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We report new results on the conformal properties of an important strongly coupled gauge theory, a
building block of composite Higgs models beyond the Standard Model. With twelve massless fermions in
the fundamental representation of the SU(3) color gauge group, an infrared fixed point of the 3-function
was recently reported in the theory [1] with uncertainty in the location of the critical gauge coupling inside
the narrow [6.0 < g2 < 6.4] interval and widely accepted since as the strongest evidence for a conformal
fixed point and scale invariance in the theory with model-building implications. Using the exact same
renormalization scheme as the previous study, we show that no fixed point of the S-function exists in the
reported interval. Our findings eliminate the only seemingly credible evidence for conformal fixed point
and scale invariance in the Ny = 12 model whose infrared properties remain unresolved. The implications
of the recently completed 5-loop QCD beta function for arbitrary flavor number are discussed with respect

to our work.

PACS numbers: 11.15.-q, 12.60.-i

Introduction and motivation: Investigations of strongly
coupled gauge theories with massless fermions in the fun-
damental or two-index symmetric (sextet) representation
of the SU(3) color gauge group serve considerable theo-
retical interest with added relevance as important building
blocks of composite Higgs theories beyond the Standard
Model (BSM). Two complementary aspects of the com-
posite Higgs paradigm are investigated in this large class
of theories: (1) a near-conformal and unexpectedly light
scalar particle, perhaps dilaton-like with mass at the Elec-
troweak scale or (2) a parametrically light pseudo Nambu-
Goldstone boson (PNGB) combined with partial compos-
iteness for fermion mass generation to avoid the flavor
problem. Both paradigms are based on strongly coupled
gauge dynamics to address important aspects of conformal
and chiral symmetries and their symmetry breaking pat-
terns in BSM theories. The precise determination of near-
conformal or conformal behavior of SU(3) gauge theory
with twelve flavors is relevant for both paradigms.

(1) Light scalar, perhaps dilaton-like? Near-conformal
strong dynamics with spontaneous chiral symmetry break-
ing (xS B) is focused on its emergent light scalar with 0"
quantum numbers of the o-meson, perhaps with dilaton-
like properties. With early results reviewed in [2], this
paradigm is very different from scaled up Quantum Chro-
modynamics (QCD) which was the prototype of old Higgs-
less Technicolor. Comparing near-conformal models, with
details explained in Figure 1, a light composite scalar of
the massless SU(2) flavor doublet in the sextet fermion rep-
resentation of SU(3) color was reported in [2, 3] whereas
the Ny = 8 light scalar with fermions in the fundamen-
tal representation was discovered in [4] and confirmed re-

cently [5]. The sextet model S-function, with the mini-
mal flavor doublet required for the composite Higgs mech-
anism, indicates the closest position to the lower edge of
the conformal window (CW) among recently investigated
SU(3) gauge theories, exhibiting the lightest scalar accord-
ingly. The S-function of the sextet theory with three mass-
less flavors has a weakly coupled conformal fixed point
close to the upper end of the CW [6] with apparent cross-
ing into the CW between two and three flavors. In contrast,
uncertainties in crossing into the CW with fermions in the
fundamental representation appear to extend into the wider
N ¢ = 8-12 flavor range. For example, it is not known
if for more than eight flavors the theory gets very close to
the CW with a much lighter scalar mass than at Ny = 8.
Based on the findings of [1] and a similar zero in the (-
function reported earlier [7, 8], the Ny = 12 model has
been investigated as a composite Higgs model built on a
conformal fixed point inside the CW [9]. The importance
of the question warrants independent determination.

(2) PNGB with partial compositeness?  Challenges
for the near-conformal light scalar paradigm to generate
fermion masses and Yukawa couplings motivates the alter-
nate PNGB scenario with a massless scalar boson emerg-
ing from vacuum misalignment of xSB as reviewed re-
cently [10]. Model studies with a parametrically light
Higgs based on Ny = ny+v; fermion flavors in the funda-
mental representation of the SU(3) color gauge group could
address the hierarchy problem and fermion mass gener-
ation with partial compositeness, if Ny is large enough
to bring the theory inside the CW before mass deforma-
tions of conformal symmetries are turned on [10-12]. For
the simple choice ny = 4, the global flavor symmetry



SU(4)xSU(4) is broken to the diagonal SU(4) flavor group
and a Higgs-like scalar state is identified in the PNGB set
via x5 B. The custodial SO(4) symmetry of the Standard
Model remains protected [11, 12] while a large enough v
is required to bring the theory close to a strongly coupled
IRFP with expectations of large baryon anomalous dimen-
sions as the key ingredients of partial compositeness. The
Ny = 12 choice with ny = 4 and v; = 8 for this PNGB
paradigm is discussed in [9] building on the conformal
fixed point of twelve flavors, warranting again independent
confirmation.

Lattice implementation of the step (3-function: The
gradient flow based diffusion of the gauge fields of lat-
tice configurations from Hybrid Monte Carlo (HMC) sim-
ulations became the method of choice for studying renor-
malization effects with great accuracy [13-19]. In par-
ticular, we adapted the method and introduced the scale-
dependent renormalized gauge coupling g?(L) where the
scale is set by the linear size L of the finite volume [20,
21]. This implementation is based on the gauge invariant
trace of the non-Abelian quadratic field strength, E(t) =
—%TrFWFW (t), renormalized as a composite operator
at gradient flow time ¢ on the gauge configurations and
measured from the discretized lattice implementation, as
in [16] . Following [20, 21], we define the one-parameter
family of renormalized non-perturbative gauge couplings
for strongly coupled gauge theories built on the SU(N)
color group with Ny massless dynamical fermions,
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where the volume-dependent gradient flow time (L) is set

by the constant ¢ = V8t /L from the one-parameter family
of renormalization schemes, with ¢ = 0.2 chosen in this
work. The factor
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in Eq. (1) is chosen to match g?(¢(L)) to the conventional
coupling g2 (t(L)) in leading order of perturbation theory
for any choice of ¢ and with periodic boundary conditions
for the gauge fields in all four directions. The origin of
the 3rd Jacobi elliptic function ¥ in Eq. (2) was explained
in [20] including the treatment of zero modes from periodic
gauge fields in finite volumes [22-26].

A scale-dependent renormalized gauge coupling g2(L)
was introduced earlier to probe the step [-function, de-
fined as (¢*(sL) — ¢g?(L))/ log(s*) for some preset finite
scale change s in the linear physical size L of the four-
dimensional volume in the continuum limit of lattice dis-
cretization [27, 28]. The gauge coupling g*(L) for the de-
termination of the step S-function is identified in our case
with the definition in Eq. (1) as we drop the preset label
¢ in the notation and ¢(L) is simply replaced by L. The
renormalization scheme with the preset choice ¢ = 0.2

and the preset scale factor s = 2 in our work is identical
to the one of the previous study [1] including the bound-
ary conditions on gauge fields and fermion fields. In the
continuum limit, the monotonic function g?(L) implies in
any of the volume-dependent schemes that a selected value
of the renormalized gauge coupling sets the physical size
L measured in some particular dimensionful physical unit.
Fixed physical size L on the lattice is equivalent to hold-
ing g>(L) fixed at some selected value as the lattice spac-
ing a is varied and the fixed physical length L is held by
the variation of the dimensionless linear scale L/a as the
bare lattice coupling is tuned without changing the selected
fixed value of the renormalized gauge coupling. The con-
tinuum limit at fixed g®(L) is obtained by a*/L? — 0
extrapolation of the residual cut-off dependence in the step
(B-function at the target gauge coupling.

In the convention we use, asymptotic freedom in the
UV regime corresponds to a positive step S-function given
by the perturbative loop expansion for small values of
the renormalized coupling. In the infinitesimal derivative
limit s — 1 the step B-function turns into the conven-
tional one. If the conventional [-function of the theory
possesses a fixed point, the step S-function will have a
zero at the same critical gauge coupling g2 as well. The
scale-dependence of the gauge coupling g?(L) can be de-
termined from repeated application of the step S-function
starting at some scale L set by the initial gauge coupling
g*(Ly) we choose.

BSM models close to the conformal window: The ef-
fect of near-conformal behavior on the light scalar mass is
shown in Figure 1, if the size of the non-perturbative 3-
function is used at strong coupling as an indicator for the
approach to the CW in the fundamental and sextet repre-
sentations of massless fermions. The mass of the light o-
like 0% scalar particle, as a composite Higgs candidate
when coupled to the Electroweak sector, is displayed in
units of the Goldstone decay constant ' in the massless
fermion limit of xS B as determined from spectroscopy in
each model. The striking trend of decreasing scalar mass is
well established as the CW is approached. In BSM appli-
cations ' = 250 GeV sets the scale in physical units [2].
The sextet model has the smallest non-zero S-function rel-
ative to the other theories in the fundamental representa-
tion, together with the lightest scalar. The possibility of the
Ny = 12 model being even closer to the CW with an even
lighter scalar is open, if the model is near-conformal with-
out IRFP. Our goal is an independent determination of the
fate of the Ny = 12 IRFP reported earlier [1].

Ny = 12 simulations with targeted run sets: The algo-
rithmic details of our new Ny = 12 simulations are sim-
ilar to [20, 29]. Periodic boundary conditions already de-
fined on the gauge fields, the fermion fields are chosen to
be anti-periodic in all four directions. We utilize the stag-
gered fermion action with massless fermions and 4 steps of
stout smearing with stout parameter ¢ = 0.12 on the gauge
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FIG. 1. The step S-functions of strongly coupled gauge theories
in two different fermion representations of the SU(3) gauge group
are color coded. The Ny = 4 3-function is from [20] (dashed line
segment extrapolated) with the m. / F ratio taken from QCD, the
Ny = 8 p-function is from [29] with the me /F ratio from [4, 5],
and the sextet S-function is from [30] with the m / F ratio taken
from [31]. The magenta IRFP of Ny = 12 is from [1] and the
magenta line of our new non-vanishing Ny = 12 S-function is
also shown in the ~ 0.1 range.

links [13]. The gauge action is the tree-level improved
Symanzik action [32, 33]. The evolution along a trajec-
tory of the Hybrid Monte Carlo algorithm [34] is imple-
mented with multiple time scales [35] and Omelyan inte-
grator [36]. For integration along the gradient flow we use
the tree-level improved Symanzik action based discretiza-
tion scheme. The observable F(t) is discretized as in [16].

The final 28 runs of Table I ranged in length between
5,000 and 20,000 time units of molecular dynamics. The
statistical analysis of the renormalized gauge coupling of
each run followed [37] and used similar software. Auto-
correlation times were measured for each run in two in-
dependent ways, using estimates from the autocorrelation
function of each run, and from Jackknifed blocking proce-
dure. Errors on the renormalized couplings were consis-
tent from the two procedures and the one from autocorre-
lation functions is listed in Table I. Each run went through
thermalization and these segments were not included in the
analysis. For detection of residual thermalization effects
the replica method of [37] was used in the analysis. All 28
runs passed Q value tests when mean values and statistical
errors of the replica segments were compared for thermal
and other variations.

We targeted the step -function at three preselected val-
ues of the renormalized gauge coupling to cover the inter-
val where the IRFP was reported [1]. In Table I results are
shown for gauge ensembles from the three target groups A,
B, C of the final run sets. The 28 runs were grouped into
14 steps of pairs where the lower L/a value was precisely
tuned to the target value of the renormalized gauge cou-

TABLE 1. The final 28 runs are tabulated with 14 tuned runs and
14 paired steps.

Tuned targets for steps from L/a = 16, 18, 20, 24, 28

6.5

g? (tuned) = 6.3925 + 0.0019

6.4 - o = - i
y2/dof =0.35 Q=0.85
6.3 | 4
. g? (tuned) 6. 1846 + 0.0021
j < - ]
o~ X/dof_107 Q=037
O’6.1 - 4
. (tuned) 5.9793 + 0.0021
v2/dof = 0.27 Q=0.85

59 -

s=2 stepped lattice sizes: L/a = 32, 36, 40, 48, 56

5.8 1 1 1 1 1 1 1 1 1
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a2/L2 %108

FIG. 2. The statistical significance of precise tuning to three tar-
geted gauge couplings is shown by fitting a constant to each g% at
the lower L/a values of the steps.

pling. The higher L /a volume at the doubled physical size
determined the step S-function at finite lattice spacing. The
first group with 4 steps is target A at g*(L) = 5.979(2)
with L/a = 16 — 32,18 — 36, 20 — 40, 24 — 48. Both
target B at g?(L) = 6.185(2) and target C at g?(L) =
6.393(2) have an added fifth step of L/a = 28 — 56
for more robust continuum extrapolation. Precise tuning
for g3 of the 14 steps of the three targets eliminated the
largest systematic uncertainty in the step S-function from
model-dependent interpolation in the bare gauge coupling.
Figure 2 shows the remarkable accuracy of tuning for the
three targets at better than per mille accuracy level, like for
the entries of Table I.

Continuum extrapolation of the step (3-function: Cut-




off effects have to be removed from the step S-functions
at finite lattice spacing. The leading cut-off effects are
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FIG. 3. Linear fits in a?/L? are shown as explained in the text.
The 16 — 32 steps of target B and target C are not included in the
4-point fits without any influence on the overwhelming statistical
significance of the results. When they are included, the contin-
uum step S-function drops lower by approximately one standard
deviation with comparable errors and increased x2/dof ~ 1.5,
perhaps hinting at sub-leading small a*/L* cutoff corrections at
low L/a when the renormalized gauge coupling gets stronger.

a?/L? corrections in each L/a — 2L/a pair for the step
[B-function at the targeted renormalized couplings. Linear
fits to the lattice step functions in a?/ L? allows continuum
extrapolation to the a?/L? — 0 limit, as shown in Fig-
ure 3. For all three targets linear four-point fits of the step

functions were used with consistently good x? results. The

continuum limit of the Nf=12 step -function
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FIG. 4. The conformal fixed point of [1] and the three data points
of our step -function are shown (red color). The IRFP from [8]
(cyan color) and the new 5-loop M S step S-function of thirteen
flavors (dashed green) are discussed in the text.

final results of our continuum step S-function are shown
in Figure 4 with overwhelming statistical evidence against
the IRFP of [1] in the targeted interval. Leaving open the
existence of the IRFP in [1], a new study of the S-function
appeared recently in a different renormalization scheme of
the model and without our targeted goal [38].

New developments and conclusions: Originally the zero
of the S-function for twelve flavors was reported at a some-
what lower value of g? using the Schrédinger functional
(SF) based scheme in agreement with its 3-loop step -
function [8], as shown in Figure 4 (cyan color). In com-
parison, the dashed red line is the 3-loop prediction of the
M S scheme within the simulation error of the IRFP. The
4-loop M S result only slightly shifts the prediction and is
closer to [1]. Although in two different schemes, tantaliz-
ing agreement of the simulations and the loop expansion
lead to the widely held view that twelve massless fermion
flavors in QCD bring the theory inside the CW.

In a significant new development, the first M S calcula-
tion of the 5-loop [-function was completed for arbitrary
flavor number in QCD [39]. Based on the new 5-loop re-
sults, it was immediately recognized that the zero in the -
function turns complex and the IRFP disappears for twelve
flavors [40], consistent with the plot in Figure 4. It was also
shown that two fixed points appear in the S-function for
thirteen flavors like in the intriguing scenario of [41], with
shifting estimates for the lower edge of the CW and for the
flavor dependence of the mass anomalous dimension [40].
Five loop M S predicts two real zeros at g> = 5.11 and
g* = 6.52 for thirteen flavors, as shown in Figure 4. It did
not escape our attention that new lattice studies of the run-
ning coupling with thirteen flavors would be within easy
reach of the 5-loop M S predictions.




Credible proof of conformal behavior based on the (-
function requires two necessary steps in strongly coupled
gauge theories. First, the critical gauge coupling g has
to be determined where the scheme-dependent 3-function
vanishes and signals the location of the conformal IRFP.
The slope of the S-function at the fixed point is a scheme-
independent scaling exponent w which controls the leading
conformal scaling corrections to fermion mass deforma-
tions close to the IRFP [2, 42-44]. The choice in scheme
dependence can move the position of the conformal IRFP
but cannot destroy its existence, or change the universal
scaling exponent w. These are very demanding criteria,
unmatched in lattice simulations while reporting zeros in
the S-function.
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