regime, i. e. when all
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Mandelstam invariants ŝij are of the same size and are much larger than the weak scale,

|ŝij | ∼ ŝ � M2
W . Since here we are interested in providing improved predictions with

MCFM in the Sudakov regime, we leave the inclusion of the photonic O(α) corrections

to future work. It is important to note, however, that for precision studies in the non-

Sudakov regime, e. g., around the Z resonance of the NC DY process (see, e. g., a recent

status report in Ref. [16] and references therein) and in the forward-backward asymme-

try in tt̄ production [17], the consideration of the full EW (α) corrections is of the utmost

importance. Given the high relevance of these key SM processes at the LHC, they have

already been computed including exact NLO EW effects (NC DY [18–22], tt̄ [17, 23–38]

and di-jet [39–41]) or at next-to-next-to-leading-order (NNLO) QCD (NC DY [15, 42–45],

tt̄ [46–50] and di-jet [51–53]). State-of-the-art fixed higher-order corrections have also

been implemented in, and matched to, parton-shower (PS) programs (NC DY at NNLO

QCD+PS [54, 55] and NLO EW+PS [56], tt̄ at NLO QCD+PS [57, 58] and di-jet at NLO

QCD+PS [59]) and improved by the analytic resummation of logarithmically-enhanced

corrections (NC DY at NNLO+NNLL [60] and tt̄ at NNLO+NNLL [61–64]). For the MCFM

implementation of the weak one-loop corrections to the NC DY process we make use of

the results provided in Refs. [65, 66], while in the case of tt̄ production we implement

the results of Ref. [24, 26] for the virtual corrections. For di-jet production we use re-

sults from the case of tt̄ production in the limit mt → 0 and from b-jet production [32],

where applicable, and re-calculate the remaining contributions. The O(α2
s α) cross sec-

tions to tt̄ and di-jet production also include real QCD radiation, whose effects have

been re-calculated and implemented using the MCFM formulation of the Catani-Seymour

dipole subtraction method [67, 68]. It is interesting to note that this implementation of

weak one-loop corrections to tt̄ and di-jet production in MCFM provides, for the first time,

these results in a readily available, fully flexible, public MC code [69]. We validate the

results of our implementation by comparing MCFM results for relative weak one-loop cor-

rections to the total cross sections and kinematic distributions with published results in

Ref. [41] (di-jet production) and Ref. [36] (tt̄ production), and by using the publicly avail-

able MC program ZGRAD2 [18]. We also compare the relative impact of weak one-loop and

higher-order QCD corrections and discuss two different approaches to combining these

corrections (additive and multiplicative). In the case of the NC DY process, NNLO QCD

predictions are also obtained with MCFM [15], while the NLO QCD predictions for di-jet
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production are obtained with the MC program MEKS (version 1.0) [70], and the (N)NLO

predictions for tt̄ production are taken from Refs. [48, 50].

The important interplay of photon-induced processes and EW corrections is illus-

trated in the case of the NC DY process. At LO this already receives a contribution

from the tree-level photon-induced process, γγ → l+l−. We compare our MCFM results

with the ones of Ref. [21] and discuss the impact of this process on a number of inter-

esting NC DY observables. This is particularly interesting given the large uncertainty

in the photon PDF that is obtained in global PDF sets such as MRST2004QED [71],

NNPDF3.0QED [72, 73], and CT14QED [74]. A recent study of the combined impact of

NLO EW effects and photon-induced processes in tt̄ production can be found in Ref. [37].

EW logarithmic corrections that take the form of Eq. (1) have been studied at one-

loop and beyond by several groups, e. g., see Refs. [4, 75–104], and references therein.

As a first step to improving the predictions of multi-purpose MC programs for the LHC

at high energies, one could for instance implement the Sudakov approximation of EW

corrections. Examples of such improvements are the implementation of weak Sudakov

corrections to Z+ ≤ 3 jets in ALPGEN [1] and in SHERPA [105]. Moreover, in cases where

these EW Sudakov corrections are indeed dominant and represent a good approximation

of the complete EW corrections, the known higher-order EW Sudakov logarithms, i. e.

beyond one-loop order, could be used to further improve predictions in the Sudakov

regime.

The implementation of weak one-loop corrections in MCFM includes both the exact

weak corrections as described above and their Sudakov approximation based on the gen-

eral algorithm of Denner-Pozzorini [80, 86]. We compare these predictions for observ-

ables in the NC DY process and for tt̄ and di-jet production at high invariant masses of the

leading pair of final-state particles to provide insight into how well the approximation

works. Examples of similar studies can be found, for instance, in Refs. [11, 28, 36, 106].

In this paper we concentrate on the inclusion of virtual weak corrections. This is be-

cause the masses of the weak gauge bosons provide a physical Infra-Red (IR) cutoff so

that in general there is no need for the inclusion of real emission of weak gauge bosons.

Moreover, the real emission of aW or Z boson and their subsequent decays usually yields

an experimental signature that can easily be separated from the no-emission case. Even

in situations where the inclusive experimental treatment of an observable requires the
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inclusion of both real and virtual W and Z boson radiation, such EW Sudakov correc-

tions can still have a significant numerical impact due to an incomplete cancellation of

mass-singular EW logarithms between these two contributions [100, 103, 107–111]. This

is a consequence of not averaging over the initial-state isospin degrees of freedom so that,

unlike in QED and QCD, the Bloch-Nordsieck theorem is violated [107, 112]. For exam-

ple, a study in Ref. [110] found that the inclusion of real W and Z boson radiation in NC

DY production, pp→ e+e−V , V = W,Z with V → jj and Z → ν̄ν, in predictions for the

invariant-mass distribution of the final-state e+e− pair (M(e+e−)) at the 14 TeV LHC can

reduce the impact of EW 1-loop corrections from about −21% to −16% of the LO cross

section at M(e+e−) = 4 TeV. However, the necessity of including real emission diagrams

in a prediction as part of the EW corrections, and the degree of their partial cancellation,

strongly depends on the details of the experimental analysis. This therefore requires

careful consideration, ideally in consultation with the experimentalists conducting the

analysis. Therefore, we do not include real W/Z emission contributions in the predic-

tions presented in this paper, but rather concentrate on the implementation of virtual

weak corrections in MCFM. We note that a combined study of real and virtual W/Z emis-

sion to NC DY, tt̄ and di-jet production can be conducted with MCFM with realistic analysis

cuts, where the former is based on the tree-level processes W/Zjj, l+l−W/Z and tt̄W/Z.

A recent discussion of the resummation of EW Sudakov logarithms originating from real

W,Z radiation in the DY process can be found in Ref. [104] (and references therein).

The paper is organized as follows. In Section II we provide the details for both the

implementation of the exact (Section II A) and the Sudakov approximation (Section II B)

of weak one-loop corrections to the NC DY process, tt̄ and di-jet production. We validate

our implementation by comparing with existing calculations and published results in

Section III and provide a comparison of the exact calculation with the Sudakov approxi-

mation at high invariant masses in Section IV. Section III A also includes a discussion of

the impact of the photon-induced tree-level process, γγ → l+l−. Before we conclude in

Section VI, we discuss the size of the weak one-loop corrections relative to QCD correc-

tions, and their combination, in Section V. The details of the MCFM implementation of real

QCD radiation diagrams, which also contribute at O(α2
s α) in tt̄ and di-jet production, are

provided in the appendix.
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II. Implementation of Weak Corrections in MCFM

The hadronic differential cross section dσ for proton-proton collisions at the LHC can

be written as a convolution of a partonic cross section dσ̂ and PDFs fi , fj for partons i, j

carrying a fraction x1,2 of the protons’ momenta P1,2:

dσ (P1, P2) =
1

1 + δij

∑

i,j

[∫ 1

0
dx1

∫ 1

0
dx2fi

(
x1,µ

2
F

)
fj

(
x2,µ

2
F

)
dσ̂ij

(
µ2
R

)
+ i↔ j

]
, (2)

where µF ,µR denote the factorization and renormalization scales respectively. Here we

consider 2→ 2 processes, i(p1) + j(p2)→ k(p3) + l(p4), where the partonic cross section

dσ̂ij can be expressed in terms of the following Mandelstam variables:

ŝ = (p1 + p2)2 = (p3 + p4)2 ,

t̂ = (p1 + p3)2 = (p2 + p4)2 ,

û = (p1 + p4)2 = (p2 + p3)2 ,

(3)

where all momenta are assumed outgoing, so that p1 + p2 + p3 + p4 = 0. The momenta of

the incoming partons are −p1 = x1P1 and −p2 = x2P2 and p3, p4 are the outgoing momenta

of the final-state particles k, l. Up to one-loop electroweak corrections, dσ̂ can be written

in terms of the leading-order (LO) amplitude,M0, and the one-loop corrections, δM, as

follows:

dσ̂ = dPkl
∑

[|M0|2(αmαns ) + 2Re(δM×M∗0)(αm+1αns )] (4)

where dPkl denotes the phase space of the final-state particles. The barred summation

indicates that we have averaged (summed) over initial (final) state spin and color de-

grees of freedom. The indices m, n are used to indicate the order in perturbation theory

considered here, by pulling out overall strong (αs) and weak (α) coupling factors. For

the processes considered in this paper we have m = 2,n = 0 for the NC DY process and

m = 0,n = 2 for top-quark pair and di-jet production. We provide a detailed description

of the MCFM implementation of the exact O(αm+1αns ) contributions to dσ̂ in Section II A

and of their Sudakov approximation in Section II B.
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A. Exact One-loop Corrections

1. Neutral-current Drell-Yan production

The LO parton-level process under consideration is qλρ q̄
λ
ρ → γ,Z → lκσ l̄

κ
σ shown in Fig.

1, where q = u,d,s, c and l = e,µ. The labels λ = R,L,κ = R,L denote the chirality, and

ρ = ±,σ = ± are the isospin indices. Note that we consider all external fermions to be

massless and that we do not include the bb̄-initiated process due to the smallness of the

bottom-quark PDF.

qλ
ρ

q̄λ
ρ

lκσ

l̄κσ

γ/Z

FIG. 1. Feynman diagrams for the NC DY process at LO.

When we consider weak one-loop corrections to the parton-level LO NC DY process,

qq̄→ γ,Z→ l+l−, we refer to a correction of O(α) involving only W and Z bosons in UV-

divergent vertex and self-energy corrections, and UV-finite box corrections, as shown

in Figs. 2, 3 and 4 respectively. The weak one-loop vertex corrections can be described

by well-known form factors, Fκ and Gκ, which multiply the LO vertex as schematically

shown in Fig. 2. The gauge-boson self-energy correction at O(α) can also be factorized

p3

p2

p1

V a

= F(p1, p2, MV a)
N

f�

f̄�

W

W

= G(p1, p2, MW )
N

f�

f̄�

1

FIG. 2. Weak vertex corrections of O(α) to the NC DY process (V a = Z,W ).

with respect to the LO amplitude as shown schematically in Fig. 3. We implemented the
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V a V̄ b

=
⌃̂V aV̄ b

T (ŝ)

ŝ�M2
V a+iMV a�V a

N V̄ b

1

FIG. 3. Gauge-boson self-energy correction atO(α), where Σ̂V
aV̄ b

T is the renormalized vector boson

self-energy, and ΓV a the width of the gauge boson (V a = γ,Z). The red dot denotes the tree-level

coupling to the initial qq̄ pair, IV
a

qq̄ , and IV
b

ll̄
describes the coupling to the final lepton pair.

explicit expressions of Ref. [65] for the unrenormalized vector boson self-energies (Ap-

pendix A), the corresponding counterterms (Appendix B), and the renormalized form

factor F̂κ (Appendix C.1, Eq. (C.5)). For the renormalized form factor Ĝκ we use Eq. (3.13)

of Ref. [66]. Note that the counterterms are defined in the on-shell renormalization

scheme (see Refs. [65, 66] for details). The MCFM implementation of the weak one-loop box

p1

p2

p3

p4

p1

p2

p4

p3

V a

V̄ a

V a

V̄ a

FIG. 4. Feynman diagrams for weak one-loop box corrections to the NC DY process (V a = Z/W ).

contributions due to the exchange of Z/W ± bosons, shown in Fig. 4, represents our own

calculation that expresses the results in terms of scalar integrals, which are evaluated

with QCDLoop [113].

Finally, for the evaluation of the Zf f̄ coupling at LO MCFM provides three choices of

the EW input scheme, i.e. the so-called α(0), α(M2
Z), and Gµ schemes (see also Ref. [21]).

Note that the corrections relative to the LO cross section are always evaluated by using

the fine-structure constant α(0). Also, in all three schemes the cosine of the weak mix-

ing angle is defined via the physical W and Z masses as cosθW = MW /MZ [114]. When

the form factors of the Zf f̄ and γf f̄ vertices are renormalized in the α(0)-scheme, the

corrections depend on the light-fermion masses in a sensitive fashion due to terms pro-

portional to α logmf , which enter through electric charge renormalization in the on-shell
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scheme as [115]

δZem
e = Re




1
2
∂Σ

γ
T (k2)
∂k2

∣∣∣∣∣∣k2=0


 =

2
3
α

4π

∑

f ,t

N
f
CQ

2
f log



M2
W

m2
f


+ . . .

The α(M2
Z)-scheme introduces a contribution ∆α(M2

Z) = −ReΠ̂γ (M2
Z) [115], where Π̂γ (k2) =

Σ
γ
T (k2)/k2−2δZem

e is the renormalized photon vacuum polarization, and the LO coupling

is evaluated at α(M2
Z) = α(0)/[1 − ∆α(M2

Z)]. Therefore, the relative corrections in the

α(M2
Z)-scheme absorb a term of 2 ∆α(M2

Z) resulting from the running of the electromag-

netic coupling from q2 = 0 to q2 = M2
Z . As a result the logarithmic light-fermion terms

are canceled at O(α3).

The Gµ-scheme implies the replacement α(0)→ αGµ with [114]

αGµ =
√

2Gµ
M2
W (M2

Z −M2
W )

πM2
Z

=
α(0)

(1−∆r) , (5)

where Gµ is the Fermi constant measured in muon decay. The quantity ∆r describes the

radiative corrections to muon decay, which is given at one-loop order by [65, 114, 116],

∆r1−loop = ∆α(M2
Z)− c

2
w

s2w
∆ρ+∆rrem =

Σ̂WT (0)

M2
W

+
α

4πs2W

(
6 +

7− 4s2W
4s2W

logc2
W

)
, (6)

where Σ̂WT (0) is the renormalized W boson self energy evaluated at q2 = 0 and we have

introduced the short-hand notation, cW = cosθW and sW = sinθW . Note that ∆r contains

∆α, so that the relative correction in the Gµ-scheme is also free of the logarithmic light-

fermion mass dependence. Moreover, it also contains corrections to the ρ parameter. We

therefore recommend use of the Gµ-scheme for obtaining precise predictions for the NC

DY process, which is the default scheme in MCFM.

2. Top-quark pair production

Top-quark pairs are primarily produced through the strong interaction, which occurs

at O(α2
s ) at LO. The LO diagrams are shown in Fig. 5, with gluon fusion representing

approximately 90% of the rate at the LHC and quark-antiquark annihilation the remain-

der. We consider NLO weak corrections to the strong tt̄ production processes, i.e. we

include all contributions of O(α2
s α) to the cross sections of qq̄ annihilation and gluon

fusion. This includes weak one-loop contributions of the form shown in Fig. 6 (for qq̄
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q

q̄

t

t̄

gc

ga

gb

gc

t

t̄

FIG. 5. Feynman diagrams for LO strong tt̄ production at O(α2
s ).

annihilation) and Fig. 7 (for gluon fusion), as well as s-channel Z,H exchange diagrams

in the gluon fusion channel that are also shown in Fig. 7. For the MCFM implementation

of the renormalized weak one-loop corrections to qq̄ annihilation and gluon fusion we

have adopted the analytic expressions of Ref. [24] and Ref. [26], respectively. We have re-

calculated the contributions from the s-channel Z,H exchange diagrams. The UV poles

in the vertex and self-energy corrections in both the qq̄ annihilation and gluon fusion

subprocesses are removed by performing wave-function and top-mass renormalization

in the on-shell renormalization scheme (see Refs. [23, 24, 26] for details). We have nu-

merically cross-checked the implementation of the pure weak O(α2
s α) contribution to tt̄

production against the calculation provided in Ref. [23].

In the case of qq̄ annihilation, the O(α2
s α) corrections include box diagrams that con-

tain a gluon in the loop, specifically the gluon-Z box diagram of Fig. 6 and the double-

gluon box diagrams of Fig. 8. These contributions are UV finite but IR divergent. The

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

q̄

t

t̄

Z/W± Z/W±

Z

Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
O(ααs)

!

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗

O(αs)

FIG. 6. Sample diagrams for one-loop weak virtual corrections to the quark-antiquark annihila-

tion subprocess in strong tt̄ production, which consist of vertex and box corrections, respectively.

The û-channel box diagrams are not explicitly shown.

IR divergences are canceled by the corresponding real gluon radiation contributions de-

picted in Fig. 9, as long as IR-safe observables are considered. In MCFM the extraction and
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z/W±
Z/W± · · ·

Z/W±

t,b
Z,χ,H · · ·

Z/W± · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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∗

O(αs)

FIG. 7. Sample diagrams for one-loop weak virtual corrections to the gluon fusion subprocess in

strong tt̄ production, which consist of vertex, self-energy, and box corrections, respectively. The

ellipses represent the vertex, self-energy and box diagrams which are not explicitly shown.
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Z
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∗
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FIG. 8. The contribution of the t̂-channel two-gluon box diagram interfered with the Z-mediated

Born diagram to the NLO cross section for tt̄ production at O(αα2
s ). The contribution of the û-

channel two-gluon box diagram is not explicitly shown.

cancellation of the IR poles is performed by using the Catani-Seymour dipole subtrac-

tion method [67, 68]. Note that the color structure does not permit any contributions

involving emitter and spectator partons that are either both in the initial state or both

in the final state. The only dipole configurations that are present have one parton in the

initial state and one in the final state. For completeness, the explicit expressions for the

real contribution to tt̄ production at O(αα2
s ), as implemented in MCFM, are provided in the

appendix.
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FIG. 9. Sample diagrams for real corrections to tt̄ production in the qq̄ annihilation channel

contributing to the O(αα2
s ) cross section.

3. Di-jet production

Di-jet production is a O(α2
s ), O(α2) or O(αsα) process at LO, that is mediated by 2→ 2

scattering processes involving light quarks and gluons, as shown in Fig. 10. The different

subprocesses can be categorized in terms of the number of external quarks and gluons:

four-quark, two-gluon-two-quark, and four-gluon subprocesses. In Tables I and II we list

all processes of the four-quark and two-gluon-two-quark category. In practice it is only

necessary to perform explicit calculations of each subprocess A listed in Tables I and II,

since all other processes can be obtained via crossing symmetry. The crossing relations

are indicated in the tables. The four-gluon subprocess does not receive corrections at the

order under consideration and thus only contributes to the LO cross section for di-jet

production. Note that again we consider all external fermions to be massless and we do

not include the b-quark-initiated processes.

g

g

g

g

g

g

g

g

g

g

g q

q̄

g

g

g

q

q̄

q

qi

q̄i

qj

q̄j

g

qi

q̄j

qi

q̄j

g

qi

q̄i; q̄
�
k

qj

q̄j; q̄
�
l

Z/�; W

qi

q̄j

qi; q
�
k

q̄j; q̄
�
l

Z/�; W

1

FIG. 10. Sample tree-level Feynman diagrams for di-jet production via QCD and EW interactions.
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TABLE I. All four-quark subprocesses to di-jet production with the flavor indices i, j so that qi,j ∈
{u,d,c,s}, where i, j can be equal or different.

A. qi q̄i → qj q̄j , direct calculation

B. qiqj → qiqj , (2→ 3, 3→ 4, 4→ 2; s→ t, t→ u, u→ s)

C. q̄iqi → q̄jqj , (1↔ 2,3↔ 4)

D. q̄i q̄j → q̄i q̄j , (1→ 3, 3→ 2, 2→ 1; s→ t, t→ u, u→ s)

E. qi q̄j → qi q̄j , (2↔ 3; s↔ t)

F. q̄iqj → q̄iqj , (1→ 3, 3→ 4, 4→ 2, 2→ 1; s↔ t)

TABLE II. All two-gluon-two-quark subprocesses to di-jet production, where q ∈ {u,d,c,s}. Note

that the amplitude is multiplied by a minus sign when crossing a final/initial state quark to an

initial/final state one.

A. gg→ qq̄, direct calculation

B. gq→ gq, (2→ 3,3→ 4,4→ 2; s→ t, t→ u,u→ s)

C. gq̄→ gq̄, (2↔ 3; s↔ t)

D. qg→ qg, (1↔ 4; s↔ t)

E. q̄g→ q̄g, (1→ 2, 2→ 4,4→ 3, 3→ 1; s↔ t)

F. qq̄→ gg, (1↔ 3, 2↔ 4; t↔ u)

G. q̄q→ gg (1↔ 4, 2↔ 3)

The one-loop corrections to di-jet production at fixed O(αα2
s ) consist of O(α) correc-

tions to the QCD mediated processes interfered with the LO O(αs) amplitudes and of

O(αs) corrections to the QCD mediated processes interfered with the LO O(α) ampli-

tudes. Their contributions to the partonic di-jet cross section at O(αα2
s ) can be written

symbolically as

dσ̂ (α2
s α) ∝ 2Re

[
δM(αsα) ·M∗0(αs) + δM(α2

s ) ·M∗0(α)
]

(7)
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whereM0(αs) andM0(α) denote the LO amplitude with gluon and weak boson exchange,

respectively. δM(α2
s ) denotes the QCD one-loop correction to the strong LO amplitude

while δM(αsα) represents both weak corrections to the strong LO amplitude and QCD

corrections to the weak LO amplitude. As was the case for tt̄ production, we also need

to take into account real QCD corrections in order to cancel the IR divergences stem-

ming from the virtual QCD corrections. Explicit expressions for the real corrections can

be found in the appendix. In the following we will present the virtual corrections to the

four-quark and two-gluon-two-quark subprocesses, qi q̄i → qj q̄j and gg→ qq̄. All remain-

ing subprocesses can be obtained via the crossing relations listed in Table I and II. The

virtual corrections to the two-gluon-two-quark subprocess gg → qq̄ consist of the same

weak one-loop corrections as in tt̄ production, shown in Fig. 7, with the top quark re-

placed by a massless quark. For other subprocesses we have partially used the analytic

expressions for the weak corrections to b-jet production of Ref. [32], where applicable to

the case of di-jet production.

TABLE III. The three categories of subprocesses that comprise the four-quark processes qi q̄i →
qj q̄j of di-jet production (with u1,2 = u,c and d1,2 = d,s).

category 1 ui ūi → uj ūj ,di d̄i → dj d̄j , for i , j

category 2 ui ūi → dj d̄j ,di d̄i → uj ūj

category 3 ui ūi → ui ūi ,di d̄i → di d̄i

In the case of the four-quark subprocesses qi q̄i → qj q̄j we further divide them into

the three categories shown in Table III since, as discussed further shortly, they proceed

through different diagrams. The virtual corrections to the four-quark subprocesses of

category 1 of Table III can again be obtained from the weak corrections to tt̄ production

shown in Fig. 6. Sample diagrams for virtual corrections to the four-quark subprocesses

of category 2 and 3 of Table III are shown in Fig. 11 and Fig. 12, respectively. While the

color structure ensures that there is no contribution from the interference between one-

loop QCD and LO weak diagrams in category 1 (except for the mixed QCD-weak box

contribution), such corrections do survive in category 2 (diagrams below the double line
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in Fig. 11) and category 3 (Fig. 12).
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FIG. 11. Sample Feynman diagrams for virtual corrections to four-quark subprocesses of category

2 of Table III, ui ūi → dj d̄j , di d̄i → uj ūj , where i, j denote the ith- or jth-generation of the light

(anti)quarks, i.e, i, j ∈ (1,2). The diagrams above the double line contribute to δM(αsα) and below

the double line to δM(α2
s ). Weak one-loop corrections similar to the ones shown in Fig. 6 are not

explicitly shown.

The UV poles in self-energy and vertex corrections are eliminated after applying an

appropriate renormalization procedure as described below. The IR poles originating

from the soft and collinear virtual gluon contributions in category 2 and 3 are canceled

against their counterparts from the real corrections and PDF counterterms as described

in the appendix. Note that these real QCD corrections yield real corrections to the quark-

gluon-initiated subprocesses of Table II by crossing the emitted gluon to the initial state.

These corrections exhibit a trivial initial-state collinear singularity which is absorbed into

the PDFs (as detailed in the appendix).

The weak one-loop vertex corrections in all three categories involve Z/W ± boson ex-

change in the gqq̄ vertex, which can be described in terms of the renormalized form factor
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FIG. 12. Sample Feynman diagrams for virtual corrections to four-quark subprocesses of category

3 of Table III, qq̄→ qq̄, q ∈ {ui ,di}. Contributions similar to the ones shown in Fig. 6 and 11 are

not explicitly shown.

f1 given in Eq. (III.11) of Ref. [32] (or (II.16) of Ref. [24]), as

δM (αsα)y = −1
2
α

4π
M0 (αs)y



∑

f =qi ,qj

[(
g
f
v

)2
+
(
g
f
a

)2
]
f1

(
M2
Z

y

)
+

1

2s2w
f1

(
M2
W

y

)
,


(8)

where gfv (gfa ) is the vector(axial) vector coupling of the fermion to the Z boson, gfv =

1/(2swcw)(T f3 − 2s2wQf ), gfa = 1/(2swcw)T 3
f , and the subscript y denotes the channel of the

amplitude, while the variable y in the function f1 denotes the Mandelstam variable cor-

responding to that channel. The function f1 is given by

f1(x) = 1 + 2
[
(1 + log(x)) (2x+ 3)− 2(1 + x)2

(
Li2

(
1 +

1
x

)
− π

2

6

)]
. (9)

The renormalized contribution of the QCD vertex and self-energy corrections in cate-

gory 2 and 3 to dσ̂ can be written as

δM
(
α2
s

)
x

=
αs
4π
M0 (αs)x

[
2Λ1(x) + 2Λ2(x) +Π(x) + δZgs

]
(10)

where the subscript and variable x have the same interpretation as y in Eq. (8), and δZgs
denotes the renormalization constant for the strong coupling

δZgs =
[(
−11

2
+
nF
3

) 1
ε

+
1
3

(
1
ε

+ log
µ2

m2
t

)]
, (11)
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where mt denotes the top-quark mass, d = 4 − 2ε and we do not distinguish between IR

and UV poles. Consequently, the quark wave function renormalization constant δZq =

−αs/(3π)B0(0,0,0) ≡ 0. The two form factors Λ1 and Λ2, describing virtual gluon ex-

change to gqq̄ and V aqq̄ (V a = Z,γ,W ±) vertices respectively, read

Λ1(x) =
1−N 2

c

4Nc
[(d − 7) B0 (x,0,0)− 2 x C0 (0,x,0,0,0,0)]−

Nc

(
N 2

c − 1
)

4
B0 (x,0,0) (12)

Λ2(x) =

(
N 2

c − 1
)2

4Nc
[(d − 7) B0 (x,0,0)− 2 x C0 (0,x,0,0,0,0)] , (13)

with the scalar integrals

B0(x,0,0) =
1
ε

+ log
µ2

−x − iε + 2 +O (ε)

C0(0,x,0,0,0,0) =
1
x

[
1
ε2 +

1
ε

log
µ2

−x − iε +
1
2

log2 µ2

−x − iε
]

+O (ε) .

Finally, the gluon self-energy correction reads

Π(x) =
1

2(d − 1)

[
4(d − 2) A0

(
m2
t

)
+ (9d − 6− 2(d − 2)nF) x B0 (x,0,0)

− 2
(
4m2

t + (d − 2)x
)
B0

(
x,m2

t ,m
2
t

) ]
,

(14)

with

A0

(
m2
t

)
=m2

t

[
1
ε

+ 1 + log
µ2

m2
t − iε

]
+O (ε)

B0

(
x,m2

t ,m
2
t

)
=

1
ε

+ 2 + log
µ2

m2
t

−
√

1− 4m2
t

x
log

1 +
√

1− 4m2
t

x

−1 +
√

1− 4m2
t

x

+O (ε)

Depending on the production channel considered, the variable x could be ŝ, t̂, or û.

The box contributions to dσ̂ can be written in terms of four contributions for all di-jet

subprocesses, by taking advantage of appropriate crossing relations. In this way, dσ̂ can

be schematically written as

dσ̂ = 4παα2
s

{
propV a (x) [cs1(�t×s +�u×s) + cs2(�t×t +�u×t)](MV a , 0)

+ (cs1(�t×s +�u×s) + cs2�u×t + cs3�t×t)(MV a = 0)
}

(15)

in terms of the three possible color factors

cs1 =
N 2

c − 1
4

, cs2 =
−N 2

c + 1
4Nc

, cs3 =

(
N 2

c − 1
)2

4Nc
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and the propagator function defined by

propV a (x) =
x
(
x −M2

V a

)

(
x −M2

V a

)2
+ Γ 2

V aM
2
V a

(16)

The integral functions for the interference of the t-channel and u-channel box diagrams

with the s-channel and t-channel LO diagrams, �t×s, �u×s and �t×t, �u×t, respectively, are

given by

�t×s =
8
ŝ

{
−
(
g
f
a g

i
a + gfv g iv

)[
2û

(
B0

(
ŝ,M2

V a

)
−B0

(
t̂,0

))
+ t̂(M2

V a + t̂ − û)
(
C1

0

(
t̂,M2

V a

)
+C2

0

(
t̂,0

))]

+ 2
(
g
f
a g

i
a

(
t̂ + û

)(
M2
V a − t̂ + û

)
+ gfv g iv

(
M2
V a

(
t̂ + û

)
+ 3t̂2 + û2

))
C2

0

(
ŝ,M2

V a

)

+ t̂
(
−gfa g ia

(
M4
V a + 2M2

V a t̂ − t̂2 + û2
)
− gfv g iv

(
M4
V a + 2M2

V a t̂ + 3t̂2 + û2
))
D0

(
ŝ, t̂,M2

V a

)}

(17)

�u×s =
8
ŝ

{
−
(
g
f
a g

i
a − gfv g iv

)[
2t̂

(
B0

(
ŝ,M2

V a

)
−B0 (û,0)

)
+ û

(
M2
V a − t̂ + û

)(
C1

0

(
û,M2

V a

)
+C2

0 (û,0)
)]

+ 2
(
g
f
a g

i
a

(
t̂ + û

)(
M2
V a + t̂ − û

)
− gfv g iv

(
M2
V a

(
t̂ + û

)
+ t̂2 + 3û2

))
C2

0

(
ŝ,M2

V a

)

+ û
(
−gfa g ia

(
M4
V a + 2M2

V aû + t̂2 − û2
)

+ gfv g iv
(
M4
V a + 2M2

V aû + t̂2 + 3û2
))
D0

(
ŝ, û,M2

V a

)}

(18)

�t×t =− 8
t̂

(
g
f
a g

i
a + gfv g iv

)[
2û

(
B0(ŝ,M2

V a)−B0(t̂,0)
)

+ t̂
(
M2
V a + t̂ − û

)(
C1

0(t̂,M2
V a) +C2

0(t̂,0)
)

− 2
(
M2
V a

(
t̂ + û

)
+ t̂2 + û2

)
C2

0

(
ŝ,M2

V a

)

+ t̂
(
M4
V a + 2M2

V a t̂ + t̂2 + û2
)
D0

(
ŝ, t̂,M2

V a

) ]

(19)

�u×t =
16û2

t̂
(gfa g ia + gfv g iv)(ûD0(ŝ, û,M2

V a)− 2C2
0(ŝ,M2

V a)) (20)

In these expressions we have used the short-hand notation

B0 (x,y) = B0 (x,y,0)

C1
0 (x,y) = C0 (x,0,0,0,0, y)

C2
0 (x,y) = C0 (x,0,0,0, y,0)

D0 (x,y,z) =D0 (0,0,0,0,x,y,z,0,0,0)

for the scalar integrals, which read

B0 (x,y) =



1
ε + 2 + log µ2

−x (y = 0 || y = x)
1
ε + 2 + y−x

x log y−x
y + log µ2

y otherwise
(21a)
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C1
0 (x,y) =



1
xLi2 (1) = π2

6x (y = −x)

C2
0 (x,0) (y = 0)

1
x

[
log

(
−xy

)
log

(
1 + x

y

)
+ Li2

(
−xy

)]
otherwise

(21b)

C2
0 (x,y) =



1
x

[
1
ε2 + 1

ε log µ2

−x + 1
2 log2 µ2

−x
]

(y = 0)

− 1
2x

[
1
ε2 + 1

ε log µ2

y + π2

6 + 1
2 log2 µ2

y

]
(y = x)

1
x

[
1
ε log y

y−x + log2 y
y−x + log µ2

y log y
y−x + Li2

(
x
y

)]
otherwise

(21c)

D0 (x,y,z) =



1
xy

[
4
ε2 + 2

ε

(
log µ2

−x + log µ2

y

)
+ log2 µ2

−x + log2 µ2

y − log2 x
y −π2

]
(z = 0)

1
(x−z)y

[
1
ε2 + 1

ε

(
log µ2

y + 2log z
z−x

)
+ 1

2 log2 µ2

−y − 1
2 log2 z

−y

+2log µ2

−y log z
z−x − 4 Li2

(
x
x−z

)
−Li2

(
1 + z

y

)
− π2

6

]
(z , 0)

(21d)

Here gfv , g
f
a parameterize both the coupling of the fermion to the Z and W boson (with

gv = ga = 1/(2
√

2sw) in the W case). It should be noted that the third expression in

Eq. (21b) is exact only for −|y| < x < 0, otherwise there is a phase difference that we have

omitted here. Since only the real part contributes to dσ̂ it would not alter the final result.

For MV a > 0, the expressions in Eqs. (17)-(20) describe box diagrams with a gluon and a

massive vector boson, while for MV a = 0, they describe the pure QCD box diagrams with

two gluons. As in tt̄ production, we differentiate between them as weak box and QCD

box contributions respectively.

B. Leading and Subleading Logarithms in the Sudakov regime

As discussed earlier, the NLO EW corrections at high energies are dominated by log-

arithms of ŝij /M
2
V a , where ŝij = (pi + pj)2 are Mandelstam variables of momenta pi , pj

associated with external particles i, j, and MV a is the mass of the weak gauge boson

V a = Z,W .
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FIG. 13. Feynman diagrams representing soft-collinear contributions resulting in double loga-

rithms (left), collinear contributions (middle) and contributions from wave function renormal-

ization (right) both resulting in single logarithms.

For the implementation of the weak leading and subleading logarithms at one-loop in

MCFM we adopt the formalism of Refs. [80, 86]. As described in detail in Ref. [86], the

O(α) corrections to a 2→ 2 process in logarithmic approximation (LA) in the Sudakov

regime, i. e. when all Mandelstam variables are of the same size and are much larger

than the weak scale, |ŝij | ∼ ŝ�M2
W , factorize into the Born amplitude and double (DL)

and single logarithms (SL). The double logarithms log2(ŝkl/M
2
V a) originate from the soft-

collinear contributions due to the exchange of virtual EW gauge bosons between external

legs k, l, as illustrated in Fig. 13 (left). The possible sources of single logarithms in virtual

EW corrections are collinear mass singularities and wave-function and parameter renor-

malization when the UV singularities are subtracted at µR ≈MV a . The contributions of

collinear radiation and wave-function renormalization are schematically shown in Fig. 13

(middle and left). Thus, in the LA limit the O(α) corrections to the LO amplitudeM0 can

be written as

δM =
α

4π

(
δLSC + δSSC + δC + δPR

)
M0 , (22)

where δLSC and δSSC denote respectively the leading and sub-leading logarithms of soft-

collinear origin, δC the collinear logarithms and δPR the logarithms originating from

parameter renormalization. For completeness, we provide in the following the explicit

expressions for δLSC,SSC,C,PR andM0 for the NC DY process, tt̄ and di-jet production, as

they are implemented in MCFM. For the details of their derivation we refer to Refs. [80, 86].
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1. Neutral-Current Drell-Yan Process

The LO amplitude in LA for a given fermion chirality τ,λ = L,R and isospin index ρ,σ

reads

Mqτρl
λ
σ

0 = 4παRqτρlλσ
Aτλ
ŝ

(23)

where

Rqτρlλσ =
∑

N=Z,γ

INqτρI
N
lλσ

=
YqτρYlλσ

4c2
W

+
T 3
qτρ
T 3
lλσ

s2W

and Y and T 3 are the hypercharge and 3rd-component of the weak isospin T , respec-

tively, which are related to the electric charge Q via the Gell-Mann-Nishijima formula

Q = Y /2 + T 3. The LO amplitude for each chirality combination Aτλ is ALL = ARR = û,

andALR =ARL = t̂. After removing the photonic virtual corrections from the expressions

provided in Ref. [86], the different contributions in Eq. (22) read,

δLSC
qτρl

λ
σ

= −
(
Cwk
qτρ

+Cwk
lλσ

)
log2

(
ŝ

M2
W

)
+ 2log

(
M2
Z

M2
W

)[(
IZqτρ

)2
+
(
IZ
lλσ

)2
]

log
(
ŝ

M2
W

)
,

δSSC
qτρl

λ
σ

=− 4
[
log

(
ŝ

M2
W

)
− log

(
M2
Z

M2
W

)]
Rqτρlλσ

(
IZqτρI

Z
lλσ

)
log

(
t̂
û

)

− δτLδλL

s4WRqτρlλσ
log

(
ŝ

M2
W

)[
δρσ log

( |t̂|
ŝ

)
− δ−ρσ log

( |û|
ŝ

)]
.

(24)

δC
qτρl

λ
σ

= 3
(
Cwk
qτρ

+Cwk
lλσ

)
log

(
ŝ

M2
W

)
(25)

δPR
qτρl

λ
σ

=
(
sW

cW

bew
AZ∆qτρlλσ

− bew
AA

)
log

(
ŝ

M2
W

)

with∆qτρlλσ
:=
− 1

4c2
W
YqτρYlλσ + c2

W
s4W
T 3
qτρ
T 3
lλσ

Rqτρlλσ
, bew

AZ = −19 + 22s2W
6sWcW

, bew
AA = −11

3
.

(26)

Cwk
f κ is defined in terms of the electroweak Casimir operator as Cwk

f κ = Cewf κ −Q2
f κ and

IZf κ =
T 3
f κ − s2WQf κ
sWcW

.

Explicit expressions for Cewf κ can be found in Appendix B of Ref. [86].
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2. Top-quark Pair Production

The weak O(α) corrections in LA to the LO amplitudes for the quark-antiquark anni-

hilation and gluon fusion channels again consist of the different contributions in Eq. (22)

which read

δLSC
qτ1q

λ
2

= −
(
Cwk
qτ1

+Cwk
qλ2

)
log2

(
ŝ

M2
W

)
+ 2log

(
M2
Z

M2
W

)[(
IZ
qλ2

)2
+
(
IZ
qλ2

)2
]

log
(
ŝ

M2
W

)
,

δSSC
qτ1q

λ
2

=− 4
[
log

(
ŝ

M2
W

)
− log

(
M2
Z

M2
W

)](
IZqτ1
IZ
qλ2

)
log

(
t̂
û

)
δq1q

(27)

δC
qτ1q

λ
2

= 3
(
Cwk
qτ1

+Cwk
qλ2

)
log

(
ŝ

M2
W

)
− 1

4s2W

[
δq1t (1 + δτR) + δq2t (1 + δλR)

]
m2
t

M2
W

log
(
ŝ

m2
t

)
(28)

The subscripts τ,λ denote the chiralities of the initial-state light quarks (q1 = q) and final-

state top quarks (q2 = t) in the quark-antiquark channel and of the top and anti-top quark

(q1,2 = t, t) in the gluon-fusion channel, respectively. Note that δPR
qτ1q

λ
2

= 0, since there is

not need for the renormalization of the electric charge, weak mixing angle, Yukawa and

scalar-self coupling in strong tt̄ production. In the case of top-pair and di-jet production

we implemented in MCFM the expressions for the amplitude squared, averaged(summed)

over initial(final)-state spin and color degrees of freedom as follows:

∑

τ=L,R

∑

λ=L,R

(
δMq1q2

τλ

)
·
(
Mq1q2

0,τλ

)∗
=

1
4

1

N 2
q1q2

α
4π

∑

τ=L,R

∑

λ=L,R

(
δLSC
qτ1q

λ
2

+ δSSC
qτ1q

λ
2

+ δC
qτ1q

λ
2

)
|Mq1q2

0,τλ|2

(29)

with Nqt = Nc = 3 for qq̄ annihilation and Ntt = N 2
c − 1 = 8 for gluon fusion. The LO

amplitudes squared for qq̄ annihilation for each combination of quark chiralities are

|Mqt
0,LL|2 = |Mqt

0,RR|2 = (4παs)
2 2

(
N 2

c − 1
)
(
t̂2 +m2

t ŝ
)

ŝ2

|Mqt
0,LR|2 = |Mqt

0,RL|2 = (4παs)
2 2

(
N 2

c − 1
)
(
û2 +m2

t ŝ
)

ŝ2
,

(30)

and for gluon fusion

|Mtt
0,τλ|2 =

[
(T aT b)(T aT b)∗ − (T aT b)(T bT a)∗

]
·
(
|A|2 + |B|2

)
τλ

+ (T aT b)(T bT a)∗ · |C|2τλ,

=
Nc(N 2

c − 1)
4

·
(
|A|2 + |B|2

)
τλ

+
−N 2

c + 1
4Nc

· |C|2τλ,
(31)
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with

ALL =ARR = (4παs)
2

4
(
ŝ2 t̂ û − 2t̂2 û2 + 6m2

t ŝ t̂ û −m2
t ŝ

3 − 2m4
t ŝ

2
)

ŝ2 t̂2
,

ALR =ARL = (4παs)
2

4m2
t

(
ŝ2 − 2t̂ û − 2m2

t ŝ
)

ŝ t̂2
,

BLL = BRR = (4παs)
2

4
(
ŝ2 t̂ û − 2t̂2 û2 + 6m2

t ŝ t̂ û −m2
t ŝ

3 − 2m4
t ŝ

2
)

ŝ2 û2 ,

BLR = BRL = (4παs)
2

4m2
t

(
ŝ2 − 2t̂ û − 2m2

t ŝ
)

ŝ û2 ,

CLL = CRR = (4παs)
2

4
[
t̂ û

(
t̂2 + û2

)
−m2

t s
(
t̂2 − 4t̂ û + û2

)
− 2m4

t ŝ
2
]

t̂2 û2
,

CLR = CRL = (4παs)
2

4m2
t ŝ

(
t̂2 − 2m2

t ŝ+ û2
)

t̂2 + û2
.

(32)

3. Di-jet Production

The weak one-loop Sudakov corrections to the gg → qq̄ subprocess of Table II (pro-

cess A) and the four-quark subprocess of category 1 of Table III (shown as the pure weak

contribution in Fig. 6) can be directly obtained from the results for tt̄ production of Sec-

tion II B 2 by taking the limitmt→ 0. There are, however, additional soft-collinear contri-

butions of O(αα2
s ) to the four-quark subprocesses of categories 2 and 3 of Table III, which

originate from the pure weak contribution shown in Fig. 11. The resulting contribution

to the partonic cross section reads

(δM)W · (M0)∗ =− α

2πs2W

[
log

(
ŝ

M2
W

)
− log

M2
Z

M2
W

][
log

(−t̂
ŝ

)
δqiqj

(
|Mqq̄

LL|2t×t + |Mqq̄
LL|2t×s

)

− log
(−û
ŝ

)
|Vqiqj |2|M

qq̄
LL|2t×s

]
.

(33)

where we assume a diagonal CKM matrix with Vud = Vcs = 1. The Born matrix elements

squared read:

|Mqq̄
LL|2s×t = |Mqq̄

RR|2s×t = |Mqq̄
LL|2t×s = |Mqq̄

RR|2t×s = − (4παs)
2 2(N 2

c − 1)
Nc

û2

ŝ t̂
,

|Mqq̄
LL|2t×t = |Mqq̄

RR|2t×t = (4παs)
2 2

(
N 2

c − 1
) û2

t̂2
.

(34)
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III. Impact of weak one-loop corrections and comparison with existing results

In this section we will validate our calculation of the full weak one-loop corrections

described in Section II A and their implementation in MCFM by cross-checking with exist-

ing results in the literature. In order to do so we will compare with the results provided

in Ref. [41] (di-jet production), Ref. [36] (tt̄ production), and by using the publicly avail-

able MC program ZGRAD2 [18] (Neutral-Current Drell-Yan production). In the cases of tt̄

and di-jet production we adopt the particular setup used in the publications. Predictions

with more up-to-date theoretical inputs can of course be computed with MCFM, and, in

general, are not expected to differ much from the ones presented here. This validation

also provides an opportunity to discuss the impact of the full weak one-loop corrections

on a variety of LHC observables, especially in the high-energy regime.

A. Neutral-current Drell-Yan production

We perform a tuned comparison of our MCFM implementation of the full weak one-

loop corrections to the Neutral-Current Drell-Yan (NC DY) process as described in Sec-

tion II A 1 with the calculation implemented in ZGRAD2 [18]. We present results for the

relative weak one-loop correction defined as

δwk =
dσwk

NLO − dσLO
dσLO

, (35)

where dσLO denotes the LO cross section and dσwk
NLO the NLO cross section including

weak one-loop corrections. The relative correction may be defined after integration over

the entire phase space, or bin-by-bin in a differential distribution.

Our choices for the particle masses and widths, together with the relevant electroweak

couplings, are shown in Table IV. Results are obtained in the on-shell renormalization

scheme and by using a fixed-width scheme. When using the fixed-width scheme the val-

ues for the weak gauge boson masses,MW andMZ , and their total widths, ΓW and ΓZ , dif-

fer from those recommended by the PDG [117], since the PDG values have been extracted

assuming a running gauge boson width (see, for example, Refs. [16, 21] for details). As

EW input scheme we use the Gµ scheme as described in Section II A 1. Note that we only

retain lepton and quark masses in closed fermion loops and treat external fermions as
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massless particles. As a result of using the Gµ scheme the dependence on the light quark

masses cancels in the weak one-loop corrections. We use the MSTW2008NLO [118]

set of Parton Distribution Functions (PDF), which corresponds to a strong coupling of

αs(MZ) = 0.12018, and choose µF = µR =MZ .

MW = 80.3695 GeV ΓW = 2.1402 GeV

MZ = 91.1535 GeV ΓZ = 2.4943 GeV

MH = 126 GeV mt = 172.5 GeV

mb = 4.82 GeV mc = 1.2 GeV

ms = 150 MeV mu = 66 MeV

md = 66 MeV me = 0.51099892 MeV

mµ = 105.658369 MeV mτ = 1.777 GeV

Gµ = 1.16637 × 10−5 GeV−2 αGµ = 1/132.4525902

sin2θW = 1−M2
W /M

2
Z

TABLE IV. Input parameters used in the calculation of the Neutral-Current Drell-Yan process and

of di-jet production.

For the results presented here we concentrate on the LHC operating at
√
S = 13 TeV

and apply a simple set of acceptance cuts for the charged leptons. These constrain the

transverse momenta of the leptons (pT (l±)), their pseudorapidities (η(l±)) and the invari-

ant mass of the lepton-pair (M(l+l−), l = e,µ),

pT (l±) > 25 GeV, |η(l±)| < 2.5 , M(l+l−) > 60 GeV . (36)

With this setup and cuts, MCFM yields a total cross section for pp→ γ,Z → l+l− (l = e or

µ) at LO of

σLO = 712.44(2) pb, (37)

and a relative one-loop weak correction of

δwk =
−4.474(3) pb
712.44(2) pb

= −0.628%. (38)

This is in excellent agreement with the ZGRAD2 results, which give σLO = 712.41(2) pb

and δwk = −4.483(3) pb
712.41(2) pb = −0.629%.
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A comparison of MCFM and ZGRAD2 results for the relative one-loop weak corrections to

the distributions of M(l+l−), pT (l+) and η(l±) (for l = e or µ) is shown in Fig. 14. As can

been seen, all MCFM results for NC DY production at the LHC are in excellent agreement

with the ZGRAD2 predictions.

At O(α2) the NC DY process also receives a contribution from the tree-level photon-

induced process, γγ → l+l−. In Table V we compare the MCFM result and the results

presented by Dittmaier and Huber in Ref. [21] (denoted as DH in the following) for the

total tree-level cross sections for the qq̄- (σMCFM0 ,σDH0 |FS/P S) and γγ-initiated (σMCFMγγ,0 )

processes for various M(l+l−) regions at the 14 TeV LHC. The DH LO cross section

σDH0 |FS/P S is obtained in the so-called Factorized Scheme (FS) or Pole Scheme (PS), which

differ from the Complex-Mass Scheme (CMS) in the treatment of the Z resonance (see

Ref. [21] for details). For the comparison we adopt the setup of Ref. [21] and use the

MRST2004QED [71] PDF set. Note that the MRST2004QED PDF set is by now outdated

and up-to-date PDF sets, such as NNPDF3.0QED [72, 73], and CT14QED [74], should

be used. In Table V we also compare the contribution of the LO photon-induced process

relative to the qq̄-initiated process, δγγ,0 = σγγ,0/σ0. We find that the LO cross sections

σDH0 and σMCFM0 agree at the 0.15% level (and better for small M(l+l−)), and that there

is excellent agreement in δγγ,0. Note that in Ref. [21] also the EW O(α) corrections to

γγ → l+l− have been calculated and found to be negligible.

In Fig 15 we show MCFM predictions for the M(l+l−) distribution (l = e or µ) for the

photon-induced tree-level production process at the 13 TeV LHC when using a variety

of photon PDFs, compared to the qq̄-induced NC DY distribution at LO (the setup of

Table IV is used with µF = µR =MZ). The spread of predictions, especially at high invari-

ant masses, indicates the large uncertainties associated with the photon PDF of current

global PDF sets (see Refs. [72–74] for a detailed discussion). Dedicated efforts to improve

the knowledge of the photon PDF are under way [119–121]. In view of the situation

presented in Fig. 15, we cannot conclusively assess by how much the positive photon-

induced contribution affects the impact of the negative weak one-loop corrections on NC

DY observables until these more precise determinations of photon PDFs become readily

available.

26



-2

-1

 0

 1

 2

 3

 4

 5

 60  80  100  120  140  160

δ w
k 

[%
]

M(l+l-) [GeV]

MCFM
ZGRAD2

-30

-25

-20

-15

-10

-5

 0

 5

 1000  2000  3000  4000  5000  6000  7000  8000

δ w
k 

[%
]

M(l+l-) [GeV]

MCFM
ZGRAD2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 30  40  50  60  70  80  90  100

δ w
k 

[%
]

pT(l+) [GeV]

MCFM
ZGRAD2

-25

-20

-15

-10

-5

 0

 500  1000  1500  2000  2500  3000  3500  4000

δ w
k 

[%
]

pT(l+) [GeV]

MCFM
ZGRAD2

-1.5

-1

-0.5

 0

 0.5

-2 -1  0  1  2

δ w
k 

[%
]

η(l+)

MCFM
ZGRAD2

-1.5

-1

-0.5

 0

 0.5

-2 -1  0  1  2

δ w
k 

[%
]

η(l-)

MCFM
ZGRAD2

FIG. 14. Comparison of MCFM (red, solid) and ZGRAD2 (green, dashed) predictions for the weak

one-loop relative correction δwk to the invariant mass of the lepton-pair (M(l+l−), top), lepton

transverse momentum (pT (l+), middle), and lepton rapidities (η(l±), bottom) distributions in NC

DY production at the 13 TeV LHC. The correction is expressed as a percentage of the LO result in

each bin, according to Eq. (35).
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M(l+l−) [GeV] 50-∞ 100-∞ 200-∞ 500-∞ 1000 -∞ 2000-∞
σMCFMγγ,0 [fb] 1287.98(7) 377.77(5) 63.88(1) 3.9809(7) 0.35407(7) 0.018759(4)

σDH0 |FS/P S [fb] 738773(6) 32726.8(3) 1484.92(1) 80.9489(6) 6.80008(3) 0.303767(1)

σMCFM0 [fb] 739272(13) 32881.5(6) 1484.37(30) 81.0745(16) 6.8103(1) 0.304209(5)

δDHγγ,0[%] 0.17 1.15 4.30 4.92 5.21 6.17

δMCFMγγ,0 [%] 0.17 1.15 4.30 4.91 5.20 6.17

TABLE V. MCFM cross sections for the tree-level photon-induced process, σMCFMγγ,0 , for various

ranges of the invariant di-lepton mass (M(l+l−)) obtained with MRST2004QED at the 14 TeV

LHC. We also show a comparison of the LO qq̄-initiated NC DY cross section, σ0, and of the ratio

δγγ,0 = σγγ,0/σ0 from MCFM and Table 1 of Ref. [21] (labeled as DH).
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FIG. 15. LO predictions for the invariant lepton-pair mass distribution for the photon-induced

process and the qq̄-initiated (pink, long-dashed-dotted) NC DY process at the 13 TeV LHC. The

photon-induced LO prediction is obtained with different photon PDFs as provided by CT14QED

(red, solid), MRST2004QED (green, dashed), and NNPDF3.0QED (blue, dotted).

B. Top-quark pair production

We perform a tuned comparison of our MCFM implementation of weak one-loop cor-

rections to tt̄ production at the LHC as presented in Section II A 2 with the one presented

by Kühn, Scharf and Uwer in Ref. [36] (denoted as KSU in the following). We adopt the
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setup used therein, which corresponds to the masses and couplings shown in Table VI.

Furthermore, we set the renormalization and factorization scales equal to the mass of

the top quark, µF = µR = mt and we employ the MSTW2008NNLO PDF set [118] that

specifies αs(mZ) = 0.11707. With this setup the value of the strong coupling used in the

calculation is αs(mt), as given in the table.

MW = 80.385GeV MZ = 91.1876GeV

MH = 126GeV mt = 173.2GeV

mb = 4.82GeV α(mt) = 1/127

sin2θW = 1−M2
W /M

2
Z αs(mt) = 0.106823

TABLE VI. Input parameters used in the validation of the weak one-loop corrections to the tt̄

production process. These parameters are chosen in order to facilitate a comparison with the

results of Ref. [36].

In Fig. 16 we present a comparison of the relative corrections to the parton-level pro-

cesses, uū→ tt̄ and gg→ tt̄ [122]. In the case of the qq̄-initiated process we show results

for δwk of Eq. (35) separately for the weak one-loop vertex corrections (diagrams shown

in the upper part of Fig. 6) and for the full O(α2
s α) contribution (which now also includes

the box diagrams in Fig. 6 and the virtual and real contributions of Fig. 8 and Fig. 9,

respectively). The parton-level results presented in Fig. 8 of Ref. [36] only include weak

one-loop vertex corrections, since the remaining O(α2
s α) contributions were studied in

detail and found to be very small. This is also supported by the results of our calculation

shown in Fig. 16. Moreover, we observe that the agreement between the results of MCFM

and those of KSU is excellent.

At the hadron level we perform the comparison for the LHC operating at 13 TeV, with

no cuts applied to the top quarks except where noted specifically below. Note that the

hadron-level results of Ref. [36] now also include the full O(α2
s α) contributions, i.e. also

including box diagrams and real corrections. For this set-up we find a LO cross section

for tt̄ production at O(α2
s ) of,

σLO = 474.60(4) pb. (39)

The overall effect of the full O(α2
s α) contribution on the total cross section is rather small
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FIG. 16. Comparison of relative corrections δwk to the parton-level cross sections for uū → tt̄

(left) and gg→ tt̄ (right) from MCFM and the results from Fig. 8 of Ref. [36] (KSU) (green, dashed).

The correction is expressed as a percentage of the LO O(α2
s ) cross section according to Eq. (35).

In case of the uū → tt̄ process the KSU results shown here only include weak one-loop vertex

corrections, while MCFM results are provided for both the weak one-loop vertex corrections (blue,

dotted) and the full O(α2
s α) contribution (red, solid).

and results in a relative correction,

δwk =
−9.509(1) pb
474.60(4) pb

= −2.00%. (40)

This is in perfect agreement with the results from Ref. [36], which gives δwk = −2.00%.

We now turn to the comparison of results for differential distributions, in particular

for the top-pair invariant mass distribution (M(tt̄)), the transverse momentum of the top

quark (pT (t)) and the rapidity difference between the top and anti-top quarks, ∆y(tt̄) =

y(t) − y(t̄), where y(t) and y(t̄) are the rapidities in the lab frame. This comparison is

presented in Fig. 17 where, for the ∆y(tt̄) distribution, a cut M(tt̄) > 2 TeV has been

applied. The KSU results are taken from Figs. 20 and 22 (right) of Ref. [36]. While the

parton-level results are in excellent agreement, we observe a small difference in theM(tt̄)

distribution at the 0.5% level at M(tt̄) ≈ 5 TeV. We have not been able to trace the origin

of this discrepancy, which may simply be due to the fact that different approaches for the

treatment of IR singularities have been used, namely dipole subtraction and phase-space

slicing. Each of these methods has its own challenges in obtaining precise numerical

results at such large invariant masses.
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FIG. 17. Comparison of relative corrections δwk from MCFM (red, solid) and the results from Fig. 20

and Fig. 22 of Ref. [36] (KSU) (green, dashed) to the invariant mass distribution of the top-antitop

pair (M(tt̄)) (top center), the transverse momentum of the top quark (pT (t)) (left), and the rapidity

difference between the top and anti-top quark (∆y(tt̄)) (right), in tt̄ production at the 13 TeV LHC.

In the calculation of the ∆y(tt̄) distribution a cut of M(tt̄) > 2 TeV is applied. The correction is

expressed as a percentage of the LO O(α2
s ) cross section according to Eq. (35).

C. Di-jet production

We perform a tuned comparison of our MCFM implementation of di-jet production at

O(α2
s α) as described in Section II A 3 with the results of Dittmaier, Huss, and Speckner in

Ref. [41] (denoted as DHS in the following), and thus adopt the setup used therein, which

corresponds to the masses and couplings shown in Table IV. The factorization scale

(µF) and renormalization scale (µR) are set equal, µF = µR = kT (j1), where kT (j1) is the
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transverse momentum of the leading jet. The CTEQ6L1 set of PDFs [123] is used, which

corresponds to a strong coupling of αs(MZ) = 0.129783. To identify the jets the anti-kT

jet clustering algorithm is used with a pseudo-cone size of R = 0.6, and the following jet

cuts are applied:

kT (j) > 25 GeV, |y(j)| < 2.5. (41)

A comparison of MCFM and DHS results for relative corrections in various ranges of the

invariant mass of the two leading jets (M(j1j2)) at the 14 TeV LHC is shown in Table VII.

A similar comparison, for various ranges of the transverse momentum of the leading

jet (kT (j1)), is given in Table VIII. In both cases we compare the relative one-loop weak

corrections (δwk of Eq. (35)) and the effect of additional tree-level contributions mediated

by EW interactions (δtree
EW ). The latter correction is defined by,

δtree
EW =

dσLO+ew − dσLO
dσLO

(42)

where σLO represents the QCD-mediated LO cross section of O(α2
s ), while σLO+ew also

contains the additional O(αsα) and O(α2) contributions due to the Z,γ and W -exchange

diagrams shown in Fig. 10. As can be seen from the tables, the inclusion of these terms

partially cancels the effect of the weak one-loop corrections.

M(j1j2) [GeV] 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞ 5000−∞

δwk[%]
DHS -0.02 -0.03 -0.07 -0.31 -0.88 -2.20 -5.53

MCFM -0.02 -0.03 -0.07 -0.31 -0.88 -2.23 -5.57

δtree
EW [%]

DHS 0.03 0.01 0.02 0.10 0.34 1.00 2.56

MCFM 0.03 0.01 0.02 0.08 0.30 0.96 2.61

TABLE VII. Comparison of relative corrections δwk of Eq. (35) and δtree
EW of Eq. (42) from MCFM

and Table 1 of Ref. [41] (DHS) for various ranges of the invariant di-jet mass (M(j1j2)) in di-jet

production at the 14 TeV LHC.

A comparison of the relative corrections to the di-jet invariant mass (M(j1j2)) and the

transverse jet momentum distributions of the leading jet (kT (j1)) at the 14 TeV LHC is

shown in Fig. 18. As can been seen, all of the MCFM results for di-jet production at the

LHC are in good agreement with those presented by DHS in Ref. [41], with only small

differences at large values of kT (j1) of at most 3% of the relative correction.

32



kT (j1) [GeV] 25−∞ 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2500−∞

δwk[%]
DHS -0.02 -0.08 -0.28 -0.84 -2.72 -5.48 -10.49

MCFM -0.02 -0.08 -0.28 -0.83 -2.75 -5.64 -10.41

δtree
EW [%]

DHS 0.03 0.03 0.12 0.36 1.44 4.62 18.28

MCFM 0.03 0.03 0.11 0.33 1.42 4.72 18.88

TABLE VIII. Comparison of relative corrections δwk of Eq. (35) and δtree
EW of Eq. (42) from MCFM

and Table 2 of Ref. [41] (DHS) for various ranges of the transverse momentum of the leading jet

(kT (j1)) in di-jet production at the 14 TeV LHC.
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FIG. 18. Comparison of relative corrections δwk of Eq. (35) (blue, dashed and light blue, long-

dashed-dotted), δtree
EW of Eq. (42) (green, short-dashed and yellow, dotted-long-dashed), and their

sum (red, solid and pink, dotted) from MCFM and the results of Figures 9 and 12 of Ref. [41] (DHS).

Results are shown for the invariant di-jet mass (M(j1j2)) (left)) and transverse jet momentum

distributions for the leading jet (kT (j1)) (right) in di-jet production at the 14 TeV LHC.

IV. Effectiveness of the Sudakov approximation

Using the two implementations of weak one-loop corrections in MCFM, i. e. the full

corrections and their Sudakov approximation as described in Section II B, we can now

easily assess the effectiveness of the Sudakov approximation of Ref. [86] in the tails of

kinematic distributions by comparing with the exact results. As pointed out earlier [28,

36], the Sudakov approximation is expected to have only limited application in tt̄ and

33



di-jet production. The Sudakov logarithms are only dominant when all invariants are

much larger than the weak gauge boson mass and, in general, these terms fail to capture

the correct angular distribution of particles in the final state. Nevertheless, a comparison

of the exact and Sudakov results may serve as a guide for cases in which a full, exact

calculation is infeasible and the Sudakov approximation is the only available recourse.

If not mentioned otherwise, all results in this section are obtained with MCFM using the

setup and cuts described in Section III. For the sake of definiteness, we define a relative

weak Sudakov correction in direct analogy to Eq. (35) through,

δSudakov =
dσSudakov

NLO − dσLO
dσLO

, (43)

where σSudakov
NLO includes the NLO Sudakov corrections described in Section II B.

A. Neutral-Current Drell-Yan process

As we have seen in Section III A the effect of the weak one-loop corrections on the

total rate for the NC DY process is rather small. However the situation is quite different

when investigating the effect on kinematic distributions such as the invariant mass of

the lepton pair and the transverse momentum of the leptons. These are shown for both

the exact weak corrections δwk and the Sudakov approximation δSudakov, over ranges ex-

tending to multi-TeV values, in Fig. 19. We have used the same setup and cuts described

in Section III A apart from increasing the cut on M(l+l−) to 200 GeV. The Sudakov ap-

proximation shows good agreement with the exact NLO calculation in the pT (l+) distri-

bution but there is a discrepancy in the M(l+l−) distribution at the level of about 3% for

M(l+l−) ∼ 8 TeV.

We can trace this remaining difference to the contribution of the γ − Z box in the

Sudakov approximation, which is not included in the exact weak one-loop correction,

since it is considered part of the QED O(α) correction to the NC DY process. To illustrate

the impact of the γ − Z box we evaluate the contribution of this diagram to the matrix

element squared at O(α3) in the leading approximation (LA) at high energies. We can

then identify the part proportional to log
(
t̂/û

)
log

(
ŝ/M2

Z

)
as the contribution of the γ −Z
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FIG. 19. Relative weak one-loop corrections from MCFM to the invariant lepton-pair mass (M(l+l−,

l = e,µ)) (left) and lepton transverse momentum (pT (l+)) (right) distributions in the NC DY pro-

cess at the 13 TeV LHC. The correction is expressed as a percentage of the LO result and results

are shown for both the exact (δwk of Eq. (35)) (red, solid) and approximate Sudakov (δSudakov of

Eq. (43)) calculation, the latter with (blue, dotted) and without (pink, long-dashed-dotted) the

γ −Z box contribution of Eq. (44).

box to the Sudakov approximation of Eq. (24), which reads:

∑
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=
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)
− gqag la

(
t̂2 − û2

)]

+ 2 QqQl
[(
g
q
v

2
+ gqa

2
)(
g lv

2
+ g la

2
)(
t̂2 + û2
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In Fig. 19 we also show the effect of subtracting this contribution from the Sudakov

approximation of Eq. (24). As expected, this modified Sudakov approximation now rep-

resents an excellent description of the full one-loop weak correction to the lepton-pair

invariant mass distribution.

In Fig. 20, we compare the relative weak one-loop corrections δwk and δSudakov to the

pseudo-rapidity distribution of the charged leptons, where we apply successive cuts on

the lepton-pair invariant mass at 2 TeV and 5 TeV in order to focus on the high-energy
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behavior. Despite this cut, the exact and Sudakov calculations are not in good agreement

outside the very central rapidity region unless the γ − Z box contribution of Eq. (24) is

subtracted from δSudakov. When this is the case, this modified Sudakov approximation

agrees well with the exact calculation at M(l+l−) > 5 TeV. However, overall the effect of

the weak one-loop corrections on the lepton rapidity distributions is rather mild, since

they are not very sensitive to the presence of the weak Sudakov logarithms.
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FIG. 20. Relative weak one-loop corrections to the pseudorapidity distributions of the positively

(left) and negatively (right) charged leptons in the NC DY process at the 13 TeV LHC. The correc-

tion is expressed as a percentage of the LO result and results are shown for both the exact (δwk of

Eq. (35)) (red, solid) and approximate Sudakov (δSudakov of Eq. (43)) calculation, the latter with

(blue, dotted) and without (pink, long-dashed-dotted) the γ −Z box contribution of Eq. (44).

Another observable that is interesting to measure at the LHC is the forward-backward
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asymmetry of the charged leptons as a function of the invariant mass of the lepton pair,

AFB(M(l+l−)). It is defined by [124],

AFB =
F −B
F +B

(45)

where

F =
∫ 1

0

dσ
dcosθ∗

dcosθ∗, B =
∫ 0

−1

dσ
dcosθ∗

dcosθ∗. (46)

cosθ∗ is given in the Collins-Soper frame [125] by,

cosθ∗ =
|pz(l+l−)|
pz(l+l−)

2

M(l+l−)
√
M2(l+l−) + p2

T (l+l−)

[
p+(l−)p−(l+)− p−(l−)p+(l+)

]
, (47)

where,

p± =
1√
2

(E ± pz) , (48)

and E, pz are the energy and longitudinal component of the momentum respectively.

This observable is sensitive to the weak mixing angle and, in the vicinity of the Z reso-

nance where the number of events is very high, precision measurements of this quantity

have been made both at the Tevatron [126, 127] and the LHC [128–130]. However, it is

also interesting to study this observable far from the resonance region. For instance, in

the high-invariant mass region AFB can be used in the search for extra gauge bosons (Z ′)

(see, for example, Ref. [131]).

The impact of the exact weak one-loop corrections on AFB, compared to the Sudakov

approximation with and without the contribution from the γ−Z box diagram of Eq. (44),

is shown in Fig. 21. We note that the effect of the weak corrections is well-described by

the Sudakov approximation throughout the distribution. These effects are relatively mild

for invariant masses that have been probed with good precision so far (around 1 TeV), but

grow as large as −12% in the far tail.

B. Top-quark pair production

We now turn to the case of top-quark pair production, where we follow the setup

already used in Section III B. Figure 22 shows the results of the comparison in the cases

of the pT (t) and ∆y(tt̄) distributions. For the distribution of the rapidity difference we

have applied an additional tt̄ invariant mass cut of M(tt̄) > 2 TeV. Agreement between
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FIG. 21. Differential lepton forward-backward asymmetry AFB with respect to the invariant mass

of the charged lepton pair in the NC DY process at the 13 TeV LHC. Results are shown for the

LO (green, dashed) prediction and for both the exact (red, solid) and approximate Sudakov cal-

culation, the latter with (blue, dotted) and without (pink, long-dashed-dotted) the γ − Z box

contribution of Eq. (44).

the exact and approximate calculations is almost perfect for pT (t), but this is not the case

for ∆y(tt̄). There the Sudakov approximation is only close to the exact result for small

rapidity differences, |∆y(tt̄)| < 2, due to angular dependence in the corrections that is not

captured in the Sudakov approximation.

The situation for the distribution of the invariant mass of the top pair is shown in

Fig. 23. In this case the Sudakov approximation also does not describe the effect of the

weak corrections on the M(tt̄) distribution very well. Since Fig. 22 demonstrates that

the approximation works best for more central rapidities, we repeat the comparison of

the M(tt̄) distribution after application of rapidity cuts on the top and anti-top quarks.

We consider both central production of top quarks, |y(t, t̄)| < 1 and an intermediate case,

|y(t, t̄)| < 2.5. Agreement is substantially improved after the application of a moderate

rapidity cut on the top quarks, while for highly-central top quarks the approximation

describes the exact result extremely well over the entire range.
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FIG. 22. Relative weak corrections to the pT (t) (left) and ∆y(tt̄) (right) distributions in tt̄ produc-

tion at the 13 TeV LHC. The correction is expressed as a percentage of the LO result and is shown

for the exact weak relative correction δwk of Eq. (35) (red, solid) and the Sudakov approximation

of δSudakov of Eq. (43) (blue, dotted).

C. Di-jet Production

Here we compare the exact calculation of di-jet production at O(α2
s α) described in

Section II A 3 with the Sudakov approximation described in Section II B 3. In Fig. 24 we

show the comparison for the di-jet invariant mass (M(j1j2)), the transverse momenta of

the leading and next-to-leading (in kT ) jets, and the absolute rapidity difference between

these two jets (∆y(j1j2)). Results are shown for the relative corrections for the 13 TeV

LHC in the setup used in Section III C. For the distribution of the rapidity difference we

have applied an additional di-jet invariant mass cut of M(j1j2) > 2 TeV.

We observe that the Sudakov approximation has little utility in this case, with substan-

tial differences from the exact calculation in each distribution. This can be traced to the

rich angular structure of the weak corrections, especially in the four-quark subprocesses,

whose admixture is impossible to capture in an approximate form of Sudakov-type. For

example, the QCD virtual corrections to the four-quark amplitude shown in Figs. 11, 12

(and the corresponding real corrections), which also contribute at O(α2
s α), are not cap-

tured by the Sudakov approximation, but still have a sizeable impact on the distributions

shown here. This is also highlighted by the fact that, in contrast to the case of top-quark

pair production, there is no region in ∆y(tt̄) in Fig. 24 where the results of the exact weak
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FIG. 23. Relative weak corrections to M(tt̄) in tt̄ production at the 13 TeV LHC with no cuts

applied (top left), after application of a moderate rapidity cut (top right) and for central top

quarks (center). The correction is expressed as a percentage of the LO result and is shown for the

exact weak relative correction δwk of Eq. (35) (red, solid) and the Sudakov approximation δSudakov

of Eq. (43) (blue, dotted).

and approximate calculations are close, so that the application of a central rapidity cut

does little to improve the effectiveness of the Sudakov approximation.

V. Combination of QCD andWeak Corrections

In this section we will consider the combination of the exact NLO weak corrections

that we have presented, with QCD corrections at NLO and beyond. The aim of this sec-

tion is to compare the sizes of the two effects and to demonstrate the inherent ambiguity
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FIG. 24. Relative weak corrections to the invariant mass (upper left), the absolute rapidity differ-

ence between the two leading jets (upper right), and the transverse momentum distributions of

leading (lower left) and subleading (lower right) jets in di-jet production at the 13 TeV LHC. The

correction is expressed as a percentage of the LO O(α2
s ) cross section and is shown for the exact

weak relative corrections of Eq. (35) (red, solid) and the Sudakov approximation of Eq. (43) (blue,

dotted).

in how the two should be combined, particularly in cases where either correction, or

both, is large.

To illustrate this we will consider two procedures for combining the corrections. One

straightforward method is to simply add the weak corrections, σwk to the NLO or NNLO

QCD cross section,

σQCD+wk = σ(N )NLOQCD + σwk , (49)
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An alternative is to combine them using a “multiplicative” procedure,

σQCD×wk = σ(N )NLOQCD

(
1 +

σwk

σLO

)
. (50)

This procedure should better account for factorizable higher-order mixed QCD-weak

corrections. Compared to the additive procedure, this approach enhances the impact

of weak corrections in regions where the QCD corrections are large. To illustrate the

numerical impact of these two approaches we discuss in the following the relative cor-

rections with respect to the (N)NLO QCD cross section defined as,

δadd =
σQCD+wk − σ(N )NLOQCD

σ(N )NLOQCD
=

σwk

σ(N )NLOQCD
(51)

for the additive approach, and

δprod =
σQCD×wk − σ(N )NLOQCD

σ(N )NLOQCD
=
σwk

σLO
(52)

for the “multiplicative” procedure. Similar studies of different combinations of QCD

and EW corrections can also be found for instance in Ref. [36] for tt̄ production and

in Refs. [16, 22, 41, 132] for NC DY production. In case of DY processes, the mixed

QCD-electroweak corrections at O(αsα) have been calculated in the pole approximation

in Refs. [133, 134], which considerably improves predictions in the resonance region.

A. NNLO QCD andWeak Corrections to the NC Drell-Yan process

The NNLO QCD corrections to the Drell-Yan process can be computed in MCFM [15]

and their combination with the weak corrections is therefore particularly straightfor-

ward. For the results presented here we retain the parameters and setup of the previous

sections, with the exception that all computations are now performed with the NNLO

MSTW2008 set.

Our results are shown in Figure 25. As is well-known, the effect of NNLO QCD correc-

tions, relative to LO, is large and positive throughout the distribution. This is apparent

from the left-hand plot. The right-hand plot compares the two combination procedures

by plotting the relative corrections with respect to the NNLO QCD result, δadd and δprod

as defined in Eqs. (49) and (50), respectively. Since these are normalized to the NNLO

QCD prediction, the result for δprod could have been read-off directly from Figure 19 (c.f.

42



Eq. (52)). The fact that both corrections are substantial means that the two procedures

give noticeably different results for M(l+l−) > 2 TeV. As a point of reference, in this plot

we also show the theoretical uncertainty resulting from the choice of scale in the NNLO

QCD calculation. This is obtained by considering the envelope of predictions obtained

when using alternative scales given by,

(µF/MZ ,µR/MZ) = {(0.5,0.5), (2,2), (0.5,1), (0.5,2), (1,0.5), (2,0.5)} . (53)

With this prescription the scale uncertainty is as large as 5% in the tail of the distribu-

tion, but is still smaller than the effect of combining with weak corrections using either

procedure. It is therefore clear that both effects must be included, with an accompanying

uncertainty associated with the choice of combination procedure, in order to provide the

best theoretical prediction. As a conservative estimate of the combination uncertainty

one might simply take the difference between the two procedures, which is of the same

order as the QCD scale uncertainty.
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FIG. 25. Left: comparison of the effect of NLO weak (red, solid) and NNLO QCD corrections

(blue, dotted) on the invariant mass distribution of the di-lepton pair in the NC DY process at

13 TeV. The LO distribution is also shown (pink, long-dashed-dotted). Right: a comparison of the

two procedures (δadd of Eq. (51) (green, dashed) and δprod of Eq. (52) (red, solid)) used to combine

NNLO QCD and NLO weak effects, together with the scale uncertainty in the pure NNLO QCD

calculation (blue band). The NNLO QCD results have been obtained with MCFM [15].
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B. NNLO QCD andWeak One-loop Corrections to Top-Quark Pair Production

We now consider the combination of corrections to the top-quark pair process, namely

exact NLO weak corrections with QCD corrections at NNLO. Since these corrections are

not yet available in differential form in a public code, we will compare our NLO weak

results with the NNLO results that have been published so far [48, 50].

We first focus on results for the Tevatron collider, where the NNLO results are easily

read-off from tables presented in Ref. [50]. In order to match the results of that study

we modify our input parameters from the previous sections slightly, to those shown in

Table IX. As before, we use µF = µR = mt and we employ the NNLO MSTW2008 PDF

set [118]. Note that, in order to validate our setup, we have recomputed the predictions

at LO and NLO QCD using MCFM and found perfect agreement.

MW = 80.398GeV MZ = 91.1876GeV

MH = 126GeV mt = 173.3GeV

mb = 4.82GeV α(mt) = 1/132.3407

sin2θW = 1−M2
W /M

2
Z αs(mt) = 0.125666

TABLE IX. Input parameters used for the calculation of the NLO weak corrections in the setup

used to calculate the NNLO QCD corrections to top-quark pair production at the Tevatron in

Ref. [50].

Our results are presented in the form of per-bin corrections to a selection of observ-

ables, following the original presentation of NNLO QCD results in Ref. [50]. Results are

shown for M(tt̄) (Table X) and pT (t) (Table XI). We first note that the effect of the NNLO

QCD corrections is typically very small, at the level of a few percent of the NLO QCD re-

sult, but is as large as almost 20% for the highest M(tt̄) bin. As expected, the effect of the

NLO weak corrections is readily apparent in the M(tt̄) and pT (t) distributions. The onset

of the Sudakov logarithms is clear in the M(tt̄) results, although the weak corrections

are non-negligible (and positive) in the first bin. The NLO weak effects are of a similar

size to the corrections from NNLO QCD and the two clearly must be taken into account

together. This is even more clear in the pT (t) distribution, where the effects of the NLO

weak corrections are larger than those due to NNLO QCD for pT (t) > 200 GeV.
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M(tt̄) [GeV] dσ/dM(tt̄) [pb/bin]

NLO QCD NNLO QCD corr NLO weak corr

[240 ; 412.5] 2.96 × 100 0.17 × 100 0.05 × 100

[412.5 ; 505] 2.47 × 100 0.12 × 100 −0.01 × 100

[ 505 ; 615 ] 9.20 × 10−1 0.30 × 10−1 −0.15 × 10−1

[ 615 ; 750 ] 2.66 × 10−1 0.07 × 10−1 −0.08 × 10−1

[750 ; 1200] 6.20 × 10−2 0.16 × 10−2 −0.27 × 10−2

[ 1200 ;∞] 1.07 × 10−4 0.20 × 10−4 −0.10 × 10−4

TABLE X. The M(tt̄) differential distribution in NLO QCD and the corrections due to NNLO

QCD and NLO weak effects in tt̄ production at the Tevatron. The NLO and NNLO QCD results

are taken from Ref. [50].

pT (t) [GeV] dσ/dpT (t) [pb/bin]

NLO QCD NNLO QCD corr NLO weak corr

[ 0 ; 45 ] 1.15 × 100 0.08 × 100 0.02 × 100

[ 45 ; 90 ] 2.27 × 100 0.12 × 100 0.02 × 100

[ 90 ; 140] 1.88 × 100 0.09 × 100 0.00 × 100

[140 ; 200] 9.81 × 10−1 0.29 × 100 −0.01 × 100

[200 ; 300] 3.67 × 10−1 −0.02 × 10−1 −0.11 × 10−1

[300 ; 500] 4.20 × 10−2 −0.13 × 10−2 −0.24 × 10−2

[500 ;∞ ] 2.21 × 10−4 0.04 × 10−4 −0.25 × 10−4

TABLE XI. The pT (t) differential distribution in NLO QCD and the corrections due to NNLO

QCD and NLO weak effects in tt̄ production at the Tevatron. The NLO and NNLO QCD results

are taken from Ref. [50].

In Ref. [50] the NNLO QCD predictions have been compared with data from the

DØ collaboration [135]. We note that, although the size of the NLO weak corrections

is comparable to the NNLO QCD ones in some of the bins, even the combined effects

remain rather small. As a result, the inclusion of the NLO weak corrections does not

significantly alter the extent of the agreement of the Standard Model prediction with the
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experimental data.

As we have already observed, the effects of the weak corrections should be larger at the

LHC. The amount of data collected means that the ATLAS and CMS collaborations are

sensitive to top quarks produced further above threshold, and the data is subject to sig-

nificantly smaller experimental uncertainties. In order to combine our calculations with

NNLO QCD corrections we use the predictions of Ref. [48], which were compared with

results from the CMS collaboration [136]. These results represent an analysis of the full

19.6 fb−1 data set taken at 8 TeV. The distribution that is most sensitive to the weak cor-

rections, and for which we can readily extract the effect of NNLO QCD, is the transverse

momentum of the top quarks. For this analysis we do not distinguish between top and

anti-top quarks, instead including both in the distribution, and normalize to the total

cross-section. Our results are shown in Fig. 26. The NNLO QCD comparison was shown

in Ref. [48]. Here we ameliorate that analysis by including also the NLO weak correc-

tions, which are simply added on top of the NNLO predictions according to Eq. (49). We

see that, although the shape of this distribution is slightly better described throughout, a

difference in shape between the data and NNLO QCD+NLO weak theory remains. Since

the effect of the weak corrections is rather small the alternative combination of Eq. (50)

would yield almost identical results.

C. NLO QCD andWeak Corrections to Di-jet Production

Almost-complete results for di-jet production at hadron colliders have recently been

presented through NNLO QCD [52, 53, 137, 138]. However, here we restrict ourselves

to the NLO QCD results that can be easily computed using the publicly available Monte-

Carlo program MEKS [70] (higher-order QCD corrections to di-jet production are not

available in MCFM).

Figure 27 (left) shows the distribution of the invariant mass of the two leading jets at

LO, at NLO QCD or after inclusion of NLO weak corrections. The NLO QCD corrections

are rather mild at small invariant masses, but increase the cross-section by a factor of

around 1.7 in the multi-TeV range. This leads to a substantial difference between δadd and

δprod in the tail of the distribution, as shown in Fig. 27 (right). However the size of the

combined correction, in either approach, is relatively small, for instance in comparison
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FIG. 26. Comparison of NNLO QCD (blue, solid) and combined NNLO QCD+NLO weak (green,

dashed) predictions for the pT (t) distribution in tt̄ production with 8 TeV CMS data [136]. The

data is divided by the theoretical prediction in each bin of the top quark pT . The NNLO QCD

predictions are taken from Ref. [48].

with the impact of the weak corrections in the NC DY case (Fig. 25).

One of the interesting analyses of di-jet production at the LHC is the search for new

physics beyond the Standard Model through a study of the scattering angle between the

two jets. The production of jets through QCD is dominated by small-angle scattering,

while additional interactions, for instance through a contact term [139], lead to jet pro-

duction at much wider angles [140]. Both ATLAS [141] and CMS [142, 143] have taken

advantage of this observation in order to place stringent constraints on various models

of new physics.

Here we will consider the effect of weak corrections under a set of cuts used by a recent

CMS analysis [143]. The key observable, χdijet, is simply related both to the scattering

angle and to the rapidity between the two leading jets (y(j1, j2)),

χdijet = exp(|y(j1)− y(j2)|) . (54)

We used the CT14 PDF set to produce the result in the same setup as used by CMS

in Ref. [143]. We use the anti-kT jet algorithm with R = 0.4 and apply a cut yboost =
1
2 |y(j1) + y(j2)| < 2.22. In Fig. 28 we show the normalized χdijet distribution for a low and

high invariant di-jet mass bin, also used in the CMS analysis, calculated at NLO QCD
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FIG. 27. Left: comparison of the effect of NLO weak (red, solid) and NLO QCD (blue, dotted)

corrections on the invariant mass distribution of the di-jet pair in di-jet production at the 13 TeV

LHC. The LO QCD distribution at O(α2
s ) is also shown (green, dashed). Right: a comparison of

the two procedures (δadd of Eq. (51) (green, dashed) and δprod of Eq. (52) (red, solid)) used to

combine NLO QCD and NLO weak effects. The NLO QCD results have been obtained with MEKS

(version 1.0) [70].

with MEKS (version 1.0) [70] and when adding the MCFM prediction for the LO EW and

O(α2
s α) contribution. As expected, the weak one-loop corrections are most significant

in the highest mass bin where the O(α2
s α) contribution reduces the NLO QCD distribu-

tion by 9.8% at small values of χdijet. The LO EW contribution largely cancels the weak

corrections so that the overall effect is an increase of the NLO QCD result by 2% in the

first χdijet bin. Our results are consistent with the findings presented in the CMS analy-

sis [143], which is based on the calculation of Ref. [41]. It is interesting to note that the

new physics scenarios under consideration in Ref. [143] have their largest impact in the

high-mass bin for small values of χdijet, i. e. exactly in the same kinematic regime where

weak corrections become important.

VI. Conclusions

The role of electroweak corrections in the comparison of future LHC data with the-

oretical predictions in the Standard Model is becoming increasingly important. As the

availability of higher-order perturbative QCD corrections extends past NLO, to NNLO
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high (right) invariant di-jet mass bin at NLO QCD (red, solid) and when adding theO(α2
s α) (green,

dashed) and LO EW (blue, dotted) contributions. The NLO QCD results have been obtained with

MEKS (version 1.0) [70].

and beyond, the resulting cross-sections often suffer from a residual theoretical uncer-

tainty that is comparable in size to the expected size of electroweak corrections. More-

over, as the LHC collects more data it will begin to probe, with reasonable precision,

final states with energies in the multi-TeV region. Such configurations receive one-loop

electroweak corrections that are especially enhanced, by Sudakov logarithms of the form

α log2 (Mfinal/MW ) with Mfinal being the invariant mass of the leading pair of final-state

particles, so that including these effects is particularly important.

In this paper we have recomputed one-loop electroweak corrections at the LHC, to

three processes of considerable importance: Neutral-Current Drell-Yan, top-quark pair

and di-jet production. As well as performing exact calculations of these corrections, we

have also considered the approximation obtained by retaining only leading and sublead-

ing Sudakov logarithms, following the approach of Refs. [80, 86]. We have also per-

formed a detailed comparison of the efficacy of this approximation in order to glean

insight into situations in which it is less effective or fails altogether. For the processes

at hand, the Sudakov approximation is excellent for the case of NC DY, less accurate for

top-quark pair production and poor for the di-jet process.

Our calculations have been implemented in the framework of the parton-level Monte
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Carlo code MCFM, a general purpose program that had previously been focussed on the

calculation of higher-order corrections in QCD. Although the electroweak calculations

considered here have already been presented in the literature, many of the results have

not been made available in a public code. The inclusion of these results in a portable

code such as MCFM will help to facilitate their use in experimental analyses, particularly

in combination with the NLO and NNLO QCD corrections that are already available in

the same framework.

Finally, we note that the proper consideration of electroweak corrections is even more

important for any future hadron colliders operating at higher energies. This is illustrated

in Figure 29, which shows the relative EW correction in the high-energy region (defined

byMfinal >
√
S/4), at a variety of machine center-of-mass energies (

√
S). Particularly in the

case of the NC DY process, the inclusion of EW effects is mandatory in order to have an

accurate theoretical prediction for the high-energy cross section at a 100 TeV pp machine

(see also Refs. [132, 144] for recent reviews).
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FIG. 29. Relative weak corrections δwk of Eq. (35) to the total cross sections in the high-energy

region of the NC DY process (red, solid), tt̄ (green, dashed) and di-jet (blue, dotted) production,

as a function of the proton-proton collision energy. The high-energy region is defined by a cut on
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Appendix

MCFM uses the Catani-Seymour dipole subtraction method [67] (and Ref. [68] for mas-

sive partons) to handle the cancellation of soft and collinear singularities in NLO QCD

calculations. For completeness, we present in the following the explicit expressions we

used for the MCFM implementation of the real O(αs) corrections to tt̄ and di-jet production

at O(αα2
s ). Symbolically, the corresponding cross section can be written as

σreal (pa,pb) =
∫

3


dσ

R (pa,pb,p1,p2,p3)−
∑

dipoles

dσB ⊗ dVdipoles (pa,pb,p1,p2,p3)




+
∫

2
dσB (pa,pb,p1,p2)⊗ I+

∫

2
dσC (pa,pb,p1,p2) ,

(55)

where pa, pb are the momenta of the partons in the initial state and p1, p2, p3 are the

momenta of the final state partons. The terms involving a convolution (denoted by the

symbol ⊗) represent the dipole subtraction terms and their integrated versions. The two

are related through the definition

I =
∑

dipoles

∫

1
dVdipoles . (56)

dσR denotes the contribution of the real radiation diagrams. dσC contains the PDF

counter-terms required to absorb the remaining collinear singularity into the NLO PDFs,

and reads

dσC
ab (pa,pb,p1,p2) =− αs

2π
(4π)ε

Γ (1− ε)

∑

c

∫
dx

{[
−1
ε

(
µ2

µ2
F

)ε
P ac (x)

+KacF.S. (x)
]
dσB

cb (xpa,pb,p1,p2) + (a↔ b)
}
,

(57)

where µF is the factorization scale and KacF.S. (x) defines the factorization scheme. In the

MS scheme KacF.S. (x) = 0. P ac (x) are Altarelli-Parisi probabilities which can be found, for

instance, in Ref. [67].

Real corrections to tt̄ production

In tt̄ production dσR describes the diagrams of Fig. 9 and reads

dσR ∝
∣∣∣Mqq̄→tt̄g

∣∣∣2 = (4π)3αα2
s
N 2

c − 1
4

g
q
vgtv (v1 + v2) + gqagta (a1 + a2)

ŝ15 ŝ25 ŝ35 ŝ45 ŝ12 ŝ34

(
ŝ12 −M2

Z

) (
ŝ34 −M2

Z

) (58)
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with

v1 = 8
(
t̂21 + t̂22 + û2

1 + û2
2

) [
ŝ212

(
t̂1 + t̂2 − û1 − û2

)
+ ŝ12

(
t̂1 + t̂2 − û1 − û2

)(
t̂1 + t̂2 + û1 + û2

)

+
(
t̂1 + t̂2 + û1 + û2

)(
t̂1t̂2 − û1û2

) ] [
2ŝ12

(
ŝ12 + t̂1 + t̂2 + û1 + û2

)
−M2

Z

(
t̂1 + t̂2 + û1 + û2

) ]

v2 = 16 m2
t

{
2ŝ312

(
t̂1 + t̂2 − û1 − û2

)
+ ŝ212

(
t̂21 + 6t̂1t̂2 + t̂22 − û2

1 − 6û1û2 − û2
2

)

+ ŝ12

[
− t̂31 + t̂21

(
3t̂2 − û1 + û2

)
+ t̂1

(
3t̂22 + 2t̂2(û1 + û2) + û2

1 − 2û1û2 − û2
2

)

− t̂32 + t̂22 (û1 − û2) + t̂2
(
−û2

1 − 2û1û2 + û2
2

)
+ (û1 + û2)

(
û2

1 − 4û1û2 + û2
2

) ]

−
(
t̂1 − t̂2 + û1 − û2

)2 (
t̂1t̂2 − û1û2

)}[
2ŝ12

(
ŝ12 + t̂1 + t̂2 + û1 + û2

)
−M2

Z

(
t̂1 + t̂2 + û1 + û2

) ]

a1 =− 8
(
t̂21 + t̂22 − û2

1 − û2
2

) [
ŝ212

(
t̂1 + t̂2 − û1 − û2

)
+ ŝ12

(
t̂1 + t̂2 − û1 − û2

)(
t̂1 + t̂2 + û1 + û2

)

+
(
t̂1 + t̂2 + û1 + û2

)(
t̂1t̂2 − û1û2

) ] [
2ŝ12

(
ŝ12 + t̂1 + t̂2 + û1 + û2

)
−M2

Z

(
t̂1 + t̂2 + û1 + û2

) ]

a2 =− 32 m2
t ŝ12

(
ŝ12 + t̂1 + û1

)(
ŝ12 + t̂2 + û2

)(
t̂1 + t̂2 + û1 + û2

)

×
(
2ŝ12 + t̂1 + t̂2 + û1 + û2

)(
M2
Z + ŝ12 + t̂1 + t̂2 + û1 + û2

)

(59)

where the Lorentz invariants are defined as

ŝ12 =
(
pq + pq̄

)2
, t̂1 =

(
pq + pt

)2
, t̂2 =

(
pq̄ + pt̄

)2
, û1 =

(
pq + pt̄

)2
, û2 =

(
pq̄ + pt

)2
,

ŝ15 = −
(
ŝ12 + t̂1 + û1

)
, ŝ25 = −

(
ŝ12 + t̂2 + û2

)
, ŝ35 =

(
ŝ12 + t̂2 + û1

)
,

ŝ45 =
(
ŝ12 + t̂1 + û2

)
, ŝ34 = −

(
ŝ12 + t̂1 + t̂2 + û1 + û2 +m2

t

)
.

(60)

In this case the unintegrated dipole contribution in Eq. (55) consists of two dipoles

and is given by

∑

dipoles

dσB ⊗ dVdipoles = dΦ3

(
pq,pq̄;pt,pt̄,pg

) 1
S3


∑

k=t,t̄

∑

a=q,q̄

[
DagkΘ

(
αFI − 1 + xgk,a

)

+Dagk Θ
(
αIF −ug

)]}
(61)

with

Dqgt = − 1
(
pg + pt

)2 −m2
t

1
xgt,q

1
CF
〈p̃q,pq̄, p̃t,pt̄ |TqTtVqgt |p̃q,pq̄, p̃t,pt̄〉ααs

=
1

(
pg + pt

)2 −m2
t

1
xgt,q

1
CF
〈Vqgt〉

N 2
c − 1
4

∣∣∣Mqq̄→tt̄
∣∣∣2
pq→p̃q,pt→p̃t

(62)
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and

Dqgt = − 1
2pqpg

1
xgt,q

1
CF
〈p̃q,pq̄, p̃t,pt̄ |TtTqVqgt |p̃q,pq̄, p̃t,pt̄〉ααs

=
1

2pqpg

1
xgt,q

1
CF
〈Vqgt 〉

N 2
c − 1
4

∣∣∣Mqq̄→tt̄
∣∣∣2
pq→p̃q,pt→p̃t

(63)

These are defined in terms of

〈Vqgt〉 = 8παsCF

(
2

2− xgt,q − z̃t
− 1− z̃t −

m2
t

pgpt

)

〈Vqgt 〉 = 8παsCF

(
2

1− xgt,q −ug
− 1− xgt,q

) (64)

where

p̃
µ
q = xgt,qp

µ
q , p̃

µ
t = p

µ
g + p

µ
t −

(
1− xgt,q

)
p
µ
q ,

xgt,q =
pqpg + pqpt + pgpt

pqpg + pqpt
, z̃t =

pqpt
pqpg + pqpt

, ug =
pgpq

pgpq + ptpq
.

Dq̄gt = −Dqgt
∣∣∣q↔q̄ , Dqgt̄ = −Dqgt |t↔t̄ , Dq̄gt̄ =Dqgt

∣∣∣q↔q̄,t↔t̄

Dgq̄t = −Dqgt
∣∣∣q↔q̄ , Dgqt̄ = −Dqgt |t↔t̄ , Dgq̄t̄ =Dqgt

∣∣∣q↔q̄,t↔t̄ ,
(65)

The occurrence of the minus sign is due to the fact that

〈 · · · | · · · Tq̄,t̄ · · · | · · · 〉 = − 〈 · · · | · · · Tq,t · · · | · · · 〉,

and, for the same reason, it will appear again in the case of di-jet production.

The Born matrix elements squared,
∣∣∣Mqq̄→tt̄

∣∣∣2 , used in the subtraction terms are

stripped of their color factors and read

∣∣∣Mqq̄→tt̄
∣∣∣2 = (4π)2ααs

8

ŝ
(
ŝ −M2

Z

)
[
g
q
vg

t
v

(
t̂2 + û2 + 2m2

t ŝ
)
− gqagta

(
t̂2 − û2

)]
(66)

The corresponding integrated dipoles are

dσB
(
pq,pq̄;pt,pt̄

)
⊗ I =− α

2π
(4π)ε

Γ (1− ε)

∫
dxdΦ2

(
xpq,pq̄;pt,pt̄

) 1
CF
×

∑

k=t,t̄

[(
− µ

2

skq

)ε
Ik,q

(
x,ε,µkq;αf i

)
+
(
− µ

2

sqk

)ε
Iq,k

(
x,ε,µqk;αif

)]

〈xpq,pq̄,pt,pt̄ |TaTj |xpq,pq̄,pt,pt̄〉ααs + (q↔ q̄)

(67)
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where

It,q
(
x,ε,µtq;αFI

)
= δ (1− x) CF



1
ε


1 + log

µ2
tq

1 +µ2
tq


+ logµ2

tq +
1
2

log2µ2
tq +

1
2

log2
(
1 +µ2

tq

)

− 2logµ2
tq log

(
1 +µ2

tq

)
− 2Li2

(
−µ2

tq

)
+ 2− π

2

3
+ 2logαFI


log

1 +µ2
tq

µ2
tq

− 1







+Θ (x − 1 +αFI ) CF


1− x

2
(
1− x+ xµ2

tq

)2 +
2

1− x log
µ2
tq

(
2− x+ xµ2

tq

)
(
1 +µ2

tq

)(
1− x+ xµ2

tq

)

+




2
1− x


log

1 +µ2
tq

µ2
tq

− 1







+


(68)

and

Iq,t
(
x,ε,µqt;αIF

)
= δ (1− x) CF




1
ε2 +

1
ε

log
(
1 +µ2

qt

)
− 1

2
log2

(
1 +µ2

qt

)
+ 2logµ2

qt log
(
1 +µ2

qt

)

+ 2Li2
(
−µ2

qt

)
+
π2

6


− P

qq
reg (x)

[1
ε
− 2log(1− x) + logx+ log

(
1− x+ xµ2

qt

)]

+ 1− x − 2
1− x


logx+ log

2− x+ xµ2
qt

1 +µ2
qt




−Θ (z+ −αIF) CF

[
2

1− x log
z+ (1− x+αIF)
αIF (1− x+ z+)

+ P qqreg (x) log
z+

αIF

]
−CF


2

1− x
[1
ε
− 2log(1− x) + log

(
1 +µ2

qt

)]


+
(69)

with
stq = sqt = 2p̃tpq, µtq = µqt =

mt√−2p̃tpq
.

It,q̄ = It,q
∣∣∣q↔q̄ , It̄,q = It,q |t↔t̄ , It̄,q̄ = It,q

∣∣∣q↔q̄,t↔t̄
Iq,t̄ = Iq,t |t↔t̄ , Iq̄,t = Iq,t

∣∣∣q↔q̄ , Iq̄,t̄ = Iq,t
∣∣∣q↔q̄,t↔t̄

(70)

Real corrections to di-jet production

In di-jet production atO(αα2
s ) two sets of real corrections are calculated directly, those

that result from the interference between ŝ- and ŝ-channel and ŝ- and t̂-channel matrix

elements. The complete real corrections for a given four-quark or two-gluon-two-quark

subprocess can be expressed in terms of these two after using appropriate crossing rela-
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tions. We write the two types of real correction to the qi q̄i → qj q̄j subprocess as

∣∣∣Mqi q̄i→qj q̄jg
∣∣∣2
s×s

= (4π)3αα2
s
N 2

c − 1
4

R12A
s×s12 +R34A

s×s34

ŝ15 ŝ25 ŝ35 ŝ45 ŝ12 ŝ34

(
ŝ12 −M2

V a

) (
ŝ34 −M2

V a

)

∣∣∣Mqi q̄i→qj q̄jg
∣∣∣2
s×t

= (4π)3αα2
s
N 2

c − 1
4

R12A
s×t12 +R34A

s×t34

ŝ15 ŝ25 ŝ35 ŝ45

(
ŝ12 −M2

V a

) (
ŝ34 −M2

V a

)
t̂1t̂2

(71)

with

R12 =

(
ŝ12 −M2

V a

)2

(
ŝ12 −M2

V a

)2
+ Γ 2

V aM
2
V a

, R34 =

(
ŝ34 −M2

V a

)2

(
ŝ34 −M2

V a

)2
+ Γ 2

V aM
2
V a

(72)

and

As×s12 = 16ŝ12

(
ŝ34 −M2

va
)[
ŝ212

(
t̂1 + t̂2 − û1 − û2

)
+ ŝ12

(
t̂1 + t̂2 − û1 − û2

)(
t̂1 + t̂2 + û1 + û2

)

+
(
t̂1 + t̂2 + û1 + û2

)(
t̂1t̂2 − û1û2

)][
g iag

f
a

(
t̂21 + t̂22 − û2

1 − û2
2

)
− g ivgfv

(
t̂21 + t̂22 + û2

1 + û2
2

)]

As×s34 = 16
(
ŝ12 −M2

V a

)
ŝ34

[
ŝ212

(
t̂1 + t̂2 − û1 − û2

)
+ ŝ12

(
t̂1 + t̂2 − û1 − û2

)(
t̂1 + t̂2 + û1 + û2

)

+
(
t̂1 + t̂2 + û1 + û2

)(
t̂1t̂2 − û1û2

)][
g iag

f
a

(
t̂21 + t̂22 − û2

1 − û2
2

)
− g ivgfv

(
t̂21 + t̂22 + û2

1 + û2
2

)]

As×t12 =
16
3

(
ŝ34 −M2

V a

)(
û2

1 + û2
2

)(
g iag

f
a + g ivg

f
v

){
9ŝ412 + ŝ312

[
17t̂1 + 17t̂2 + 18(û1 + û2)

]

+ ŝ212

[
8t̂21 + t̂1

(
18t̂2 + 17û1 + 25û2

)
+ 8t̂22 + t̂2 (25û1 + 17û2) + 9

(
û2

1 + 4û1û2 + û2
2

)]

+ ŝ12

[
t̂2

(
t̂21 + t̂1

(
t̂2 + 8û1

)
+ 8û1

(
t̂2 + û1

))
+ û2

(
25û1

(
t̂1 + t̂2

)
+ 8t̂1

(
t̂1 + t̂2

)
+ 18û2

1

)

+ 2û2
2

(
4t̂1 + 9û1

) ]
−
(
t̂1t̂2 − û1û2

)(
7t̂1t̂2 + 8t̂1û2 + 8t̂2û1 + 9û1û2

)}

As×t34 =
16
3

(
ŝ12 −M2

V a

)(
û2

1 + û2
2

)(
g iag

f
a + g ivg

f
v

){
9ŝ412 + ŝ312

[
19t̂1 + 19t̂2 + 18(û1 + û2)

]

+ ŝ212

[
11t̂21 + 4t̂1

(
6t̂2 + 7û1 + 5û2

)
+ 11t̂22 + 4t̂2 (5û1 + 7û2) + 9

(
û2

1 + 4û1û2 + û2
2

)]

+ ŝ12

[
t̂31 + 2t̂21

(
3t̂2 + 5û1 + û2

)
+ t̂1

(
6t̂22 + 16t̂2 (û1 + û2) + 9û2

1 + 29û1û2 + û2
2

)

+ 9û2
2

(
t̂2 + 2û1

)
+ û2

(
t̂2 + 2û1

)(
10t̂2 + 9û1

)
+ t̂2

(
t̂2 + û1

)2 ]
+ û2

[
t̂21

(
3t̂2 + û1

)

− t̂1
(
5t̂2 − 9û1

)(
t̂2 + û1

)
+ t̂2û1

(
t̂2 + û1

) ]
+ t̂1t̂2

[
t̂21 − 5t̂1

(
t̂2 + û1

)
+
(
t̂2 + û1

)(
t̂2 + 2û1

)]

+ û2
2

[
t̂1(2t̂2 + û1) + 9û1

(
t̂2 + û1

)]}
,

(73)
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where gfv (gfa ) denote the vector(axial) vector coupling, MV a the mass, and ΓV a the total

decay width of the weak gauge boson. The Lorentz invariants are defined as

ŝ12 =
(
pqi + pq̄i

)2
, t̂1 =

(
pqi + pqj

)2
, t̂2 =

(
pq̄i + pq̄j

)2
, û1 =

(
pqi + pq̄j

)2
, û2 =

(
pq̄i + pqj

)2
,

ŝ15 = −
(
ŝ12 + t̂1 + û1

)
, ŝ25 = −

(
ŝ12 + t̂2 + û2

)
, ŝ35 =

(
ŝ12 + t̂2 + û1

)
,

ŝ45 =
(
ŝ12 + t̂1 + û2

)
, ŝ34 = −

(
ŝ12 + t̂1 + t̂2 + û1 + û2

)
.

(74)

The real corrections to the subprocesses with quark-gluon initial states can be obtained

from Eq. (71) by applying the following crossing symmetries:

∣∣∣Mqig→qiqj q̄j
∣∣∣2 = −

∣∣∣Mqi q̄i→qj q̄jg
∣∣∣2
s12→t1, t1→u1, t2→s35, u1→s15, u2→s34∣∣∣Mq̄ig→q̄iqj q̄j

∣∣∣2 = −
∣∣∣Mqi q̄i→qj q̄jg

∣∣∣2
s12→t1, t1→s35, t2→u1, u1→s34, u2→s15∣∣∣Mgqi→qjqi q̄j

∣∣∣2 = −
∣∣∣Mqi q̄i→qj q̄jg

∣∣∣2
s12→s35, t1→s45, t2→u2, u1→s25, u2→s34∣∣∣Mgq̄i→q̄j q̄iqj

∣∣∣2 = −
∣∣∣Mqi q̄i→qj q̄jg

∣∣∣2
s12→s35, t1→u2, t2→s45, u1→s34, u2→s25

(75)

The unintegrated dipole contribution in Eq. (55) for the qi q̄i → qj q̄j subprocesses con-

sist of four dipoles that are written as follows:

∑

dipoles

dσB ⊗ dVdipoles = dΦ3

(
pqi ,pq̄i ;pqj ,pq̄j ,pg

) 1
S3

{ k,l∑

k,l=qj ,q̄j

Dgk,lΘ
(
αFF − ygk,l

)

+
∑

k=qj ,q̄j

∑

a=qi ,q̄i

[
DagkΘ

(
αFI − 1 + xgk,a

)
+Dagk Θ

(
αIF −ug

)]

+
∑

a=qi ,q̄i

a,b∑

b=qi ,q̄i

Dag,bΘ
(
αII − ṽg

)}

(76)

with

Dgqj ,q̄j = − 1
2pgpqj

1
CF
〈Vgqj ,q̄j 〉〈pqi ,pq̄i , p̃qj , p̃q̄j |Tq̄jTqj |pqi ,pq̄i , p̃qj , p̃q̄j 〉ααs

Dqigqj = − 1
2pgpqj

1
xgqj ,qi

1
CF
〈Vqigqj 〉〈p̃qi ,pq̄i , p̃qj ,pq̄j |TqiTqj |p̃qi ,pq̄i , p̃qj ,pq̄j 〉ααs

Dqigqj =
1

2pqipg

1
xgqj ,qi

1
CF
〈Vqigqj 〉〈p̃qi ,pq̄i , p̃qj ,pq̄j |TqjTqi |p̃qi ,pq̄i , p̃qj ,pq̄j 〉ααs

Dqig,q̄i =
1

2pqipg

1
xg,qi q̄i

1
CF
〈Vqig,q̄i 〉〈p̃qi ,pq̄i , p̃qj , p̃q̄j |Tq̄iTqi |p̃qi ,pq̄i , p̃qj , p̃q̄j 〉ααs . (77)
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These are defined in terms of

〈Vgqj ,q̄j 〉 = 8παsCF




2

1− z̃qj
(
1− ygqj ,q̄j

) − 1− z̃qj


 ,

p̃
µ
qj = p

µ
qj + p

µ
g −

ygqj ,q̄j
1− ygqj ,q̄j

pq̄j , p̃q̄j =
1

1− ygqj ,q̄j
pq̄j ,

ygqj ,q̄j =
pgpqj

pgpqj + pqjpq̄j + pq̄jpg
, z̃qj =

pqjpq̄j
pgpq̄j + pqjpq̄j

.

(78)

〈Vqigqj 〉 = 8παsCF




2
2− xgqj ,qi − z̃qj

− 1− z̃qj

 ,

p̃
µ
qi = xgqj ,qip

µ
qi , p̃

µ
qj = p

µ
qj + p

µ
g −

(
1− xgqj ,qi

)
p
µ
qi ,

xgqj ,qi =
pgqj ,qipqi + pgpqi + pqjpg

pqjpqi + pgpqi
, z̃qj =

pqjpqi
pqjpqi + pgpqi

.

(79)

〈Vqigqj 〉 = 8παsCF




2
1− xgqj ,qg −ug

− 1− xgqj ,qi

 ,

p̃
µ
qi = xgqj ,qgp

µ
qi , p̃

µ
qj = p

µ
qj + p

µ
g −

(
1− xgqj ,qg

)
p
µ
qi ,

xgqj ,qg =
pqjpqi + pgpqi + pgpqj

pqjpqi + pgpqi
, ug =

pgpqi
pgpqi + pqjpqi

.

(80)

〈Vqig,q̄i 〉 = 8παsCF

(
2

1− xg,qi q̄i
− 1− xg,qi q̄i

)
,

p̃
µ
qi = xg,qi q̄ip

µ
qi , p̃

µ
qj (q̄j )

= p
µ
qj (q̄j )
−

2pqj (q̄j ) ·
(
K + K̃

)

(
K + K̃

)2

(
K + K̃

)µ
+

2pqj (q̄j ) ·K
K2 K̃µ,

xg,qi q̄i =
pqipq̄i + pgpqi + pgpq̄i

pqipq̄i
, Kµ = p

µ
qi + p

µ
q̄i

+ p
µ
g , K̃µ = p̃

µ
qi + p

µ
q̄i
, ṽg = − pqipg

pqipq̄i

(81)

The remaining dipole contributions can be obtained via the relations

Dgq̄j ,qj =Dgqj ,q̄j
∣∣∣∣qj↔q̄j , Dq̄ig,qi =Dqig,q̄i

∣∣∣qi↔q̄i
Dq̄igqj = −Dqigqj

∣∣∣qi↔q̄i , D
qi
gq̄j

= −Dqigqj
∣∣∣∣qj↔q̄j , D

q̄i
gq̄j

=Dqigqj
∣∣∣∣qi↔q̄i ,qj↔q̄j

Dq̄igqj = −Dqigqj
∣∣∣qi↔q̄i , D

qig
q̄j

= −Dqigqj
∣∣∣∣qj↔q̄j , D

q̄ig
q̄j

=Dqigqj
∣∣∣∣qi↔q̄i ,qj↔q̄j

(82)

The following Born matrix elements squared stripped of their color factors are to be

used in these subtraction terms:
∣∣∣Mqi q̄i→qj q̄j

∣∣∣2
s×s

= (4π)2ααs
propV a (ŝ)

ŝ2
8

[
g ivg

f
v

(
t̂2 + û2

)
− g iagfa

(
t̂2 − û2

)]

∣∣∣Mqi q̄i→qj q̄j
∣∣∣2
s×t

= (4π)2ααs
propV a (ŝ)

ŝt̂
8

(
g ivg

f
v + g iag

f
a

)
û2

(83)
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with propV a(ŝ) of Eq. (16). The integrated dipoles are combined according to

dσB
(
pqi ,pq̄i ;pqj ,pq̄j

)
⊗ I =− α

2π
(4π)ε

Γ (1− ε)

∫
dxdΦ2

(
xpqi ,pq̄i ;pqj ,pq̄j

) 1
CF
×


(
µ2

sqi q̄i

)ε
Iqi ,q̄i (x,ε;αII ) +

k,l∑

k,l=qj ,q̄j

(
µ2

skl

)ε
Ik,l (x,ε;αFF)

+
∑

k=qj ,q̄j

[(
− µ

2

skqi

)ε
Ik,qi (x,ε;αFI ) +

(
− µ

2

sqik

)ε
Iqi ,k (x,ε;αIF)

]

× 〈xpqi ,pq̄i ,pqj ,pq̄j |TkTl |xpqi ,pq̄i ,pqj ,pq̄j 〉ααs + (q↔ q̄)

(84)

where the four types of contribution can be written as

Iqi ,q̄i (x,ε;αII ) = CF

δ (1− x)
(

1
ε2 −

π2

6

)
+ 1− x+ (1− x)

[1
ε
− 2log(1− x)

]

− 1 + x2

1− x
[
logx − logαII (x)

]
−
{

2
1− x

[1
ε
− 2log(1− x)

]}

+



(85)

Iqj ,q̄j (x,ε;αFF) = CF

δ (1− x)
[

1
ε2 +

3
2ε

+
7
2
− π

2

2
+

3
2

(αFF − logαFF)− log2αFF

] (86)

Iqj ,qi (x,ε;αFI ) = CF

δ (1− x)
[

1
ε2 +

3
2ε

+
7
2
− π

2

2
− logαFI

(
logαFI +

3
2

)]

+Θ (x − 1 +αFI )
{

2
1− x log(2− x)− 3

2

( 1
1− x

)

+
−
[ 2
1− x log(1− x)

]

+

}
(87)

Iqi ,qj (x,ε;αIF) = CF

δ (1− x)
(

1
ε2 +

π2

6

)
+ (1 + x)

[1
ε
− log(1− x)

]
+ 1− x − 1 + x2

1− x logx

− 2
1− x log

1− x+αIF
αIF

− (1 + x) logαIF −
{

2
1− x

[1
ε
− 2log(1− x)

]}

+



(88)

Iq̄j ,qj = Iqj ,q̄j , Iq̄i ,qi = Iqi ,q̄i

Iqj ,q̄i = Iq̄j ,qi = Iq̄j ,q̄i = Iqj ,qi

Iqi ,q̄j = Iq̄i ,qj = Iq̄i ,q̄j = Iqi ,qj

(89)

The α(x) function is defined as follows,

α (x) = min
{ α

1− x ,1
}
. (90)
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and the Altarelli-Parisi function for the q→ gq splitting reads

P qq (x) =
3
2
CFδ (1− x) + P qqreg (x) + 2CF

( 1
1− x

)

+
, (91)

with

P
qq
reg = −CF (1 + x) .

The real corrections in the quark-gluon-initiated subprocesses in the two-gluon-two-

quark category shown in Table II (processes B-E) only exhibit initial-state collinear diver-

gences that are eventually absorbed into corresponding PDF counterterms. The uninte-

grated dipole contribution to these subprocesses at O(αα2
s ), given in Eq. (55), consists of

two dipoles that can be written as:
∑

dipoles

dσB ⊗ dVdipoles = dΦ3

(
pg ,pq̄i ;pqj ,pq̄j ,pq̄i

) 1
S3

{
Dgq̄i ,q̄iΘ

(
αII − ṽq̄i

)}
+ (qi ↔ q̄i) (92)

with

Dgq̄i ,q̄i =
1

2pgpq̄i

1
xq̄i ,gqi

1
CF
〈Vgq̄i ,q̄i 〉〈p̃qi ,pq̄i , p̃qj , p̃q̄j |TqiTq̄i |pqi , p̃q̄i , p̃qj , p̃q̄j 〉ααs , (93)

where

〈Vgq̄i ,q̄i 〉 = 8παsTR
(
1− 2xq̄i ,gq̄i − 2x2

q̄i ,gq̄i

)
,

p̃
µ
qi = xq̄i ,gq̄ip

µ
g , p̃

µ
qj (q̄j )

= p
µ
qj (q̄j )
−

2pqj (q̄j ) ·
(
K + K̃

)

(
K + K̃

)2

(
K + K̃

)µ
+

2pqj (q̄j ) ·K
K2 K̃µ,

xq̄i ,gq̄i =
2pgpq̄i + p2

q̄i

pgpq̄i
, Kµ = p

µ
g + 2p

µ
q̄i
, K̃µ = p̃

µ
qi + p

µ
q̄i
, ṽq̄i = −1

Dgqi ,qi =Dgq̄i ,q̄i
∣∣∣qi↔q̄i

(94)

The contribution of the corresponding integrated dipoles reads:

dσB
(
pg ,pq̄i ;pqj ,pq̄j

)
⊗ I+ (qi ↔ q̄i) = − α

2π
(4π)ε

Γ (1− ε)

∫
dxdΦ2

(
xpg ,pq̄i ;pqj ,pq̄j

) 1
CF
×


(
µ2

sgq̄i

)ε
Ig,q̄i (x,ε;αII )〈xpg(pqi ),pq̄i ,pqj ,pq̄j |TqiTq̄i |xpg(pqi ),pq̄i ,pqj ,pq̄j 〉ααs

+ (qi ↔ q̄i)

(95)

with

Ig,q̄i (x,ε;αII ) = Ig,qi (x,ε;αII ) = TR

{[
(1− x)2 + x2

] [
2log(1− x)− logx − 1

ε

]
+ 2x − 2x2

+
[
(1− x)2 + x2

]
logαII (x)

}
,

(96)
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where the α(x) function is defined in Eq. (90) and the Altarelli-Parisi function for the

g→ qq̄ splitting reads

P gq (x) = P gqreg (x) = TR
[
(1− x)2 + x2

]
. (97)
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