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A gravitationally collapsed object can bounce-out from its horizon via a tunnelling process that
violates the classical equations in a finite region. Since tunnelling is a non-perturbative phenomenon,
it cannot be described in terms of quantum fluctuations around a classical solution and a background-
free formulation of quantum gravity is needed to analyze it. Here we use Loop Quantum Gravity
to compute the amplitude for this process, in a first approximation. The amplitude determines the
tunnelling time as a function of the mass. This is the key information to evaluate the relevance of
this process for the interpretation of Fast Radio Bursts or high-energy cosmic rays. The calculation
offers a template and a concrete example of how a background-free quantum theory of gravity can
be used to compute a realistical observable quantity.

I. INTRODUCTION

A striking realization of the last decades is that our
universe is teeming with gravitationally collapsed ob-
jects –or ‘black holes’– of various sizes. The recent
gravitational-waves observation of the merger of two
black holes of unexpected size [1] makes this conclusion
even more compelling.

Classical general relativity (GR) predicts that gravita-
tionally collapsed objects are stable: once a dynamical [2]
or trapping horizon forms (light surfaces shrink), it lasts
forever (it is an ‘event’ horizon). But this prediction dis-
regards quantum effects. Some of these are accounted for
by the theory of quantum fields interacting with classi-
cal geometry, which predicts Hawking radiation. How-
ever, macroscopic black holes are still effectively stable
on accessible time scales —a stellar-mass black hole takes
∼1050 Hubble times to evaporate via Hawking radiation.
But this theory, or any perturbative formulation of quan-
tum gravity, are still approximations, because they dis-
regard non-perturbative quantum-gravitational phenom-
ena. Among these is the possibility of black hole decay
via gravitational quantum tunnelling1.

The idea has a long history and has been considered
by numerous authors [4–24]. Kieffer and Hajichek have
found evidence that the quantum state of a spherically
symmetric in-falling null shell tunnels into an outgoing
one in the context of a minisuperspace model [25]. Quan-
tum effects could indeed make collapsing objects bounce
when they reach the “Planck star” stage [26], namely
planckian density.

A key step was taken in [27], where it is shown that a
violation of the Einstein equations within a finite space-
time region is sufficient to allow a black hole tunnel into
a white hole (an ‘anti-trapped’ region, where all light
fronts expand). From the outside, the process looks like

1 Not “in a different universe” as in [3], but simply exploding in
its actual location.

a quantum bounce of the in-falling matter, and it is akin
in nature to the ‘big bounce’ of quantum cosmology [28].

This is a standard tunnelling phenomenon: evolution
that violates the classical equations of motion in a finite
spatial region and during a limited time. It is therefore a
very plausible phenomenon. Its astrophysical relevance,
on the other hand, depends on the time it takes. Di-
mensional arguments suggest that accumulation of small
quantum effects could trigger the tunnelling already after
a time τ ∼ m2 in Planck units, where m is the mass of the
collapsed object [27]. This is sufficiently long to be com-
patible with the black holes we observe in the sky, but
much shorter than the huge Hawking evaporation time
τH ∼ m3. Hawking radiation could be a sub-dominant
phenomenon, with respect to the bounce. Writing ~ ex-
plicitly gives τ ∼ m2/

√
~, which indicates that this is not

a perturbative phenomenon.
A lifetime τ ∼ m2 implies that primordial black holes

of lunar-size mass could be exploding today and yield ob-
servable signals [29]. A component of the expected result-
ing signal is tantalisingly similar to the recently observed
Fast Radio Bursts [30]. Fast Radio Bursts [31–34] could
thus be the first genuinely quantum gravitational phe-
nomenon ever observed [35, 36]. A second, high energy,
component of the signal could be the source of some very
high-energy cosmic rays. In both cases the expected sig-
nal has a signature distance-frequency relation that char-
acterises it [37, 38]. Maybe black holes could ‘reveal their
inner secrets’ [39] after all, thanks to quantum theory.

The first objective of this paper is to compute the
black-hole lifetime from a full quantum theory of gravity,
to assess the credibility of the dimensional estimate of
[27] and therefore ground the astrophysical relevance of
black hole tunnelling.

Since the quantum bounce of a Planck star is a non-
perturbative phenomenon, it is not captured by the small
quantum fluctuations around a classical solution of the
Einstein equations. Therefore it can only be described
by a background-free quantum theory of gravity. Here
we use Loop Quantum Gravity (LQG) which provides a
non-perturbative definition of quantum gravity [40–43] .
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LQG is tailor-made for this calculation, because in its
covariant formulation [44–50] it associates an amplitude
to any compact region of spacetime, as a function of the
boundary geometry. In a Planck star bounce, we know
the initial and final geometry, we know that no classi-
cal solution interpolates between the two, and we need
the probability for a quantum transition from the first
to the second. This is precisely what the amplitudes of
covariant LQG provide.

The calculation we present is thus a concrete exam-
ple of how a background-free quantum theory of gravity
can be used to predict observable quantities. The dif-
ficulty of computing realistically measurable quantities
in a background-free quantum theory is well known [51–
54]: it raises conceptual subtleties related to the notion
of time, to the difficulty of defining general covariant ob-
servables and to locality. The second objective of this
paper is to show concretely how such a calculation can
be done, and how all these problems can be successfully
addressed. We consider this a major result of this paper.

The article is organised as follows. In Section II we
explain how a gravitational tunnelling amplitude can be
computed and we list the assumptions and approxima-
tions we take. In Section III we discuss the intuitive
physical picture of the phenomenon we analyse. In Sec-
tion IV we write the external metric. In Section V we
fix the boundary between the region that we consider
classical and the region we treat as the quantum system,
and we compute its geometry. In Section VI we specify
the triangulation we use for the quantum calculation. In
Section VII we write the quantum state of the boundary.
In Section VIII we compute the amplitude. In Section
IX we begin to analyze it.

Appendix A recalls the basic equations of loop quan-
tum gravity. Appendix B summarizes our result giving
the amplitude in a self-contained form useful for future
developments.

II. QUANTUM TUNNELLING

We study the black hole tunnelling process and we de-
rive explicitly the amplitude W (m,T ) for a collapsed ob-
ject of mass m to tunnel out after a time T , under a
number of simplifying assumptions and approximations.
These are listed below.

1. We assume vanishing angular momentum of the
collapsing object. This is not a plausible assump-
tion for astrophysical objects, but it is the best we
can do so far.

2. We take as collapsing object a spherical, thin, null
shell, with mass (energy) m. This too is a drastic
simplification, because it eliminates the complexity
of the accretion and the physics of the explosion;
essentially, we disregard most of the dynamics of
matter.

3. We disregard dissipative phenomena, such as
Hawking radiation. This is a good approximation
to the extent that the bounce time turns out to
be faster than the Hawking evaporation time. Ac-
cordingly, we disregard the thermal properties of
quantum black holes [55–57] and we do not con-
sider the constraints on the mass loss rate studied
in [58] nor the corresponding back reaction.

4. We assume the process to be time-reversal invari-
ant. This is related to the previous point, because
Hawking radiation breaks time reversal symmetry.
In particular, we disregard the possibility of insta-
bilities (see for instance [23, 59]). A time asymmet-
ric version of a black hole bounce which addresses
these issues is studied in [60].

5. We work at first order in the vertex expansion [50].
This means that we assume the phenomenon to be
dominated by large scale degrees of freedom. This
is needed in order to extract a doable computation
from the full non-perturbative definition of the the-
ory.

Under these assumptions, we derive the bounce ampli-
tude W (m,T ) and we write it explicitly at the end of this
paper. In turn, this quantity determines the black hole
lifetime τ(m).

The explicit expression for W (m,T ) that we derive is
finite (no divergences) and self contained. However, it
is given by a complicated sums of integrals and is not
transparent. It is also too complicated for a straightfor-
ward numerical evaluation. Its evaluation require further
work, which is course and will be reported elsewhere.
Here we only mention, in closure, the preliminary
tentative indications that we have been able to derive
so far from it. These seem to be support the quadratic
dependence of the evaporation on the mass: τ ∼ m2.
The main goal of the present paper is only to derive the
expression for W (m,T ), and discuss the technical and
conceptual questions raised by the calculation.

Gravitational tunnelling has been treated in the lit-
erature mostly in the context of tunnelling of the en-
tire universe, using WKB techniques and Euclidean so-
lutions (see for instance [61, 62] and references therein).
This is not what we do here. The phenomenon we study
concerns a small finite spacetime region, and we study
it using the Lorentzian geometry-to-geometry transition
amplitude.

To compute this amplitude, we choose a hypersurface
Σ surrounding the region where quantum effects cannot
be neglected. Σ includes also a small region outside the
horizon, because the process we consider needs quantum
effects to leak outside the horizon, a possibility that has
recently drawn increasing attention [63, 64]. Under the
assumptions listed above, the external geometry is given
in [27] and depends only on two parameters: the mass m
of the collapsing object and the decay time T . In partic-
ular, the external geometry determines the (intrinsic and
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extrinsic) geometry of Σ. We represent this geometry by
means of a quantum state, and compute the associated
transition amplitude. Σ has a past and a future compo-
nent (the past and the future boundaries of the quantum
region), andW (m,T ) can be seen as the transition ampli-
tude between the past and the future state. Intuitively, it
can be thought of as the path integral over geometries in
the quantum region where the collapsed object bounces
(tunnels).

This strategy solves the problem of time in the fol-
lowing sense. The calculation does not require a specific
time variable to describe evolution, while a physically
(partial [52, 65]) observable clock time T is identified as
one of the parameters of the boundary state (see [43] for a
full discussion). The bounce region itself does not admit
a classical spacetime picture at all, in the same sense in
which there is no single trajectory for a quantum electron
during a quantum leap between two atomic orbitals. In
the bounce region, the ‘architecture’ [66] of the quantum
geometry is fully non classical.

The modulus squared of the amplitude W (m,T ) deter-
mines the probability density for the process to happen
at a given (external) time T , for a given mass m. The
lifetime τ of the black hole is given by requiring the total
probability that the hole has not decayed before τ to be
of order unit. For consistency with traditional definitions
of lifetime (for instance in nuclear physics)) we set this
to e−1; that is, we define the lifetime τ by∫ τ

0

|W (m,T )|2 dT =

(
1− 1

e

)∫ ∞
0

|W (m,T )|2 dT. (1)

Since we work to first order in the vertex expansion (point
5. of the previous section), the estimate of the full T in-
tegral is unreliable. Pending a higher order calculation,
we circumvent the problem by taking the (reasonable)
assumption that the probability density for an existing
black hole to decay within a small interval of time is con-
stant —as it is the case in standard radioactive decay—
which is to say the probability for the black hole to have
decayed after a time T from its formation takes the ex-
ponential decay form

p(T ) = 1− e−T/τ , (2)

possibly after a short initial transient. This will allow
us to compute the black hole lifetime τ simply from the
value of the function W (m,T ) on two points (one for the
normalisation and one for τ), as we show below in Section
VIII.

The interpretation of the amplitude we compute re-
quires an important discussion, essential to understand
the present setting. In standard radioactive decay, a par-
ticle tunnels out from the potential barrier that traps it
inside the nucleus. If we evolve an initial quantum state
of the particle using the Schrödinger equation, we find
a state that slowly leaks out of the confining potential.
After some time, the quantum state describes a quantum
superposition of many different positions of the particle,

I
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FIG. 1. Causal diagram of the bouncing shell. The continuous
line is the null shell. The dotted line is the location of the
(trapping) horizons. The white region is flat. The light grey
region has Schwarzschild geometry. The dark grey region is
the quantum tunnelling region.

corresponding to different escape times from the nucleus.
A Geiger counter will detect the escaping particle at some
time and in a single position, corresponding to a specific
decay time T . Formally, the measurement projects the
widely spread quantum state to a localized semiclassi-
cal state of the particle, and realizes a single time for
the decay, which is determined probabilistically by the
initial state. Equivalently (depending on one’s preferred
way of thinking about quantum theory): the branches of
the state corresponding to different decay times decohere
rapidly, due to the interaction with the outside world.

We use this same logic for the case of the black hole.
The quantum state of the geometry in the future of a col-
lapsed object is formed by a quantum state spread over
vastly different geometries, as discussed in [67]. Due to
the large number of degrees of freedom involved, these
decohere rapidly. Equivalently: any interaction of the
geometry in the future of the quantum region “projects”
the widely spread quantum state onto a given classical
geometry, realising (probabilistically) a well determined
black hole explosion time T . We are interested in the
probability distribution of this explosion time. Quantum
mechanics allows us to compute this probability by sand-
wiching the transition amplitude between an initial and a
final state. This is what we do here. We isolate the region
where quantum phenomena cannot be disregarded and
describe the quantum phenomenon in terms of the prob-
ability for different possible classical evolutions of the
world (outside and) after the transition region, namely
for different values of T .

III. THE PHYSICAL PICTURE OF THE
PHENOMENON

Before starting the calculation, we discuss in this brief
section the intuitive physical picture of the process we
are considering.

When a collapsed object shrinks inside its
Schwarzschild radius, its density keeps growing.
When the density reaches a Planckian value, the object
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FIG. 2. A generic point P outside a black hole (sufficiently
after the collapse) is a single Planck distance away from the
singularity. To see this, flash a light from the point to the hole
(continuous line). This has zero 4-length. By continuity there
is an arbitrarily short nearby spacelike line (dotted line).

is called a “Planck star” [26]. Importantly, this happens
when the object has still a size many orders of magnitude
larger than the Planck length [26, 68]. At this scale,
the curvature becomes Planckian as well (that is: scalar
functions of the curvature such as RabcdR

abcd reach the
Planck scale). Simple dimensional arguments indicate
that quantum mechanical effects become dominant. The
classical Einstein equations are thus necessarily violated
by quantum effects at this scale. This is consistent with
the standard picture in Loop Quantum Cosmology.

Quantum effects can act as an effective pressure, as
in Loop Quantum Cosmology. These are akin to the
quantum pressure that forbids an electron to fall into
an atomic nucleus. Gravitational collapse can therefore
stop and the Planck star can “bounce out” via quantum
tunnelling into a new classical solution of the Einstein
equations.

This naive picture, however, is incomplete, because it
assumes a classical geometry, disregarding in particular
the fact that quantum-gravitational effects are not nec-
essarily confined to a fixed-geometry causal future of the
matter bounce. Quantum fluctuations of the background
causal structure can allow violations of the background-
geometry causality. This is the mechanism that permits
quantum effects to leak outside the horizon.

Indeed, notice that in the standard geometry of a col-
lapse a generic spacetime point outside the horizon is
only a single Planck space-like distance away from the
singularity. This is counter-intuitive at first, but true,
due to the Lorentzian nature of spacetime (see Figure 2).
Therefore there is no surprise, nor violation of any known
fundamental physical low that we know, if quantum ef-
fects leak outside the horizon. This cannot happen in
quantum field theory over a fixed background, but there
is no reason we know it should not happen when the
full quantum dynamics of the gravitational field is taken
into account, including the non-perturbative effects that
are not accounted for by quantum field theory on curved
spacetime. Here we see clearly the limitation of local
quantum field theory. See [69], and in particular the con-
tributions by Giddings and Rovelli therein, for a recent

discussion of this essential point.
The violation of Einstein’s equations outside the hori-

zon opens the channel for the matter bounce, the tun-
nelling of the black hole into a white hole, and the explo-
sion.

The most appealing aspects of this picture is its tem-
poral structure. At first, there seems to be a tension
between the long time during which a black hole is in
existence, namely the long black hole lifetime (after all,
a black hole is macroscopic object, we cannot expect a
short tunnelling time) on the one hand, and the short
time required by the bounce picture on the other hand.
But the tension is beautifully resolved by the general rel-
ativistic time dilatation: the bouncing process can be at
the same time extremely fast measured by a clock on the
star, and extremely long in external time, due to the huge
gravitational redshift between the inside and the outside
of the hole. This is concretely realized in the metric com-
puted in [27].

The black holes we see in the sky could be “bouncing
stars”, seen at the extreme slow motion implied by the
standard general relativistic time dilation [26].

The fact that this intriguing physical picture has a
chance to be supported by direct astrophysical observa-
tions [29–34, 37, 38] renders it, in our opinion, well worth
studying.

We now close the introductory discussion and get to
the actual calculation of the the black hole lifetime. We
emphasize the fact that very little of this intuitive picture
of the phenomenon is relevant for the calculation below,
which simply moves from first principles to compute a
quantum transition amplitude between an incoming and
an outgoing classical state.

IV. EXTERNAL CLASSICAL METRIC

We are interested in the geometry describing the col-
lapse and the bounce of a null shell found in [27] and illus-
trated by the (Carter-Penrose) causal diagram of Figure
1. The relevant aspect of this geometry is that it is an
exact solution of Einstein’s equations outside a compact
region. In the figure, the thick grey lines represent the
incoming and outgoing spherical shell. The dotted lines
represent the black hole (trapping) horizon and the white
hole (anti-trapping) horizon. The metric is flat in the
white region and Schwarzschild in the light grey region.
More precisely, the light grey region is a portion of a dou-
ble covering of the Kruskal extension of the Schwarzschild
metric, as illustrated in Figure 3. This is why the white
hole can be in the future of the black hole, as explained
in detail in [27]. The dark grey area of Figure 1 is the
quantum region –namely the region where the classical
equations are violated– which concerns us in this paper.
We call rS and tS the standard Schwarzschild coordinates
that cover the region of the Kruskal diagram outside the
horizons. The spacetime is time reversal invariant and
we assign the Schwarzschild time tS = 0 to the reflection
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FIG. 3. The map between the bouncing shell geometry and
the Kruskal geometry.

hypersurface.
There are two important points (spheres in spacetime)

in these diagrams, which we denote δ and ∆.
The point δ is the point where the incoming shell

crosses the surface with Schwarzschild time tS = 0 in
the Kruskal diagram. With a slight abuse of notation,
we call δ also the dimensionless fractional Schwarzschild
radial distance from the horizon, that is we write

δ =
rS(δ)− 2m

2m
, (3)

(rS(P ) is the Schwarzschild radial coordinate of the point
P ), or equivalently

rS(δ) = 2m(1 + δ), (4)

Notice that δ is the image of two spacetime points
(spheres), one on the collapsing shell and one on the ex-
ploding shell, both just outside the horizons, indicated
respectively as δ and δ′ in the r.h.s. panel of Figure 3.

In [27] it is shown that (for δ � 1) the bouncing time
observed by an external observer (defined as the proper
time of a distant observer sitting at radius R�2m from
the moment she sees the in-falling shell passing by, to the
moment she sees the out-going shell passing by, minus
the time 2R for the shell to go in and come out from the
rS ∼ 2m region) is

T = −2m ln δ. (5)

The meaning of the time T is clarified by Figure 4, which
displays the process in Schwarzschild coordinates. These
cover only the region outside the horizons.

The point ∆ is the point where the map between space-
time and the Kruskal geometry bifurcates, which we take
a bit outside the quantum region. Again with abuse of
notation, we write the Schwarzschild radius of the point
∆ in the form

rS(∆) = 2m(1 + ∆). (6)

We need

δ < ∆ (7)

because the two points where the ingoing and outgoing
shells cross tS = 0 must be distinct in physical space, and
therefore inside the bifurcation point ∆ (see Figure 3.)

FIG. 4. The Schwarzschild region of the bouncing spacetime
in Schwarzschild coordinates: the shell (thick line) freezes
near the horizon (dashed line) until it reaches the point δ,
hence bounces back. The bounce time T is the Schwarzschild
time during which the shell hovers near the horizon. An ob-
server at Schwarzschild radius R sees the shell emerge after a
time which is T plus the time for the shell to go in and come
out. The grey region is where quantum effects leak outside
the horizon and the Einstein equations are violated.

V. THE BOUNDARY AND ITS GEOMETRY

We now choose a surface Σ surrounding the quantum
region. This will be the boundary for the computation
of the transition amplitude. As discussed in the intro-
duction, quantum probabilities are computed, à la Bohr,
at the boundary with the classical world. As stressed by
Wigner [70], there is arbitrariness in choosing the bound-
ary between a quantum system and the classical world,
in computing quantum probabilities; accordingly, there
is a freedom in choosing Σ. We want Σ to be sufficiently
away from the tunneling region to be sure to capture
all quantum effects. That is, sufficiently away from the
tunneling region to permit the external region to be well
approximated by classical physics. But it is convenient
to choose Σ of minimal size, in order to minimise the
technical complexity of the calculation.

Tentatively, we choose the surface Σ depicted in Figure
5. To define it, it is convenient to use different coordi-
nates than the Schwarzschild coordinates. Very conve-
nient coordinates are the Lemâıtre coordinates [71, 72]
which are in time gauge (Lapse=1, Shift=0), the gauge
in which LQG transition amplitudes are written. In these
coordinates, which we denote r and t, the Schwarzschild
geometry reads

ds2 = −dt2 +
2m

rS

dr2 + r2
SdΩ2 (8)

where rS > 0 is the function of r and t defined by

r3
S =

9m

2
(r − t)2. (9)

The line element (8) shows that rS is the Schwarzschild
radial coordinate. The Lemâıtre time t is related to the
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FIG. 5. A close up of the quantum region. The surface Σ
is in black, the horizons are dotted and the tS = 0 surface is
dashed.

Schwarzschild time coordinate tS by

t = tS + 2
√

2mrS + 2m ln

∣∣∣∣∣
√
rS/2m− 1√
rS/2m+ 1

∣∣∣∣∣. (10)

The Lemâıtre coordinates cover the exterior and the in-
terior of a black hole.

Each t = constant hypersurface crosses the tS = 0
hypersurface at a point (sphere) of Schwarzschild radius
rS(t) (see Fig. 6), which is obtained by setting tS = 0 in
(10). In particular, consider the t = constant hypersur-
face that crosses the tS = 0 in ∆. The portion B− of this
hypersurface inside ∆ is a 3d (topological) ball bounded
by the two-sphere ∆. Its image under time reversal B+

is a 3d (topological) ball with the same boundary. We
choose Σ as the union of B− and B+.

To be sure, the actual surface Σ, which is depicted in
Figure 5 and 8, is not entirely within the Schwarzschild
region, because both its past and its future branches are
cut by the ingoing and, respectively, outgoing, shells, in-
side which the metric is flat. We disregard this fact here,
under the assumption that the geometry of this small
region has no effect on the transition, and we take the
geometry to be exactly the union of B− and B+.

It is easy to obtain the value of t on B−: assuming
0 < ∆� 1, posing tS = 0 (10) reduces to

t = 2m ln ∆, (11)

Notice that the Lemâıtre time goes logarithmically to
−∞ when ∆ → 0, namely when its intersection with
tS = 0 approaches the horizon on the tS = 0 surface.

FIG. 6. A t = constant surface in the extended black hole
spacetime and, in bold, the ball B−. The dot ending the
surface is the sphere S.

→

FIG. 7. The transition from B− to B+ is like snapping over
a cap.

The metric of B−, from (8), is:

dl2 = qabdx
adxb =

2m

rS

dr2 + r2
SdΩ2. (12)

where the range [rmin, rmax] of the radius r is determined
by rS(rmin, t) = 0 and rS(rmax, t) = 2m(1 + ∆). Re-
markably, this metric is (3d) flat. This can be easily
seen as follows. The variation of (9) at constant t gives

dr =
√
rS/2mdrS, so that rS and the angles are flat polar

coordinates on B−.
Its extrinsic curvature is given by the time derivative

kab = q̇ab, because we are in time gauge. Again from (9)
we can compute the time derivative of rS at constant r:

drS

dt
= −

√
2m

rS

(13)

Using this, we have immediately

kabdx
adxb = (2m)

3
2 r
− 5

2
s dr2 −

√
8mrS dΩ2. (14)

Equations (12) and (14) give the geometry of the past
component B− of the boundary surface Σ. Because of
the time reversal symmetry, the geometry of B+ is the
time reversal of the geometry of B−. This means that the
intrinsic geometry is the same, while the extrinsic curva-
ture is the same but with opposite sign. A flip of sign in
the conjugate momentum is of course the hallmark of a
bounce (a ball that bounces on the floor flips its velocity
almost suddenly). Thus, the tunnelling process we are
considering is the flip of sign of the extrinsic curvature of
B−: something like snapping over a cap (Figure 7).

This determines entirely the intrinsic and extrinsic ge-
ometry of the boundary surface Σ, as a function of m
and ∆ > δ, where δ = e−T/2m is related to the bounce
time T .

So far we have used Einstein’s metric formalism. Loop
quantum gravity, however, is based on the tetrad-spin
connection and –on a boundary– the Ashtekar variables
formalism, which introduce a local SU(2) gauge. Before
proceeding we therefore need to translate the geometry
of Σ in terms of Ashtekar variables. On Σ, we can intro-
duce a triad field eia such that qab =

∑3
i=1 e

i
ae
i
b by simply

choosing a local triad at each point. This freedom gives
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the local SO(3) gauge invariance. The Ashtekar variables
are the the densitized inverse triad field Eai = det e eai
and the Ashtekar-Barbero connection Aia = Γia + γkia
where Γ is the spin connection of the triad, γ is the
Barbero-Immirzi parameter and kab = kiaebi. These fields
are uniquely determined by qab and kab once the gauge,
namely the orientation of the triad at each point, is fixed.
We make this choice explicitly in the following section,
after discretization.

There is one last geometrical quantity that we shall
need below: the boost angle between B− and B+ at their
junction. This is twice the boost angle ζo/2 between the
tS = 0 surface and the t = constant surfaces. Calling
ns = dtS and n = dt the normals to these surfaces, we
have

cosh
ζo
2

=
(dtS, dt)

|dtS||dt|
=

(1− 2m
rS

)−1

(1− 2m
rS

)−
1
2

=

(
1− 2m

rS

)− 1
2

.

(15)
On ∆, which is the intersection point, this gives

cosh
ζo
2

=

√
1 +

1

∆
. (16)

For small ∆, this gives

ζo ∼ − ln ∆. (17)

For the simple discretisation we consider below, we will
be forced to take γζo ≤ 4π. For γ ∼ o(1), this gives
∆ > 10−5 which is still within the above approximation.

The last point we need to discuss is the relation be-
tween ∆ and δ. The boundary between a quantum sys-
tem and its classical environment can be moved arbitrar-
ily out without affecting the probabilistic predictions of
the theory [70]. Therefore there is some arbitrariness
in the choice of the exact position of ∆, which should
not affect the final result. However, ∆ is bounded from
below by (7) but also from above by the fact that we
need the t = constant surface it defines to intersect the
shell, rather than ending on the singularity (see the right
panel of Figure 8). Thus the maximum value of ∆ we
can take is bounded by the Lemaitre time of the point
where the shell reaches the singularity. This time can
be easily calculated by integrating a null geodesic from
δ to the singularity in Lemaitre coordinates. The cal-
culation is straightforward and gives the Lemaitre time
t = t(δ)+2m(1+δ). This is thus the time of the maximal

FIG. 8. The two surfaces B− and B+, sharing the boundary
S. Ingoing and outgoing null spherical shells are also depicted.

∆. Using then the (approximate) equation (11) both for
∆ and δ we obtain 2m ln ∆ = 2m ln δ+ 2m(1 + δ), which
for small δ gives the maximum value ∆ = eδ. In other
words, if we want to use the constant-Lemaitre-time sur-
faces for the calculation, we have to take ∆ very close to
δ. Consequently, we can simply use

T = −2m ln (e−1∆) ∼ −2m ln ∆. (18)

We now want to compute the quantum amplitude for a
spacetime region bounded by a surface Σ with this geom-
etry, using loop quantum gravity. To that end, one needs
a spin network state describing the boundary geometry,
and to sum over all bulk spin foams compatible with the
boundary. As a first approximation, we will select (i),
a single spin network graph, dual to a simple triangula-
tion of the continuum boundary geometry, and represent
the geometry of Σ via a coherent state peaked on dis-
crete data approximating the boundary geometry; and
(ii), the lowest order spin foam amplitude. Before going
to the quantum theory, we present in the next section
the details of the discretisation used.

VI. DISCRETIZATION

The boundary surface Σ is formed by two (flat) balls
joined at their (spherical) boundary. A ball can be nicely
triangulated by a single equilateral flat tetrahedron τo.
We refine this triangulation splitting τo into 4 equal
isosceles tetrahedra, as in Fig.10. The boundary sur-
face Σ is then triangulated by eight tetrahedra (four in
B− and four in B+) connected to one another as in Fig-
ure 9, where the tetrahedra are the nodes of the graph.
This is not the minimal triangulation of Σ, but –as we
shall see– is the boundary of the minimal triangulation
of the region enclosed by Σ, which respects time reversal
invariance.

We now derive the data describing the geometry of
this triangulation. We do so in two steps. First, in terms
of the metric formalism, giving the area of all the tri-
angles of the triangulation and –again at each triangle–
the 4d boost angles between tetrahedra normals, which
discretise the extrinsic curvature. Next, we give the dis-
crete version of the Ashtekar variables, called the flux and
holonomy variables. All these data can be immediately
computed from (8).

To fix notation, we call the four upper (future) tetra-
hedra τ+

a with a = 1, 2, 3, 4 and the four lower (past)
tetrahedra τ−a . We call `±ab the (oriented) upper links
and `a the side links, which are dual to the triangles
forming the two sphere ∆. Because of the symmetries
of Σ, and because each 3-ball is flat, we will see that we
can take all isosceles tetrahedra with the same shape, so
that all links `±ab (straight links of the graph) are dual
to triangles that have the same area A− = A+ and ex-
trinsic curvature angle ζ±. The four links `a (curved in
the picture) are dual to triangles that have area Ao and
extrinsic curvature angle ζo. These are “thin” triangles,
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FIG. 9. The boundary spin network with the orientation cho-
sen for later convenience. The two balls B− and B+ corre-
spond to the upper and lower part, sharing the boundary S
which corresponds to the four intermediate links.

namely the outgoing normals of the two tetrahedra they
bound have opposite time directions, as one belongs to
B+ and one to B−. The explicit values of these data can
be computed as follows, as functions of m and T .

A. Discrete metric variables

To match with the continuum geometry, we identify
the total surface of τo with the sphere ∆ where B− and
B+ join, thus posing

4Ao = 4π(2m(1 + ∆))2. (19)

An equilateral tetrahedron splits into four equal isosceles
tetrahedra, each with base area A0 and side areas A−
with ratio

A− =
1√
6
Ao, (20)

as can be immediately derived from Pythagoras theo-
rem.2 This fixes the shape of all tetrahedra, for instance
the dihedral angle α (see Fig.10), which we will need later
on, is given by

cosα =
EF

EO
=

√
2

3
. (21)

As for the discrete extrinsic curvature, this is concen-
trated on the triangles, and is given by the boost angle
between the 4d normals to the tetrahedra. On the sphere

2 Using the notation of the figure, by elementary geometry the
height of a face is ED = EC = 3EF and the height of the
tetrahedron τo is CF = 4OF . By Pythagoras theorem on the
two triangles EFO and EFC a line of algebra gives immediately
that EC =

√
6EO.

∆ this is given by ζo. More precisely the triangles dis-
cretising ∆, such as ABC, are thin and ζo, given in (17),
is the angle between their future normals.

The discrete curvature on the radial triangles, such as
ABO, is determined by the tangential part of kab, which
depends on the time dependence of the tangential com-
ponents of the metric. We can determine it as follows.
Let dV be the change of volume of a tetrahedron τ in a
time dt, due to a change in the metric. This change can
be split into two parts: a change of volume dVrad due to
the change in qrr which corresponds to a growth normal
to the basis of τ , and a change dVtang due to the angular
part in qab which corresponds to a growth normal to the
side faces of τ . Since

V =

∫ rmax

rmin

dr
√
qrr 4πr2

S , (22)

the two can be computed explicitly. In particular

dVtang
dt

=

∫ rmax

rmin

dr
√
qrr 4π

dr2
S

dt

=

∫ 2m

0

drS 8πrS

√
2m

rS

=
16

3
π(2m)2 (23)

On the other hand, a little geometry shows that if the
discrete extrinsic curvature on each of the three faces is
ζ, the change of the tangential volume in time is

dVtang
dt

= 3
1

2
A−ζ− =

3

2

1√
6
π(2m)2ζ−. (24)

From the last two equations, we have

ζ− =
32

9

√
6. (25)

(A comparable estimation can be obtained by integrating
the trace of the extrinsic curvature on the continuous hy-
persurface Σ). Since B+ is the image under time reversal
of B−, with opposite extrinsic curvature, we have then
immediately

ζ+ = −32

9

√
6. (26)

α

O

A B

C

D

F

E

FIG. 10. The triangulation of a spherically symmetric 3d ball
as a regular tetrahedron A,B,C,D split into four isosceles
tetrahedra. O is the center of the regular tetrahedron, E the
center of a side and F the center of a face.
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B. Holonomy-flux data

Next we compute the discretized version of the
Ashtekar variables describing the geometry of the tri-
angulation. These are the variables in terms of which
the coherent states of loop quantum gravity are defined.

They are the holonomy-flux variables ( ~X,H) respectively
in R3 and SU(2), associated to each triangle. Like the
triad and Ashtekar variables, these introduce a local ro-
tation gauge. Geometrically, this corresponds to fixing a
local frame on each tetrahedron; see [73] for a discussion.

The holonomy-flux variables allow a generalisation of
the Regge geometry, called twisted geometry [74], where
the discontinuity of the metric on the triangles allow a
mismatch of the shape of the shared triangles [75]; here
we are not concerned with this generalisation, since we
use these variables to describe the Regge geometry con-
structed above.

The “flux” Xi =
∫
Eiana is the flux of the densitized

tried Eai , a two-form, across each triangle. Here na is the
geometrical normal to the triangle. Choosing a constant

Euclidean triad Eia(x) = δia with each tetrahedron, ~X =

{Xi} is simply given by ~X = A~n, the unit normal ~n to
the face, in the coordinates defined by the triad chosen in
the tetrahedron, multiplied by the area A of the triangle.
More precisely, since the triad on the triangulation is
in general discontinuous across the (oriented) triangle,
there are two vectors, ~n and ~n′ associated to its source
and target sides respectively.

The “holonomy” H ∈ SU(2) is the holonomy of the
Ashtekar connection A, along a line (“link”) dual to the
triangle. Since the triad chosen is constant inside each
tetrahedron, both the extrinsic curvature and the spin
connection on a triangulation are distributional and con-
centrated on the triangle, therefore the holonomy is a
single group element associated to the triangle itself and
the exact points where the link starts and ends in the
tetrahedra are irrelevant. The holonomy is the group el-
ement that turns the two triads on the two tetrahedra
into one another. It depends on the two ingredients of
A, the spin connection Γ(E) and the extrinsic curvature
multiplied by the Immirzi parameter γK. The holonomy
of the spin connection alone is

n′e−
i
2ασ3n−1. (27)

where n and n′ are SU(2) group elements that turn the
unit vector in the z direction ẑ into ~n and −~n′ respec-
tively (the minus sign is because we take all normal vec-
tors to tetrahedra faces as outgoing), and α is the rota-
tion angle in the (x, y) plane needed to match the x, y
axis of the two triads across the face.3 However, the ex-
ponentiation of the γK term also contributes a rotation

3 To fix α for general twisted geometries one has to pick a preferred
edge, see [76, 77]; the angle can be nicely parametrised in terms
of spinors’ phases in the spinor formalism [73, 77, 78].

around an axis normal to the triangle, because the only
non-vanishing component of the extrinsic curvature of a
triangulation is kab ∼ nanb. Therefore the discretized
holonomy reads

H = n′e−
i
2 (α+γζ)σ3n−1 ≡ n′e− i

2 ξσ3n−1, (28)

where ζ is boost angle between the normals of the tetra-
hedra. Thus, in the discretization of the Ashtekar vari-
ables the extrinsic curvature is coded into an extra rota-
tion along the normal to triangles [75, 79]. The relation

ξ = α+ γζ (29)

is the discrete equivalent of the Ashtekar-Barbero rela-
tion A = Γ(E) + γK.4 Notice that the quantity ξ − α is
gauge invariant.

The map from ~n to n is not unique, because there are
many rotations n that brings ẑ into ~n, that is, differ-
ent choices of section of the Hopf fibration SU(2)→ S2.
Different choices of map differ by a rotation along the
normal to the face and therefore give different values of
α. Following [74], we chose the natural section where the
rotation is around an axis normal to both ẑ and ~n. This
is the one used in the definition of the SU(2) coherent
states. Explicitly, describing a unit vector with its polar
angles ~n = (θ, φ), it is given by

n = e−
i
2φσ3e−

i
2 θσ2e

i
2φσ3 . (30)

For the target of the same link, we compensate the minus
sign by adding a parity transformation (given by P =
iσ2) to ensure that both normals are outgoing; if ~n′ =
(θ, φ) then

n′ = e−
i
2φσ3Pe−

i
2 θσ2e

i
2φσ3 . (31)

Since the tetrahedra are all equal, we can exploit the
local rotational freedom to assign the same four normals
to all of them. Using the orientation of Figure 11, we get

~n0 = (0, 0), (32)

~nk =
(

arccos
[
−
√

2
3

]
, ϕk

)
, (33)

with k = 1, 2, 3 and

ϕ1 = 0, ϕ2 =
2

3
π, ϕ3 = −2

3
π. (34)

Given two tetrahedra sharing a face, the group elements
n and n′ given by (30) and (31) rotate them in such a
way that the respective triangles match (lie in the (x, y)
plane), with opposite orientation. To make them match,

4 Encoding in a γ−dependent way the extrinsic curvature in the
boost can be interpreted as the solution of the secondary simplic-
ity constraints for Regge configurations [73, 77, 80, 81], gauge-
fixing the first-class primary simplicity constraints [82].
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that is to align the edges, a further rotation α around the
ẑ axis is needed in general. Because of the symmetry of
the tetrahedra, it is easy to see that the required rotations
have angles

α0 = 0, αk = ϕk. (35)

Then, α in (29) is given by α = 0 for the angular (equi-
lateral) faces, and for the radial (iscosceles) faces we have

α = αk − αk′ (36)

This gives explicitly all variables n, n′, ξ for all links,
which, along with the η’s which are given in the next sec-
tion, are the data needed to define the quantum states.
Notice that using (29) with the explicit values (35), these
cancel the right-most exponentials in (30) and (31). The
effect of the angles α is therefore simply to replace n and
n′ in (30) and (31) by

ν = e−
i
2ϕσ3e−

i
2 θσ2 , (37)

ν′ = e−
i
2ϕσ3Pe−

i
2 θσ2 , (38)

so that on each link we have

H = ν′e−
i
2γζσ3ν−1. (39)

VII. THE QUANTUM BOUNDARY STATE

It is time to move to the quantum theory. The basic
equations of covariant LQG are briefly recalled in Ap-
pendix A. We follow [50], to which we refer the reader for
all details. We start by constructing a quantum bound-
ary state representing the geometry of Σ, then we write
its quantum amplitude. The quantum state is essentially
a wave packet peaked on the classical geometrical data

( ~X,H).

3
2

1

0

FIG. 11. The orientation chosen for the isosceles tetrahedra
and their four normals (33). Fixing these normals amounts to
choosing the SO(3) gauge at each node. The equatorial angle

φ is 2π/3, the polar angle satisfies cos θ = −
√

2/3.

LQG states are defined over abstract graphs. The
nodes n of the graph represent quanta of space. The
links ` of the graph represent the surfaces between the
quanta of space. A state is represented by a square inte-
grable function ψ(h`), where h` ∈ SU(2), for every link `.
The interpretation of h` is the holonomy of the Ashtekar
connection between two nodes. Here, in the first relevant
approximation, we choose the graph depicted in Figure
9, dual to the triangulation of the boundary described in
the previous Section. We call h±ab and ha the oriented

group elements on the links `±ab and `a.
Coherent states approximating a discrete classical in-

trinsic and extrinsic geometry have been constructed by
various authors. Here we shall use the heat-kernel coher-
ent states by Thiemann [83] (denoted ‘extrinsic’ in [50]),
parametrized in terms of twisted geometries [84] as in
[85], that depend on a complex number z = η + iξ and
two unit-length 3d vectors ~n, ~n′ per each link `. These
are defined (see (A1)) as the product over the links of the
coherent link states

Ψz,~n,~n′(h) =
∑
j

dje
− j(j+1)

2σ tr[Dj(n−1h–1n′)Dj(ez
σ3
2 )]

(40)
where dj = 2j+1, the matrices Dj are spin-j Wigner ma-
trices, in the last term analytically extended to complex
parameters.5

The spin network coherent states are obtained by
gauge averaging these states on the nodes, but this is
not needed when contracting the state with a spinfoam,
as we do below, since the SL(2,C) integral in the spin-
foam amplitude already implement the gauge averaging
and renders the SU(2) averaging redundant.

For large real part η of z, the trace is dominated by
the highest magnetic moment component which is pro-
portional to eηj and the sum over j is therefore peaked
on the minimum of j(j + 1)/(2σ)− ηj, which is

j0 ∼ ησ. (41)

The quantity σ determines whether the state is peaked
on the area or on the extrinsic curvature. A convenient
choice allowing both to be peaked in the large j limit is
σ =
√
j0 which gives

η =
√
j0 (42)

If we want the state to be peaked on an area A we must
pose, recalling the LQG relation between spin area A ∼
8πγ~Gj,

η =
√
j0 =

√
A

8πγ~G
. (43)

5 Alternatively, it would be interesting to use the U(N) coherent
states proposed in [86].
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Thus for our geometry we have

η0 =
√
jo =

√
Ao

8πγ~G
=

2m(1 + ∆)√
2γ~G

. (44)

and

η± =
√
j− =

√
A−

8πγ~G
=

ηo
4
√

6
. (45)

For the labels ξ, we take (29) as discussed above. Using
this, the boundary state representing the geometry of Σ
is

Ψm,T (ha, h
±
ab) =

∏
a

Ψa(ha)
∏
ab,±

Ψ±ab(h
±
ab) (46)

where

Ψ±ab(h) =
∑
j

dje
− j(j+1)

2σ trj [h
–1ν±abe

− i
2 z±σ3ν±ba

−1]

Ψa(h) =
∑
j

dje
− j(j+1)

2σ trj [h
–1ν±a e

− i
2 z0σ3ν∓a

−1]

with

z± = η ∓ iγζ
z0 = ηo + iγζo

and where from (17), (18) and (25)

ζo =
T

2m
, ζ =

32
√

6

9
. (47)

and

η0 =
2m(1 + e−

T
2m )√

2γ~G
∼ 2m√

2γ~G
, η =

ηo
4
√

6
. (48)

These expressions provide the explicit form of the
boundary state as a function of m and T .

VIII. QUANTUM TRANSITION AMPLITUDES

The lowest order triangulation filling the triangulated
surface Σ is obtained gluing two regular four-simplices
by a single tetrahedron. The 2-skeleton of the dual of
this triangulation is depicted in Figure 12. The corre-
sponding spinfoam has no internal faces. In each of the
two vertices, we can drop the integral associated to the
edge connecting the two vertices. Then the amplitude
is like that of an eight-valent vertex whose edges are all
connected to the boundary, with the only difference that
in the four lateral faces an SU(2) projection associated
to the internal edge is inserted between the two SL(2, C)
group elements.

From the general formulas of the appendix, the ampli-
tude of such a spinfoam can be written in the form,

W (hl) =

∫
SL(2,C)

dge
∏
f

Pf (ge, ge′ , hl) (49)

FIG. 12. The spinfoam and its 2-skeleton (edges and vertices)
with the orientation of the edges. The boundary orientation
is as in Fig. 9. The faces are orientated as in Fig. 13.

where

Pf (g′, g, h) =
∑
j

djD
γj,j
j,m,l,p(g

′)Dγj,j
l,p,j,n(g−1)Dj

n,m(h)

(50)
for the upper and lower faces and

Pf (g′, g, h) =
∑
j

djD
γj,j
j,m,l,p(g

′) δjlD
γj,j
l,p,j,n(g−1)Dj

n,m(h)

(51)
for the lateral faces. (The difference between the two
expression is that the first includes a sum over the spin
index l while in the second this is fixed to j by the pro-
jection.) Here the Dj are the Wigner matrices of SU(2)
and the Dp,k are the Wigner matrices of the unitary rep-
resentations of SL(2,C) in the canonical basis. Writing
this explicitly for the spinfoam that concerns us, we get

W (ha, h
±
ab) =

∫
SL(2,C)

dg±a

(∏
a

Pa(g−a , g
+
a , ha)

)

×

∏
ab,±

P±ab(g
±
a , g

±
b , h

±
ab)

 . (52)

The amplitude for the boundary coherent state is ob-
tained contracting the two

W (m,T ) =

∫
SU(2)

dha dh
±
ab W (ha, h

±
ab)Ψm,T (ha, h

±
ab).

Using∫
SU(2)

dh Dj
mn(h−1)Dj

ab(h) =
1

dj
δnaδmb, (53)

the SU(2) integrals are immediate, giving

W (m,T ) =

∫
dg±a

∏
a

Pa(g−a , g
+
a , ν

−
a , ν

+
a , z0)

×
∏
±

∏
ab

P±ab(g
±
a , g

±
b , ν

±
ab, ν

±
ba, z±). (54)
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where

Pf (g′, g, n, n′, z)=
∑
j

dje
−j(j+1)/(2σ)Dγj,j

j,m,l,p(g
′)

Dγj,j
l,p,j,n(g−1)Dj

n,m(n′ez
σ3
2 n−1) (55)

for the upper and lower faces (f = {ab±}) and

Pf (g′, g, n, n′, z)=
∑
j

dje
−j(j+1)/(2σ)Dγj,j

j,m,l,p(g
′) δjl

Dγj,j
l,p,j,n(g−1)Dj

n,m(n′ez
σ3
2 n−1) (56)

for the lateral faces (f = a). The equations (54), (55)
and (56) define W (m,T ) completely.

The modulus square |W (m,T )|2 is proportional to the
probability density for the process to happen at time T .
Assuming that the process happens, the proportionality
constant is determined by requiring the total probabil-
ity to be unit. This gives in particular the probability
density in time

P (m,T ) =
|W (m,T )|2∫∞

0
|W (m,T )|2 dT

. (57)

and the black hole lifetime τ by∫ τ

0

P (m,T ) dT =

(
1− 1

e

)
(58)

which gives equation (1).
The integration for all T is problematic: (46) is peri-

odic in the boost parameters ζo and ζ±, with period 4π/γ,
and ζo becomes larger than 4π/γ for large T , see (47).
As discussed in [87], the periodicity makes the amplitude
ill defined, and its validity should be restricted to a single
period. To allow for large T then, one needs to go to a
higher order in the vertex expansion. Therefore the use
of the simple discretisation defined above, and the quan-
tum amplitude associated to it derived above, should be
used for small T . A meaningful half-life can still be ex-
tracted at this level of approximation, if, as mentioned
in the Introduction, we consider an additional hypothe-
sis on the decay of the black hole: that, at least in some
appropriate regime, it follows the usual exponential form
of decay processes. Namely the probability to decay at
time T has the form

P (m,T ) =
e−

T
τ(m)

τ(m)
. (59)

Equating this and (57), we have

e−
T

τ(m)

τ(m)
=

1

N(m)
|W (m,T )|2. (60)

where N(m) =
∫∞

0
|W (m,T )|2 dT . Putting for instance

T = 0 and T = 2π we can calculate τ(m) by

τ(m) ∼ 2π log−1 |W (m, 0)|2

|W (m, 2π)|2
. (61)

IX. FIRST ANALYSIS OF THE AMPLITUDE

In the previous section we have derived the black to
white hole transition amplitude W (m,T ). In this paper
we do not extract an estimation for τ(m), which will be
reported elsewhere. In this section, we only sketch a pro-
cedure for simplifying the form of the amplitude. The
final expression and all relevant definitions are summa-
rized in a self contained form in Appendix B, for future
reference.

As a first step, we notice that the real part of zo and
z± is large compared to unit. Because of this, in the last
matrix of (55) the term with highest magnetic number
dominates and we can write

Dj
nm(ez

σ3
2 ) ∼ δjnδjm ezj . (62)

As we will see, this decouples the z data, and thus the
m and T dependence, from the combinatorial structure
of SU(2) and SL(2,C).

Next, following [88], we parametrize the SL(2,C) ele-

ments as g = ue
rσ3

2 v−1 with u, v ∈ SU(2) and r ∈ (0,∞),
and write the SL(2,C) integrals as∫

SL(2,C)

dg =

∫ ∞
0

dr
sinh2 r

4π

∫
SU(2)

du

∫
SU(2)

dv (63)

The SL(2,C) representation matrices are expanded as

Dγj,j
jmln(g) = Dj

mp(u)djlp(r)D
l
pn(v−1) (64)

where the middle term is explicitly known in terms of a
real integral, see Appendix B. The SU(2) integral can
be performed using∫
SU(2)

dU⊗kDjk
mknk

(U) = (65)

=
∑
J

(2J + 1)iJ, j1,j2,j3,j4m1,m2,m3,m4
iJ, j1,j2,j3,j4n1,n2,n3,n4

where the four-valent intertwiners are given as a product
of two Wigner 3j symbols, see Appendix B. Using this,
we can perform all the SU(2) integrals, giving intertwin-
ers that join the indices of the matrices Dj(n). To each
node correspond four intertwiners, two from the u inte-
gration and two from the v integration, one for each of
the four (half-) links attached to the node.

Bringing all of the above together, W (m,T ) can be
written as a sum over the spin configurations {ja, j±ab},
with the summand containing an eight-dimensional real
integral over dr±a and contractions between these inte-
grals, 3j symbols and Wigner’s matrices.

Because of the highest-weight approximation, the de-
pendence on the spacetime parameters m and T (z data)
is pulled into a weight function w(z0, z±, ja, j

±
ab). Then,

in order to arrive to a compact expression, we rearrange
the combinatorial structure and the gauge data (normals)
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at the level of nodes. The orientations of the spinfoam
and its boundary as defined in Figs. 9, 12, 13, were cho-
sen so that the pattern of signs appearing in the indices
of the various objects and the functional dependence of
the boost integrands are identical for each node.

Before giving the final expression, we remind and ex-
plain notation: spins on the four angular links are la-
belled as ja and on the twelve radial links as j±ab, where
ab ≡ ba and a 6= b. Spins appearing in (65) are indi-
cated as capital letters and labelled as J±a , they live on

the eight four-valent nodes. The composite index {j±a } is
the set of indices on the links connected to the node a±

(one ja and three j±ab). Magnetic indices of Wigner’s ma-
trices live on half-links and are indicated as {−→m±a }, where
a right arrow means those ingoing to the node come with
a minus sign while a left arrow that those outgoing to the
node come with a minus sign.

Explicitly, with a bit of algebra, we have

W (m,T ) =
∑
{ja,j±ab}

w(z0, z±, ja, j
±
ab) (−1)

∑
`∈Γ j` ×

∑
{J±a ,K±a ,la,l±ab}

(⊗
a,±

δjala N
J±a
{j±a }

(ν`∈a±) f
J±a ,K

±
a

{j±a }{l±a }

) (⊗
a,±

iK
±
a ,{l

±
a }

)
Γ

.(66)

We have defined the following objects. The weight function w(z0, z±, ja, j
±
ab) includes all the z data and depends

on all j’s

w(z0, z±, ja, j
±
ab) = c(η, η0)

(∏
a

djae
− 1

2η (ja− (2η2−1)
2 )2

eiγζja

)∏
ab,±

dj±ab
e−

1
2η0

(j±ab−
(2η2

0−1)

2 )2

eiγζ0j
±
ab

 (67)

In this expression we see explicitly that the “position” variable j is peaked on the area ∼ Re(z)2 and the conjugate
“momentum” variable ζ multiplies j in the oscillating part. The factor c(η, η0) arises from completing the square in
the gaussian and can be absorbed in the normalization.

The part containing the normals, N
J±a
{j±a }

, is the contraction of one of the intertwiners with the Wigner matrices of

the group elements defining the normals of the tetrahedron (node) τ±a as given in (37) and (38):

N
J±a
{j±a }

=

(←−−⊗
`∈a±

Dj`
m`j`

(ν`)

)
i
Ja, {j±a }
{−→m±a }

(68)

The arrowed product indicates that the magnetic indices of the representation matrices on the half links outgoing from
the node come with a minus sign. The real integrals over the boost parameters are contracted with two intertwiners
and are in

f
K±a ,J

±
a

{j±a }{l±a }
≡ dJ±a i

Ja, {j±a }
{−→p ±a }

(∫
dr±a

sinh2 r±a
4π

−−→⊗
`∈a±

dj`l`p (̀r±a )

)
i
Ka, {l±a }
{←−p ±a }

dK±a (69)

The arrow in the tensor product of the djlp(r) indi-
cates that those on links ingoing to the node appear
as dljp(−r). There remains one intertwiner from each
node. These are contracted amongst them according to

the schema , yielding a 24j symbol. Explicitely,
it is given by:(⊗

a,±
iK
±
a ,{l

±
a }

)
Γ

=
∑

{ha,h±ab}

(−1)
∑
`∈Γ h`

∏
a,±

i
K±a , {l

±
a }

{
←−
h±a }

(70)

The above specify the half life of a black hole as a

function of the mass. The final formula is summarised in
appendix B with some further details.

Preliminary partially numerical and partially analyt-
ical estimates developed in [89] appears to support the
lifetime τ ∼ m2. The mechanism for this to happen is
intriguing: taking the semiclassical approximation where
the horizon area is fixed to its classical value, namely re-
stricting the sum to a fixed value of the spins associated
to the surfaces representing the size of the black hole hori-
zon (ja ∼ jmax ∼ m2), renders the lifetime infinite. But
including fluctuations of the horizon area (terms in the
sum ja 6= jmax) generates interference terms that makes
the lifetime finite. This suggests that the tunneling chan-
nel could be open precisely by the quantum fluctuations
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of the geometry at the horizon.
A detailed analysis of the amplitude is in course and

will be reported elsewhere.
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Appendix A: Review of LQG

This review is condensed; we follow [50], to which we
refer the reader for all details.

States are defined over four-valent graphs. The nodes
n of the graph represent quanta of space. The links ` the
graph represent the surfaces between the quanta of space.
A state is represented by a square integrable function
ψ(h`), where h` ∈ SU(2), for every link `. The interpre-
tation of h` is the holonomy of the Ashtekar connection
between two nodes.

Coherent states approximating a discrete classical in-
trinsic and intrinsic geometry have been constructed by
various authors. Here we shall use the states defined in
[85] that depend on a complex number z = η + iζ and
two unit-length 3d vectors ~n, ~n′ per each link `. These
are defined as the product over the links of the link states

Ψz,~n,~n′(h) =
∑
j

dje
−j(j+1)/2σtr[Dj(h−1)Dj(n′ez

σ3
2 n−1)]

(A1)
where dj = 2j+1, the matrices Dj are spin-j Wigner ma-
trices analytically extended to complex parameters and
we have indicated with n and n′ the SU(2) elements cor-
responding to the rotation of the z axis to the vectors ~n
and ~n′. These states can be seen as a smearing of the
states

Ψz,~n,~n′(h) = δ(h, n′ez
σ3
2 n−1) (A2)

which are peaked on the holonomy h = n′ez
σ3
2 n−1. They

have the property that the expectation value of the ge-
ometrical operators defines a discrete geometry where ~n
and ~n′ are the normals to the face dual to the link, in the
frames of the two quanta, η is the (dimensionless) area of
the face, and ζ is, in the gauge where ~n = ~n′, the angle
between the 4d normals to the two space quanta, namely
the boost giving the relative velocity between the two.
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FIG. 13. The wedge amplitude with the orientation of the
two edges and the link. The face is oriented in accord with
the link. Note that the group elements are acting on their
right, so following the arrow in the picture actually means to
insert the terms in reverse order inside the traces.

The amplitude associated to a state can be approxi-
mated by choosing a 5-valent two-complex C bounded
by the graph. The finer the two-complex, the better the
approximation. The LQG amplitude associated to a state
is [50]:

〈WC |ψ〉 =

∫
SU(2)

dh` W (h`) Ψ(h`).

where the amplitude associated to the two complex C is

WC(h`) = NC

∫
SU(2)

dhfv
∏
f

δ
(∏
v∈f

hfv

) ∏
v

Av(hfv)

(A3)

Here f and v denote the faces and the vertices of C.
In turn, the vertex amplitude Av is defined as follows.
Calling h` = hvf the variables on the links of the vertex
graph, and n the nodes of the vertex graph

Av(h`) =

∫
SL(2,C)

dge
′
∏
`

∑
j

dj D
(γj,j)
jn jm(geg

−1
e′ ) D(j)

mn(h`)

(A4)
The integration is over one ge for each node (edge of
v), except one. The product is over 10 faces f per each
vertex, and D(j) and D(p k) are matrix elements of the
SU(2) and SL(2,C) representations. See Figure 13 for
the relative orientation of edges and links.

Appendix B: Summary of the amplitude

Here we summarise in self-contained form all the for-
mulas defining our resulting expression. All labels refer
to the oriented boundary which determines the pattern
of contraction. This is fixed by Fig. 9. The notation is
summarized in the paragraph above equation (66).

The lifetime τ(m) of a black hole as a function of its
mass m is given by LQG to first order in the vertex am-
plitude and in the highest-weight approximation (62) by∫ τ(m)

0

|W (m,T )|2 dT =
1

2

∫ ∞
0

|W (m,T )|2 dT. (B1)

The amplitude is

W (m,T ) =
∑
{ja,j±ab}

w(z0, z±, ja, j
±
ab) (−1)

∑
`∈Γ j` ×

∑
{J±a ,K±a ,la,l±ab}

(⊗
a,±

δjalaN
J±a
{j±a }

(ν`∈a±) f
J±a ,K

±
a

{j±a }{l±a }

)(⊗
a,±

iK
±
a ,{l

±
a }

)
Γ

.(B2)

where the weight function is

w(z0, z±, ja, j
±
ab) = c(η, η0)

(∏
a

djae
− 1

2η (ja− (2η2−1)
2 )2

eiγζja

)∏
ab,±

dj±ab
e−

1
2η0

(j±ab−
(2η2

0−1)

2 )2

eiγζ0j
±
ab

 (B3)

with

c(η, η0) =

(
e

1
2η0

(
(2η2

0−1)

2

)2)4(
e

1
2η

(
(2η2−1)

2

)2)12

(B4)

The normals are in

N
J±a
{j±a }

=

(←−−⊗
`∈a±

Dj`
m`j`

(ν`)

)
i
Ja, {j±a }
{−→m±a }

(B5)

The arrowed product indicates that the magnetic indices of the representation matrices on the half links outgoing
from the node come with a minus sign. The boost part is

f
K±a ,J

±
a

{j±a }{l±a }
≡ dJ±a i

Ja, {j±a }
{−→p ±a }

(∫
dr±a

sinh2 r±a
4π

−−→⊗
`∈a±

dj`l`p (̀r±a )

)
i
Ka, {l±a }
{←−p ±a }

dK±a (B6)
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The arrow in the tensor product of the djlp(r) indi-
cates that those on links ingoing to the node appear as
dljp(−r). The ranges on the l and p indices are l ≤ j
and p is summed over the range |p| ≤ j. The functions
djlp(r) are given by the integral

djlp(r) =
√
dj
√
dl

∫ 1

0

dt dljp

(
te−r − (1− t)er

te−r + (1− t)er

)
(B7)

× djjp(2t− 1) (te−r + (1− t)er)iγj−1,

where djmn(cosβ) are Wigner’s SU(2) matrices. The 24j
symbol is given by

(⊗
a,±

iK
±
a ,{l

±
a }

)
Γ

=
∑

{ha,h±ab}

(−1)
∑
`∈Γ h`

∏
a,±

i
K±a , {l

±
a }

{
←−
h±a }

(B8)

The four-valent intertwiners are defined as

iJ, j1,j2,j3,j4m1,m2,m3,m4
= (B9)

= (−1)j1−j2+µ

(
j1 j2 J
m1 m2 µ

)(
j3 j4 J
m3 m4 −µ

)

with µ = −m1 − m2 = m3 + m4 and

(
j1 j2 j3
m1 m2 m3

)
are the Wigner 3j symbols. Finally

zo =
2m(1 + e−

T
2m )√

2γ~G
+ i

T

2m
. (B10)

z± =
2m(1 + e−

T
2m )√√

62γ~G
∓ i32

√
6

9
. (B11)

The black hole decay time can then be estimated from

τ(m) ∼ 2π log−1 |W (m, 0)|2

|W (m, 2π)|2
. (B12)
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