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I. INTRODUCTION

A time-dependent spacetime metric can result in quantum particle creation, as was first
discussed by Parker [1] in the context of the expansion of the universe. The cosmological cre-
ation of gravitons was discussed by Grishchuk [2], using the equation for tensor perturbations
of an expanding universe found by Lifshitz [3]. The process of quantum particle creation
has been studied subsequently in the context of inflation. After the end of inflation, quan-
tum creation of particles, including gravitons, can contribute to the matter and radiation
of the universe [4]. We here focus on a different scenario involving graviton production due
to rapid oscillations around a mean expansion rate in a spatially flat Friedman-Robertson-
Walker (FRW) background. We consider two cosmological models in which these kinds of
oscillations arise. The first one involves the usual matter fields in standard general relativity
plus a minimally coupled scalar field (GRSF) in a harmonic potential. The second model
involves f(R) gravity, when a term proportional to the square of the Ricci scalar is added
to the Einstein-Hilbert action, and can arise in semiclassical gravity coupled to the renor-
malized expectation value of a quantum matter stress tensor. Although both models lead
to quantum graviton creation, the graviton wave equation, which determines the creation
rates, is different for each case. The framework of the GRSF model is standard general
relativity, so the graviton equation is that obtained by Lifshitz [3], and in the transverse,
tracefree gauge, has the form of the Klein-Gordon equation for a massless, minimally cou-
pled scalar field. For this reason, the problem of calculating graviton creation in the GRSF
model can be reduced to that of calculating scalar particle production [5]. In the case of
f(R) gravity, the modified Einstein equation includes higher order derivatives terms which
lead to a modified of graviton wave equation [6, 7].

This paper is organized as follows: In Sec. II, we review a perturbation formalism which
will be used to calculate the graviton production rate. We also describe how, in both models,
an oscillating scale factor in a spatially flat FRW background can arise, and give explicit
results for the number and energy density of the gravitons created by oscillations around
a flat background. In Sec. III, we calculate the graviton energy density for both models
in an expanding universe. In Sec. IV, we discuss observational constraints on the energy
density of the created gravitons, and hence on the oscillation amplitude of the scale factor.
In Sec. V, we estimate the decoherence time of quantum systems induced by spacetime
geometry fluctuations due to the graviton bath. In Sec. VI, we summarize and discuss our
main results. In the Appendices, we derive in detail the oscillating scale factor and the
Friedman equation for each model. Units in which ~ = c = 1 are used throughout the
paper. We define the reduced Planck mass to be Mpl ≡ (8πG)−1/2, where G is Newton’s
constant. The metric signature is (−,+,+,+), Greek indices run from 0 to 3, and Latin
indices for spatial components run from 1 to 3 .

II. PERTURBATION CALCULATION OF GRAVITON CREATION

A. Perturbation expansion about conformal coupling

We take the metric to be that of a spatially flat FRW universe, with the following line
element:

ds2 = −dt2 + a2(t)dx2 = a2(η)(−dη2 + dx2) , (2.1)
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where the conformal time η is related to the scale factor a(t) by η =
∫ t
a−1(t′)dt′. In this

conformally flat spacetime, gravitons in general relativity, using the transverse tracefree
gauge, are equivalent to a pair massless minimally coupled scalar fields [5]. Each scalar field
corresponds to one of the independent polarization states of the gravitons. In our case, we
calculate scalar particle production in the metric that we are interested in, Eq. (2.1), and
then multiply the final expressions for the number density and energy density of the massless
scalar field by a factor of two. (For discussions about graviton creation in Robertson-Walker
universes, including calculations of number and energy densities, see Refs. [4] and [5].).

The massless scalar field φ(x) satisfies the wave equation

[�− ξR(x)]φ(x) = 0 , (2.2)

where � = ∇µ∇µ is the covariant d’Alembert operator, R(x) is the Ricci scalar, and ξ is
the coupling constant between the scalar field and scalar curvature. The minimal coupling
corresponds to ξ = 0, which is a necessary condition to study graviton production using the
scalar field equation.

In general, obtaining an exact solution of Eq. (2.2) in a given metric can be difficult.
We adopt an approximation developed by Birrell and Davies [8, 9], which is a perturbation
expansion about the conformally invariant case, ξ = 1/6. After the mode decomposition
of the field in modes uk, which satisfy Eq. (2.2) and the separation of these modes as

uk(x) = (2π)−
3
2 exp(ik · x)a−1(η)χk(η), the equation for χk(η) becomes

d2χk(η)

dη2
+
[
k2 − V (η)

]
χk(η) = 0 . (2.3)

Here k = |k| and

V (η) =

(
1

6
− ξ
)
a2(η)R(η) . (2.4)

The Ricci scalar for the spacetime of Eq. (2.1) can be expressed as

R = C−1

(
3Ḋ +

3

2
D2

)
, (2.5)

where D = Ċ/C, C(η) = a2(η), and dot denotes the derivative with respect to η. We
impose the conditions V (η) → 0 as η → ±∞. Then the normalized solution of Eq. (2.3)
which has positive frequency in the past is denoted by χk(η), and has the asymptotic form
χk(η) ∼ χink (η), as η → −∞, where

χink (η) = (2k)−
1
2 exp(−ikη) . (2.6)

With this initial condition, Eq. (2.3) can be replaced by an integral equation

χk(η) = χink (η) + k−1

∫ η

−∞
V (η′) sin [k(η − η′)]χk(η′)dη′ . (2.7)

The perturbation expansion results from successive iterations of this equation, and may
be viewed as an expansion in powers of 1/6 − ξ. We will work to first order, and replace
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χk(η
′) by χink (η′) in the integrand of Eq. (2.7). The resulting solution for χk(η) may be

expressed in the late time region as

χoutk (η) = αk χ
in
k (η) + βk χ

in∗
k (η) , (2.8)

where the Bogoliubov coefficient, βk, is given by

βk = − i

2k

∫ ∞
−∞

exp(−2ikη)V (η)dη . (2.9)

The number density per unit of proper volume of created particles at late times is

n = 2×
[
2π2a3(η)

]−1
∫ ∞

0

|βk|2k2dk , (2.10)

and the corresponding energy density is

ρ = 2×
[
2π2a4(η)

]−1
∫ ∞

0

|βk|2k3dk . (2.11)

Here the factors of 2 account for the polarization states, and the factors of 1/a3 and 1/a4

describe the dilution and redshifting of massless particles by the continued expansion of the
universe after the creation process has essentially finished.

After substituting Eqs. (2.4) and (2.9) into Eqs. (2.10) and (2.11), and performing the
respective integrals in k, the number and energy density can be rewritten as coordinate-space
integrals, as shown in Refs. [8, 9],

n = 2× [16πa3(η)]−1

∫ ∞
−∞

V 2(η1)dη1 , (2.12)

and

ρ = −2× [32π2a4(η)]−1

∫ ∞
−∞

dη1

∫ ∞
−∞

dη2
ln |(η2 − η1)µ|2

2
× V̇ (η1)V̇ (η2) . (2.13)

Here µ is an arbitrary mass. The energy density ρ is independent of µ, provided that
V̇ (η) → 0 as η → ±∞. In general, the energy density of gravity waves, and hence of
gravitons, may not be clearly defined. However, when the wavelength of the gravity waves is
short compared to the radius of curvature of the background spacetime, there is a well-defined
effective energy momentum tensor for gravity, as is discussed, for example, in Ref. [10]. This
will be the case in the models we examine, as the period of the scale factor oscillations is very
short compared to the Hubble time of the FRW background. The graviton energy density
used here is obtained from this effective energy momentum tensor, as discussed in Ref. [5].

Note that we are working to first order in a perturbation expansion in powers of 1/6,
so the lowest order results are only approximate but should be adequate for the order of
magnitude estimates which we seek.
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B. Oscillating scale factors in a spatially flat FRW background

We consider small oscillations around a FRW background, with a scale factor of the form

a(t) = ā(t) [1 + Aeff(t) cos(ω0t)] , (2.14)

where ā(t) is the background scale factor time-averaged over oscillations, Aeff(t) � 1 is a
non-constant oscillation amplitude, and ω0 is the angular frequency of oscillations. Note
that if we take the background scale factor to be that of flat spacetime and use t ≈ η to
leading order, then Eq. (2.14) takes the following form in conformal time:

a(η) = 1 + A0 cos(ω0η) , (2.15)

where A0 � 1 is the constant amplitude of the metric oscillations.
We analyze two models in which a scale factor of the form in Eq. (2.14) can arise. First,

we consider the standard matter fields in general relativity consisting of a perfect fluid plus
the addition of a minimally coupled scalar field in a harmonic potential. Second, we consider
a specific model in f(R) gravity in which the gravitational action is expanded in a power
series to second order in the Ricci scalar.

1. Standard matter fields in general relativity plus a minimally coupled scalar field (GRSF

model)

Coherent scalar field oscillations in an expanding universe were studied by Turner [11],
and have been widely considered in the literature in the context of inflation and the reheating
epoch after inflation [12] or as a dark matter candidate [13, 14]. We focus on the oscillations
of the scale factor driven by scalar field oscillations. The action for this model is given by

S =
M2

pl

2

∫
d4x
√
−gR +

∫
d4x [LM(gµν ,ΨM) + Lscalar(gµν , ϕ)] , (2.16)

where LM(gµν ,ΨM) is the Lagrangian for the matter fields ΨM , and Lscalar(gµν , ϕ) =
(
√
−g/2)[−gµν∂µϕ∂νϕ − 2V (ϕ)], where ϕ is a homogeneous scalar field with a harmonic

potential, V (ϕ) = (ω2ϕ2)/2. The Friedmann equation for the scale factor is

3H2M2
pl = ρM + ρϕ , (2.17)

and the scalar field equation of motion is

∂2
t ϕ+ 3H∂tϕ+ ω2ϕ = 0 . (2.18)

Here H = ȧ(t)/a(t) is the Hubble parameter and ρM , and ρϕ = (∂tϕ)2/2 + V (ϕ) are the
energy density for matter fields and the scalar field, respectively. In the regime H � ω,
the friction term in Eq. (2.18) is sub-dominant, and the scalar field oscillates around the
minimum of the potential with an angular frequency ω according to ϕ(t) ≈ A(t) cos(ωt).
Let A(t) ∝ 1/ā(t)γ. Then, if we neglect ¨̄a(t) and ˙̄a2(t) terms and take H ≈ H̄ ≡ ˙̄a(t)/ā(t),
the expression for ϕ(t) satisfies Eq. (2.18) with γ = 3/2. It follows that the time evolution
of the scalar field can be expressed as

ϕ(t) = ϕi

( āi
ā

)3/2

cos(ωt) , (2.19)
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where ϕi is the oscillation amplitude when oscillations start at time ti and āi ≡ ā(ti). The
oscillating behavior of the scalar field causes the scale factor in this model also to have an
oscillating behavior. In Appendix A we calculate this scale factor in detail, and find

a(t) = ā(t)

[
1−Di

(
āi
ā(t)

)3

cos(2ωt)

]
, (2.20)

where Di ≡ (ϕ2
i )/(16M2

pl) is the initial amplitude of the metric oscillations. Thus the scale
factor oscillates at twice the frequency of the scalar field. If we consider this background
scale factor to be that of flat spacetime and Di � 1, Eq. (2.20) takes the form, to leading
order, of Eq. (2.15) with Di = A0 and ω = ω0/2, where ω is the mass of the scalar field ϕ.

The generation of gravitons in this model is ruled by Eq. (2.3), because we are working
in standard general relativity.

2. Modified Einstein’s gravity: quadratic terms in the curvature (f(R) model)

Oscillations of the scale factor shown by Eq. (2.14) can also arise from modifications of
Einstein’s equation by terms quadratic in the curvature. An example is f(R) gravity, where
the Einstein-Hilbert action is taken to be SH = 1

2
M2

pl

∫
d4x
√
−gf(R), with f(R) being an

analytic function of the Ricci scalar R. Expand f(R) to second order as

f(R) = a0 + a1R +
a2

2!
R2 + . . . . (2.21)

and set a0 = 0 and a1 = 1, so that f(R) ≈ R + (a2/2)R2. The resulting modified vacuum
Einstein’s equation and its trace equation are, respectively,

Gµν + a2

(
RRµν −

1

4
R2gµν + gµν∇α∇αR−∇µ∇νR

)
= 0 , (2.22)

(
�− 1

3a2

)
R = 0 , (2.23)

where Rµν is the Ricci tensor, and Gµν = Rµν − gµν R/2 is the Einstein tensor. The term
proportional to a2 in Eq. (2.22) need not arise from a modification of the gravitational action,
but perhaps more plausibly, can also arise in semiclassical gravity where the renormalized
expectation value of a quantum matter stress tensor acts as the source of gravity.

In either case, the modified Einstein’s equation, Eqs. (2.22), contains terms which are
fourth order in the metric and can cause flat spacetime to be unstable or to oscillate, as was
discussed by Horowitz and Wald [15]. Let the spacetime metric be that of Eq. (2.1) with
a(η) = 1 + γ. To first order in γ, Eqs. (2.22), becomes

−∂µ∂νγ + (�γ)ηµν + 3a2∂µ∂ν(�γ)− 3a2�(�γ)ηµν = 0 , (2.24)

where � = ∂α∂α. The spatially homogeneous solutions of this equation grow exponentially
in η if a2 < 0, so flat spacetime becomes unstable. If a2 > 0, the scale factor oscillates, as
described by Eq. (2.15), with an angular frequency of

ω =
1√
3a2

(a2 > 0) . (2.25)
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Note the peculiar fact that as a2 becomes smaller, the frequency of oscillation ω becomes
larger. Laboratory tests of the inverse square law of gravity place an upper bound on a2 of
about [16] a2 . 2× 10−9 m2. From Eq. (2.25), this bound leads to a lower bound on ω of

ω & ωB = 1.3× 104 m−1 = 4× 1012 Hz. (2.26)

The possible effect of these oscillations in causing radiation by charged particles was
discussed by Horowitz and Wald [15], and their possible role in causing enhanced quantum
fluctuation effects through non-cancellation of anti-correlated fluctuations was treated in
Ref. [17]. Our primary interest in their effect on graviton creation, which will be treated
in the next subsection. Quantum creation of particles by metric oscillations plays a role in
the Starobinsky model of inflation [18], and was discussed by Vilenkin [19]. More recent
treatments of graviton creation in oscillating metrics have been given in Ref. [20] in the
context of emergent cosmology and in Ref. [21] in a model of inflaton decay.

Gravitational waves in general relativity are associated with a massless spin two graviton
field with two different polarizations. However, the presence of higher order derivatives
terms in the modified Einstein’s equation in Eq. (2.22) cause, in addition to a graviton field,
an extra scalar mode associated with a massive spin zero field. To see this extra scalar
mode, consider small deviations from a flat background of the form gµν = ηµν + hµν , where
|hµν | � 1. If we work to first order in the perturbation, then the linearized version of the
trace field equation, Eq. (2.23), predicts scalar modes satisfying a massive Klein-Gordon
equation [16] (

�− ω2
)
R(1) = 0 , (2.27)

where R(1) = ∂µ∂νh
µν − ηαβ�hαβ is the linearized Ricci scalar to first order. Thus, if we

take seriously this modified gravity theory, we should expect massive scalar particle creation
together with graviton creation. We will focus solely upon graviton creation in the present
paper. We expect the scalar particle creation rate to be somewhat suppressed compared to
that for gravitons due to the nonzero mass of the scalar particle and the two polarization
degrees of freedom of the gravitons. In any case, the observational constraints which we
will derive using gravitons alone may be regarded as lower bounds on the slightly tighter
constraints which would arise if the effects of scalar particles were also included.

Gravitational waves in a spatially flat FRW background can be analyzed by considering
a transverse and traceless perturbation of the metric. Rewrite Eq. (2.22) and define an
effective energy momentum tensor, T eff

µν , by

Gµν =
1

M2
pl

T eff
µν ≡

a2

1 + a2R

(
−1

4
R2gµν − gµν∇α∇αR +∇µ∇νR

)
. (2.28)

One may express T eff
µν in terms of effective fluid quantities and describe the perturbations of

the above equation using a gauge invariant formulation. Let Hk(x, t) ∝ exp(ik · x)uk(t) be
the graviton mode function. Then the evolution of uk(t) is given by [6, 7]

1

a3(t)F (R)

[
a3(t)F (R)∂tuk

(
t)],t +

k2

a(t)2
uk(t) = 0 , (2.29)

where F (R) ≡ df(R)/dR. Note that this equation differs from the general relativity case
by an extra term, (F,t /F )(∂tuk), which comes from the nonzero anisotropic pressure part
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of the imperfect fluid T eff
µν . Defining uk(η) = vk(η)/(a

√
F ), Eq. (2.29) becomes

d2vk(η)

dη2
+

[
k2 − 1

a
√
F

d2(a
√
F )

dη2

]
vk(η) = 0 . (2.30)

In the limit a2 → 0, where F → 1, we recover the known results from general relativity. In
this limit, after setting χk(η) = vk(η) and using R(η) = 6ä(η)/a(η)3, Eq. (2.30) becomes
Eq. (2.3), as expected.

The easiest way to analyze the behavior of oscillations in this model in a spatially flat
FRW background is to take advantage of the equivalence between f(R) theories and scalar-
tensor gravity (For a review and discussion about f(R) gravity and its equivalence with
the scalar-tensor theory for gravitation see Refs. [22] and [23].). The usual approach to
obtain a scalar-tensor gravity from f(R) gravity is to perform a conformal transformation,
g̃µν = F (R)gµν with F (R) ≡ df(R)/dR, and to introduce an auxiliary scalar field φ according

to F (R(φ)) = exp[
√

2/3 (φ/Mpl)]. In the new frame, or Einstein frame, the theory looks
like conventional general relativity plus a minimally coupled auxiliary scalar field φ. It is,
however, not identical to the GRSF model of the previous subsection. Note that we use ϕ
to denote the scalar field in the GRSF model, and φ to denote that in the f(R) model. The
scalar field φ can oscillate around the minimum of its potential, which leads to oscillatory
behavior of the scale factor in the original frame, or Jordan frame, of the form

a(t) = ā(t)

[
1− Ei

(
āi
ā(t)

)3/2

cos(ωt)

]
, (2.31)

where Ei = (φi)/(
√

6Mpl) is the initial amplitude of metric oscillations, φi > 0 is the initial
value of the scalar field, ā(t) is the background scale factor time averaged over the oscillations,
and āi = ā(ti) where ti is the time at which oscillations start. The equivalence between f(R)
gravity and scalar-tensor gravity and the derivation of Eq. (2.31) are discussed in detail in
Appendix B. If we consider the background scale factor to be flat spacetime and Ei � 1,
Eq. (2.31) takes the form, to leading order, of Eq. (2.15) with Ei = A0 and ω = ω0, where
ω is the mass of the scalar field φ. Thus in the f(R) model, the scale factor and the scalar
field oscillate at the same frequency.

We can express the scale factors of both models, Eqs. (2.20) and (2.31), as

a(t) = ā(t)[1 + δa(t)] , (2.32)

where δa(t)� 1 is the oscillatory part of the scale factor. Figure 1 illustrates the behavior
of this oscillatory part in both models in a radiation dominated universe. Here ā(t) ∝ t1/2,
so δa(t) ∝ ā(t)−3 ∝ t−3/2 in the GRSF model and δa(t) ∝ ā(t)−3/2 ∝ t−3/4 in the f(R)
gravity model. Thus the oscillations are at twice the frequency and decay more rapidly in
the GRSF model as compared to the f(R) gravity model.

C. Calculation of graviton creation caused by oscillations around flat spacetime

We consider the graviton creation in both models using the oscillating scale factor defined
by Eq. (2.15), which refers to small oscillations around a flat spacetime. Note that even
though oscillations are present in both scenarios, the gravitational wave equation, which
rules the graviton creation, is different for each case.
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FIG. 1: Oscillatory part of the scale factor in a radiation dominated universe is illustrated in the

GRSF model and in f(R) gravity. Here δa(t)norm is δa(t) expressed in units where δa(t)norm = 1

at an initial time given by ωt = 1.

1. Graviton creation in standard general relativity plus a minimally coupled scalar field

We analyze the asymptotic behavior of the number and energy density of created gravitons
on time scales long compared to the period of oscillation. From Eqs. (2.4) and (2.5), the
expression for V (η) is

V (η) =
1

2C(η)2

[
C̈(η)C(η)− 1

2
Ċ(η)2

]
. (2.33)

Substituting the expression for a(η), Eq. (2.15), into this equation, we obtain, to first order
in A0,

V (η) = − A0 ω
2
0 cos(ω0η)

1 + A0 cos(ω0η)
≈ −A0 ω

2
0 cos(ω0η) . (2.34)

Here we treat the case of oscillations around flat spacetime, and hence set a(η) = 1 in the
prefactors to the integrals in Eqs. (2.12) and (2.13). The graviton number density becomes

n ≈ 1

8π
×
∫
dη1

[
−A0 ω

2
0 cos(ω0η1)

]2
, (2.35)

=
A2

0 ω
4
0

8π
×
∫
dη1

1 + cos(2ω0η1)

2
, (2.36)
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where the integral on η1 is to be taken over a long, but finite interval. On time scales long
compared to ω−1

0 , the average number density creation rate is the same in both conformal
time η and comoving time t and given by

dn

dη

∣∣∣
GRSF

=
dn

dt

∣∣∣
GRSF

=
A2

0 ω
4
0

16π
. (2.37)

If the oscillations last for a comoving time t, then the number density of created gravitons
becomes, to leading order in A0,

ng ∼
A2

0 ω
4
0t

16π
. (2.38)

Let λ = 2π/ω0 be the period of oscillation, and, in c = 1 units, the wavelength associated
with angular frequency ω0. The number density creation rate of Eq. (2.37) can be expressed
as

dn

dt

∣∣∣
GRSF

= π3A2
0 λ
−3 λ−1 . (2.39)

This result tells us that an average of π3A2
0 gravitons are created in volume λ3 per oscillation.

For the case of the graviton energy density, we use the approximate expression of V (η)
in Eq. (2.34) and calculate its derivative with respect to the conformal time,

V̇ (η) ≈ A0 ω
3
0 sin(ω0η) . (2.40)

Substituting this equation into Eq. (2.13), we now have for the graviton energy density

ρ ≈ −A
2
0 ω

6
0

16π2

∫
dη1 sin(ω0η1)

∫
dη2

ln |(η2 − η1)µ|2

2
sin(ω0η2) , (2.41)

where the integrals on η1 and η2 are to be taken over long, but finite intervals. First, let us
focus on the inner integral

I(η1) =

∫ T

−T
dη2

ln |(η2 − η1)µ|2

2
sin(ω0η2) , (2.42)

where we examine the limit T →∞ for fixed η1. With the change of variable y = ω0η2, we
have

I(η1) = ω−1
0 Re

∫ Tω0

−Tω0

dy

{
ln [(y − ω0η1)]2

2
+ ln

(
µ

ω0

)}
sin(y) , (2.43)

= ω−1
0 Re

∫ Tω0

−Tω0

dy
ln [(y − ω0η1)]2

2
sin(y) (2.44)

∼ − π

ω0

sin(ω0η1) +O

(
1

Tω0

)
, (2.45)

where we have, in the second line, dropped the µ dependent part because it is proportional

to
∫ Tω0

−Tω0
dy sin(y) = 0, and, in the third line, used the asymptotic values at ±∞ of the cosine

and sine integral functions. Note that the assumption of ω0 � T−1 in Eq. (2.45) makes the
integrand in the expression for the graviton energy density, Eq. (2.41), approximately local.
Now, we have

ρ ∼ A2
0 ω

5
0

16π

∫
dη1 sin2(ω0η1) . (2.46)
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Again, on long time scales, the average energy density creation rate is the same in both
conformal and comoving time, so

dρ

dη

∣∣∣
GRSF

=
dρ

dt

∣∣∣
GRSF

=
A2

0 ω
5
0

32π
, (2.47)

The leading order for the graviton energy density after a time t is

ρg

∣∣∣
GRSF

∼ A2
0 ω

5
0t

32π
. (2.48)

Here we are ignoring any possible interference terms. That is, we assume that the energy
density of gravitons created at earlier times adds incoherently to that of gravitons created
later.

Equations (2.37) and (2.47) show that the graviton number density creation rate, as well
as the energy density creation rate, are proportional to the square of the metric oscillations
A0, and that the mean graviton energy is ω0/2. This latter result can be explained using
the analogy with the spontaneous parametric down-conversion in nonlinear optics, where a
nonlinear crystal is used to split photon beams into pairs of photons. Here, in accordance
with the law of conservation of energy, the sum of the energies of the pair equals the energy
of the original photon. Graviton production in pairs with energy ω0/2 per particle has
previously been found in the context of the Starobinsky model for inflation [19].

2. Graviton creation in f(R) gravity

Now we can obtain the number and energy density creation rate in f(R) gravity from those
in the GRSF model. Substituting the expression for V (η), Eq. (2.34), into the gravitational
wave equation in standard general relativity, Eq. (2.3), we obtain for the GRSF model

d2vk(η)

dη2
+
[
k2 + A0ω

2
0 cos(ω0η)

]
vk(η) = 0 . (2.49)

For the case of f(R) gravity, using F (R) = 1 + a2R and working to second order in A0 in

the term (a
√
F ),ηη /(a

√
F ) in the modified gravitational wave equation, Eq. (2.30), we have

d2vk(η)

dη2
+
[
k2 − 3A2

0ω
2
0 cos(2ω0η)

]
vk(η) = 0 . (2.50)

The difference between Eqs. (2.49) and (2.50) lies in their respective sinusoidal factors. Note
that the overall sign is not important and does not change the particle creation rate. Making
the replacements ω0 → 2ω0 and A0 → (3/4)A2

0 in Eqs. (2.37) and (2.47) for the GRSF model,
we can obtain the corresponding results for f(R) gravity:

dn

dt

∣∣∣
f(R)

=
9A4

0ω
4
0

16π
, (2.51)

dρ

dt

∣∣∣
f(R)

=
9A4

0ω
5
0

16π
. (2.52)

These last equations show that as the graviton number density and energy density creation
rates are proportional to the fourth power of the metric oscillations A0 and that the mean
graviton energy is ω0.
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III. GRAVITON ENERGY DENSITY IN AN EXPANDING UNIVERSE

Now we wish to extend the results for the energy density creation rate in flat spacetime
obtained in both cases, Eqs. (2.47) and (2.52), to an expanding universe. The general scale
factor in a spatially flat FRW background is given by Eq. (2.14), where the amplitude of
the oscillations decreases with time. So long as the expansion rate of the background is slow
compared to the oscillation rate,

1

ā(t)

dā

dt
� ω , (3.1)

we may treat the background spacetime as approximately flat, and use the results of
Eqs. (2.47) and (2.52) with A0 → Aeff(t). Recall that Aeff(t) = Di(āi/ā)3 in the GRSF
model and Aeff(t) = Ei(āi/ā)3/2 in the case of f(R) gravity. Then the energy density cre-
ation rates in the expanding universe become

dρ

dt
≈ Jω5

0

[
āi
ā(t)

]6

, (3.2)

where J = (D2
i )/(32π) in the GRSF model and J = (9E4

i )/(16π) in f(R) gravity. Note that
dρ/dt ∝ ā−6 in both cases.

In addition to the damping effect on the metric oscillations, the expansion causes redshift-
ing and dilution of the created gravitons. After creation, the graviton energy density scales
as 1/ā4(t). Including both effects, the energy density at t = t0 due to gravitons created in
an interval dt at an earlier time t is

dρg(t0) = Jω5
0

[
āi
ā(t)

]6 [
ā(t)

ā0

]4

dt , (3.3)

where ā0 = ā(t0). If we take t0 to be the present time, the gravitons in question were created
at redshift z, where 1 + z = ā0/ā(t). These expressions tell us that the present contribution
of earlier graviton production is suppressed by a factor of (1 + z)−4 due to redshifting and
increased by a factor proportional to (1 + z)6 due to the greater oscillation amplitude at
earlier times.

If we substitute into Eq. (3.3) the values of ω0 and J for each model, which depend upon
the scalar field initial values, either ϕi or φi, we find that the energy density creation rate in
the f(R) gravity case is four times that in the GRSF model, if the scalar field masses and
initial values are the same. Specifically we have

dρg(t0)
∣∣∣
GRSF

=
ϕ4
i ω

5

256πM4
pl

[
āi
ā(t)

]6 [
ā(t)

ā0

]4

dt , (3.4)

dρg(t0)
∣∣∣
f(R)

= 4× φ4
i ω

5

256πM4
pl

[
āi
ā(t)

]6 [
ā(t)

ā0

]4

dt . (3.5)

If the oscillations start at time ti, then the graviton energy density at time t0 will be
given by

ρg(t0) = Jω5
0a

6
i

∫ t0

ti

ā(t)−2dt , (3.6)
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with ā0 = 1. We assume that ti is after the end of inflation and that gravitons created at
earlier time do not cause interference with gravitons created at later times, as was assumed
in Eq. (2.48).

Consider a model of the universe which is spatially flat and contains radiation (photons,
neutrinos, and gravitons), non-relativistic matter (baryonic and nonbaryonic dark matter)
and a cosmological constant associated with the dark energy. The model is first radiation
dominated, then non-relativistic matter dominated, and is now entering into its dark energy
dominated phase. On time scales much longer than the period of oscillations, the Friedmann
equation in this model of universe, which is derived in detail in the appendices, can be
expressed as

3H̄(t)2M2
pl ≈

ρr,0
ā4(t)

+
ρm,0
ā3(t)

+ ρΛ,0 +
ω2χ2

i

2

( āi
ā

)3

, (3.7)

where H̄(t) ≡ [ ˙̄a(t)]/[ā(t)] is the Hubble parameter as a function of the time-averaged scale
factor, ā(t). Here ρr,0, ρm,0, and ρΛ,0 are the radiation, non-relativistic matter, and dark en-
ergy densities today, respectively, and the scalar field energy density is ρχ ≈ (ω2χ2

i /2)(āi/ā)3,
where χ refers to either the ϕ scalar field in the GRSF model or the φ scalar field in f(R)
gravity.

Since we are interested in cosmological implications of the quantum graviton creation,
we assume that oscillations of the scale factor continue through the present epoch. This is
equivalent to requiring that the scalar field in each model continues in its oscillatory phase.
Note that the scalar energy density in both cases scales like non-relativistic matter, and
could grow to dominate the radiation energy density before the expected beginning of the
matter-dominated epoch. In order to avoid that, the scalar energy density, ρχ(t), should
be always less than that of the non-relativistic matter, ρm(t), through the present epoch.
Indeed, this conclusion is supported by observational data, as will be explained in detail in
Sec. IV.

If we assume ρχ(t) < ρm(t), the Friedman equation for both models, Eq. (3.7), becomes

H̄(t)2

H2
0

≈ Ωr,0

ā4(t)
+

Ωm,0

ā3(t)
+ ΩΛ,0 , (3.8)

where Ωr,0 = ρr,0/ρc,0, Ωm,0 = ρm,0/ρc,0, and ΩΛ,0 = ρΛ,0/ρc,0. Here ρc,0 = (3H2
0 )/(8πG) is

the critical density today and G is Newton’s constant. Then Ω0 = Ωr,0 + Ωm,0 + ΩΛ,0 ≈ 1 is
the energy density parameter today. We use the values H0 ≡ 100 h0 km s−1 Mpc−1, Ωr,0 =
4.15× 10−5 h−2

0 , and ρc,0 = 1.88× 10−26 h2
0 kg m−3. We take h0 = 0.673 and Ωm,0 = 0.315

from the Planck temperature power spectrum data including WMAP polarization at low
multipoles [24].

Substituting Eq. (3.8) into Eq. (3.6), the graviton energy density today is found to be

ρg(t0) =
Jω5

0 ā
6
i

H0

∫ 1

āi

(
ā−1√

Ωr,0 + Ωm,0 ā+ ΩΛ,0 ā4

)
dā , (3.9)

This integral cannot be expressed in terms of elementary functions and must be calculated
numerically. The graviton energy density during the radiation dominated epoch can be
calculated more easily. At some time tr . trm, where trm is the time of radiation-matter
equality, the scale factor can be approximated as

ā(t) ≈ (2
√

Ωr,0H0 t)
1/2 ∝

√
t . (3.10)
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This is a solution of Eq. (3.8) when the non-relativistic matter and dark energy terms may
be neglected compared to the radiation term, and the latter term is assumed to come entirely
from photons and neutrinos. If other relativistic particles are present, then the constant of
proportionality increases by a factor of the fourth root of the number of types of particles
present. This factor will be assumed to be of order one, and will be ignored in our rough
estimates.

As a result, the graviton energy density at time tr � ti is given by

ρg(tr) = Jω5
0

∫ tr

ti

[
āi
ā(t)

]6 [
ā(t)

ā(tr)

]4

dt ≈ Jω5
0

(
t3i
t2r

)
ln(tr/ti) . (3.11)

Here we are assuming that the oscillations begin during the radiation dominated era. Clearly
some significant event is needed to cause the oscillations to begin and to determine the initial
amplitude. Two possibilities are the reheating at the end of inflation, or a subsequent phase
transition. Note that the graviton energy density in Eq. (3.11) vanishes in the limit ti → tr
as is expected.

Thus far we have not discussed the decay of the scalar fields caused by direct coupling
with other fields such as radiation or non-relativistic matter and/or the quantum particle
production different from gravitons. Even though in the GRSF model we have not considered
a direct coupling between the scalar field and matter fields, the field ϕ couples with those
fields through gravity by means of the scale factor (the oscillatory part of the scale factor

is proportional to ϕ2). This coupling results in quantum particle production not only of
gravitons (when the scale factor coupling to a pair of minimally coupled massless scalar
fields) but also, for instance, of massive scalar particles, vector bosons and fermions [21]. In
any case, if we are interesting in values for ω below the masses of these particles, we expect
that these process are mass suppressed. We have a similar scenario for f(R) gravity, with
the difference that in this theory there is a direct coupling between the auxiliary scalar field
φ and the matter fields. However this coupling is suppressed in the regime in which we are
working in, where Ei ∝ (φi/Mpl)� 1.

IV. COSMOLOGICAL CONSTRAINTS ON THE OSCILLATION AMPLITUDE

OF THE SCALE FACTOR

In this section, we explore three cosmological constraints on the graviton creation. The
first two are observational constraints on the effects of the created gravitons, one from big
bang nucleosynthesis (BBN) and another from observational Hubble parameter measure-
ments. The third comes from an observational constraint on scalar field energy density,
which in the context of the specific models we treat, implies a strong constraint on the
amplitude of oscillations. All of these constraints will depend on the value for ω considered.
In f(R) gravity the angular frequency of oscillations is bounded from below, ω ≥ ωB. There
is no analogous bound in the GRSF model, but in both models we will consider a range of
angular frequencies beginning at ωB and extending upward by several orders of magnitude.
The upper bound on ω could be as high as the Planck frequency, 1031 ωB, where our semi-
classical approach is expected to break down. However, we will be primarily concerned with
more typical particle physics energy scales.
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A. Big bang nucleosynthesis constraint

Commonly, the BBN bound is expressed as a number of extra neutrino varieties, ∆Nν .
(For a review, see Big Bang Cosmology and Big Bang Nucleosynthesis reviews in Ref. [25]).
In the early universe, relativistic particles dominate the total energy density. For this reason,
at T = 1 MeV (before electron-positron annihilation), the total energy density is ρBBN =
N(T )(π2/30)T 4, where N(T ) is the equivalent number of degrees of freedom at temperature
T , is approximately given by the contribution of photons, electrons, positrons and neutrinos.
Any additional contribution at that time to the total energy density from a component with a
radiation-like equation of state can be described as an equivalent number of extra neutrinos.
Thus, the graviton energy density ρgBBN at T = 1 MeV is

ρgBBN =
7

8
∆Nν ργ , (4.1)

where ργ = [(2π2)/(30)]T 4 refers to the photon energy density.
It is possible to find in the literature several constraints on ∆Nν , which depend upon

the specific light element abundances considered, from ∆Nν ≤ 0.2 to ∆Nν ≤ 1 [26]. The
constraint can be relaxed in some non-standard nucleosynthesis scenarios [27]. We take
for our purpose ∆Nν ≈ 1. Then, using Eq. (3.11) for the graviton energy density in the
radiation-dominated epoch, we have

ρg(tr) ≈ Jω5
0

(
t3i
t2r

)
ln (tr/ti) ≤

7

8
ργ , (4.2)

where tr refers to the time when T = 1 MeV, which is approximately one second. Equa-
tion (4.2) give a bound on Di, in the GRSF model, and Ei, in f(R) gravity, for a given ω
of

Di

∣∣∣
G(R)

. 10−5

(
10−6 s

ti

) 3
2
(

1010 ωB
ω

) 5
2

[ln (1 s/ti)]
−1/2 , (4.3)

Ei

∣∣∣
f(R)
. 3× 10−3

(
10−6 s

ti

) 3
4
(

1010 ωB
ω

) 5
4

[ln (1 s/ti)]
−1/4 . (4.4)

Recall that the initial oscillation amplitude, Di and Ei, need to be small for the consistency
of our treatment. This condition can be fulfilled if ω & 1010 ωB ≈ 26 MeV. Note that an
initial time ti = 10−6 s corresponds to a temperature of Ti ≈ 1 GeV.

B. Constraint from the expansion rate of the universe

Observational data on the late universe can be used to obtain an upper bound on the
present density of gravitons. Rewriting the scale factor as a function of the redshift in
Eq. (3.8) using ā(z) = 1/(1 + z), we obtain

H̄(z) = H0

[
Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + (1− Ωr,0 − Ωm,0)

]1/2
, (4.5)

which shows the dependence of H̄(z) on the cosmological parameters. Taking into account
graviton production, Eq. (4.5) becomes

H̄(z) = H0

[
(Ωr,0 + Ωg,0)(1 + z)4 + Ωm,0(1 + z)3 + (1− Ωr,0 − Ωm,0 − Ωg,0)

]1/2
, (4.6)



16

where Ωg,0 is the graviton energy density parameter today.
We use a sample of 18 observational measurements of Hubble parameter in the range

of 0.09 ≤ z ≤ 1.75 with their respective standard errors reported by Moresco et al. [28],
Table 1. Measurements are provided by passively evolving galaxies, high-quality spectra of
red-envelope galaxies in galaxy clusters, and spectroscopic evolution of early type galaxies.
The least-squares method is applied by means of minimizing the reduced sum of the square
of residuals weighted by errors χ2

ν according to

χ2
ν(Ωg,0) =

1

ν

18∑
i=1

[Hobs(zi)−H(zi; Ωg,0)]2

σ2
Hobs(zi)

, (4.7)

where Hobs(zi) is the ith observational value of H(z) at redshift zi, H(zi; Ωg,0) is the theo-
retical ith value of H(z) obtained by means of Eq. (4.6) at redshift zi, σHobs(zi) is the error
associated with the i-th observational value of H(z) at redshift zi, and ν is the number
of degrees of freedom (18 observational data points minus one parameter to be adjusted,
i.e., Ωg,0). The standard error associated with the graviton energy density parameter today
σΩg,0(Ω

∗
g,0) and the standard error of the value of the fitted function σH(z; Ω∗g,0) are calculated

following standard procedures [29], where we have defined Ω∗g,0 as the value of the graviton

energy density parameter today which minimizes χ2
ν .

Figure 2 shows the fiducial cosmology without gravitons, obtained from Eq. (4.5), and
the best fit with a non-zero value for the graviton energy density parameter today, obtained
from Eq. (4.6). Including gravitons in the evolution of the Hubble parameter is equivalent to
increasing the radiation energy density parameter. This produces an increase of the Hubble
parameter for a given z in comparison to the fiducial cosmology. The best fit is found to be
Ω∗g,0 = 0.011±0.015 (for 1 standard deviation) with χ2

ν = 0.75. The value of χ2
ν is reasonably

close to 1 indicating that the fit can be considered meaningful. (See, for example, Ref. [29].)
At the level of two standard deviations, we obtain an upper bound for the graviton energy
density parameter today of Ω∗g,0 ≤ 0.04.

Because the graviton energy density increases as the comoving time increases, it is in
principle possible to obtain constraints on the oscillation amplitude for each case:

ρg(t0)

ρc,0
= Ω∗g,0 . 0.04 . (4.8)

Use Eq. (3.9) for ρg(t0). Then the constraints on the oscillation amplitudes may be expressed
as

Di

∣∣∣
GRSF

. 10−5

(
Ti

1 GeV

)3 (
1010 ωB
ω

) 5
2

, (4.9)

Ei

∣∣∣
f(R)
. 10−2

(
Ti

1 GeV

) 3
2
(

1010 ωB
ω

) 5
4

. (4.10)

Here we have used āi ≈ 3K/Ti, where Ti is the initial energy scale, for the factor ā6
i in

Eq. (3.9). Moreover, since the definite integral in this equation is slowly varying with
respect to its lower limit, āi, we have evaluated it at Ti = 1 GeV, where its value is about
2× 103.

Note that these constraints from late time dynamics of the universe are comparable to
those obtained from nucleosynthesis in Eqs. (4.3) and (4.4). There seem to be competing
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FIG. 2: Observational data for H(z) and their errors (see Ref. [28]) are plotted. The solid line

gives the fiducial cosmology, which assumes no gravitons with h0 = 0.673, Ωr,0 = 4.15× 10−5 h−2
0 ,

Ωm,0 = 0.315 , and ΩΛ = 1− (Ωr,0 +Ωm,0). The dashed line is a best fit using least squares method

with non-zero Ωg,0. The boundaries of the regions associated with confidence levels of σH(z; Ω∗g,0)

and of 3σH(z; Ω∗g,0) are also illustrated.

effects which nearly cancel one another. Nucleosynthesis occurs earlier in the history of the
universe when then characteristic amplitude of the oscillations is greater and there has been
less redshifting of the created gravitons. However, in the late universe, there has been far
more time for graviton creation.

C. Constraints on the Scalar Field Energy Density

Now we consider a constraint on the scalar energy density, ρχ, and its implications. Data
from the dynamics of galaxy clusters [30] lead to an estimate of the current matter density of
Ωm,0 = 0.26. This estimate includes all matter, including dark matter, which is localized on
the scale of a cluster of galaxies, but would not include a homogeneous background density,
such as that due to a scalar field. CMB data from the from Planck Collaboration 2013 [24]
leads to a slightly larger value of Ωm,0 = 0.315. Given that about 70% of the current energy
density is dark energy, the scalar field energy density must be less than the matter density,

ρχ(t) < ρm(t) . (4.11)



18

Note that this is also a constraint on χi, the initial value of the scalar field. Because
ρm ≈ ρm,0/ā

3 ≈ ρm,0(T/T0)3 and ρχ ≈ (ω2χ2
i /2)(āi/ā)3 ≈ (ω2χ2

i /2)(T/Ti)
3, we have

χi
Mpl

. 10−11

(
Ti

1 GeV

)3/2 (ωB
ω

)
, (4.12)

where Ti and T0 are the temperature at time ti and the current temperature of the cosmic
microwave background, respectively.

This constraint on the scalar energy density leads to a very strong constraint on the
initial amplitude of oscillations in both models:

Di

∣∣∣
GRSF

. 10−23

(
Ti

1 GeV

)3 (ωB
ω

)2

, (4.13)

Ei

∣∣∣
f(R)
. 10−12

(
Ti

1 GeV

) 3
2 (ωB

ω

)
. (4.14)

These constraints are much stronger than the constraints which come directly from the
observable effects of the created gravitons. This is presumably related to the weakness of
the graviton creation process. However, the scalar field energy density constraint is more
model dependent, and comes from the key role played by scalar fields in both of the specific
models treated here.

V. QUANTUM DECOHERENCE INDUCED BY THE GRAVITON ENERGY

DENSITY

A realistic quantum system can not be considered isolated, but is in interaction with
the surrounding environment. This interaction can induce in the system a loss of quantum
coherence, namely, a local suppression of interference between two different states [31]. The
environment can refer to ordinary matter, quantum fields, or gravitational fields. For a
recent review and discussion about quantum decoherence and gravitational interactions, see
Ref. [32]. De Lorenci and Ford [33] studied the decoherence rate of quantum systems induced
by a bath of long wavelength gravitons. The basic mechanism arises from quantum geometry
fluctuations produced by the graviton bath, which in turn produce length and hence phase
fluctuations in a quantum system. These phase fluctuations lead to a loss of contrast in
interference patterns, and hence decoherence by dephasing. We will apply these results to
quantum systems in a bath of graviton created by the mechanism discussed in the GRSF
model. First, we summarize the essential results of Ref. [33].

Adopt the transverse-tracefree gauge and define h as the root-mean-square fractional
length fluctuations in a particular direction, such as the x-direction by

h2 = 〈(hxx)2〉 = (1/9)〈hTTij h
ij
TT 〉 . (5.1)

We can re-express h as a function of the graviton energy density as

h =
4

3

√
2π
λg
√
ρg

Ep
, (5.2)
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where λg = 2π/ωg is the characteristic graviton wavelength and Ep is the Planck energy.
Suppose we have a quantum system in which ∆ω is the energy difference between the
interfering states. The decoherence time td induced by length fluctuations is approximately
td ≈ 1/(h∆ω). If the graviton wavelength is large compared to the geometric size of the
quantum system, the decoherence time may be written as

td =
3

4
√

2π

Ep
λg
√
ρg∆ω

. (5.3)

Note that decoherence by the effects of a graviton bath seems to be compatible with the
assumption, stated after Eq. (2.48), that the graviton energy density accumulates incoher-
ently. A thermal bath of gravitons is maximally incoherent, but is expected to produce
length and hence phase fluctuations. The key issue is that the typical graviton wavelength
be larger than the size of the quantum system.

In our case, the graviton energy density may be taken to be the present value given by
Eq. (3.9), and λg is understood to be an average wavelength at the present time. For the
purpose of an estimate, we take the energy density to be at the upper bound of 4% of the
total energy density of the universe found in Eq. (4.8). We also take λg = 2π/ωg ≈ 4π/ω0.
That is, we use the GRSF model, where the gravitons are created with an angular frequency
of ω0/2, and we are assuming that the present graviton bath is composed of gravitons which
have not been significantly redshifted since their creation. This is reasonable, given that in
the time that a given graviton’s energy has been redshifted by a factor of 1/2, its contribution
to the energy density has decreased by a factor of 1/16. With these assumptions, we obtain
a lower bound on the decoherence time of

td & 107 yr

(
ω

ωB

)(
1 eV

∆ω

)
, (5.4)

where we have associated the mass of the scalar field ϕ with the angular frequency of
oscillations using ω = ω0/2. For ω ≈ ωB, this lower bound holds for quantum systems with
a geometric size small compared to λg ≈ 0.05 cm. This decoherence time is quite long unless
the energy difference ∆ω is large.

VI. SUMMARY AND DISCUSSION

We have studied quantum creation of gravitons by small scale factor oscillations in a
spatially flat FRW background. We use the perturbative method of Birrell and Davies [8, 9],
which is an expansion in powers of a parameter describing the deviation from conformal
coupling. In our case, the effective expansion parameter has the value 1/6, which should be
small enough for order of magnitude estimates, but not for precise results.

Sinusoidal scale factor oscillations can arise in various cosmological models and we con-
sider two examples. The first consists of the standard matter fields in general relativity
plus the addition of a minimally coupled scalar field, ϕ(x), in a harmonic potential (GRSF
model). The second model involves to a modification of Einstein gravity in which a term pro-
portional to the square of the Ricci scalar is added to the gravitational action (f(R) gravity
model). The same modified Einstein equation also arises, perhaps more naturally, in semi-
classical gravity theory, where the classical gravitational field is coupled to the renormalized
expectation value of a quantum matter stress tensor. The f(R) gravity model is equivalent
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to a scalar-tensor theory of gravity, and the scale factor oscillations may be described in
terms of oscillations of the scalar field in the scalar-tensor theory. Laboratory tests of the
inverse square law for gravity give an upper bound on the coefficient of the R2 term in f(R)
gravity, which leads to a lower bound, ωB, on the oscillation frequency ω. By contrast, in
the GRSF model the value of ω is not bounded from below. In both models the amplitude
of oscillations is a free parameter and presumably determined by initial conditions. In the
GRSF model, the quantum graviton production is ruled by the standard gravitational wave
equation from general relativity, but in f(R) gravity, the graviton creation is ruled by a
modification of this equation. This leads to different expressions for the graviton creation
rates in the two models. In both models, the amplitude of the scale factor oscillations decays
as the universe expands. If ā(t) is the background scale factor, time-averaged over oscilla-
tions, then the amplitude decreases as ā(t)−3 in the GRSF model, and as ā(t)−3/2 in the
f(R) model.

We first obtained expressions for the number and energy density creation rates on an
average background of flat spacetime in both models, Eqs. (2.37), (2.47), (2.51), and (2.52).
We then extended our analysis to an expanding universe by including two effects: damping
of the metric oscillations and density dilution and redshifting of the created gravitons. The
results show the differences between the two models with respect to the dependence upon
initial amplitude, angular frequency, and damping rate of the oscillations. If the mass of
the scalar field in each model is ω, the angular frequency of the metric oscillations is 2ω in
the GRSF model, and ω in f(R) gravity. The angular frequency of the created gravitons
is ω in both models. The initial amplitude of oscillations is expected to be determined by
processes in the early universe, such as at reheating or a subsequent phase transition.

We assumed the matter fields in both models to be the usual perfect fluids associated
with radiation, non-relativistic matter and a cosmological constant. We examined two cos-
mological constraints on the energy density of the created gravitons, and hence on the initial
amplitude of the oscillations for fixed ω. The first constraint comes from big bang nucleosyn-
thesis and the second from data on the expansion rate of the late universe. Both constraints
lead to similar bounds on the initial metric oscillation amplitudes. These bounds become
meaningful if ω & 26 MeV. The expansion rate data indicate that gravitons cannot comprise
more than about 4% of the present mass density of the universe. We also used data from the
dynamics of galaxy clusters and the cosmic microwave background to argue that the energy
density of the scalar fields, which appear in both of our models, must be small compared to
the current density of non-relativistic matter. This in turn places strong constraints on the
amplitudes of the scalar field oscillations, and hence on the amplitudes of the scale factor
oscillations. The latter constraints are much stronger than those obtained from the effects
of the created gravitons, but are more dependent upon the details of our specific models,
and potentially less robust.

Finally, we examined the role of the bath of gravitons produced by the GRSF model
in decohering quantum systems, using the results of Ref. [33]. Long wavelength gravitons
produce quantum spacetime geometry fluctuations which in turn lead to length and phase
fluctuations in a system exhibiting quantum interference. The phase fluctuations lead to a
loss of contrast in the interference pattern. Using our upper bound on the present graviton
energy density from data of the Hubble parameter in the late universe, leads to a lower
bound on the characteristic decoherence time, td, given in Eq. (5.4). This bound allows the
decoherence time to be quite long unless the energy difference of interfering components of
the system is large.
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Appendix A

In this appendix, we will derive Eqs. (2.20) and (3.7) for the GRSF model in a spatially
flat FRW background.

Consider the Friedman equation for this model, Eq. (2.17), with the energy density for
matter fields, ρM , consisting of the usual energy density components of radiation (ρr =
ρr,0/a

4), non-relativistic matter (ρm = ρm,0/a
3), and vacuum (ρΛ). Here ρr,0 and ρm,0 are

the current energy density of radiation and non-relativistic matter, respectively. Taking into
account that ρϕ = (∂tϕ)2/2 + (ωϕ)2/2 and Eq. (2.19), in the regime H � ω, we have

3H2M2
pl ≈ ρ̄total +

3

2
ϕ2
i H̄ω

( āi
ā

)3

cos(ωt) sin(ωt) , (A1)

where ρ̄total ≡ ρr,0/ā
4 +ρm,0/ā

3 +ρΛ,0 +(ω2ϕ2
i /2)(āi/ā)3 and H̄ ≡ ˙̄a/ā. Define a = ā (1 + δa)

where δa� 1 is the oscillating part of the scale factor, which leads to H = ȧ/a ≈ ˙̄a/ā+ δ̇a =

H̄ + δ̇a. After a binomial expansion in powers of ϕi/Mpl, Eq. (A1) becomes

H ≈

(
ρ̄total

3M2
pl

)1/2

+
ϕ2
i ω

8M2
pl

( āi
ā

)3

sin(2ωt) . (A2)

By inspection, we have that δ̇a corresponds to the second term on the right side of Eq. (A2).

If we integrate δ̇a during a period of time 4tosc greater than 1/ω but much more less than
1/H, the background scale factor is essentially constant in comparison to the oscillating
function sin(2ωt). Then, setting the integration constant to be zero, we have

δa = − ϕ2
i

16M2
pl

( āi
ā

)3

cos(2ωt) . (A3)

Taking into account that a = ā(1 + δa), we obtain the result shown by Eq. (2.20).
On time scales much longer than4tosc, we may consider the cosmological evolution of the

model to be time-averaged over oscillations and the original Friedman equation, Eq. (2.17),
becomes

3H̄2M2
pl =

ρr,0
ā4

+
ρm,0
ā3

+ ρΛ,0 +
ϕ2
iω

2

2

( āi
ā

)3

. (A4)

Note that this equation, in a rough approximation, becomes Eq. (3.8) when ρϕ(t) < ρm(t).

Appendix B

In this appendix, we will derive Eqs. (2.31) and (3.7) for the f(R) gravity model in a
spatially flat FRW background.
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The action for f(R) gravity can be expressed in the Jordan frame (JF) as

S =
M2

pl

2

∫
d4x
√
−gf(R) +

∫
d4xLM(gµν ,ΨM) , (B1)

where LM is the matter Lagrangian, ΨM are matter fields and we set f(R) = R + a2R
2/2.

Recall that the reduced Planck mass is Mpl ≡ (8πG)−1/2. Let us re-write this action as

S =

∫
d4x
√
−g
[
M2

pl

2
F (R)R− U(R)

]
+

∫
d4xLM(gµν ,ΨM) , (B2)

where U(R) = M2
pl [F (R)R− f(R)] /2 with F (R) ≡ df(R)/dR. The action can be trans-

formed to the Einstein frame (EF) by introducing the conformal transformation g̃µν =
F (R)gµν , where F (R) is the conformal factor and the tilde refers any quantity in the Ein-
stein frame. We introduce an auxiliary scalar field φ such that

F (R(φ)) = e

√
2/3

Mpl
φ
. (B3)

After some manipulation, the action of Eq. (B2) under the conformal transformation be-
comes [22]

SEF =

∫
d4x
√
−g
[
M2

pl

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]
+

∫
d4xLM(e

−
√

2/3φ

Mpl g̃µν ,ΨM) , (B4)

where V (φ) = U(R(φ))/F (R(φ))2. Note that the degrees of freedom in the field gµν in the
original frame or Jordan frame (JF) split in the Einstein frame into a massless spin-2 field
g̃µν and a massive scalar field φ. Indeed, the action in this last frame is just the usual action
in GR with an additional scalar field which propagates freely in the spacetime minimally
coupled to gravity but non-minimally coupled to the matter fields. For simplicity, we work
in the EF to solve the cosmological equations of motion and then we come back to the
JF in order to interpret our results. We interpret the JF as the physical frame in which
test particles move along geodesics and the energy momentum tensor of the matter fields is
covariantly conserved.

Recall that the metric in the JF is given by Eq. (2.1). The metric in the EF may be
expressed as

ds̃2 = F
[
−dt2 + a2(t)dx2

]
= −dt̃2 + ã2(t̃)dx2 , (B5)

where dt̃ =
√
Fdt and ã =

√
Fa. The variation of the action, Eq. (B4), with respect to the

scalar field φ and the metric g̃µν result, respectively, in the following cosmological equations
of motion [23]:

3H̃2M2
pl = ρ̃M + ρ̃φ = ρ̃M +

1

2
(∂̃tφ)2 + V (φ) , (B6)

∂̃2
t φ+ 3H̃∂̃tφ = −dV (φ)

dφ
− T̃M√

6Mpl

= −∂Veff(φ, ã)

∂φ
, (B7)

with

Veff(φ, ã) = V (φ) + ρ̃M =
3ω2M2

pl

4

(
1− e−

√
2/3φ

Mpl

)2

+ ρ̃M . (B8)
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FIG. 3: The field potential V (φ), Eq. (B8), for the model f(R) = R+ (a2/2)R2.

Here H̃ is the Hubble parameter in the EF, and T̃M = −ρ̃M + 3p̃M is the trace of the
energy momentum tensor of the matter fields in the EF, where ρ̃M and p̃M refers to the
energy density and pressure, respectively. In addition, Veff(φ, ã) is the effective potential
acting on the scalar field, and ω = 1/

√
3a2, as defined in Eq. (2.25). Let ρ̃M consist of

the usual energy density components of radiation (ρr = ρr,0/a
4 in the JF), non-relativistic

matter (ρm = ρm,0/a
3 in the JF), and vacuum (ρΛ in the JF), where ρr,0 and ρm,0 are the

current energy density of radiation and non-relativistic matter, respectively. Then, using
the relation between both frames for the energy density ρ̃M = F−2ρM(a) = F−2ρM(F−1/2ã),
the effective potential can be written as

Veff(φ, ã) = V (φ) + ρ̄r(ã) + ρ̄m(ã)e
− φ√

6Mpl + ρΛe
−4φ√
6Mpl , (B9)

where ρ̄m(ã) = ρm,0/ã
3 and ρ̄r(ã) = ρr,0/ã

4.
We analyze the cosmological effects of this model under the assumption of |φ|/Mpl � 1

and in the regime H̃ � ω where the oscillation time of the scalar field is much less than the
expansion time in the EF. We do not treat φ as the inflaton field and neglect its possible
decay in other particles.

When |φ|/Mpl � 1, the potential V (φ) shown in Fig. 3 can be approximated by a
quadratic potential near the minimum at φ = 0 leading to V (φ) ≈ ω2φ2/2. Equation (B9)
may also be expanded to write

Veff(φ, ã) ≈ 1

2
ω2 φ2 + constant +O(|φ|/Mpl) . (B10)
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To leading order, Eq. (B7) becomes

∂̃2
t φ+ 3H̃∂̃tφ+ ω2φ = 0 . (B11)

The scalar field oscillates around the minimum of V (φ) with angular frequency ω and with
an amplitude that redshifts as ã−3/2 according to [23]

φ(t̃) = φi

(
ãi
ã

)3/2

cos(ωt̃) , (B12)

where φi > 0 and ãi corresponding to the oscillation amplitude and scale factor, respectively,
when oscillations start at time t̃i. The derivation of Eq. (B12) can be obtained directly from
the equation of motion of the scalar field. We will show this for the cases of a power law
expansion and de Sitter spacetime in the EF, which are the cases of greatest interest. Note
that ã(t̃) is a solution of Eq. (B6). To leading order, the scalar field energy density may be
ignored compared to the matter contribution. This leads to the usual cosmological solutions,
such as ã(t̃) ∝ t̃1/2 for radiation, etc.

For a power law expansion, let ã ∝ t̃c with c a constant. Then H̃ = c/t̃ and Eq. (B11)
becomes

∂̃2
t φ+

3c

t̃
∂̃tφ+ ω2φ = 0 , (B13)

whose solution is
φ(t̃) = t̃

1−3c
2

[
C1 J 3c−1

2
(ωt̃) + C2 Y 3c−1

2
(ωt̃)

]
, (B14)

where C1 and C2 are constants and Jν(z) and Yν(z) are the Bessel functions of the first and
second kind, respectively. The limit H̃ � ω implies ωt̃ � c, and we assume that c is of
order one. Using the asymptotic forms of Jν(z) and Yν(z) for ωt̃� 1, we have

φ(t̃) ∝ t̃−3c/2 cos(ωt̃) , (B15)

∝ ã−3/2 cos(ωt̃) . (B16)

where we have ignored the phase in the argument of the cosine function.
For the case of de Sitter spacetime, let ã ∝ exp(H̃ t̃). Then Eq. (B11) becomes

∂̃2
t φ+ 3H̃∂̃tφ+ ω2φ = 0 . (B17)

Let φ(t̃) ∝ exp(iθt̃) in Eq. (B17), which leads to

θ2 − 3iH̃θ − ω2 = 0 . (B18)

The solution for θ is

θ = ω

√√√√1−

(
3H̃

2ω

)2

+
3

2
iH̃ , (B19)

where we have selected the positive root. We can approximate Eq. (B19) as

θ ≈ ω +
3

2
iH̃ +O

(
H̃2

ω

)
. (B20)
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Then the real solution of Eq. B17 has the form

φ(t̃) ∝ e−3H̃t̃/2 cos(ωt̃) , (B21)

∝ ã−3/2 cos(ωt̃) . (B22)

Equations (B16) and (B22) confirm the general expression, Eq. (B12), for the cases of
primary interest.

We may now combine Eq. (B3) with ã =
√
Fa to write, under the condition |φ| �Mpl,

a(t) =
1√
F
ã(t̃) = e

− φ(t̃)√
6Mpl ã(t̃) ≈ ã(t)

[
1− 1√

6Mpl

φ(t)

]
, (B23)

where we have used t ≈ t̃ + O(|φ|/Mpl). Next we use Eq. (B12) as φ(t̃) ≈ φ(t) =
φi(ãi/ã)3/2 cos(ωt) in this expression, and then average over the oscillations to find that
ā(t) ≈ ã(t). The result may be written as Eq. (2.31). Note that the assumption
|φ|/Mpl ≤ φi/Mpl � 1 is equivalent to Ei � 1 since Ei ≡ [φi/(

√
6Mpl)].

Now, note that in the regime |φ|/Mpl � 1 and H̃/ω � 1, the scalar energy density in

the Einstein frame can be expressed as ρ̃φ ≈ (1/2)(∂̃tφ)2 + (ω2φ2/2) ≈ (ω2φ2
i /2)(ãi/ã)3 by

using the expression for φ(t̃) from Eq. (B12). Then, the Friedmann equation in the Einstein
frame, Eq. (B6), can be expressed as

3H̃2(t̃)M2
pl =

[
ρr,0

ã4(t̃)

]
+

[
ρm,0

ã3(t̃)

]
e
− φ(t̃)√

6Mpl + ρΛe
− 4φ(t̃)√

6Mpl +
ω2φ2

i

2

[
ãi

ã(t̃)

]3

. (B24)

Taking t ≈ t̃ + O(|φ|/Mpl), ã(t) ≈ ā(t), and Taylor expanding the exponential functions in
Eq. (B24), we obtain

3

[
1

ā(t)

dā(t)

dt

]2

M2
pl ≈

[
ρr,0
ā4(t)

]
+

[
ρm,0
ā3(t)

]
+ ρΛ +

ω2φ2
i

2

[
āi
ā(t)

]3

+O(|φ|/Mpl) , (B25)

where ā(ti) = āi. Note that Eq. (B25), in a rough approximation, becomes Eq. (3.8) when
ρφ(t) < ρm(t).
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