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We calculate the energy and angular momentum fluxes across the event horizon of a tidally
deformed, rapidly rotating black hole to next-to-leading order in the curvature of the external
spacetime. These are expressed in terms of tidal quadrupole moments and their time derivatives,
which provide a characterization of a generic tidal environment. As an application of our results,
we provide an expression for the energy and angular-momentum fluxes across the horizon when the
black hole is a member of a binary system on a slowly-moving, quasi-circular orbit. Our expressions
are accurate to 1.5 post-Newtonian order beyond the leading-order fluxes, but they are valid for
arbitrary mass ratios. We compare our results to those previously obtained in the case of an extreme
mass ratio binary, and find that they do not agree at the 1.5 post-Newtonian order. We investigate
a number of possible sources for this discrepancy, but are ultimately unable to resolve it.

PACS numbers: 04.25.Nx, 04.30.Db, 95.30.Sf 04.70.-s

I. INTRODUCTION

Astrophysically realistic black holes (BHs) are never in
isolation. From the viewpoint of a given background BH,
the external universe induces gravitational perturbations
that heat and torque the background BH. This heating
and torquing is a flux of energy and angular momentum
across the background BH’s horizon that lead to a change
in its mass and spin. These fluxes are sometimes called
horizon fluxes [1, 2] or BH absorption [3] to distinguish
them from the fluxes associated with gravitational radi-
ation carried out to infinity.
The horizon fluxes can be computed analytically by

integrating the Teukolsky equation for the Newman-
Penrose (NP) scalar ψ0, assuming that the effect of the
external universe is small [4]. In these circumstances,
ψ0 can be expanded in powers of the ratio of the back-
ground BH’s mass to the radius of curvature of the ex-
ternal universe, which can be parametrized with electric
and magnetic tidal tensors. The horizon fluxes can then
be computed by evaluating ψ0 at the horizon and per-
forming some operations on it.
Until recently, the calculation of the horizon fluxes for

generic, slowly-varying tidal environments had only been
carried out to leading order in an expansion in inverse
powers of the radius of curvature of the external uni-
verse [4–6]. In [7] we calculated these fluxes to next-to-
leading order. Here, we improve on these results in two
ways: (i) we correct the calculation of the horizon fluxes
for binary BHs in a slowly-moving, quasi-circular orbit
at 1.5 PN order, completing our previous computation
in [7], and (ii) we provide ready-to-use flux formulae for
comparisons with numerical relativity and for direct use
in gravitational-wave modeling.
Ready-to-use expressions are useful because they en-

able the construction of accurate templates for the grav-
itational waves emitted by inspiraling BH binaries. This
calculation requires knowledge of how the orbit decays

due to the loss of energy and angular momentum to the
waves. Through a balance law [8], the rate of change of
the orbital binding energy and angular momentum are
related to the energy and angular momentum fluxes out
to infinity and into the BHs horizons. For a quasi-circular
binary composed of spinning BHs, the leading-order term
in a post-Newtonian (PN) expansion1 of the energy hori-
zon flux is proportional to V 15, where V is the orbital
velocity. This corresponds to a 2.5 PN order correction
relative to the leading-order (quadrupole) energy flux ra-
diated out to infinity, which is proportional to V 10. In
the test-particle limit and for quasi-circular orbits, the
horizon energy flux into a spinning BH is known to 20PN
order relative to the V 15 leading-order horizon flux [9–
13]. Here we provide expressions for the horizon energy
and angular-momentum fluxes accurate through 1.5PN
order relative to the leading-order horizon flux, i.e. up to
V 18, but valid for arbitrary mass ratio. These expressions
would aid in the construction of waveform templates for
comparable-mass, spinning BH quasi-circular inspirals.
A surprising outcome of our calculations is that we

do not find agreement between our results in the limit
of an extreme mass ratio, and the test-particle calcula-
tion of [11] at 1.5PN order. We do find agreement at
leading-order and at 1PN order. We describe a number
of possible culprits for this discrepancy, but ultimately
we fail to resolve it. We must thus, unfortunately, leave
this question open for the time being.

1 The PN approximation is one in which the field equations are
solved as an expansion in small velocities (relative the speed of
light) and weak fields. A term of relative O(V 2A) is said to be
of Ath PN order.
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II. FORMALISM

Consider a perturbed Kerr BH with mass M , spin an-
gular momentum J = Ma, and dimensionless spin pa-
rameter χ = J/M2. The horizon fluxes of energy and
angular momentum can be computed from (see [7] for
more details)

〈

dM

dv

〉

=
r2+ + a2

4κ

∑

m

[

2κ

∫

〈|Φm+ |2〉 sin θdθ

− imΩH

∫

〈Φ̄m+Φm− − Φm+ Φ̄m− 〉 sin θdθ
]

, (1)

and
〈

dJ

dv

〉

= −r
2
+ + a2

4κ

∑

m 6=0

(im)

∫

〈Φ̄m+Φm− − Φm+ Φ̄m− 〉 sin θdθ ,

(2)

where (v, r, θ, ψ) are ingoing Kerr coordinates, while κ =
(r+−M)/(r2++a2) and ΩH = a/(r2++a2) are the surface
gravity and the angular velocity of the unperturbed BH,
respectively [4]. The integrated curvatures Φm± (and their

complex conjugates Φ̄m± ) are defined through

Φm+ (v, θ) = eκv
∫ ∞

v

e−(κ−imΩH )v′Ψm(v′, θ)dv′ , (3)

Φm− (v, θ) =

∫ v

−∞

eimΩHv
′

Ψm(v′, θ)dv′ , (4)

where Ψ is the Teukolsky potential, defined by

Ψ(v, θ, ψ) = − ∆2

4(r2 + a2)2
ψ0

∣

∣

∣

∣

r=r+

, (5)

where ∆ = r2−2Mr+a2, r± =M±
√
M2 − a2, and ψ0 is

one of the NP scalars in the Kinnersley tetrad. The axial
symmetry of the Kerr solution allows us to decompose Ψ
in decoupled azimuthal modes,

Ψ(v, θ, ψ) =
∑

m

Ψm(v, θ)eimψ . (6)

The first law of BH mechanics allows us to also compute
the rate of change of the horizon area via

κ

8π

〈

dA

dv

〉

=
r2+ + a2

2

∑

m

∫

〈|Φm+ |2〉 sin θdθ . (7)

The NP scalar ψ0 can be computed as an expansion in
inverse powers of the radius of curvature of the external
universe. Working in Fourier space, we express it as [7]

ψ̃0 =
∑

ℓm

z̃ℓm(ω)Rωℓm(r) 2S
ωℓm(θ)eimψ , (8)

where Rωℓm(r) are functions that satisfy the ra-
dial Teukolsky equation, 2S

ωℓm(θ) are spin-weight +2
spheroidal harmonics, and z̃ℓm(ω) are complex ampli-
tudes. A calculation of the horizon fluxes requires the
determination of these ingredients, which are then in-
serted in the expressions of the integrated curvatures be-
fore substitution into the flux formulae.

III. ASYMPTOTIC MATCHING

The functions Rωℓm(r) must satisfy the radial Teukol-
sky equation, and they must be regular at the BH’s hori-
zon. Because the differential equation is homogeneous,
the regular solution is determined up to an overall mul-
tiplicative constant which can be chosen arbitrarily. The
information about the tidal environment is then encoded
in the amplitudes z̃ℓm(ω), which must be determined. We
adopt the following strategy.
In Appendix A we construct the metric of a slowly

rotating BH that is placed in a generic, time-dependent
tidal environment characterized by quadrupole moments
Eab(v) and Bab(v). In this computation the BH’s dimen-
sionless angular momentum χ is assumed to be small, and
all equations are linearized with respect to χ. The calcu-
lation generalizes [14] to account for the time-dependence
of the tidal moments, whose derivatives with respect to
v enter in a 1.5PN calculation of the horizon fluxes. The
metric of the perturbed BH is next used to compute the
NP scalar ψ0, which is then evaluated in the asymptotic
region r ≫ M . This expression is exploited to fix the
normalization of Rωℓm(r) and determine the amplitudes
z̃ℓm(ω) in terms of the tidal moments.
It may appear objectionable that a ψ0 calculated to

linear order in χ—the one obtained in Appendix A—is
used to determine the asymptotic behavior (and there-
fore the amplitude of each mode) of a ψ0 calculated to
all orders in χ—the one that appears in the flux for-
mulae of Sec. II. Doesn’t the asymptotic behavior of ψ0

contain terms of higher order in χ? The answer to this
objection, the key to a successful implementation of our
strategy, goes as follows. First, our 1.5PN calculation
of the fluxes requires amplitudes z̃ℓm(ω) that can be de-
termined from the leading-order asymptotic behavior of
Rωℓm(r) together with subleading terms of relative order
M/r; additional terms of order (M/r)2 and beyond are
not required. Second, a study of the Teukolsky equation
[see Appendix B, especially Eqs. (B15) and (B16)] reveals
that once the leading-order asymptotic term in Rωℓm(r)
is chosen to be independent of χ, the subleading term of
order M/r is necessarily linear in χ; higher-order terms
in χ appear only in the additional terms of order (M/r)2

and beyond. These observations therefore imply that a
1.5PN calculation of the horizon fluxes requires ampli-
tudes z̃ℓm(ω) that can be determined from the asymp-
totic behaviour of ψ0 calculated to first order in χ. This
information can be provided by the calculation presented
in Appendix A.
The final outcome of this exercise, in which we match

Eqs. (A13) to Eq. (8), is a radial function normalized by

Rω2m(r) ∼ 1 + iω

(

r

3
+ 2M ln

r

2M
+M − π2

3
iMmχ

)

,

(9)
and an amplitude given by

z̃2m ≡ z̃m,0 + 2iMωz̃m,1, (10)
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with

z̃m,0 = α̃m + iβ̃m, (11)

z̃m,1 = −mχ
(

95

48
β̃m − 299

108
iα̃m

)

, (12)

where the quantities αm and βm are defined in terms of
Eab and Bab in Appendix A.

We note that the metric of Appendix A is not com-
plete, because it does not include terms involving the
octupole tidal moments. In an expansion of the metric
in inverse powers of the radius of curvature of the ex-
ternal universe, the octupole moments do appear at the
same order as terms involving the time derivative of the
quadrupole tidal moments. Nevertheless, the octupole
moments can be ignored, because they appear only in
the ℓ = 3 mode of ψ0, which does not contribute to the
horizon fluxes at 1.5PN order.

IV. TEUKOLSKY FUNCTION EVALUATED ON

THE HORIZON

The radial function can be decomposed as Rω2m =
R2m,0 + ωMR2m,1 + O(ω2) with the asymptotic behav-
ior of each term obtained from Eq. (9). The components
were obtained in [7] by solving the radial Teukolsky equa-
tion order by order in ω. We have

R2m,0=A2mx
−2(1+x)−2F (−4, 1; 2imγ − 1;−x), (13)

where F (a, b; c; z) is the hypergeometric function. The
constant A2m is determined by ensuring that the asymp-
totic behavior of this solution matches Eq. (9):

A2m=− i

6
mγ (1 + imγ)

(

1 + 4m2γ2
)

, (14)

where γ := a/(r+ − r−). We also have

R2m,1=A R2m,0 +R2m,p, (15)

where A is a constant and R2m,p is the particular solution
given in Eqs. (81) and (82) of [7].

As first noted in [7], to leading order the asymptotic
behavior of R2m,1 is ir/3, thus satisfying Eq. (9). The

subleading behavior fixes the constant A. This informa-
tion was not yet available at the time of [7], and we made
the choice of fixing A through the requirement that the
NP scalar be regular in the χ→ 0 limit. We must, how-
ever, determine A by demanding that Eq. (15) agrees
with Eq. (9):

A = 2i
[

ψ(0)
(

3 + im
χ

σ

)

+ γE + lnσ
]

+
i

3
(4 + 5σ)

−2
1 + σ

mχ
+
m

3
(4+π2)χ−2i

1 + σ

2σ+imχ
−4m

(1 + σ)χ

σ2+m2χ2
.

(16)

where γE is the Euler gamma, ψ(n)(x) is the polygamma

function, and σ =
√

1− χ2. With this result we can
evaluate ψ0 at the horizon and retrace our steps from [7]
to calculate the horizon fluxes.

V. HORIZON FLUXES

The calculation of the horizon fluxes from ψ0 is de-
scribed in detail in [7]. Here we omit details and directly
present the final results. Defining the invariants

E1 = EabEab , B1 = BabBab , (17)

E2 = EabsbEac sc , B2 = BabsbBac sc , (18)

E3 = (Eabsasb)2 , B3 = (Babsasb)2 , (19)

E4 = ǫpqcEpaĖqasc , B4 = ǫpqcBpaḂqasc , (20)

E5 = ǫpqcEpa Ėqb sasbsc , B5 = ǫpqcBpaḂqbsasbsc , (21)

where sa = (0, 0, 1) is the direction of the BH spin and

Am ≡ 1

2

[

ψ(0)
(

3 + im
χ

σ

)

+ ψ(0)
(

3− im
χ

σ

)]

, (22)

Bm ≡ 1

2i

[

ψ(0)
(

3 + im
χ

σ

)

− ψ(0)
(

3− im
χ

σ

)]

, (23)

we find

〈Ṁ〉 = 〈Ṁ (5)〉 , (24)

〈J̇〉 = 〈J̇ (4)〉+ 〈J̇ (5)
1 〉+ 〈J̇ (5)

2 〉+ 〈J̇ (5)
3 〉 , (25)

〈Ȧ〉 = −8πχ

σ

[

〈J̇ (4)〉+ 〈J̇ (5)
1 〉+ 〈J̇ (5)

3 〉
]

+ 〈Ȧ(5)
2 〉 , (26)

where

〈Ṁ (5)〉 = 2M5χ

45

[

−4
(

3χ2 + 1
)

〈E4 +B4〉+ 15χ2〈E5 +B5〉
]

, (27a)

〈J̇ (4)〉 = −2M5χ

45
[8(1 + 3χ2)〈E1 +B1〉 − 3(4 + 17χ2)〈E2 +B2〉+ 15χ2〈E3 +B3〉] , (27b)

〈J̇ (5)
1 〉 = 2M6χ

135

{

8[−5− 4σ + 6(2 + σ)χ2 + 9χ4 + 6(A2 + γE + lnσ)(1 + 3χ2)]〈Ė1+Ḃ1〉
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+3[20 + 16σ − (50 + 31σ)χ2 − 54χ4 − 32A2(1 + 3χ2) + 2A1(4− 3χ2)− 6(γE + lnσ)(4 + 17χ2)]〈Ė2+Ḃ2〉

+3[8A2(1 + 3χ2)− 2A1(4− 3χ2) + 30(γE + lnσ)χ2 + χ2(2 + 7σ + 18χ2)]〈Ė3+Ḃ3〉
}

+
4M6χ

135

{

16(3B2 − χπ2)(1 + 3χ2)〈E4+B4〉+ 3
[

χπ2(4 + 17χ2) + 2B1(4− 3χ2)− 16B2(1 + 3χ2)
]

〈E5+B5〉
}

,

(27c)

〈J̇ (5)
2 〉 = 4M6

135

{

4[3(1 + σ) + (23 + 39σ)χ2 − 6(5− 3σ)χ4]〈E4+B4〉 − 3χ2[29 + 45σ − (38− 30σ)χ2]〈E5+B5〉
}

,

(27d)

〈J̇ (5)
3 〉 = 598M6χ2

1215

[

16
(

3χ2 + 1
)

〈

E4 +
855

1196
B4

〉

− 3(4 + 17χ2)
〈

E5 +
855

1196
B5

〉

]

, (27e)

〈Ȧ(5)
2 〉 = 32M6πχ

135σ

{

−8[3(1 + σ) + 8(2 + 3σ)χ2 − 3(5− 3σ)χ4]〈E4+B4〉+ 6χ2[22 + 30σ − (19− 15σ)χ2]〈E5+B5〉
}

.

(27f)

The superscripts (4) or (5) gives the order of each term
in an expansion in powers of 1/R, with R denoting the
radius of curvature of the external universe.

VI. CIRCULAR BINARY

One of the most interesting astrophysical applications
of our results is the case of a circular binary with an
external BH with mass Mext and dimensionless spin pa-
rameter χext and a background BH. The angular velocity
of the tidal fields in the BH frame is [14]

Ω = ǫ

√

MT

b3

[

1− 1

2
(3 + η)V 2 − 1

2
χ̄V 3 +O(V 4)

]

, (28)

where ǫ = +1 (−1) if the orbital and spin angular
momentum of the unperturbed BH are aligned (anti-
aligned), η = ffext is the symmetric mass ratio, MT =
M + Mext is the total mass, f = M/MT and fext =
Mext/MT are the mass fractions, b is the orbital sep-
aration in harmonic coordinates, V = (MT /b)

1/2, and
χ̄ ≡ f (1 + f)χ+3ηχext. Equation (28) corrects Eq. (120)
in [7], which did not include the V 3 term.
The angular velocity of the tidal fields is not equal to

the orbital angular velocity. The latter is given in the
PN barycentric frame by

ωorb =

√

MT

b3

[

1− 1

2
(3− η)V 2 − 1

2
χ̃V 3 +O(V 4)

]

, (29)

where χ̃ ≡ (2f2 + 3η)χ + (3η + 2f2
ext
)χext. Even though

functionally Ω looks similar to ωorb, these expressions are
clearly not the same because χ̃ 6= χ̄.
Evaluation of the horizon fluxes when the background

BH is a member of a binary requires expressions for the
tidal fields that are accurate to the appropriate PN or-
der. The tidal fields were obtained to 1PN order in [15],
and extended to 1.5PN order in [14]; they can be used
to compute the horizon fluxes to O(V 3) relative to the

leading-order horizon absorption term. The relevant elec-
tric tidal fields are

1

2
(E11+E22) = −Mext

2b3

[

1 +
f

2
V 2 − 6fextχextV

3 +O(V 4)

]

,

(30)

1

2
(E11−E22) = −3Mext

2b3

[

1 +
f − 4

2
V 2 − 2fextχextV

3

+O(V 4)
]

cos 2Ωt, (31)

E12=−3Mext

2b3

[

1+
f−4

2
V 2−2fextχextV

3+O(V 4)

]

sin 2Ωt ,

(32)

and the relevant magnetic tidal fields are

B13 = −3Mext

b3
V (1− fextχextV ) cosΩt+O(V 3) , (33)

B23 = −3Mext

b3
V (1− fextχextV ) sinΩt+O(V 3) , (34)

improving Eqs. (122)–(126) of [7]. Defining

CV = −16

5
M2f2η2(1 + σ)V 12

{

1 + 3χ2

−
[

3 +
51

4
χ2 − (1 + 3χ2)f

]

V 2

+

{

8

3
ǫf(1 + 3χ2)(π2χ− 3B2)−

3

2
fextχext(4 + 7χ2)

− 4

27
ǫfχ

[

362 + 135σ+(762+ 81σ)χ2
]

}

V 3+O(V 4)

}

,

(35)

the energy and angular momentum flux become

〈

dJ

dv

〉

= (ΩH − Ω)CV , (36)

〈

dM

dv

〉

= Ω(ΩH − Ω)CV , (37)
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respectively, while the change in horizon area is simply

〈

dA

dv

〉

= −8π

κ
(ΩH − Ω)2CV . (38)

These expressions correct Eqs. (127)− (129) in [7], which
miscalculated the V 15, V 18 and V 15 terms respectively.
Equations (36)-(38) are presented in their factorized

form, in that the fluxes are all proportional to ΩH − Ω.
This form includes more terms than what we are for-
mally allowed to keep. For example, the energy flux in
Eq. (37) contains terms proportional to V 19 to V 24, none
of which we are formally allowed to retain, since Eq. (35)
has uncontrolled remainders of O(V 4). However, these
factorized expressions make it clear that the fluxes van-
ish in the case of corotation, which we expect on physical
grounds. Comparison with numerical simulations could
determine whether the factorized forms are more accu-
rate than the fully expanded forms.
The expressions for the horizon fluxes computed above

have been written in terms of the variable V =
√

MT /b,
which is clearly coordinate dependent through the har-
monic orbital separation b. A more meaningful expres-
sion may be obtained if we adopt x = (MTωorb)

1/3 as a
coordinate-invariant expansion parameter. The relation
is provided by

V = x

[

1 +
1

6
(3− η)x2 +

1

6
χ̃x3 +O(x4)

]

, (39)

while the angular velocity of the tidal field is

Ω = ǫ
x3

MT

[

1− ηx2 +
1

2
(χ̃− χ̄)x3 +O(x4)

]

, (40)

Moreover, Eqs. (36)-(38) are perhaps not in an ideal
form yet, because the time derivatives refer to v, an
advanced-time coordinate on the BH horizon. This is
related in a simple way to t̄, a time coordinate defined in
the local asymptotic rest-frame of the BH. The relation
between t̄ and the PN barycentric time t is given by [15]

t =

[

1 +
1

2
(2f + 3fext)fextx

2 +O(x4)

]

t̄, (41)

and it was confirmed in [14] that there are no terms at
order x3.
We thus arrive at expressions that could be directly

implemented in gravitational waveform construction for
comparable-mass, spinning BH binaries in quasi-circular
orbits. Translating the d/dv-fluxes to d/dt-fluxes and
expressing them in terms of x, we obtain

〈

dJ

dt

〉

= (ΩH − Ω)Cx, (42)

〈

dM

dt

〉

= Ω(ΩH − Ω)Cx, (43)

〈

dA

dt

〉

= −8π

κ
(ΩH − Ω)2Cx. (44)

where now Ω is given by Eq. (40) and

Cx = −16

5
M2f2η2(1 + σ)x12

{

1 + 3χ2

+
1

4

[

3(2 + χ2) + 2f(1 + 3χ2)(2 + 3f)
]

x2

+

{

8

3
ǫf(1 + 3χ2)(π2χ− 3B2)− 2fχ(1 + 3χ2)(f − 3)

− 4

27
ǫfχ

[

362 + 135σ+(762+ 81σ)χ2
]

−1

2
fextχext(4fext − 3(1 + 4f)χ2)

}

x3+O(x4)

}

. (45)

Eventual comparisons with numerical results on the
tidal heating and torquing of a spinning BH will have
to clarify the relation between the time coordinate used
in the numerical simulation and the PN barycentric
time. It may be wiser to adopt a coordinate-invariant
parametrization based on the orbital angular velocity
ωorb, which monotonically increases with time because
of radiation reaction. An expression for dωorb/dt that in-
cludes 1.5PN terms can be found in Eq. (4.14) of [16].
Using x = (MTωorb)

1/3 instead of ωorb we find

〈

dJ

dx

〉

= (ΩH − Ω)C′
x, (46)

〈

dM

dx

〉

= Ω(ΩH − Ω)C′
x, (47)

〈

dA

dx

〉

= −8π

κ
(ΩH − Ω)2C′

x. (48)

where

C′
x = −1

2
M2f2η(1 + σ)x3

{

1 + 3χ2

+

[

1

336
(1247 + 2481χ2) +

5

4
(3− f)f(1 + 3χ2)

]

x2

+

{

8

3
ǫf(1 + 3χ2)(π2χ−3B2)+

7

12
fχ(1 + 3χ2)(21+2f)

− 1

12
fextχext

[

−89 + 14f − 21(17− 2f)χ2
]

− 4

27
ǫfχ

[

362 + 135σ+(762+ 81σ)χ2
]

}

x3+O(x4)

}

.

(49)

We recall that the fluxes are here presented in a
factorized-resummed form and include uncontrolled PN
order terms.

VII. SMALL MASS RATIOS

The expressions for the horizon fluxes derived here are
limited to 1.5PN order, but they are valid for arbitrary
mass ratios. On the other hand, Ref. [11] uses the for-
malism of [17, 18] to calculate the energy flux to higher
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PN order (4PN), but the expression is restricted to test
particles. Appendix D in [11] gives the energy flux across
the horizon as a function of x = (MTωorb)

1/3 when a test
particle orbits a Kerr BH. This result truncated to 1.5PN
order should be identical to our Eq. (43) in the limit of
small mass ratios. We find that this is not the case.
The difference between our Eq. (43) and the test-mass

result of [11] arises at the 1.5PN order, and is given by

8

135
x18η2χ2[872 + 2751χ2 − 72π2(1 + 3χ2)]. (50)

Despite the extensive investigations of our calculation de-
scribed in the following section, we are unable to locate
the source of the disagreement.

VIII. DISCUSSION AND CONCLUSIONS

The discrepancy between our results in the test-mass
limit and the results of [11] merits further investigation.
Below we revisit the individual elements of our calcula-
tion and describe how we have checked their validity.

A. Solution to the Teukolsky equation

The first ingredient of our calculation—and indeed
of the calculation of [11]—is a homogeneous solution
to the Teukolsky equation to the appropriate order in
Mω ∼M/R. Mano, Suzuki, and Takasugi [19] found an
exact solution to the homogeneous Teukolsky equation as
a series in hypergeometric and Coulomb functions. This
solution is utilized in the calculation of [11] but not here
(or in [7]), because we opted to integrate the Teukolsky
equation order-by-order in ω.
To test whether our solution to the Teukolsky equation

contains errors that could account for the energy flux
discrepancy we first substituted it back to the Teukol-
sky equation and determined that it is indeed a solution.
We also repeated our calculations using the series solu-
tion of [19]. The details are provided in Appendix B.
We find that the flux calculated in this way is identical
to Eq. (43), showing that our solution to the Teukolsky
equation is correct.

B. Asymptotic matching

With a solution to the homogeneous Teukolsky equa-
tion in hand, our next step is to determine its amplitude
by examining its asymptotic behavior at infinity. This
is obtained in Appendix A, where we construct the per-
turbed metric of a slowly rotating BH and extract ψ0

from this construction. We have investigated a number
of subtleties of the calculation (listed below) that might
have led to an incorrect NP scalar at infinity, but without
encountering an error.

1. We use the metric of a tidally deformed, slowly ro-
tating BH to calculate the asymptotic expression
of the NP scalar to all orders in χ. We have shown
that corrections in the NP scalar that enter at rel-
ative order M/r must be linear in χ, so they are
fully captured with a metric linearized in χ. This
conclusion is supported by Eq. (B16), which reveals
that indeed, all M/r terms are linear in χ. Higher
orders in χ will appear through terms that go as
a2/r2 ∼ χ2M2/r2. Such terms would be neces-
sary in a calculation of the fluxes to next-to-next-
to-leading order, but they are not needed here.

2. We ignore the octupole tidal moments that en-
ter the perturbed metric at the same order as the
derivatives of the quadrupole moments. However,
octupole moments affect only the ℓ = 3 mode of
the NP scalar [20], which does not contribute to
the 1.5PN fluxes [7]. So even though our perturbed
metric is not complete at next-to-leading order, it
is sufficient for our purposes.

That the ℓ = 3 mode does not affect the fluxes to
next-to-leading order is not obvious; after all it is
the next-order mode after the leading ℓ = 2 one.
However, as explained in more detail in [7], the NP
scalar needs to be squared and angle-averaged over
in order to calculate the horizon fluxes. Squaring
makes terms obtained by a product of ℓ = 3 modes
too high of an order for our purposes, while angle-
averaging kills any cross-terms mixing ℓ = 3 and
ℓ = 2 modes. As a consequence, all ℓ = 3 modes
drop out of the next-to-leading horizon fluxes.

3. The metric of Eq. (A5) is written in light-cone co-
ordinates in which the azimuthal angle φ is con-
stant on incoming null geodesics. On the other
hand, the NP scalar is decomposed in spherical har-
monics with an angle ψ that is constant on the in-
going principal congruence of the Kerr spacetime.
The mapping between the two angles is given in
Eq. (A4) to leading order in χ. As we have ar-
gued, this relation, which neglects terms of order
χ2 and beyond, is adequate for the computation of
the asymptotic behavior of ψ0.

4. A number of other possible coordinate mismatches
have also been explored. For example, the radial
coordinate rg that enters the metric of Eq. (A5)
could be related to the rT of the Teukolsky equation
by an equation of the form rg = rT+ ka2/rT+ · · · ,
where k is an unknown constant, and the remain-
ing terms are higher-order in a. But Eqs. (A13)
show that such a mismatch would have no impact
on our results: transforming the expressions from
rg to rT would keep them unchanged, with the mis-
match merely contributing to the neglected terms
of orderM/rT. As another example, the advanced-
time coordinate vg of the perturbed metric could
differ from the vT of the Teukolsky equation by a
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term of the form k′a2/r+ · · · . A careful inspection
of the developments in Appendix A reveals that
again, such a mismatch has no impact on our re-
sult.

5. Apart from coordinate differences, matching calcu-
lations can suffer from differences in how the space-
time parameters (M and a) are defined in each part
of the calculation. However, such a difference would
appear at leading order in the fluxes. The fact that
we only find a discrepancy at relative order x3 in-
dicates that there is a problem with a certain PN
expansion, rather than a parameter mismatch.

After this examination we find no reason to suspect the
matching procedure and must conclude that it is robust.
This conviction is reinforced by the fact that we have ver-
ified that the NP scalar of Eq. (A10) satisfies the Teukol-
sky equation to leading order in χ.

C. Tidal Fields

The quadrupole tidal fields caused by a companion BH
in a circular binary with the background BH were calcu-
lated in [14]. A slowly rotating BH metric that included
only quadrupole tidal moments was expanded to 1.5PN
order and matched to a PN metric valid to the same
order, after both metrics were expressed in the same co-
ordinate system. The result of the matching procedure
were the quadrupole tidal fields Eab and Bab as a function
of the parameters that appear in the metric.
Two ingredients are missing from the perturbed met-

ric of [14] in order for it to be complete at 1.5PN order:

time derivatives of the quadrupole moments Ėab and Ḃab,
and octupole moments Eabc and Babc. The latter can be
safely ignored since the 1.5PN horizon fluxes depend only
on the ℓ = 2 mode of the NP scalar; octupole moments
and the resulting ℓ = 3 modes enter at higher orders.
Moreover, it was argued in [14] that terms proportional

to Ėab and Ḃab result only in a phase shift of the tidal
fields. As such, they do not affect our flux calculations.
We should also note that terms proportional to χĖab and
χḂab were not explicitly included in the analysis of [14];
however, Eq. (A5) implies that they make no contribu-
tion at 1.5PN order.
Finally, we should note that the 1.5PN contributions

to the tidal fields calculated in [14] depends only on the
external BH and not on the background BH, as does the
1PN term. This seemingly curious result can be easily
explained: the tidal fields are caused by the external BH
and depend on the background BH only through nonlin-
ear interactions between the two BHs. Therefore they
have no contribution at 1.5PN order.
We conclude that the tidal fields obtained in [14] are

accurate enough for our purpose of obtaining next-to-
leading order horizon fluxes and we find no reason to
suspect their derivation.

D. Conclusions

We have calculated the energy and angular-momentum
horizon fluxes, as well as the change in horizon area, for
a Kerr BH in a circular binary with another BH to next-
to-leading order in the curvature of the external space-
time. When taking the test-particle limit of our results
we do not recover the results of [11]. We have performed
a systematic analysis of our calculations in an attempt
to locate the cause of the discrepancy, though without
success. Apart from the conceptual issues we extensively
explored in the previous subsections, we can confidently
rule out computational errors: our calculation was per-
formed three times independently, always yielding the
same result.
Even though we cannot confidently locate the origin of

the discrepancy, a simple observation provides a clue: our
result contains factors of π2 while the test-particle one
does not. These factors originate form the asymptotic
behavior of the Teukolsky function calculated in App. A;
see Eq. (A13) and the subsequent discussion. It then
would be reasonable to speculate that the discrepancy
originates from the matching procedure, however, we find
no further indication that this might be the case.
As a concluding remark, we mention that the results

of [11] were checked against numerical results in [1, 21–25]
both employing the MST machinery of [19] and with the
independent formulation of [26, 27]. Moreover, the ana-
lytic calculation of [11] was independently verified in [28],
further reinforcing confidence in the results of [11]. We
must unfortunately leave this matter unresolved for the
time being.
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Appendix A: Slowly rotating BH in a

time-dependent tidal environment

In order to specify the asymptotic behavior of the NP
scalar when r ≫ M , we construct the metric of a slowly
rotating BH with mass M and dimensionless spin vec-
tor χa placed in a tidal environment characterized by
quadrupole tidal moments Eab(v) and Bab(v). The met-
ric of the deformed BH is calculated in a region that ex-
cludes the external matter responsible for the tidal field.
We generalize the results of [14] by accounting for the
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time dependence of the tidal moments; terms propor-
tional to Ėab = dEab/dv and Ḃab = dBab/dv are now
included in the metric, but second-derivative terms are
neglected. With this metric in hand, we calculate the NP
scalar ψ0 and extract its asymptotic behavior.

1. Tidal potentials

The construction of tidal potentials is presented in de-
tail in [14]. Here we summarize the main results, and

introduce new potentials associated with Ėab and Ḃab.
The potentials are obtained by combining χa, Eab,

Bab, and Ωa = [sin θ cosφ, sin θ sinφ, cos θ] in various ir-
reducible ways, with each potential having a specific mul-
tipole order ℓ and a specific parity label (even or odd).
The coupling of χa and Eab produces the pseudotensors

Fa = Eabχb, Fabc = E〈abχc〉, (A1)

with angular brackets denoting symmetrization and trace
removal. The coupling of χa and Bab produces the tensors

Ka = Babχb, Kabc = B〈abχc〉. (A2)

The independent components of Eab, Bab, Fa, Fabc, Ka,
Kabc and χa can be packaged in spherical-harmonic co-
efficients Eq

m, Bq
m, Fd

m, Fo
m, Kd

m, Ko
m, and χ

d
m respectively.

The definitions are given in Table II of [14].
The tidal potentials are decomposed in scalar, vector,

and tensor spherical harmonic functions of the angular
coordinates θA = (θ, φ). The decomposition involves the
scalar harmonics of Table I of [14], and the even- and
odd-parity harmonics of Eqs. (2.12) and (2.13) of [14].
The decomposition of the tidal potentials in spherical

harmonics is described by Eq. (2.15) of [14]. Together
with these we introduce “dotted potentials” that are con-
structed in an analogous way from Ėab = dEab/dv and

Ḃab = dBab/dv. For example,

Ėq =
∑

m

Ėq
mY

2m, Ḟd
A =

∑

m

Ḟd
mX

1m
A ,

K̇o
AB =

1

3

∑

m

K̇o
mY

3m
AB,

are dotted potentials, with Ėq
m, Ḟd

m, and K̇o
m constructed

from Ėab and Ḃab (and χa) in the manner described in
Table II of [14].

2. Metric of the deformed BH

The metric of an isolated, slowly rotating BH of mass
M and dimensionless spin χ can be expressed as

ds2 = −fs dv2 + 2 dvdr + r2dΩ2 − 2
2χM2

r
sin2 θ dvdφ,

(A3)
where fs = 1 − 2M/r and dΩ2 = ΩABdθ

AdθB =
dθ2 + sin2 θ dφ2. The metric is displayed in coordinates
(v, r, θ, φ) that are well-behaved on the event horizon.
They are tied to the behavior of incoming null geodesics
that are tangent to converging null cones: each surface
v = constant is a null hypersurface, the null generators
move with constant values of θ and φ, and −r is an affine
parameter on each null geodesic [29]. The azimuthal co-
ordinate φ differs from ψ, which is constant on the in-
going principal congruence of the Kerr spacetime; the
relation is

ψ = φ− χ
M

r
+O(χ2). (A4)

The metric of a slowly rotating BH immersed in a tidal
field produced by remote matter is obtained by perturb-
ing Eq. (A3). The methods to construct the perturbation
are described in detail in [14], in the case when the time
dependence of the tidal moments can be neglected.

We continue to work in light-cone coordinates, so that
the coordinates (v, r, θ, φ) keep their geometrical meaning
in the perturbed spacetime. This implies that gvr = 1,
grr = 0 = grA, so that gvv, gvr, gvA, and gAB are the
only nonvanishing components of the metric [20].

The perturbed metric is written as

gvv = −fs − r2eq1 Eq +
1

3
r3eq2 Ėq − r2êq1 χ∂φEq + r3êq2 χ∂φĖq + r2kd1 Kd + r3kd2 K̇d − r2ko1 Ko + r3ko2 K̇o, (A5a)

gvr = 1, (A5b)

gvA =
2M2

r
χd
A − 2

3
r3
(

eq4 Eq
A − bq4 Bq

A

)

+
1

3
r4
(

eq5 Ėq
A − bq5 Ḃq

A

)

− r3 χ∂φ
(

êq4Eq
A − b̂q4 Bq

A

)

+ r4 χ∂φ
(

êq5Ėq
A + b̂q5 Ḃq

A

)

− r3
(

fd
4 Fd

A − kd4 Kd
A

)

+ r4
(

fd
5 Ḟd

A + kd5 K̇d
A

)

+ r3
(

f o
4 Fo

A + ko4 Ko
A

)

+ r4
(

f o
5 Ḟo

A + ko5 K̇o
A

)

, (A5c)

gAB = r2ΩAB − 1

3
r4
(

eq7 Eq
AB − bq7 Bq

AB

)

+
5

18
r5
(

eq8 Ėq
AB − bq8 Ḃq

AB

)

− r4 χ∂φ
(

êq7 Eq
AB − b̂q7 Bq

AB

)

+ r5 χ∂φ
(

êq8 Ėq

AB + b̂q8 Ḃq

AB

)

− r4
(

f o
7 Fo

AB − ko7 Ko
AB

)

+ r5
(

f o
8 Ḟo

AB + ko8 K̇o
AB

)

, (A5d)
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in which êqn, b̂
q
n, k

d
n, k

o
n, f

d
n, and f o

n are functions of r
that are determined by solving the vacuum Einstein field
equations. They are listed in Table I of this paper and
in Table III of [14].
As documented in [14], the general solution for each ra-

dial function involves two types of integration constants.
The first corresponds to a redifinition of a tidal multipole
moment, and these constants can be set equal to zero
without loss of generality. The second type corresponds
to the residual freedom of the light-cone gauge, and these
constants can be assigned arbitrarily without altering the
geometrical meaning of the coordinates. In [14] the six
gauge constants γd, γq, γo, cd, cq, and co were eventually
determined by anchoring the coordinates to the null gen-
erators of the event horizon. We forego this exercise here,
and keep the constants arbitrary. In addition to these,
the new terms involving Ėab and Ḃab feature a set of six
additional constants denoted γ̇d, γ̇q, γ̇o, ċd, ċq, and ċo;
we trust that this notation will not induce confusion, but
state nevertheless that, for example, ċq is not the time
derivative of the constant cq.
We also note that the radial functions associated with

the new terms involving Ėab and Ḃab feature the diloga-
rithm function, defined by

dilog(x) = −
∫ x

1

ln t

t− 1
dt. (A6)

3. Teukolsky function

We can now use the metric obtained in Sec. A 2 to
calculate the NP scalar

ψ0 = −Cαγβδkαmγkβmδ (A7)

of a slowly rotating, tidally deformed BH. Here Cαγβδ
is the NP tensor of the perturbed spacetime, and kα

and mα are two members of a null tetrad required to
be aligned with the Kinnersley tetrad in the background
spacetime. By virtue of the algebraic structure of the NP
tensor in the background spacetime, the computation of
ψ0 requires only the perturbation of the NP tensor, and
the background tetrad vectors, which are given by

kα =

[

2

fs
, 1, 0,

χM(1 + 2M/r)

r2fs

]

, (A8)

mα =
1√
2 r

(

1− i
χM

r
cos θ

)[

iχM sin θ, 0, 1,
i

sin θ

]

(A9)

in (v, r, θ, φ) coordinates. These expressions are valid to
first order in χ.
Using the spin-weighted spherical harmonics

2Y
m
ℓ (θ, ψ), with the explicit form employed in [7]

and noting that the azimuthal dependence is described
by ψ, as defined by Eq. (A4) we find that the NP scalar

can be decomposed as

ψ0(v, r, θ, φ) =

2
∑

m=−2

ψm0 (v, r, θ, φ), (A10a)

ψm0 (v, r, θ, φ) = Rm
2 (v, r) 2Y

m
2 (θ, ψ), (A10b)

with

Rm
2 (v, r) = αm(v)Pm2 (r) + α̇m(v)MQm

2 (r)

+ iβm(v)Sm2 (r) + iβ̇m(v)MT m
2 (r), , (A11)

where αm and βm are defined in terms of Eq
m and Bq

m in
Eqs. (28) of [7], and where the radial functions are given
by

Pm2 = −1− (2y − 1)(6y2 − 6y − 1)

12(y − 1)2y2
imχ, (A12a)

Qm
2 = 2 ln(y) +

4y5 − 2y4 − 26y3 + 31y2 − 4y − 1

6(y − 1)2y2

+

[

2dilog(y) + ln(y)2 (A12b)

+
598y4 − 1214y3 + 361y2 + 204y + 33

108(y − 1)2y2

]

imχ,

(A12c)

Sm2 = −1− (2y − 1)(6y2 − 6y − 1)

12(y − 1)2y2
imχ, (A12d)

T m
2 = 2 ln(y) +

4y5 − 2y4 − 26y3 + 31y2 − 4y − 1

6(y − 1)2y2

+

[

2dilog(y) + ln(y)2 (A12e)

− 285y4 − 558y3 + 443y2 − 136y− 22

72(y − 1)2y2

]

imχ,

(A12f)

where y ≡ r/(2M). The decomposition of ψm0 includes
terms with ℓ = 2 and ℓ = 3, but the latter were not dis-
played here because they do not contribute to the horizon
fluxes. We have verified that ψ0 (with all terms included)
satisfies the Teukolsky equation linearized with respect to
χ.
The expressions displayed in Eqs. (A12) imply that the

asymptotic behavior of the radial functions is given by

Pm2 = Sm2 = −1− 2imχ
M

r
+O(M2/r2), (A13a)

Qm
2 =

r

3M
+ 2 ln

r

2M
+ 1−

(

π2

3
− 299

54

)

imχ+O(M/r),

(A13b)

T m
2 =

r

3M
+ 2 ln

r

2M
+ 1−

(

π2

3
+

95

24

)

imχ+O(M/r).

(A13c)

The constant terms in these expressions, including the
terms proportional to imχ, are important for our pur-
poses, because they determine the overall normalization
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TABLE I. Radial functions appearing in the metric of Eq. (A5) , expressed in terms of x = r/(2M).

eq2 = 3(x−1)2

x3 ln(x) + (x−1)(4x4+5x3
−27x2+7x+3)

4x5

eq5 = 2(x−1)

x2 ln(x) + (x−1)(6x4+13x3
−15x2

−9x−3)

6x5

eq8 = 3(2x2
−1)

5x3 ln(x) + (x−1)(5x3+13x2+4x−3)

5x4

bq5 = 2(x−1)

x2 ln(x) + (x−1)2(6x3+13x2+4x+1)

6x5

bq8 = 3(2x2
−1)

5x3 ln(x) + (x−1)(5x3+10x2+x−1)

5x4

êq2 = (x−1)2

x3 dilog(x) + (x−1)2

2x3 ln(x)2 − (x−1)(12x2
−9x+1)

12x5 ln(x)− γq 4x+3
48x4 + γ̇q 1

32x5 + 257
108x

−

151
27x2 + 1643

432x3 −

31
24x4 + 97

432x5 −

1
48x7

êq5 = 2(x−1)

3x2 dilog(x) + x−1
3x2 ln(x)2 − 12x2

−10x−1
18x4 ln(x)− γ̇q 2x+1

48x5 + 257
162x

−

335
162x2 + 20

27x3 + 47
324x4 + 41

648x5 −

1
18x6

êq8 = 2x2
−1

6x3 dilog(x) + 2x2
−1

12x3 ln(x)2 − (4x+1)(3x−1)

36x4 ln(x) + γq 1
72x3 − γ̇q 1

48x4 + 257
324x

−

1
8x2 −

37
324x3 + 101

648x4 + 1
72x6

b̂q5 = −

2(x−1)
3x2 dilog(x)− x−1

3x2 ln(x)2 + 12x2
−10x−1
18x4 ln(x) + cq 1

4x2 + 341
216x

−

31
24x2 −

17
27x3 + 8

27x4 + 1
9x5 + 1

54x6

b̂q8 = −

2x2
−1

6x3 dilog(x)− 2x2
−1

12x3 ln(x)2 + (4x+1)(3x−1)

36x4 ln(x) + ċq 1
8x3 + 341

432x
+ 1

8x2 −

13
36x3 + 7

108x4 −

1
216x6

kd
2 = −

(5x−1)(2x−1)(x−1)

10x5 ln(x)− cd 6x−1
32x5 + ċd 1

32x5 −

11
20x2 + 251

120x3 −

34
15x4 + 1

180x5 −

1
60x6 −

1
120x7

kd
5 = −

5x−4
10x3 ln(x)− cd 1

32x5 − ċd 1
32x5 −

13
24x2 + 14

15x3 −

3
20x4 + 19

90x5 −

1
120x6

fd
5 = −

5x−4
10x3 ln(x) + γ̇d 1

4x2 + 17
15x3 −

3
20x4 −

1
40x6

ko
2 = (3x+1)(x−1)

6x5 ln(x) + co 1520x5
−3800x4+3040x3

−660x2+30x+3
960x5 + ċo 1

32x5 −

1097
36

+ 5485
72x

−

544
9x2 + 553

36x3 −

19
36x4 −

1
360x5 + 1

6x6 + 1
72x7

ko
5 = −

4x−5
12x4 ln(x) + co 2280x5

−3800x4+1520x3
−15x−3

1920x5 − ċo 5x+1
64x5 −

1097
48

+ 5485
144x

−

551
36x2 + 1

18x3 + 79
144x4 −

43
240x5 −

7
72x6

ko
8 = −

2x−1
6x4 ln(x) + co 760x4

−760x3+66x−3
960x4 − ċo 1

32x4 −

1097
72

+ 1097
72x

−

1
4x2 −

1237
720x3 + 151

360x4 + 1
36x6

fo
5 = −

4x−5
12x4 ln(x) + γo 3x−5

16x
−

7949
144

+ 39745
432x

−

1000
27x2 −

1
9x3 + 8

9x4 −

1
4x5 −

7
24x6

fo
8 = −

2x−1
6x4 ln(x) + γo x−1

8x
+ γ̇o 1

8x3 −

7949
216

+ 7949
216x

−

1
4x2 + 5

9x4 + 1
12x6

of the Teukolsky function. We wish to call attention to
the π2 terms, and recall the observation made in Sec. VII,
that our final expressions for the fluxes disagree with
those obtained in [11] for the test-particle limit. The dis-
crepancy, given in Eq. (50), contains a term proportional
to π2, while no such term is present in the test-particle
result. The asymptotic behavior derived in Eq. (A13)
is the first introduction of factors of π2 in our calcula-
tion2, and this indeed happens for all m 6= 0 modes. This
leads us to suspect that the discrepancy might originate
in the asymptotic behavior of the Teukolsky function;
see Sec. VIII B though for a detailed defense of the above
calculation.

Appendix B: Mano-Suzuki-Takasugi radial function

In order to test the robustness of our solution to the
Teukolsky equation, we calculate the energy flux using
the series solution obtained in [19] (hereafter referred to
as MST) rather than Eqs. (13) and (15). We then use
the results of Sec. III and Appendix A to normalize the
MST radial function. The resulting energy flux is unal-
tered from Eq. (43); it suffers from the same discrepancy
from the results of [11] indicating that our solution to the
Teukolsky equation is robust.

2 The factor of π2 arises from the asymptotic behavior of the dilog
function in Eq. (A12).

The (exact) Teukolsky equation is written in Kerr co-
ordinates (v, r, θ, ψ), and each mode of the NP scalar is
decomposed as

(ψ̃0)
m
ℓ = Rmℓ (r)Smℓ (θ)eimψ , (B1)

with a tilde indicating a frequency-domain function. The
complete function is obtained by multiplying by e−iωv,
and summing over ℓ and m. To integrate the Teukolsky
equation we follow MST and define

κ =
√

1− χ2, ǫ = 2Mω, τ = (ǫ−mχ)/κ, (B2)

replace r with a new independent variable ξ defined by

r =M(1 + κ− 2κξ), (B3)

and replace Rmℓ (r) with a new dependent variable pmℓ (ξ)
defined by

Rmℓ = Nm
ℓ (−ξ)−s(1− ξ)i(ǫ−τ)pmℓ (ξ), (B4)

where Nm
ℓ is a normalization constant and s = +2. It

should be noted that the range r ≥ r+ = M(1 + κ)
corresponds to ξ ≤ 0.
The function pmℓ (ξ) is expressed in MST as a sum of

hypergeometric functions,

pmℓ =

∞
∑

n=−∞

An(ν)F (n+ν+1−iτ,−n−ν−iτ ;1−s−iǫ−iτ ; ξ),

(B5)
where the coefficients An(ν) satisfy a three-point recur-
rence relation (A0 can be set equal to unity without loss
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of generality), and ν is a generalized angular-momentum
parameter defined to ensure that the sum converges. An
alternative representation of p(ξ) is

pmℓ (ξ) = qmℓ (ν; ξ) + qmℓ (−ν − 1; ξ) (B6)

with

qmℓ (ν; ξ) =

∞
∑

n=−∞

An(ν)
Γ(1− s− iǫ− iτ)Γ(2n+ 2ν + 1)

Γ(n+ ν+ 1− iτ)Γ(n+ ν+ 1− s− iǫ)

×(−ξ)n+ν+iτF (−n− ν− iτ,−n− ν+s+iǫ;−2n−2ν;1/ξ).
(B7)

Equation (B5) is useful when one is interested in the
behavior of the radial function near ξ = 0 (r = r+). The
alternative form of Eqs. (B6) and (B7) is useful when
−ξ ≫ 1 (r/M ≫ 1).

For our purposes it is sufficient to set ℓ = 2 and expand
Rm2 (r) to first order in ǫ. We have ν = 2− 107

210ǫ
2+O(ǫ3),

A−3 =
28

107
mχ(κ− imχ)(2κ− imχ)ǫ+O(ǫ2), (B8)

A−2 = − 28

107
mχ(κ− imχ)(2κ− imχ)ǫ+O(ǫ2), (B9)

A−1 =
2i

5
(2κ− imχ)ǫ+O(ǫ2), (B10)

A0 = 1, (B11)

A1 =
i

90
(3κ+ imχ)ǫ+O(ǫ2), (B12)

and all other coefficients are higher order in ǫ. These
results can be inserted in Eq. (B5) to obtain pm2 (ξ) to
first order in ǫ. The angular functions are known also to
admit an expansion in ǫ, given schematically by

Sm2 (θ)eimψ=2Y
m
2 (θ, ψ)+ǫ

[

2Y
m
3 (θ, ψ)µ++2Y

m
1 (θ, ψ)µ−

]

+O(ǫ2), (B13)

where µ± are numbers proportional to χ [7]. Making the
substitution in Eq. (B1) gives

(ψ̃0)
m
2 = Rm2 (r) 2Y

m
2 (θ, ψ) + Rm3 (r) 2Y

m
3 (θ, ψ)

+ Rm1 (r) 2Y
m
1 (θ, ψ) +O(ǫ2), (B14)

where Rm2 (r) = O(1)+O(ǫ) is equal to the radial function
Rm2 expanded to first order in ǫ, while Rm2±1(r) = O(ǫ)
are constructed from Rm2 (truncated to order ǫ0) and µ±.
To normalize the radial function we examine the

regime r/M ≫ 1. Making the substitutions in Eqs. (B4),
(B6), and (B7), and making use of Eq. (B3), we find

(ψ̃0)
m
2 ∼ Rm2 (r) 2Y

m
2 (θ, ψ)+Rm3 (r) 2Y

m
3 (θ, ψ)+O(M2ω2),

(B15)
with

Rm2 (r) = −Zm2

{

1 +
i

3
ωr

[

1 +
M

r

(

6 ln
r

2M
− 1

+
5

3
imχ

)]

+O(M/r,M2ω2)

}

(B16)

where Zm2 is a new normalization related to Nm
2 by

Zm2 = −Nm
2

24 Γ(−1− iǫ− iτ)

Γ(3− iτ)Γ(1 − iǫ)
κ−iǫ, (B17)

and Rm3 ∝ iMωZm2 . Notice that the asymptotic behavior
of the radial function is linear in χ, enabling us to use the
asymptotic value of the radial function derived through
a first-order-in-χ metric of App. A.
Equations (B15) and (B16) can now be compared with

Eqs. (A10), (A11), and (A13) to determine the ampli-

tude Zm2 in relation to α̃m(ω) and β̃m(ω), the Fourier
transforms of the time-domain tidal moments αm(v) and
βm(v), respectively. While the radial functions Rm2 (r)
and Rm

2 (r) are formally distinct — the first is valid to all
orders in χ, while the second is linearized with respect
to χ — they can nevertheless be identified in the asymp-
totic regime, which is insensitive to higher-order terms in
χ. Simple algebra then yields

Zm2 = (1 − iΓ1Mω)α̃m + (1− iΓ2Mω)iβ̃m +O(M2ω2),
(B18)

with

Γ1=−4

3
+

(

π2

3
−269

54

)

imχ, Γ2=−4

3
+

(

π2

3
+
325

72

)

imχ.

(B19)
With Nm

2 related to Zm2 through Eq. (B17), the normal-
ization of the MST radial function is now determined.
Using this form for the Teukolsky function and following
the same steps as Sec. V we again arrive at Eq. (43).
Both methods to solve Teukolsky equation produce the
same discrepancy with the results of [11].
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