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Non-Standard Interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor
evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis and the
neutrinos signal. In this paper we explore, both numerically and analytically, the landscape of
neutrino flavor transformation effects in supernovae due to NSI and find new, heretofore unseen
transformation processes can occur. These new transformations can take place with NSI strengths
well below current experimental limits. Within a broad swath of NSI parameter space we observe
Symmetric and Standard Matter-Neutrino Resonances (MNRs) for supernovae neutrinos, a trans-
formation effect previously only seen in compact object merger scenarios; in another region of the
parameter space we find the NSI can induce neutrino collective effects in scenarios where none
would appear with only the standard case of neutrino oscillation physics; and in a third region the
NSI can lead to the disappearance of the high (H) density Mikheyev-Smirnov-Wolfenstein (MSW)
resonance. Using a variety of analytical tools we are able to describe quantitatively the numerical re-
sults allowing us to partition the NSI parameter according to the transformation processes observed.
Our results indicate non-standard interactions of supernova neutrinos provide a sensitive probe of
Beyond the Standard Model physics complementary to present and future terrestrial experiments.

PACS numbers: 14.60.Pq,97.60.Jd,13.15.+g

I. INTRODUCTION

The pursuit of Beyond the Standard Model (BSM)
physics is a major goal of current nuclear and high en-
ergy physics research. Investigations of such phenomena
as dark matter, the matter-antimatter asymmetry and
neutrino mass and mixing are presently being explored.
A lucrative source of information about BSM physics has
been the neutrino which has yielded significant discover-
ies in the form of neutrino mass and mixing. Ongoing and
future study of neutrinos may yield evidence for proposed
BSM physics such as new interactions of active flavors,
the origin and the nature of neutrino mass, additional
flavors, CP violation and more. Much of this search will
be conducted using experiments here on Earth, see, for
example, [1–11]. However, much also can be learned from
studying the effect of BSM physics upon neutrinos in as-
trophysical environments for the simple reason that in
the cores of supernovae, in the early Universe, and in the
mergers of compact objects, the densities, temperatures,
magnetic fields, etc. can be so high that the neutrino
is no longer an ephemeral component of the system but
rather becomes an important mechanism for transport-
ing energy and momentum as well as playing the famil-
iar role of modifying the electron fraction. In essence,
supernovae, compact object mergers, and the early Uni-
verse constitute nature’s ultimate neutrino experiment:
if we change the properties of the neutrino, there can be
major consequences for dynamics of the system, the nu-
cleosynthesis, and significant modifications to any signal
we might detect.

There are two significant benefits to studying neutrinos

emitted from both core-collapse supernova and compact
object mergers: firstly the neutrino flavor evolution is
non-linear due to neutrino collective effects [12, 13] allow-
ing seemingly small perturbations to become amplified,
and secondly, core-collapse supernova and mergers pro-
duce so many neutrinos a Galactic supernova or merger
may produce sufficient events in current and future gener-
ation neutrino detectors to reveal the BSM physics. The
effect of sterile neutrinos in supernovae has been consid-
ered on many occasions [14–21] and neutrino magnetic
moments were studied by [22–26]. Various non-standard
interactions of neutrinos with matter have been consid-
ered [27–31] in particular we mention those by Esteban-
Pretel, Tomàs, and Valle [32] looking at the modification
of the MSW effect in supernovae [33–35], and then again
by Blennow, Mirizzi and Serpico [36] and Esteban-Pretel,
Tomàs, and Valle [37] where the neutrino-neutrino inter-
actions were included. These studies showed the effect
of NSI is to introduce new contributions to the matter
potential seen by the neutrinos with strengths (relative
to the standard neutrino oscillation contribution to the
potential) parameterized by a set of matrices. In general
these matrices of NSI strengths can be different for each
constituent of the matter and can contain “off-diagonal”
contributions also known as flavor changing neutral cur-
rents. It was shown that the new NSI contributions to
the matter potential can lead to new MSW resonances
close to the proto neutron star that were named as inner
(I) resonances [32].
As we shall explore in this paper, the presence of NSI

completely changes the flavor oscillations.While some of
these effects are already known, in this work we con-
sider a larger NSI parameter space than was considered
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previously and find in the unexplored regions a new set
of oscillation phenomena not previously reported. In one
part of the parameter space we observe MNR transitions.
In another we find neutrino-neutrino collective effects in
scenarios when none are observed without NSI, and in a
third region we find the high (H) density MSW resonance
can disappear.

MNR transitions are a recently discovered phe-
nomenon that can be explained as an active cancella-
tion of the neutrino-neutrino and the background mat-
ter potential [38]. Two types of MNR have been ob-
served. In a Standard MNR both neutrinos and an-
tineutrinos start converting but end up in opposite flavor
configurations while in a Symmetric MNR both neutri-
nos and antineutrinos fully convert to other flavors [39–
41]. The implications of MNR on nucleosynthesis in neu-
tron star merger scenarios were further investigated in
Refs. [42, 43]. The possible effects of MNR have also
been explored in the early universe [44]. While the MNR
has been seen with standard neutrino oscillation physics
alone, neither a Standard nor Symmetric MNR can occur
in a supernova with only the standard neutrino physics if
the neutrino emission is spherically symmetric. Beyond
the neutrinosphere there are no locations where the con-
ditions necessary for the MNR prevail. But as we shall
show, both Symmetric and Standard MNRs can occur
in supernovae in the presence of NSI. In particular, the
NSI induced Standard MNR appears to be a very robust
phenomenon and appears over a large part of the overall
parameter space explored.

Bipolar type flavor conversions, also known as nuta-
tions, were first observed by Duan et al.[12, 13] and are
still an active area of research: see [45, 46] for reviews.
In a bipolar/nutation type flavor transformation a large
fraction of the whole ensemble of neutrinos can expe-
rience coherent oscillations with respect to each other
converting a neutrino of one initial flavor into another.
Bipolar/nutation type transitions are not adiabatic tran-
sitions in the sense that neutrinos do not follow the in-
stantaneous eigenstates of the Hamiltonian. While these
type of flavor transitions also occur with standard neu-
trino oscillation physics, we shall show they are affected
by NSI.

The H MSW resonance was first introduced by Dighe
& Smirnov [47] who noted that for three flavor neutrino
mixing there were two distinct resonances, one at low
(L) density and the other at high density. The width
and eigenvalue splitting at the low density resonance are
controlled by the mixing parameters δm2

21 and θ12 while
the H resonance was set by the mixing parameters δm2

31

and θ13. Due to the uncertainty in the sign of the mass
splitting, the H resonance would appear in the neutri-
nos for a normal hierarchy when δm2

31 > 0, and in the
antineutrinos if δm2

31 < 0. Like bipolar/nutation type
transitions, the H resonance occurs with standard neu-
trino oscillation physics. We shall show it too can be
affected by NSI and, in certain regions of the parameter
space, it can disappear.

With our goal defined, this paper is organized as fol-
lows. We begin with a description of a model in section
§II and describe the origin of the effects we find in Sec-
tion §III which will allow us to diagnose which type of
transition we find when we show results some specific se-
lected combinations of NSI parameters in Section §IV. In
section §V we present our partitioning of the NSI param-
eter space and use our analytical tools to explain why
the effects we found in each region were seen. In our Dis-
cussions and Conclusions §VI we indicate the possible
implications of NSI for both the neutrino signal and the
dynamics of the explosion that we shall pursue in future
studies.

II. MODEL DETAILS

Our intention in this paper is to illustrate the possible
effects of NSI in supernovae and highlight novel aspects
that have not been studied in earlier literature. In order
to effectively demonstrate these effects, we adopt a sim-
plified model of supernova neutrinos using parameterized
density and electron fractions, two neutrino flavors (elec-
tron and other-than-electron type which we shall denote
these by ‘e’ and ‘x’ hereafter), a single energy and we
make use of the single angle approximation for the neu-
trino self interaction. These simplifications remove the
complicating factors of a more complete calculation but
retain the essential physics. Zhu, Perego, and McLaugh-
lin [48] have compared the results from two and three fla-
vor calculations of the Matter Neutrino Resonance above
accretion disks and found they give very similar results if
the gradients of the potentials are not large. For ease of
computation we will utilize flux normalized density ma-
trix formalism for both neutrinos and antineutrinos. We
normalize the density matrices with respect to the initial
electron neutrino flux and the initial electron antineu-
trino flux so that our initial conditions are

ρ(0) =
1

1 + β

(

1 0
0 β

)

, ρ̄(0) =
1

1 + β̄

(

1 0
0 β̄

)

,

(1)
for neutrinos and antineutrinos respectively, where β rep-
resents the initial asymmetry between electron and x-
type neutrinos, and β̄ the asymmetry between electron
and x-type antineutrinos. The ratio of electron antineu-
trinos relative to electron neutrinos at the initial point is
α. For our calculations we adopt α = 0.8, β = 0.48, and
β̄ = β/α = 0.6 such that x-type neutrinos and antineu-
trinos are assumed to have equal initial fluxes. These
choices are motivated by recent large scale supernova sim-
ulations [49].

The evolution of the neutrino and antineutrino den-
sity matrices are governed by the Louiville-von Neumann
equations:[65]:

i
dρ

dr
= [H, ρ ] i

dρ̄

dr
=
[

H̄, ρ̄
]

, (2)
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where H and H̄ are the total neutrino and antineutrino
Hamiltonians. At a given location r, the survival prob-
abilities, Pij = P (νi → νj), P̄ij = P (ν̄i → ν̄j), can be
found given the elements of the density matrices at r and
the initial conditions. In particular ρee(r) and ρ̄ee(r) are
given by

ρee = Pee ρee(0) + Pxe ρxx(0)

ρ̄ee = P̄ee ρ̄ee(0) + P̄xe ρ̄xx(0)
(3)

Using the initial conditions given in Eq. (1) and for two
flavors Pxe = 1 − Pee and P̄xe = 1 − P̄ee we derive the
survival probabilities for electron neutrinos and electron
antineutrinos to be

(1− β)Pee = (1 + β)ρee − β

(1− β̄)P̄ee = (1 + β̄)ρ̄ee − β̄
(4)

Note that we only use the above equation in the cases
of β, β̄ 6= 1. Because of the way the density matrices
have been defined, if β = 1, this equation requires that
ρee = 1

2 everywhere as expected and similarly for the
antineutrinos.
The flavor basis neutrino Hamiltonian can be written

as

H =

(

Hee Hex

Hxe Hxx

)

= HV + Vν + VM , (5)

where HV is the vacuum Hamiltonian, Vν the neutrino-
neutrino interaction potential, and VM the matter po-
tential. The anti-neutrino Hamiltonian is H̄ = HV −
V ⋆
ν − V ⋆

M . We shall discuss the terms in this equation
shorty but quite generally, if the potentials Vν and VM

in the Hamiltonian vary with distance r then it is pos-
sible for the difference between the diagonal elements of
the Hamiltonian to vanish, i.e. Hee − Hxx = 0 for neu-
trinos or H̄ee − H̄xx = 0 for antineutrinos, leading to a
resonance phenomenon. In the case of neutrinos this res-
onance phenomenon is named after Mikheyev, Smirnov
and Wolfenstein (MSW) [33–35] and the locations where
Hee − Hxx = 0 or H̄ee − H̄xx = 0 are known as MSW
resonances. For non-monotonic potentials it is possible
the resonance occurs at multiple locations in which case
each resonance is given a name to distinguish it from the
others. In the standard case of neutrino oscillations, the
H (High) and L (Low) resonances refer to the mass dif-
ferences δm31 and δm21 respectively. Here we will focus
on the H resonance only.
The vacuum Hamiltonian for two neutrino flavors is

given by

HV =
δm2

4E

(

− cos(2θV ) sin(2θV )
sin(2θV ) cos(2θV )

)

, (6)

with δm2 the difference between the square of the neu-
trino masses, E the energy, and θV the mixing angle
in vacuum. The neutrino mass splitting used is δm2 =
±2.4×10−3 eV2, with a positive sign for the normal hier-
archy and a negative sign for the inverted mass hierarchy.

The mixing angle we use is θV = 9◦ (0.1571 rad) and we
adopt a single neutrino energy of 20 MeV. In our two
flavor calculations we use a mixing angle θV that corre-
sponds to the measured value of θ13 and a mass splitting
δm2 that that corresponds to δm2

31. We make this choice
so that our two flavor results will include the H resonance
which occurs deeper in the star than the L resonance, and
so that we can study the effect of the the neutrino mass
hierarchy on our results.
The neutrino-neutrino interaction potential for a neu-

trino emitted from the neutrinosphere at a single angle
is given by

Vν(r) = µν

(

(1 + β)ρ− α(1 + β̄)ρ̄⋆
)

, (7)

where the star indicates we have taken the complex con-
jugate of the antineutrino density matrix. The neutrino-
neutrino interaction strength is µν which we take to be

µν = µ0

(rν
r

)4

, (8)

with rν = 10 km as the radius of the neutrinosphere,
and µ0 = 106 km−1, representing a typical value for the
initial relative strength of the interaction [50].
The matter potential contains the usual standard con-

tribution plus the NSI: VM = VMSW + VNSI . The stan-
dard potential [33] is

VMSW =
√
2GF ne

(

1 0
0 0

)

, (9)

with GF the Fermi constant, and ne the net electron
number density arising from the difference between the
electron and positron number densities: ne ≡ ne− −ne+ .
The net electron density ne is also equal to ne = YenN

where Ye is the electron fraction and nN = np + nn the
nucleon density i.e. the sum of the densities of protons
and neutrons. Throughout this paper we adopt a MSW
potential of the form VMSW (r) = λ(r)Ye(r), where λ(r)
characterizes the density profile,

λ(r) =
√
2GF nN(r) = λ0

(rν
r

)3

, (10)

with λ0 = 106 km−1 as the initial strength of the matter-
interaction potential representative of typical densities
found in supernovae at r = rν [49, 50]. For the elec-
tron fraction, Ye(r), we use the same parametrization as
described in Esteban-Pretel, Tomàs and Valle [32]:

Ye(r) = a+ b tan−1

(

r − rν
rs

)

, (11)

and we have set a = 0.308, b = 0.121, rs = 42 km
based upon a fit to the electron fraction at bounce in the
10.8 M⊙ simulation by Fischer et al. [51]. For r close
to rν the electron fraction is Ye(r) = a = 0.308 while for
r ≫ rs the electron fraction has climbed to Ye(r) ≈ 0.5



4

The NSI potential

The non-standard interactions are taken to be of a gen-
eral form of a sum over all fermions present in the matter
(ignoring the heavy quark content of the nucleons) and
scaled relative to the MSW potential. Thus we write

VNSI =
√
2GF

∑

f

nf ǫ
f , (12)

with f ∈ {e, d, u} for electrons, down quarks and up
quarks respectively. The ǫ’s are Hermitian matrices with
elements describing the strengths of the non-standard in-
teractions. The NSI potential can be rewritten by intro-
ducing the fermion fraction Yf defined to be

Yf ≡ nf

nN
, (13)

Assuming charge neutrality of the medium, the fermion
fractions for the down quark and up quark can be ex-
pressed in terms of the electron fraction, Ye, as:

Yd = 2− Ye ,

Yu = 1 + Ye .
(14)

The NSI potential is thus

VNSI =
√
2GF nN

(

Ye ǫ
e + (1 + Ye) ǫ

u + (2− Ye) ǫ
d
)

(15)

= λ(r)
(

Ye ǫ
e + (1 + Ye) ǫ

u + (2− Ye) ǫ
d
)

. (16)

It was shown by Maltoni & Smirnov [52] and more re-
cently by Coloma & Schwetz [53] that oscillation data
alone provide very poor if any constraint on the NSI pa-
rameters. Strong constraints only emerge when scatter-
ing experiments are included. From a combination of
terrestrial and solar neutrino oscillation and scattering
experiments, upper limits have been placed upon the NSI
parameters [54–57]. The model independent constraints
from Biggio, Blennow and Fernandez-Martinez [57] make
no assumption about the origin of the NSI. The con-
straints are not upon the individual coupling of the neu-
trinos to each particular fermion but rather they define
an effective NSI coupling to matter, ǫmat, as

ǫmat =
∑

f

nf

ne

ǫf =
∑

f

Yf

Ye

ǫf . (17)

For Earth like matter, assuming equal numbers of neu-
trons and protons and electrons, the constraints for
the elements of ǫmat given by Biggio, Blennow, and
Fernandez-Martinez are





|ǫee| < 4.2 |ǫeµ| < 0.33 |ǫeτ | < 3.0
|ǫµµ| < 0.068 |ǫµτ | < 0.33

|ǫττ | < 21



 . (18)

For ‘solar like’ matter, consisting only of protons and
electrons, their constraints are





|ǫee| < 2.5 |ǫeµ| < 0.21 |ǫeτ | < 1.7
|ǫµµ| < 0.046 |ǫµτ | < 0.21

|ǫττ | < 9.0



 . (19)

We see that, except for ǫµµ, the current experimental
constraints on NSI parameters are remarkably loose.
Even though large NSI effects for solar neutrinos are

possible if one is prepared to adjust the mass splitting and
mixing angles, we shall adopt a conservative approach
and maintain the standard Mikheyev & Smirnov [34, 35]
solution for the solar neutrino problem by requiring the
NSI in the Sun to be small. This choice does not mean
the NSI in supernovae are also small: as Eq. (16) shows,
the effect of the neutrino NSI depends upon the compo-
sition of the matter. In supernovae or compact object
mergers the electron fraction can become much smaller
than in the Sun permitting the NSI to be significant.
The requirement that the NSI vanish when the electron
fraction Ye is the solar electron fraction Y⊙ leads from
Eq. (16) to the following condition on the ǫ parameters:

0 = Y⊙ δǫe + (1 + Y⊙) δǫ
u + (2 − Y⊙) δǫ

d , (20)

where δǫf = ǫfee − ǫfxx. The value for Y⊙ is the electron
fraction at the MSW resonance in the standard oscilla-
tion case (Y⊙ ≈ 0.7). Eq. (20) implies a relationship
between the difference between one set of NSI parame-
ters, e.g. δǫe, in terms of the other differences δǫu and δǫd

for any given choice of solar electron fraction. We solve
Eq. (20) for δǫe and substitute into Eq. (16). For ease
of calculation, we also set the off-diagonal elements of ǫe,
ǫu and ǫd to ǫeex = ǫuex = ǫdex ≡ ǫ0. Putting everything
together we write our NSI potential as

VNSI = λ(r)

( (

Y⊙−Ye

Y⊙

)

δǫn (3 + Ye) ǫ0

(3 + Ye) ǫ
∗
0 0

)

. (21)

The factor of (3 + Ye) comes from the inclusion of non-
standard couplings to the up and down quarks as well as
the electrons. If only the coupling to electrons had been
included this factor would be Ye. A term proportional to
a unit matrix has been subtracted in order to zero the
lower diagonal element and we have rewritten the com-
bination δǫu + 2 δǫd as the NSI coupling to the neutron
δǫn = δǫu + 2 δǫd. From hereon we shall use δǫn and ǫ0
as the NSI parameters.
The limits in Eqs. (18) and (19) can be directly trans-

lated to limits on δǫn and ǫ0. For a given electron fraction
Ye, from Eqs. (16) and (17) we find

|ǫ0| <
(

Ye

3 + Ye

)

|ǫmat
ij |. (22)

The ǫij is chosen as appropriate to the type of two flavor
calculations. For the purposes of this paper we use ǫeτ .
Similarly for δǫn we find

|δǫn| <
(

YeY⊙

Y⊙ − Ye

)

|δǫmat| (23)

where δǫmat is the difference between the diagonal ele-
ments of the effective matter coupling defined in equation
(17). Since we compute e − τ mixing, the limits on our
NSI parameters stem from a δǫmat = ǫmat

ee − ǫmat
ττ . Thus

we find the limits for ǫ0 are of order O(0.1 − 1) and δǫn

are of order O(1 − 10).
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FIG. 1: Normal hierarchy survival probabilities, Pee =
P (νe → νe), P̄ee = P (ν̄e → ν̄e) for electron neutrinos
(blue) and antineutrinos (red). The top figure shows the
results of our calculations in the absence of any NSI. The
middle figure includes NSI terms with the parameters set to
δǫn = −0.84 and ǫ0 = 0.00025 and one observes an I resonance
at r ∼ 40 km and a bipolar/nutation oscillations beginning
at r ∼ 150 km. Finally, in the bottom figure we increase ǫ0
to 0.001 and observe that the I resonance is now followed by
a new type of transition which we shall show is a Standard
MNR.

NSI effects

To prepare for future discussions we illustrate some of
the effects of the NSI in figure (1). The figure shows the
results from three calculations for the electron neutrino
and antineutrino survival probabilities (Eq. 4) as a func-
tion of distance. The neutrino mass hierarchy in each
case is chosen to be normal. In the top panel is the case

of no NSI and one observes no flavor transformation until
the neutrino reaches r ∼ 1000 km which is the location
of the MSW H resonance. In the middle panel we switch
on the NSI using δǫn = −0.84 and ǫ0 = 2.5 × 10−4 and
find a result similar to those of Esteban-Pretel, Tomàs,
and Valle [37]. One observes a NSI-induced flavor con-
version at r ∼ 40 km (which is the I resonance) and then
another effect not usually seen in seen in the normal hi-
erarchy which starts at r ∼ 150 km which we will show
is the bipolar/nutation oscillations. In the bottom panel
we have used a different value for the NSI parameter ǫ0
set to ǫ0 = 0.001 and find something completely differ-
ent than the two panels above. The transformation at
r ∼ 40 km is followed by a new transformation - which
we shall show is a matter-neutrino resonance [38, 58–60].
In addition to the two examples of the effects of NSI for

supernovae neutrinos shown in the two lower panels we
have undertaken many thousands of similar calculations
exploring the NSI parameter space. Before we present
further representative cases and partition the NSI pa-
rameter space according to which effects are observed,
we describe analytically the various transformation ef-
fects we have found.

III. ANALYTICAL DESCRIPTION

A. I resonances

One of the consequences of the NSI can be new MSW
resonances. In particular, the first obvious feature seen
in the lower panels of figure (1) is an I resonance at
r ∼ 40 km. These new resonances emerge due to the
modification of the matter contribution to the Hamilto-
nian. Together the MSW and the NSI potentials form the
total matter potential VM and the way we have written
both potentials means VM has only one non-zero element
on the diagonal.

VM = VMSW + VNSI

= λ(r)

(

Ye(r) + δǫn
(

Y⊙−Ye(r)
Y⊙

)

(3 + Ye(r))ǫo

(3 + Ye(r))ǫo 0

)

(24)
This element is a function of the electron fraction Ye

and with certain combinations of the NSI parameters one
finds it is possible for the total matter potential to have a
different sign at different values of Ye. Several examples
of this evolution of the total matter potential can be seen
in figure (2) where we plot the diagonal term of the to-
tal matter potential as a function of radius r for various
values of δǫn. As a result of our imposed constraint on
NSI effects in the Sun, the diagonal term of VM must be
positive at large r/high Ye. As one moves toward smaller
r, the densities increase causing λ(r) to increase, while
the Ye decreases. This causes the diagonal component
of the total matter potential to peak at some maximum
positive value and then fall through zero at r = r0 and
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become negative.
The location where the diagonal element of the mat-

ter potential changes sign is determined by finding the
location r which gives an electron fraction that satisfies

Ye + δǫn
(

Y⊙ − Ye

Y⊙

)

= 0 . (25)

If we solve this equation for Ye then we find the total mat-
ter potential will be negative when the electron fraction
is less than

Ye < − δǫn Y⊙

Y⊙ − δǫn
≡ Y0 . (26)

If δǫn < 0 then wherever the electron fraction Ye is be-
low the threshold Y0, the matter potential is negative.
We stress that this occurs without greatly affecting so-
lar neutrinos. If Y⊙ ≈ 0.7 and we consider a range of
δǫn ∈ [−0.5,−2.0] then we find the range of Y0 that al-
lows for this cancellation is Y0 ∈ [0.292, 0.519], which
overlaps significantly with the electron fractions typically
found in supernovae simulations, as fit in Eq. (11). Note
that as δǫn becomes increasingly negative, Y0 becomes
increasingly positive causing the location of r0 to move
outwards.
The position of the I resonance, rI , has been defined by

Esteban-Pretel, Tomàs, and Valle [32] by setting the two
diagonal elements of the neutrino Hamiltonian equal i.e.
Hee = Hxx neglecting the neutrino-neutrino interaction.
Thus for neutrinos the position of the I resonance, rI , is
defined to be the location where

δm2

2E
cos 2θV = λ(rI)

[

Ye(rI) + δǫn
(

Y⊙ − Ye(rI)

Y⊙

)]

(27)

FIG. 2: The non-zero diagonal element of the total matter
potential VM = VMSW + VNSI as a function of r for eight
different values of δǫn, and the Vν scaling parameter, µν . The
shaded red region is set by the requirement the I resonance
occurs entirely outside the neutrinosphere.

with a relative negative sign needed to predict r̄I , the lo-
cation of the I resonance for antineutrinos. We have veri-
fied that within the NSI parameter space considered here,
the neutrino-neutrino interaction has a negligible effect
on the position, width, and adiabaticity of the transfor-
mation that occurs at the I resonance.

As seen in figure (2), the location where the non-zero
diagonal component of VM = 0 is very close to the loca-
tion where this component is equal to the vacuum scale in
either the normal or inverted hierarchies. We can there-
fore approximate the location of the I resonance by set-
ting the vacuum term on the left had side of Eq. (27)
equal to 0. Using this approximation we predict the lo-
cation of the I resonance is the same for both neutrinos
and antineutrinos in both the normal and inverted hier-
archy, rI ≈ r̄I ≈ r0. This approximation holds best for
small values of |δǫn| when the location of the I resonance
is close to the proto-neutron star. Figure (2) also shows
how the slope of the diagonal component of VM at the
location of r0 decreases as |δǫn| increases. This will cause
the distance between rI , r̄I and r0 to increase.

The I resonance has a width. We can define this width
by first finding the eigenvalues k̃i of the total Hamilto-

FIG. 3: Outline of the parameter space considered in this pa-
per. The magenta region represents areas where we expect to
see NSI effects due to the I resonance. The white region repre-
sents areas where our model is not applicable. The blue region
contains uncertain NSI effects where the neutrinosphere and I
resonance overlap. The dashed purple line shows the location
where the solution for the I resonance becomes nonphysical
i.e. rI ≤ 0. The six dots in the red region represent the six
test cases shown in figures (5), (6), (7), (8), (9), and (10) from
left to right.
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nian, given by

k̃i =
Hee +Hxx

2
± 1

2

√

(Hee −Hxx)
2
+ 4 |Hex|2 , (28)

and the matter mixing angle θ̃ is defined to be

tan2 θ̃ =
Hee − k̃1

Hxx − k̃1
, (29)

If we Taylor expand the function sin2 (2θ̃) around the
resonance we find

sin2(2θ̃) ≈ 1− 4

(

dθ̃

dr

∣

∣

∣

∣

∣

rI

)2

(δr)2 + . . . , (30)

then we define the width σI to be

σI =

(

dθ̃

dr

∣

∣

∣

∣

∣

rI

)−1

(31)

=

([

1

4
√

|Hex|2

(

dHee

dr
− dHxx

dr

)

]

rI

)−1

. (32)

where dθ̃
dr

∣

∣

∣

rI
is defined using Eq. (29).

The position and width of the I resonance as a function
of the NSI parameters partitions the NSI parameter space
into three regions:

• rI + σI ≤ rν : the I resonance is entirely inside the
neutrinosphere represented by the white region in
figure (3)

• rI − σI ≤ rν ≤ rI + σI : the neutrinosphere and I
resonance overlap, represented by the blue region
in figure (3)

• rν ≤ rI − σI : the I resonance is beyond the neu-
trinosphere, represented by the red region in figure
(3)

Given the setup of our calculations, in particular that the
neutrinos are free streaming, we can only reliably calcu-
late the effects of NSI when the I resonance is beyond the
neutrinosphere. For this reason we will focus our atten-
tion in the rest of our paper upon this third region. The
effects of NSI with parameters outside the third region
would require the use of different methods for neutrino
transport.
Finally, knowing the width of the I resonance allows

us to determine the adiabaticity of the resonance since
the adiabaticity is determined by the ratio of the width
compared to the oscillation length at the resonance ℓI .
The oscillation length is

ℓI =
2π

√

|Hex(rI)|2
, (33)

so the adiabaticity, γI , given by the ratio γI = σI/ℓI , is

γI =

[

2|Hex|2
π

(

dHee

dr
− dHxx

dr

)−1
]

rI

. (34)

If γI is much greater than unity the evolution is adiabatic
and the neutrinos follow the instantaneous - matter -
eigenstates. If γI is less than unity then the evolution
is non-adiabatic and the neutrinos jump from following
one eigenstate before the resonance to following the other
after. The adiabticity of the I resonance depends on the
gradients of the potentials, as well as the size of the off-
diagonal element of the Hamiltonian. The off-diagonal
elements enter in the numerator so that the I resonance
becomes more adiabatic as |Hex| increases. Using Eq. (6)
and Eq. (21) we can see that the NSI will dominate this
term for ǫ0 & 10−5.

B. H resonance

The high density resonance [47] is seen with standard
neutrino oscillation physics alone and it appears in all
three panels of figure (1) occurring around r ∼ 1000 km.
Like the I resonance, the H resonance is a MSW transi-
tion and therefore it occurs at a location where Eq. (27)
is also true. The H resonance is typically not near the
zero crossing r0: it arises because the function λ(r) -
given in Eq. (10) - decreases with distance. The NSI
do still affect the H resonance nevertheless. The location
of the H resonance, rH , is pushed inwards and toward
higher density compared to the position for no NSI when
δǫn < 0, and outwards and to lower density compared
to the position for no NSI when δǫn > 0. However this
relative change in position of the H resonance does not
lead to any change in the flavor survival probabilities
at the edge of the supernova. The adiabaticity, γH , of
the H resonance, defined by evaluating Eq. (34) using
the appropriate matrix elements and their derivatives at
rH , remains high even with the NSI contribution. This
means that the neutrinos and antineutrinos follow the
eigenstates and undergo a significant change in flavor as
a result of the interactions with the high matter density.

C. MNR

As seen in figure (1), one new effect that emerges
for supernova neutrinos with NSI is the Matter Neu-
trino Resonance. A Matter Neutrino Resonance occurs
when the background matter contribution to the neu-
trino Hamiltonian cancels with the contribution from
the neutrino-neutrino interaction. In merger scenarios,
with SM physics, a cancellation can occur close to the
neutrino emission region even if the matter potential al-
ways remains positive because the antineutrino flux can
dominate over the neutrino flux resulting in a negative
neutrino-neutrino potential [38, 58–60]. In supernovae
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(with spherically symmetric emission) neutrino fluxes
always dominate over antineutrinos and, as such, the
neutrino-neutrino potential always remains positive us-
ing only SM Physics. MNR conditions are, therefore,
not seen in supernovae.
With NSI, however, the matter potential can become

negative, as shown in figure (2), or, as a consequence of
the I resonance, the diagonal component of the neutrino-
neutrino interaction can become negative. The former
leads to Symmetric MNR, the latter leads to a Standard
MNR [58, 61].
For either the Standard or Symmetric MNR the system

starts with a relative sign between the diagonal part of
the neutrino-neutrino interaction and the diagonal con-
tribution from the total matter potential, and the poten-
tials are arranged such that |Vν | > |VM |. From Eq. (8),
the neutrino-neutrino potential falls off as 1/r4 while
VM ∝ δǫn/r3 - Eqs. (21) and (10). Thus for certain values
of δǫn we can generate a cancellation where |Vν | = |VM |.
The conversion of neutrinos and antineutrinos can cause
Vν to change in such as way as to maintain that can-
cellation over a finite distance. In a Symmetric MNR,
both neutrinos and antineutrinos transform in a simi-
lar manner while in the Standard MNR neutrinos and
antineutrinos transform asymmetrically ending up with
different final flavor configurations. The bottom panel
of figure (1) illustrates an example case in which we can
see both types of MNR transitions induced by NSI. The
Symmetric MNR is evident as the first small dip at a few
tens of kilometers and the Standard MNR occurs further
out at around 50 km.
The required cancellations outlined above come from

the MNR condition in which Hee ≈ Hxx where we have
neglected the vacuum contribution [59]:

0 ≈ λYe + λδǫn
(

Y⊙ − Ye

Y⊙

)

+µν

(

(1 + β)(ρee − ρxx)− α(1 + β̄)(ρ̄ee − ρ̄xx)
)

(35)

In Malkus, Friedland and McLaughlin [58] it was shown
how this understanding leads to analytic expressions
for electron (anti)neutrino survival probabilities during
MNR transitions. With an initial flux of only electron
and anti-electron type neutrinos

Pee =
1

2

(

1 +
α2 − 1−R2

2R

)

,

P̄ee =
1

2

(

1 +
α2 − 1 +R2

2αR

)

,

(36)

where R ≡ VMSW/µν is the ratio of the neutrino-electron
and neutrino-neutrino interaction scales, and α is the ini-
tial asymmetry between electron neutrinos and antineu-
trinos. We have a second flavor of neutrino and antineu-
trino present initially and we also take into account the
NSI. Following the same steps - detailed in the appendix

- we find the more general expression

Pee =
1

2

(

1 +
α2(1− β̄)2 − (1− β)2 − q2

2(1− β)q

)

,

P̄ee =
1

2

(

1 +
α2(1− β̄)2 − (1− β)2 + q2

2α(1− β̄)q

)

,

(37)

where we have replaced R with q to include the NSI effect
to the total matter potential: q ≡ (VMSW + VNSI)/µν .
Notice that the expressions in Eq. (37) obey the same
conditions as the survival probabilities in Eq. (4). The
new terms in Eq. (37) compared to Eq. (36) account for
the flux of x type (anti)neutrinos via the inclusion of
the flavor asymmetries β and β̄. Note that the flavor
evolution through both types of MNR are adiabatic (see
Ref. [59]). We will make use of these expressions in our
analysis of the numerical results in order to diagnose the
transitions we observe.

D. Bipolar/Nutation

Finally we discuss the bipolar/nutation type of flavor
transition seen in the middle panel of figure (1) starting
at around 150 km in which antineutrinos (red) fully con-
vert and neutrinos (blue) partially convert. Bipolar/nu-
tation type flavor transitions are seen with standard neu-
trino oscillation physics alone and, like the H resonance,
they too can be affected by NSI.
The region where the neutrinos undergo nutation type

transitions can be predicted via linear stability analysis.
During a bipolar/nutation transition the off-diagonal el-
ements of the neutrino and antineutrino density matrices
grow exponentially i.e. they are ‘unstable’ [62]. By ap-
plying a linearization procedure [59, 63] we can derive
the following stability matrix Σ applicable for pure fla-
vor states in our NSI supernova model:

Σ =







−δm2

2E
∓ (1− β)µν ±(1− β)µν

∓(α− β)µν

δm2

2E
± (α − β)µν






, (38)

where upper signs refer to initial conditions set in Eq. (1)
while lower signs are applicable in case of a prior com-
plete flavor conversion. The eigenvalues of this matrix
describe the evolution of the off-diagonal elements of the
density matrix. When the eigenvalues of the stability
matrix become complex the off-diagonal elements of the
density matrix grow exponentially. Conversely, the real
eigenvalues of the stability matrix correspond to the col-
lective coherent small amplitude oscillation frequencies
indicating no substantial flavor evolution. For the sta-
bility matrix given in Eq. (38), complex eigenvalues are
obtained when

µ2
ν [1− (1− β)(α − β)] + µν

δm2

E
(1− β) +

(

δm2

2E

)2

< 0.

(39)
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FIG. 4: Survival probabilities of electron neutrinos (blue) and
antineutrinos (red) for the normal (top) and inverted (bot-
tom) hierarchies in the absence of NSI. The vertical shaded
band indicates the region where linear stability analysis pre-
dicts a bipolar/nutation transformation should occur due to
neutrino-neutrino interaction. The position of the H reso-
nance for neutrinos in the normal hierarchy and for antineu-
trinos in the inverted hierarchy is shown as a vertical dash-
dotted line at rH ≈ 1200 km.

Notice that the location of the instability region is inde-
pendent of the NSI parameters.

IV. NUMERICAL RESULTS

The analytical tools described in the previous section
allow us to identify which type of transition we are ob-
serving. Armed with these equations, we shall examine
some selected combinations of the NSI parameters but
first, we study the case with no NSI effects for reference
before we examine six samples of the parameter space
shown in figure (3).
The results for the survival probabilities for the elec-

tron neutrinos and antineutrinos, Pee and P̄ee in the ab-
sence of NSI are shown in figure (4). Note the upper
panel of this figure (normal hierarchy) was shown previ-
ously in figure (1) and we reproduce it here for conve-
nience. The predicted location of the H resonance given
by Eq. (27) matches a transition seen in the numerical
results and similarly we observe in the inverted hierar-

FIG. 5: The same as in figure (4) but with NSI parameters
set to δǫn = −0.6556 and ǫ0 = 0.0007, corresponding to point
A in figure (3). Again the shaded band indicates where linear
stability analysis predicts a bipolar/nutation transformation
should occur due to neutrino-neutrino interaction. The verti-
cal gray dot-dashed line at r ≈ 20 km is the predicted location
of the I resonance according to Eq. (27) and the vertical dot-
dashed line at r ≈ 1000 km is the H resonance for neutrinos
or antineutrinos.

chy a transition starting at r ≈ 150 km and finishing
at r ≈ 400 km which matches the shaded region where
the linear stability analysis indicates a bipolar/nutation
should lie as predicted by Eq. (39). Thus we are confi-
dent of our assignments of the two transitions as being
bipolar/nutation and an H resonance.

With figure (4) as a reference for regular SM physics,
let us now switch on the NSI. The six example cases
discussed below correspond to the six points in figure
(3), displaying their position in the parameter space. For
each point, the total matter potential, VM , is plotted in
figure (2).

Our first example case, labeled point A in figure (3),
is for δǫn = −0.6556, ǫ0 = 0.0007. The results for the
electron (anti)neutrino survival probabilities as a func-
tion of distance for this case are shown in figure (5). The
reader will observe not only an H resonance - which is
now at r ≈ 1000 km due to NSI contributions - but also
a number of flavor changing effects that are not present
in the previous figure where NSI were absent:

• an I resonance at ∼ 20 km,
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FIG. 6: The same as in figure (5) but with NSI parameters set
to δǫn = −0.7516 and ǫ0 = 0.002 corresponding to point B in
figure (3). The vertical gray dot-dashed line at r ≈ 30 km is
the predicted location of the I resonance according to Eq. (27)
and the vertical dot-dashed line at r ≈ 1000 km is the H res-
onance for neutrinos or antineutrinos. At this combination of
NSI parameters a MNR occurs starting at r ∼ 40 km and the
analytical prediction for the evolution of the transition proba-
bilities using Eq. (37) is shown as the black and green dashed
lines for electron neutrinos and antineutrinos respectively.

• in the normal hierarchy (top panel), a nuta-
tion/bipolar transition starting at ∼ 150 km,

• in the inverted hierarchy (bottom panel), the nuta-
tion/bipolar transition has disappeared.

The I resonance at ∼ 20 km leads to a complete swap
of the e and x flavors for both neutrinos and antineu-
trinos indicating the resonance is adiabatic. But as a
consequences of the NSI induced I resonance, the sta-
bility of the system to collective transformations is also
swapped. Now it is the normal hierarchy which is seen
to experience a bipolar/nutation transition while for the
inverted hierarchy no collective effects occur. Thus ef-
fects from NSI can ‘spill over’ and lead to other types of
flavor transformations that did not occur in the absence
of NSI or switch off transformation that did occur when
we only had standard neutrino oscillation physics as seen
in figure (4). As before, the location of the H resonance
in the numerical results matches the prediction of an ob-
served transition and the new I resonance location also
matches an observed transition at that location. Finally,

FIG. 7: The same as in figure (6) but with NSI parameters set
to δǫn = −0.9436 and ǫ0 = 0.0045, corresponding to point C
in figure (3). Here we see the effects of the increasing width of
the I resonance causing an overlap with the Standard MNR,
and a change in the behavior during the resonance.

the region where the nutation/bipolar transition occurs
for the normal hierarchy again overlaps with the shaded
region which is the range in r where the linear stability
analysis indicates it should occur.

Our next example case, point B in figure (3), is δǫn =
−0.7516, ǫ0 = 0.002 and the survival probabilities for this
case are shown in figure (6). When compared to figures
(4) and (5), we now observe transformations which did
not occur in either of those figures. Immediately after the
I resonance located around rI ∼ 30 km, the neutrinos un-
dergo a Standard Matter-Neutrino Resonance beginning
at r ∼ 40 km and finishing at r ∼ 70 km. As a result
of the MNR, neither the neutrinos nor antineutrinos ex-
hibit bipolar/nutation like transformation at r ∼ 150 km
seen in the previous two examples. Thus we learn the
MNR - which only occurs when we include NSI - stabi-
lizes the system preventing collective effects. Once again
the I and H resonance locations are predicted by the the-
ory and we also observe how the numerical results track
the expected evolution of the transition probabilities for
neutrinos and antineutrinos from Eq. (37) in the MNR
region.

The next set of NSI parameters we consider are δǫn =
−0.9436 ǫ0 = 0.0045,corresponding to point C in fig-
ure (3), and the survival probabilities as a function of



11

FIG. 8: The same as in figure (6) but with NSI parame-
ters set to δǫn = −1.2124 and ǫ0 = 0.008, corresponding
to point D in figure (3). The vertical dot-dashed line at
r ≈ 100 km = 107 cm is the I resonance and the vertical
dot-dashed line at r ≈ 900 km is the H resonance. Here we
see the I resonance followed by a nutation/bipolar transition.
In this case, the width of the I resonance has completely cov-
ered the MNR suppressing it and preventing the system from
stabilizing against the nutation region at r ∼ 150 km.

distance are shown in figure (7). At this more negative
value of δǫn the I resonance has moved even further out
to rI = 50 km and has grown noticeably wider so that
it begins to overlap and interfere with the MNR. In the
normal hierarchy (top panel) the I resonance only par-
tially completes before the MNR begins; however in the
inverted hierarchy the I resonance is allowed to complete
fully before the MNR transition begins causing the MNR
to narrow. We will discuss the difference of the behavior
of the MNR in this figure compared to figure (6) below.
The H resonance can also be seen to have moved further
inward as a consequence of the NSI but, as in previous
figures, it remains adiabatic with almost a complete swap
of e and x flavors. The predicted locations of the I and H
resonances remains in good agreement with the numeri-
cal results; the predicted beginning and end of the MNR
evolution is also in good agreement with the numerical
results for both hierarchies but the actual evolution dur-
ing the MNR is only well reproduced for the inverted
hierarchy.
In figure (8) we plot the results for the NSI parameters

δǫn = −1.2124 ǫ0 = 0.008, point D in figure (3). In this

FIG. 9: The same as in figure (6) but with NSI parameters set
to δǫn = −1.4428 and ǫ0 = 0.00275, corresponding to point
E in figure (3). Here the resonance prediction lines show how
tightly packed the various resonances have become causing a
mixture of different behaviors the form of which changes with
slight modifications to either δǫn or ǫ0 in the yellow region.

example the I resonance now occurs at rI ≈ 100 km and
has become noticeably wider than in previous examples.
Beyond the I resonance we do not observe a Standard
MNR but rather, in the normal hierarchy, a return to
the bipolar/nutation behavior seen in figure (5) and in
the inverted hierarchy nothing happens until the H reso-
nance. Finally, we see in this example that the analytic
predictions for the I and H resonances remain robust and,
in addition to the outward motion of the I resonance,
the simultaneous inward motion of the H resonance to
rH ≈ 900 km. Both resonances remain adiabatic.

We next consider point E in figure (3), with NSI pa-
rameters δǫn = −1.4428 and ǫ0 = 0.00275. The transi-
tion probabilities for this set of NSI parameters are shown
in figure (9). Here we see all three types of transitions we
have discussed, the I resonance, bipolar/nutation transi-
tion, and the MNR transition, are pushed very close to-
gether such that none can complete in a normal fashion.
The figure includes the predictions from all three types of
flavor transformation in an effort to help identify which
features might belong to which effect. However it is very
difficult to point to any clearly identifiable transition fea-
ture until we reach the H resonance at r ∼ 650 km.

Finally, in figure (10) we plot the survival probabilities
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FIG. 10: The same as in figure(6) but with NSI parameters
set to δǫn = −1.6156 and ǫ0 = 0.0005, corresponding to point
F in figure (3). In this case there is no longer an I resonance
or H resonance for the neutrinos in the normal hierarchy (nor
or antineutrinos in the inverted hierarchy). Only the I res-
onance for the (anti)neutrinos in the normal (inverted) hier-
archy remains along with the Bipolar/Nutation transition in
the inverted hierarchy.

of electron neutrinos and antineutrinos for δǫn = −1.6156
and ǫ0 = 0.0005, represented by point F in figure (3). For
this combination of NSI parameters there is neither an I
nor a H resonance for neutrinos in the normal hierarchy,
and the same for antineutrinos in the inverted hierarchy.
This is consistent with our analytical description as the
resonance condition cannot be realized in this part of
the parameter space. The remaining I resonance for an-
tineutrinos in the normal hierarchy and neutrinos in the
inverted hierarchy is pushed to large radii, beyond the
start of the bipolar/nutation region. Since there is no I
resonance before bipolar/nutation region, this instability
region occurs in the inverted hierarchy, just as it does
in the absence of NSIs. But not every effect of NSI has
disappeared. Following the bipolar/nutation region we
see the remaining I resonance at r ∼ 350 km but unlike
in the standard oscillation case situation shown in figure
(4), it acts upon the opposite state with the antineutri-
nos converting in the normal hierarchy and the neutrinos
in the inverted hierarchy.

V. PARTITIONING THE NSI PARAMETER
SPACE

The various transformation effects seen in figures (5) -
(10) are representative of behaviors seen through a wide
range of NSI parameters in the magenta region shown
in figure (3). The six figures shown in the previous sec-
tion were taken from a larger scan of several thousand
numerical calculations completed over this space. For
each numerical run the results were compared to the an-
alytical predictions described in §III, as was done in the
preceding section, and each resonance effect was identi-
fied. Figure (11) was constructed by color coding each of
the several thousand runs according to the resonance(s)
that were observed. We will now use the same analytical
tools to understand the shapes of the different resonance
regions and the contours that naturally occur between
them.

For −1.52 < δǫn < −0.55 we observe in every calcula-
tion two I resonances - one in the neutrinos, the other in
the antineutrinos - and an H resonance. In the inverted
hierarchy we find two different regions where we see no
other transitions occur within this range of δǫn, one at
low values of −δǫn and ǫ0, and the other at large values
of both −δǫn and ǫ0. These regions are shown in green in
figure (11). For this same region of the parameter space
in the normal hierarchy we find bipolar/nutation type
transitions also occur and these regions are shown in fig-
ure (11) in purple. Over large swaths of the parameter
space we observe some form of the MNR transition and
these are indicated in the figure (11) by the red regions.
For −1.52 < δǫn < −1.36 we see chaotic effects where
it can be difficult to determine which resonance transi-
tions are playing a role in the final solution. This region is
shown in yellow in figure (11) and an example of such be-
havior was seen in figure (9). For δǫn < −1.52 the flavor
evolution simplifies greatly. Depending on the hierarchy
the I resonance for either the neutrinos or antineutri-
nos is absent and the H resonance has disappeared as
well. For the normal hierarchy there are no other types
of flavor transformation; in the inverted hierarchy a bipo-
lar/nutation type transition is seen which are sometimes
interrupted by the remaining I resonance. The region of
the NSI parameter space where this behavior occurs is
depicted as the softer blue region in the right panel and
the darker blue region in the left panel of figure (11).

Clearly the effects of NSI are non-trivial with an in-
teresting interplay between one kind of transformation
and another. The analytic understanding of the various
transformations from section §III allow us to understand
why various combinations of the NSI parameters give the
transformations seen within each region of the parame-
ter space. Let us begin with the leftmost purple and
leftmost green regions from the two panels in figure (11).
In this region the I resonance occurs close to the proto-
neutron star and its effect is to swap the e and x spectra
for both neutrinos and antineutrinos. After the I res-
onance the neutrinos could either undergo a Standard
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FIG. 11: The partition of the parameter space in the normal (right) and inverted (left) hierarchies. The different colored regions
represent different behavior of the numerical solutions. The light blue region is the same as that shown in figure (3), and is
the region where the I resonance overlaps with the surface of the neutrinosphere. The Yellow Region shows where significant
overlap between multiple resonances causes chaotic collective behavior. The soft blue region in the right panel shows where
the I and H resonance disappear for neutrinos. The dark blue region in the left panel shows where the region where the I
and H resonance disappear from antineutrinos after undergoing a bipolar transition. Green represents no collective oscillations
between the I resonance and the H resonance. Purple represents results where we observed a bipolar/nutation transition. The
Red regions are where MNR behavior is observed. The six black points represent the locations in parameter space of the
example cases also seen in figure (3) whose survival probability plots are shown in figures (5), (6), (7), (8), (9, and (10).

MNR or, for the case of the normal hierarchy, they could
follow the bipolar/nutation transition because the swap-
ping of the spectra has destabilized the neutrino system.
In this region of the parameter space the Standard MNR
condition is actually satisfied before the bipolar/nuta-
tion transition at r = 150 km - for the representative
point shown in figure (5) the Standard MNR condition
is satisfied at r ≈ 35 km. But the Standard MNR transi-
tion only occurs if the neutrinos can evolve adiabatically
and a glance at figure (2) indicates the gradients of both
the total matter potential and neutrino-neutrino poten-
tial are very large at the location where the Standard
MNR would begin. In this lower corner of the parameter
space ǫ0 is not sufficiently large to allow a MNR transi-
tion to occur and if the MNR does not occur, then the
bipolar/nutation transition takes place for the normal hi-
erarchy.

If −δǫn and/or ǫ0 are increased, then the neutrino evo-
lution at the point where the Standard MNR condition
is satisfied becomes more adiabatic. The increasing adi-
abaticity is visible in figure (2) because one sees the in-
crease of −δǫn pushes the point where the MNR begins
to larger radii, softening the gradients. Larger ǫ0 also
allows for the MNR to occur with larger gradients. At
sufficiently large −δǫn and/or ǫ0 the Standard MNR oc-

curs and the combinations of the NSI which lead to MNR
transitions are the red regions in both the left and right
panels of figure (11). Through careful analysis of our re-
sults we find there is also a possibility for a Symmetric
MNR to occur before the I resonance. As discussed in
§III, the Symmetric MNR can only occur in the region
between the neutrinosphere and the location of the I res-
onance where a positive neutrino-neutrino potential and
a negative total matter potential can cancel. While this
transition is possible in principle, in the context of the
model considered here we find minimal Symmetric MNR
effects.

While an MNR is seen for all combinations of δǫn and
ǫ0 within the red bands, as both −δǫn and ǫ0 are in-
creased the MNR becomes less ideal. The difference can
be seen by comparing figures (6) and (7) which are the
results for the NSI parameters at the two points within
the red bands in figure (11). This departure from ideal
behavior is due to two different factors. As −δǫn in-
creases both the location of the I resonance and the be-
ginning of the MNR, rMNR,start move outward, but they
do so at different rates becoming ever closer. At the
same time, an increase in ǫ0 causes the width of the I
resonance, σI , to increase. Both of these trends can be
observed in figure (12) which shows how the location and
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FIG. 12: The location of the I resonance, rI (solid black line),
it’s width rI ± σI for two different values of ǫ0 (green dashed
line, blue dot-dashed line), and the starting location (solid red
line) and ending location (dot-dashed red line) of the MNR
as a function of the NSI parameter −δǫn.

amount of overlap between the I resonance and the MNR
changes with different values of δǫn and ǫ0. At suffi-
ciently large −δǫn and ǫ0 these two factors will work to-
gether to cause the I resonance to partially overlap with
the point at which the MNR is predicted to begin i.e.
we find rI + σI > rMNR,start. When this condition is
satisfied we observe the neutrinos and antineutrinos no
longer follow the analytic expectations in Eq. (37) which
assumed that both neutrinos and antineutrinos have fully
converted with respect to their initial state before the
start of the MNR. We note, as shown in figure (7), a
difference in the effect of this overlapping of resonances
between the normal and inverted hierarchies. In the nor-
mal hierarchy, the MNR appears to dominate over the I
resonance, preventing it from completing; in the inverted
hierarchy the I resonance appears to dominate over the
MNR fully converting the neutrinos before the MNR be-
gins.

As both −δǫn and ǫ0 are increased further the separa-
tion between the I resonance and MNR will continue to
decrease and the width of the I resonance will continue
to increase. Eventually a combination of NSI parame-
ters will be reached such that the I resonance completely
covers the MNR region. If rMNR,end is the predicted
end point of the Standard MNR then the I resonance
overwhelms the MNR when rI + σI > rMNR,end. The

smothering of the MNR by the I resonance means no
MNR occurs. For the normal hierarchy the stabilizing
effect of the MNR is lost so the system will undergo a
bipolar/nutation transition, for the inverted hierarchy no
bipolar/nutaiton occurs because the system is stable. An
example of this can be seen in figure (8) and to show how
the I resonance now overlaps the region where the MNR
occurs we have inserted the predicted MNR evolution
into the figure. Thus at large −δǫn and ǫ0 we again find
bipolar/nutation transitions and this is the reason for the
the upper purple region in the left panel of figure (11).
For the inverted hierarchy the combinations of −δǫn and
ǫ0 where the I resonance smothers the MNR are in the
upper green region in the right panel of figure (11).

In the light yellow shaded regions seen in figure (11)
we find the chaotic evolution. This occurs when vari-
ous transformation effects begin to overlap. In particular
the I resonance moves inside of the instability region pre-
dicted by Eq. (39). From determining rI as a function
of the NSI parameters we find rI = rbipolar,start when
δǫn = −1.3658. An example of this can be seen in fig-
ure (9), where different prediction lines have been placed
on the figure to help suggest which of the possible res-
onances might be the cause of the different features ob-
served.

Finally we consider the regions where −δǫn > 1.52 in-
dicated by the light (dark) blue regions in the left (right)
panel of figure (11). At these values of −δǫn the max-
imum value of the diagonal element of VM is less than
the splitting of the vacuum eigenvalues and so there is
no solution to Eq. (27) for a normal hierarchy. Since
the same equation must be fulfilled for the H resonance,
the loss of the I resonance means the H resonance also
disappears. The I resonance remains for the antineutri-
nos in the normal hierarchy because for any value of δǫn

the potential V̄M has the same sign as the splitting of the
vacuum eigenvalues and so the monotonicity of λ(r) guar-
antees there must be a point where the two sides of the
equation become equal. If the hierarchy is inverted, the I
resonance only occurs for neutrinos and the I and H res-
onances disappear for antineutrinos when −δǫn > 1.52.
The consequence of the missing I resonance is that only
the neutrino spectra or only the antineutrino spectra are
swapped, not both. Without swapping both spectra, the
conditions for a Standard MNR cannot be fulfilled and for
a normal hierarchy the system is stable. In the inverted
hierarchy the system is unstable and with the model we
are using in this paper we find that for −δǫn > 1.52 the
remaining I resonance occurs after the bipolar/nutation
begins at r = 150 km. Thus in the inverted hierarchy the
bipolar/nutation transformation begins but when the re-
maining I occurs, it shuts off the transition if it is not yet
complete as can be seen in figure (10).

Our understanding of the NSI effects allows us to place
several lines upon the parameter space corresponding to
where various resonances interact and thus where we ex-
pect to observe a given type of flavor transformation to
become modified. These predictions and the partitioned
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FIG. 13: Similar to figure (11) but with a further division of the MNR (red) region from figure (11) into two regions. The
red region now shows the parameter space where we observed the normal, complete, MNR as seen in figure 6 and the orange
region where the I resonance and MNR interfere with each other, as seen in figure 7. The two lines roughly predicting the
boundary between the full MNR and partial MNR (Dot-Dashed Blue) and where the solution transitions from MNR’s back to
bipolar transitions (Solid Blue). The green dot-dashed line represents the point that the predicted location of the I resonance
lies within the instability region predicted by the stability matrix in Eq. (38). The Black dot-dashed line is the value of δǫn

where the diagonal component of the matter potential no longer crosses the positive vacuum scale causing the I resonance and
H resonance to disappear from the neutrinos, however the antineutrinos still undergo an I resonance. The other colors are the
same as in figure (11): the light blue region is where the I resonance overlaps with the surface of the neutrinosphere, yellow is
chaotic collective effects, soft blue is the absence of I and H resonances in normal hierarchy neutrinos, darker blue is the onset
of the bipolar transition followed by an I resonance with no H resonance, green represents no collective oscillations between the
I resonance and the H resonance and purple represents results where we observed a bipolar/nutation transition.

parameter space are shown in figure (13). The various
lines in the figure are

• the contour where rI + σI = rMNR,start (dashed
blue)

• the contour where rI + σI = rMNR,end (solid blue)

• the value of δǫn = −1.32 which gives rI =
rbipolar,start (dashed green)

• and the vertical line δǫn = −1.521 where the H
resonance disappears. (dashed black)

In addition to these predictions, we have separated the
red band from figure (11) into a region again shaded red
containing the ideal, ‘complete’ MNR solutions, and an
orange region where significant overlap between the I res-
onance and the MNR is found leading to ‘partial’ MNRs.
It should be noted that the transition from the complete
MNR to the partial MNR is not as sharp as figure (13)
makes it appear. Rather there is a much more gradual
change from cases such as figure (6) to the significantly
overlapped case seen in figure (7).

The first contour is our prediction for the combinations
of δǫn and ǫ0 where we expect the I resonance to begin

to overlap with the MNR and so lead to partial MNR
like solutions, e.g. figure (7). This contour is shown as
the dot-dashed blue line. The second contour identifies
the values of δǫn and ǫ0 where the I resonance completely

overlaps the MNR at which point the system should tran-
sition back to its behavior in the absence of the MNR i.e.
a bipolar/nutation transition for a normal hierarchy and
a no collective oscillations for the inverted. This contour
is shown as the solid blue line. The two contours trace the
boundaries between the different categories of solutions
well. The third condition is the location where the I res-
onance and beginning of the bipolar/nutation regions co-
incide. It is the merging of the different resonances that
creates the somewhat chaotic flavor evolution observed
in figure (9).The figure shows how this line delimits one
edge of the yellow region. The fourth condition denotes
where the H resonance disappears and this vertical line
matches well with the edge of the blue regions.
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VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown how Non-Standard In-
teractions of neutrinos, well within current constraints,
can lead to dramatically different flavor evolution for su-
pernova neutrinos compared to both the standard case
of neutrino oscillations and previous literature. In a
broad region of the parameter space we observe Matter-
Neutrino Resonances for supernova neutrinos, a type of
flavor transformation which has previously only been
seen in compact object merger scenarios. In another re-
gion of the parameter space we find the NSI can lead to
neutrino collective effects which would not occur in the
absence of the NSI and can suppress other collective ef-
fects which would be expected using standard neutrino
oscillation physics. Finally, in a third region we find the
NSI can lead to the disappearance of the high density
Mikheyev-Smirnov-Wolfenstein resonance. From our un-
derstanding of how these effects arise we are able to pre-
dict the boundaries between the partitions of the NSI
parameter space where the various transformations are
seen.

Such dramatic flavor transformation due to NSI so
deep within the supernova has the potential to affect the
dynamics of the explosion, the nucleosynthesis and the
neutrino burst signal. If only the I resonance occurs one
can make plausible predictions for the effect of the NSI
because, by itself, an adiabatic I resonance leads to a
complete swap of the flavor of both neutrinos and an-
tineutrinos. Beyond the I resonance the spectrum of the
electron flavor neutrinos and antineutrinos would be hot-
ter than that at the neutrinosphere and one would expect
this would lead to greater heating in the gain layer and
a shorter delay until shock revival. The additional flavor
transformation effects which occur, such as the MNR and
bipolar/nutation, modify this expectation. If the neutri-
nos undergo a MNR transition then the antineutrino fla-
vors swap back to their original spectra while the neutri-
nos remain swapped. During a bipolar/nutation trans-
formation both neutrino and antineutrinos re-exchange
the spectra but not as completely as during an MNR.
If the I resonance is not adiabatic then an MNR can-
not occur but a bipolar/nutation can. An understanding
of the dependence of supernova dynamics upon the NSI
parameters will require further study.

Similarly, flavor transformation so deep within a su-
pernova will affect the electron fraction of the material
and the subsequent nucleosynthesis. If the I resonance is
adiabatic the neutrinos and antineutrinos both swap the
spectra of their flavors. As a consequence the spectra
of both the electron neutrinos and antineutrinos will be
more similar than the original spectra were at the neutri-
nosphere which should raise the electron fraction slightly
compared to the unoscillated case. But if the I resonance
is quickly followed by a MNR then, again, the antineu-
trino flavors can swap back to their original spectra while
the neutrinos remain altered. Examples of these cases
are shown in figures (6) and (7). The difference between

the electron neutrino and electron antineutrino spectra
would then be larger than at the neutrinosphere. Super-
nova wind nucleosynthesis is sensitive to the difference
between the electron neutrino and electron antineutrino
spectra so the question of how the nucleosynthesis in su-
pernovae might be modified by NSI also needs to be ad-
dressed in future studies.

Finally, the effects of NSI clearly alter the flux emerg-
ing from the supernova and the conclusions one might
draw from the next Galactic supernova burst signal. Fea-
tures in the signal which are associated with one hierar-
chy in the standard case of neutrino oscillations can in-
stead occur in the other hierarchy when NSI are included
and move from neutrino to the antineutrino channels.
The disappearance of the H resonance that can occur in
some regions of the NSI parameter space will also have
profound effects upon the signal. The signatures of NSI
effects in a Galactic supernova neutrino burst and the
detector requirements to observe them will need to be
determined.

Appendix: Analytical MNR Survival Probabilities

The analytical expressions in Eq. (37) for the neutrino
and antineutrino survival probabilities during an MNR
are derived from the MNR conditions [59]. First we de-
mand 0 = Hee − Hxx and using the definitions for the
vacuum Hamiltonian, the neutrino-neutrino interaction
potential, and the matter potential, we write this condi-
tion as

0 =
δm2

2E
cos 2θV + λYe + λδǫn

(

Y⊙ − Ye

Y⊙

)

+ µν

(

(1 + β)(ρee − ρxx)− α(1 + β̄)(ρ̄ee − ρ̄xx)
)

.
(A.1)

We have suppressed the spatial dependence of λ, Ye, µν ,
and the density matrix elements for clarity. The second
MNR condition is that the off-diagonal components of
the Hamiltonian must vanish [59] which leads to

0 =
δm2

2E
sin 2θV + λ(3 + Ye)ǫ0

+µν

(

(1 + β)ρex − α(1 + β̄)ρ̄xe
)

. (A.2)

These two equations can be used to derive how the
survival probabilities of the neutrinos and antineutrinos
must change in order to continue to satisfy the two con-
ditions of the MNR.

These equations can be greatly simplified using the
common assumptions in MNR scenarios. First we as-
sume that the vacuum term is negligible compared to
VM or Vν and, second, we assume that λ(r)ǫ0 ≪ µν(r)
allowing us to further simplify the condition on the off-
diagonal components of the Hamiltonian. Using these
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assumptions, we can rewrite Eq. (A.1) and Eq. (A.2) as

0 = q +
(

(1 + β)(ρee − ρxx)− α(1 + β̄)(ρ̄ee − ρ̄xx)
)

(A.3)

0 =
(

(1 + β)ρex − α(1 + β̄)ρ̄xe
)

(A.4)

where

q =
VM,ee

µν

=
λ

µν

(

Ye + δǫn
(

Y⊙ − Ye

Y⊙

))

. (A.5)

This is the same definition of q found in Eq. (37).
The most efficient path to solving for the survival prob-

abilities makes use of isospin vectors. In order to make
the connection between isospin vectors and the density
matrices we factor the combined density matrix, ρ used
throughout the body of this paper into two density ma-
trices which are initially pure flavor states, ρe and ρx.
More precisely we write

ρ(r) =
1

1 + β
(ρe(r) + βρx(r)) (A.6)

ρe(0) =

(

1 0
0 0

)

(A.7)

ρx(0) =

(

0 0
0 1

)

(A.8)

with similar expressions for ρ̄, ρ̄e, and ρ̄x. The density
matrices ρe and ρx are related to isospin vectors for the

e and x flavor neutrinos, ~Se and ~Sx respectively (with ~̄Se

and ~̄Sx for antineutrinos) defined to be

~Sn =





ℜ(ρnex)
−ℑ(ρnex)

1
2 (ρ

n
ee − ρnxx).



 (A.9)

This definition ensures ~Se and ~Sx follow the normal rules
for the isospin vector i.e. S2

n = ~Sn ·~Sn = 1
4 . Using

~Se and
~Sx we can write the isospin vector ~S - defined using the
combined density matrix ρ and which is not normalized

to ~S · ~S = 1
4 - in terms of ~Se and ~Sx and find the product

~S · ~S is equal to

S2 =
(

~Se + β~Sx

)2

= ~S2
e + 2β~Se · ~Sx + β2 ~S2

x

=
[

(ℜ(ρeex) + βℜ(ρxex))2 + (ℑ(ρeex) + βℑ(ρxex))2
]

+
1

4
(ρeee + βρxee − ρexx − βρxxx)

2

(A.10)
We simplify Eq. (A.10) by recombining elements of ρe

and ρx into the elements of ρ according to Eq. (A.6),
apply the invariance of S2

e and S2
x and use the initial

conditions for ρe and ρx. After this simplification we
find Eq. (A.10) becomes

(1− β)2 = 4 [(1 + β)ℜ(ρex)]2 + 4 [(1 + β)ℑ(ρex)]2

+ [(1 + β)(ρee − ρxx)]
2
. (A.11)

An identical procedure can be followed for the antineu-
trinos to obtain

(1− β̄)2 = 4
[

(1 + β̄)ℜ(ρ̄ex)
]2

+ 4
[

(1 + β̄)ℑ(ρ̄ex)
]2

+
[

(1 + β̄)(ρ̄ee − ρ̄xx)
]2

(A.12)

To make further progress we introduce the following def-
initions:

(1 + β)ρee = Ze

(1 + β)ρxx = (1 + β)(1 − ρee) = 1 + β − Ze

(1 + β)ρex = δ + iǫ

(1 + β̄)ρ̄ee = Xe

(1 + β̄)ρ̄xx = (1 + β̄)(1 − ρ̄ee) = 1 + β̄ −Xe

(1 + β̄)ρ̄ex = η + iθ

(A.13)

Using these definitions we find Eqs. (A.3), (A.11),
(A.12), and (A.4) reduce to the following system of equa-
tions

0 = q + 2Ze − (1 + β)− α
(

2Xe − (1 + β̄)
)

(1− β)2 = 4
[

δ2 + ǫ2
]

+ (2Ze − (1 + β))

(1− β̄)2 = 4
[

η2 + θ2
]

+ (2Xe − (1 + β̄))

0 = δ − αη

0 = ǫ+ αθ
(A.14)

where we satisfy the real and imaginary parts indepen-
dently. The last two of these equations can be combined
to create an equality between the second and third equa-
tions, giving us two equations that involve only Xe and
Ze. When we solve these equations we find

Ze =
1 + β

2
+

α2(1− β̄)2 − (1 − β)2 − q2

4 q

Xe =
1 + β̄

2
+

α2(1− β̄)2 − (1 − β)2 + q2

4α q

(A.15)

Using the definition of Ze and Xe as well as the equations
for the survival probabilities given in Eq. (4), we can
convert these results into the analytical expressions for
the survival probabilities and thus derive Eq. (37)

Pee =
1

2

(

1 +
α2(1− β̄)2 − (1− β)2 − q2

2 (1− β) q

)

P̄ee =
1

2

(

1 +
α2(1− β̄)2 − (1− β)2 + q2

2α (1− β̄) q

) (A.16)

In the limit where β → 0, β̄ → 0, and we set VNSI → 0
(which forces q → R), we recover Eq. (36).
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Astroparticle Physics 11, 317 (1999), astro-ph/9811181
.

[25] A. B. Balantekin, C. Volpe, and J. Welzel,
JCAP 9, 016 (2007), arXiv:0706.3023 .
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