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We develop and study the position-dependent bispectrum. It is a generalization of the recently
proposed position-dependent power spectrum method of measuring the squeezed-limit bispectrum.
The position-dependent bispectrum can similarly be used to measure the squeezed-limit trispectrum
in which one of the wavelengths is much longer than the other three. In this work, we will mainly
consider the case in which the three smaller wavelengths are nearly the same (the equilateral con-
figuration). We use the Fisher information matrix to forecast constraints on bias parameters and
the amplitude of primordial trispectra from the position-dependent bispectrum method. We find
that the method can constrain the local-type gNL at a level of σ(glocalNL ) ≈ 3× 105 for a large volume
SPHEREx-like survey; improvements can be expected by including all the triangular configurations
of the bispectra rather than just the equilateral configuration. However, the same measurement
would also constrain a much larger family of trispectra than local gNL model. We discuss the im-
plications of the forecasted reach of future surveys in terms of super cosmic variance uncertainties
from primordial non-Gaussianities.

I. INTRODUCTION

A key property of any correlation function in the den-
sity fluctuations is the degree to which the local statistics
can differ from the global statistics due to coupling be-
tween local (short wavelength) Fourier modes and back-
ground (long wavelength) Fourier modes. For example,
the amplitude of the local density power spectrum in sub-
volumes of a survey may be correlated with the long-
wavelength density mode of the sub-volume [1]. This ob-
servable goes by the name of “position-dependent power
spectrum” and is a measure of an integrated bispectrum
that gets most of its contribution from the squeezed-
limit bispectrum. It is a probe both of non-linear struc-
ture formation (such as non-linear gravitational evolu-
tion and non-linear bias) and of primordial three-point
correlations in the curvature fluctuations. The position-
dependent power spectrum is easier to measure than
directly measuring the bispectrum, and the position-
dependent two-point correlation function has been re-
cently measured from the SDSS-III BOSS data in [2].

In this work, we consider the generalization of the
position-dependent power spectrum to higher order cor-
relation functions (see also [3]). Given the increas-
ing computational difficulty in directly measuring higher
order statistics, studying position-dependent quantities
provides a practical route to extract some of the most
important information from higher order correlations. In
particular, we focus on the position-dependent bispec-
trum, which is a measure of an integrated trispectrum.

∗ saroj@umich.edu
† djeong@psu.edu
‡ shandera@gravity.psu.edu

Measurements of the galaxy bispectrum have been car-
ried out recently by the SDSS collaboration [4, 5].

For simplicity, we will limit this initial analysis to
the position dependence in the amplitude of the equi-
lateral configuration of the galaxy bispectrum. We ob-
tain the expected constraints on a large family of pri-
mordial trispectra (including glocal

NL , see below) as well as
on the linear and quadratic bias parameters using the
Fisher information matrix formalism for the proposed
SPHEREx (Spectro-Photometer for the History of the
Universe, Epoch of Reionization, and Ices Explored) [6]
galaxy survey.

The primordial bispectrum has been well studied, but
measurements or constraints of higher order correlations
contain independent information. Constraints beyond
the bispectrum are limited by the computational diffi-
culty of searching for an arbitrary trispectrum and so far
just a few theoretically motivated examples have been
studied. One useful case is the “local” model, where
the non-Gaussian Bardeen potential field, ΦNG(x), is a
non-linear but local function of a Gaussian random field,
φG(x). The standard local “gNL” trispectrum is gener-
ated by a term proportional to φ3

G(x). The Planck mis-
sion has constrained the amplitude of this trispectrum
glocal

NL = (−9.0 ± 7.7) × 104 (1σ) [7]. Constraints from
SDSS photometric quasars using the scale-dependent
bias [8] give |glocal

NL | <∼ 2× 105 [9].

The interesting feature of the local ansatz (in the bis-
pectrum, trispectrum and beyond) is the significant cou-
pling between long- and short-wavelength modes of the
primordial perturbations. A convincing detection of such
a coupling would have two important implications: it
would introduce an additional source of cosmic variance
in connecting observations to theory [10–13], and it would
rule out the single-clock inflation models [14].
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While the local ansatz provides a particularly sim-
ple example of correlations that couple long- and short-
wavelength modes, it is of course not the unique exam-
ple. Constraining the position dependence of the equilat-
eral configuration of the bispectrum constrains not only
glocal

NL , but a large family of other trispectra as well, as
we will detail below. In addition, testing for position de-
pendence in the equilateral configuration is particularly
interesting because it could signal a deviation from single
clock inflation models (since it measures the four-point
correlation function) even if the average bispectrum is
consistent with the single clock inflation models.

The paper is structured as follows. In the next sec-
tion we introduce the idea of position-dependent power
spectrum and bispectrum. Starting with a review of the
position-dependent power spectrum studied in detail in
[1, 2], we will discuss and derive expressions for position-
dependent bispectrum in terms of the angle-averaged
integrated trispectrum. We then present the position-
dependent bispectrum from a generic primordial trispec-
trum, with two illustrative examples (Section III). In
Section IV we discuss the galaxy four-point correlation
functions from which we measure primordial trispectrum
amplitudes, which will be followed by the discussion of
the method of the forecast based on Fisher information
matrix. We will report and discuss the results of our
Fisher forecasts in Section VI, and conclude in Section
VII.

II. POSITION-DEPENDENT POWER
SPECTRUM AND BISPECTRUM

A. Position-dependent power spectrum

Consider a full survey volume in which the density fluc-
tuation field δ(x) is defined, and its spherical sub-volumes
with a radius R (and volume VR) [15]. The smoothed
(long-wavelength) density field and the local power spec-
trum in a sub-volume centered at xR are then given by:

δ(k)xR
=

∫
d3x δ(x)WR(x− xR)e−ix·k

=

∫
d3q

(2π)3
δk−qWR(q)e−ixR·q (1)

P (k)xR
=

1

VR

∫
d3q1

(2π)3

∫
d3q2

(2π)3
δk−q1

δ−k−q2

WR(q1)WR(q2)e−ixR·(q1+q2), (2)

where WR(q) is the Fourier transform of the window
function. In this work, we will use the spherical top-hat
as the window function, which is defined in real space as:

WR(x) =

{
1, if |x| ≤ R

0, if |x| > R
. (3)

The correlation between the local power spectrum and
the long-wavelentgh density contrast in each sub-volume

(
δ̄xR

= (1/VR)δ(k = 0)xR

)
gives an integrated bispec-

trum which is defined as

iBR(k) ≡ 〈P (k)xR
δ̄xR
〉

=
1

V 2
R

∫
d3q1

(2π)3

∫
d3q3

(2π)3
WR(q1)WR(−q13)

WR(q3)B(k− q1,−k + q13,−q3), (4)

where q13 ≡ q1 +q3. See [1] for the details of the deriva-
tion. Because the Fourier space window function WR(q)
drops for |q| > π/R, for modes well within the sub-
volume (k � π/R), the above expression is dominated
by the squeezed-limit bispectrum and simplifies to:

iBR(k) ≈ 1

V 2
R

∫
d3q

(2π)3
W 2
R(q)B(k,−k + q,−q), (5)

where we have also used the Fourier transform of the
equality W 2

R(x) = WR(x) that follows from Eq. (3). The
squeezed limit approximation Eq. (5) produces exactly
the same result as the squeezed limit of Eq. (4) for any
separable bispectrum of the form [1]

B(k1,k2,k3) = f(k1, k2, k̂1 · k̂2)P (k1)P (k2) + 2 perm.

Note that this is in general not the case for the integrated
trispectrum (Section II B).

Finally, it is useful to define the reduced integrated
bispectrum,

ibR(k) =
iBR(k)

P (k)σ2
R

. (6)

where iBR(k) now is the angle-averaged integrated bis-
pectrum. Here, and throughout, we assume the statis-
tical isotropy of the Universe and do not include the
redshift-space distortion. The reduced integrated bispec-
turm, in this case, contains all relevant information.

B. Position-dependent bispectrum

Building upon the idea of the position-dependent
power spectrum, we now divide a survey volume in sub-
samples and measure the bispectrum in individual sub-
volumes centered on xR. This position-dependent bis-
pectrum is given by (note that we have used only two-
wavevector arguments below because the third wavevec-
tor of the bispectrum is fixed by the triangular condition:
k3 = −(k1 + k2) ≡ −k12)

B(k1,k2)xR
=

1

VR

[
3∏
i=1

∫
d3qi
(2π)3

WR(qi)e
−ixR·qi

]
× δk1−q1

δk2−q2
δ−k12−q3

, (7)

and the correlation of the position-dependent bispectra
with the mean overdensities of the sub-volumes is given
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by an integrated trispectrum as

iT (k1,k2) ≡
〈
B(k1,k2)xR

δ̄xR

〉
=

1

V 2
R

[
4∏
i=1

∫
d3qi
(2π)3

WR(qi)e
−ixR·qi

]
×
〈
δk1−q1

δk2−q2
δ−k12−q3

δ−q4

〉
. (8)

The above equation contains the trispectrum T defined
as〈

δq1
δq2

δq3
δq4

〉
= (2π)3δD(q1234)T (q1,q2,q3,q4), (9)

and therefore can be re-written as

iT (k1,k2) =
1

V 2
R

[
3∏
i=1

∫
d3qi
(2π)3

WR(qi)

]
WR(−q123)

× T (k1 − q1,k2 − q2,−k12 + q123,−q3).
(10)

When all modes in the bispectrum are well inside the
sub-volume, |k1|, |k2|, |k12| � π/R, we can use the same
approximation as in Section II A that the expression is
dominated by the squeezed-limit of the trispectrum in
which one of the wave-numbers is much smaller than the
others,

T (k1 − q1,k2 − q2,−k12 + q123,−q3)

' T (k1,k2,−k12 + q3,−q3). (11)

With this approximation and the identity W 3
R(x) =

WR(x), we simplify the integrated trispectrum as

iT (k1,k2) =
1

V 2
R

∫
d3q

(2π)3
W 2
R(q)T (k1,k2,−k12 +q,−q).

(12)
We then define the angle-averaged integrated trispectrum
as

iT (k1, k2) =

∫
d2k̂1

4π

∫
d2k̂2

4π
iT (k1,k2)

=
1

V 2
R

∫
q2dq

2π2
W 2
R(q)

×
[∫

d2k̂2

4π

∫
d2q̂

4π
T (k1,k2,−k12 + q,−q)

]
,

(13)

where we have removed the k̂1 integral by explicitly fixing

k̂1 ≡ ẑ.
The integrated trispectrum measures the correla-

tion between the local three-point correlation function
(scales smaller than the sub-volume size) and the (long-
wavelength) density flustuation on the sub-volume scale.
That is, in Fourier space, the integrated trispectrum sig-
nal is dominated by the squeezed-limit quadrilateral con-
figurations (of connected four-point function) in which

one of the momenta is smaller than the others. Note,
however, that unlike that case for the bispectum, the
squeezed limit of the trispectrum cannot be defined
only with the length of the four momenta. Therefore,
strictly speaking, the approximation Eq. (11) works for
the trispectrum that depend only on the magnitudes of
the four momenta. In this case, the angular integrals
in Eq. (10) have no additional contribution and there-
fore the approximation in Eq. (12) is expected to give
exact result in the q → 0 limit. On the other hand, for
generic trispectra which also depend on the length of two
diagonals, or the angle between momenta, the approxi-
mation may not give the exact result even in the squeezed
limit. For example, for the tree-level matter trispectrum
T (1) (see Appendix A), we find that the angle-averaged
trispectrum from the approximation Eq. (13) is slightly
different from the result of the large-scale structure con-
sistency relations [16, 17]. The difference, however, is
only marginal and does not affect the main result of this
paper.

III. POSITION-DEPENDENT BISPECTRUM
FOR A PRIMORDIAL TRISPECTRUM

As the position-dependent bispectrum depends on the
squeezed limit of the trispectrum, its measurement can
provide constraints on the primordial non-Gaussianities.
In the rest of the paper, we calculate how a primordial
trispectrum could generate position dependence in the
observed bispectrum, and calculate the projected uncer-
tainty on measuring the primordial trispectrum ampli-
tude by this method. In this section we consider the
four-point statistics at the level of initial conditions (and
denote the Bardeen potential by Φ), and evolve it lin-
early. In Section IV, we will work out the corresponding
expressions with the galaxy density contrast (δg) gen-
erated from non-linear gravitational evolution and non-
linear bias.

A. Position dependence from a general primordial
trispectrum

We write a general primordial trispectrum by using
symmetric kernel functions as follows [18]:

TΦ(k1,k2,k3,k4) = gNLPΦ(k1)PΦ(k2)PΦ(k3)

×N3(k1,k2,k3,k4) + (3 cyc.) (14)

where the kernel N3 is symmetric in the first three mo-
menta (the last momentum is fixed by quadrilateral con-
dition: k4 = −k123).

The widely studied glocal
NL model is a very useful

benchmark case and corresponds to the simple case of
N3(k1,k2,k3,k4) = 6. In the squeezed limit (and for
the perfectly scale-invariant primordial power spectrum,
ns = 1), where one of the momenta is much smaller than
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the other three, the trispectrum scales as

T
glocalNL

Φ (k1,k2,k3, q → 0)

=
3glocal

NL

q3
[PΦ(k1)PΦ(k2) + (2 cyc.)] +O(q0). (15)

Notice that the quantity in the square brackets is (up to
normalization) the usual local ansatz bispectrum, which
peaks on squeezed configurations and is non-zero in the
equilateral configuration. The integrated trispectrum in
this case is particularly simple:

iTΦ(k1,k2)g
local
NL = 6glocal

NL σ2
Φ,R [PΦ(k1)PΦ(k2) + (2 cyc.)]

(16)

where

σ2
Φ,R =

1

V 2
R

∫
d3q

(2π)3
W 2
R(q)PΦ(q)

is the dimensionless, r.m.s. value of the Bardeen’s poten-
tial smoothed over the radius R. Notice that for small
q (modes much larger than the box size), this integral
diverges logarithmically (proportional to

∫
dq/q).

It is possible to find trispectra that reduce in the
squeezed limit to other bispectral shapes besides the
standard local template. For example, Ref. [18] has writ-
ten down two different examples (Eq.(D3) and Eq.(D5)
of that paper) that both have the same squeezed limit

T
gequil
NL

Φ (k1,k2,k3, q → 0) =
1

q3

[
PΦ(k1)PΦ(k2)

×
(
−6 + 4

k1 + k2

k3
+ 2

k2
1 + k2

2

k2
3

− 4
k1k2

k2
3

)
+ 2 cyc.

]
+O

(
1

q2

)
. (17)

Here, the term in square brackets is the equilateral bis-
pectrum, but notice that the strength of coupling to the
background, fixed by the scaling as 1/q3, is the same as
that for the local trispectrum.

The two examples generalize to trispectra whose lead-
ing order behavior in the squeezed limit can be schemat-
ically written as

TΦ(k1,k2,k3, q → 0) ∝ 1

q3

(
q

F(ki)

)β
Beff(k1,k2,k3)

(18)
where Beff has the properties of a bispectrum and F(ki)
is a dimension 1 function of the momenta k1,k2,k3.
Comparing with Eq.(15) shows that for a fixed config-
uration of the bispectrum Beff , all trispectra with β = 0
will generate the same average strength of position de-
pendence for that configuration as the glocal

NL ansatz does.
Note that the position dependent bispectrum Beff from

the leading term in the squeezed limit of the trispectrum
does not fully characterize the trispectrum. For exam-
ple, the distinction between the two trispectra in [18]

that both generate equilateral bispectra in biased sub-
volumes is the doubly-squeezed limit of the trispectra
(k4, k3 → 0). Namely, one of the two trispectra will also
lead to a position-dependent power spectrum whereas
the other does not. (This is related to terms that are
sub-leading in the position-dependent bispectrum.) So,
a distinction between the two can be made by correlating
the square of the mean sub-volume overdensities with the
power spectra: 〈P (k)xR

δ̄2
xR
〉. The dominant contribution

from matter trispectrum in that case, in the squeezed
limit, can be obtained from the n = 2 response function
R2(k) in [19]. We will further pursue the utility of this
quantity in distinguishing the two types of primordial
trispectra in a forthcoming publication.

Before specifying to the equilateral configuration that
we will use for forecasting in the next section, we use
Eq.(14) to derive the position-dependent bispectrum in
terms of the kernel that defines a generic trispectrum.
Restricting to cases where β ≥ 0 for simplicity, the lead-
ing contribution in the squeezed limit (k4 = q→ 0) can
be expressed as:

TΦ(k1,k2,−k12 − q,q) ≈ gNLPΦ(q)PΦ(k1)PΦ(k2)

N3(q,k1,k2,−k12 − q) + (2 cyc.), (19)

where we have used PΦ(q) � PΦ(k1), PΦ(k2), PΦ(k3).
Now, the integrated trispectrum becomes

iTΦ(k1,k2) = gNLPΦ(k1)PΦ(k2)

×
∫

d3q

(2π)3
W 2
R(q)PΦ(q)N3(q,k1,k2,−k12 − q)

+(2 cyc), (20)

As in the case of the integrated bispectrum, it is useful
to define the reduced integrated trispectrum:

itR(k1,k2) =
iT (k1,k2)

1
3 [P (k1)P (k2) + 2 cyc]σ2

R

, (21)

such that it
glocalNL

Φ,R = 18glocal
NL for the local gNL case. The

subscript Φ here is to remind that the computation was
performed for primordial statistics.

In order to calculate the observed integrated trispec-
trum for the galaxy surveys, we need to define and com-
pute the corresponding signals for the galaxy density con-
trast δg. In linear perturbation theory with linear bias
b1 (so that δg(k) = b1δ(k)), the galaxy trispectrum gen-
erated by a primordial trispectrum is, to leading order,
given by

T
(g)
Φ = b41α(k1)α(k2)α(k3)α(k4)TΦ, (22)

because the matter overdensity field δ in Fourier space is
related to the Bardeen potential Φ as

δ(k, z) = α(k, z)Φ(k) =
2

3

D(z)

H2
0 Ωm

k2T (k)Φ(k), (23)

in which D(z) is the linear growth function and T (k) is
the transfer function for total matter perturbations. Lin-
ear matter power spectrum is also related to the primor-
dial power spectrum by Pδ(k, z) = α2(k, z)PΦ(k). We
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will often suppress the redshift dependence when con-
sidering the overdensities at a fixed redshift, as done

in Eq.(22). Now, we calculate the reduced integrated
trispectrum of a large-scale structure tracer (generated
by a primordial trispectrum of the form Eq. (19)) as

it
(gNL)
R (k1,k2) ≈ gNL

b21σ
2
δ,R

1
3 [Pδ(k1)Pδ(k2) + 2 cyc.]

[
α(k1)Pδ(k2)Pδ(k3)

α(k2)α(k3)

∫
d3q

(2π)3

W 2
R(q)

V 2
R

Pδ(q)N3(k2,k3,q,k1)

α(q)
+ 2 cyc.

]
.

(24)

B. A template for constraining position
dependence of the equilateral bispectrum

The generic expression for the reduced integrated
trispectrum found in the previous section, Eq. (24), sim-
plifies significantly if we consider the position dependence
of equilateral configuration of bispectra only. That is, we
will take |k1| ≈ |k2| ≈ |k3| = k and ki · kj ≈ −k2/2 for
i, j = 1, 2, 3. In this limit, the kernel reduces to a number
and a simple scaling:

N3(q,4k) ≡ N3(q,k1,k2,k3|ki · kj ≈ −k2/2)

= Aequil(q/k)β + . . . (25)

where we have used 4k to denote the equilateral con-
figuration of bispectra with side length k. The normal-
ization is Aequil = 6 for the local case, for example, and
Aequil = 2 for trispectra that obey Eq.(17). The reduced
integrated trispectrum for the equilateral configuration
of bispectra then simplifies to:

it
(4)
R (k) ≈ 3gNL

b21α(k)

1

σ2
δ,R

× 1

V 2
R

∫
d3q

(2π)3
W 2
R(q)

Pδ(q)N3(q,4k)

α(q)
,

(26)

where, for modes that are much larger than the sub-
volume size, the integral on the second line scales as

∝
∫
dq

q
q(β+2) , (27)

and so is not logarithmically divergent for β = 0.
In this limit we can now write the reduced, integrated

trispectrum in terms of an amplitude and scaling, but
without reference to any particular primordial model:

it
(4)
R (k) =

3APD(4)

b21α(k)V 2
Rσ

2
δ,R

∫
d3q

(2π)3
W 2
R(q)

Pδ(q)
(
q
k

)β
α(q)

(28)

where the amplitude of the position dependence is
APD(4) = 6glocal

NL for the standard local trispectrum and

APD(4) = 2gequil
NL for any trispectrum that generates the

equilateral template, with standard normalization, in bi-
ased sub-volumes (see Eq. (17)). Trispectra reducing to

either bispectra in the squeezed limit can have any value
of β, but β = 0 is coupling of “local” strength. (Note
that as long as the trispectrum satisfies Eq.(18), β does
not depend on the configuration of the bispectrum con-
sidered.)

To summarize, the important features of the integrated
trispectrum are the configuration of the effective bispec-
trum considered (which is a choice made in the analysis),
and the scaling β in the integral in Eq. (28), which is a
measure of how strongly the configuration is coupled to
the background. In the absence of motivation for any
particular models, one could constrain β as well as the
amplitude APD(4). In the next section we will assume
coupling of the local strength (β = 0) and quote fore-
cast constraints on the primordial trispectrum in terms
of APD(4). The constraints we will forecast in the next
section apply equally well to any scenario with β = 0. To
obtain constraints on any particular trispectrum, one just
needs to compute APD(4) from the primordial model.

IV. MEASUREMENT IN A GALAXY SURVEY

In addition to the primordial trispectrum, the observed
position-dependent bispectrum will also include the con-
tributions from the late time non-Gaussianities induced
from non-linear gravitational evolution (see, Ref. [20] for
a review) and non-linear galaxy bias (see, Ref. [21] for
a review). Therefore, we have to account for these con-
tributions if we are to look for a primordial signasure.
Under the null hypothesis that the primordial density
perturbations follows Gaussian statistics, and assuming
a local bias ansatz (with quadratic and cubic order bias
parameters, respectively, b2 and b3),

δg = b1δ +
b2
2
δ2 +

b3
6
δ3,

the trispectrum induced at the late-time may be written
as [22]:

T (g) = b41T
(1) +

b31b2
2
T (2) +

b21b
2
2

4
T (3) +

b31b3
6
T (4). (29)

The expressions for each T (i) can be found in Appendix
A or in the Ref. [22].

We then obtain the angle-averaged trispectra by per-
forming the integration Eq. (13) in the equilateral limit.
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FIG. 1. The various reduced integrated trispectra, it
(i)
R (the

expressions are given in Eq.(28) and Eq.(30)) for a large spher-
ical sub-volume with radius R = 400 Mpc/h at z = 1.0. We
have taken b1 = 1.95, b2 = −0.18, b3 = −3.03.

The reduced integrated trispectra are then:

it
(1)
R (k) =

1

b21

[
579

98
− 8

7

∂ lnPδ(k)

∂ ln k

]
it

(2)
R (k) =

b2
b31

2

7

[
65 + 18

Pδ(k)

VRσ2
R

− 7
∂ lnPδ(k)

∂ ln k

]
it

(3)
R (k) = 6

b22
b41

[
1 +

Pδ(k)

VRσ2
R

]
it

(4)
R (k) =

b3
b31

[
3 +

Pδ(k)

VRσ2
R

]
, (30)

where we have used

σ2
WR

=
1

V 2
R

∫
d3q

(2π)3
W 2
R(q) =

1

VR
.

In Figure 1, we show the reduced integrated trispectra
(or angle-averaged reduced position-dependent bispec-
trum) in the equilateral configuration from the leading-
order perturbation theory, Eqs. (30), and from the local-
type primordial trispectrum, Eq. (28).

In later Sections, we shall present forecasted cosmo-
logical constraints from the position-dependent power
spectrum (integrated bispectrum) and from the position-
dependent bispectrum (integrated trispectrum). In the
squeezed-limit, the reduced integrated bispectrum in-
duced by late-time gravitional evolution ibSPT and the
quadratic bias ibb2 are given by [1]:

ibSPT(k) =
1

b1

[
47

21
− 1

3

d lnPδ(k)

d ln k

]
(31)

ibb2(k) = 2
b2
b21
, (32)

and, similarly, the integrated bispectrum from the local-
type primordial non-Gaussianity (f local

NL ) is given by:

ib
(f local

NL )
R (k) ≈ 4f local

NL

b1σ2
R

∫
d3q

(2π)3

W 2
R(q)

V 2
R

Pδ(q)

α(q)
. (33)

So far, we have treated the primordial non-Gaussianity
signal and late-time effects separately. Of course, pri-
mordial non-Gaussianity introduces a scale dependence
in the galaxy bias, as convincingly demonstrated by [8].
For models with long-short mode coupling of the local
strength (β = 0 case), the scale-dependent bias is given
by a term that grows on large scales as 1/k2 and so
the galaxy power spectrum can itself be used as a pow-
erful constraint on f local

NL as well as glocal
NL [23–25]. For

SPHEREx, for example, forecasts find expected 1σ un-
certainty on estimating f local

NL to be 0.87 from the power
spectrum and 0.21 from the bispectrum [6]. In this work,
we focus on understanding the position-dependent bis-
pectrum alone, so we shall leave the full treatment includ-
ing the effect of long-short coupling to the non-Gaussian
scale-dependent bias for future work.

V. FISHER FORECAST METHOD

We now present the Fisher information matrix formal-
ism for the position-dependent power spectrum and bis-
pectrum. Our method follows closely [2], but we restrict
ourselves to the squeezed-limit of the reduced integrated
bispectra and trispectra. The expression including full
integration can be found in [2]. Note also that we use
the spherical top-hat window function instead of the cu-
bic window function in [2]. We calculate the linear mat-
ter power spectrum from the publically available CAMB
[26] code by using the cosmological parameters from the
Planck 2015 results (the TT+lowP+lensing column of Ta-
ble 4 in [27]): ns = 0.968, σ8 = 0.815,Ωm = 0.308,Ωb =
0.048.

A. Reduced integrated bispectrum

The Fisher information matrix for measuring cosmo-
logical parameters pα and pβ from the reduced integrated
bispectrum is given by

FibR,αβ =
∑
zi

Nzi
sub

∑
R

∑
k≤kmax

∂ibR(k, zi)

∂pα

∂ibR(k, zi)

∂pβ

1

∆ib2R(k, zi)
, (34)

where we have considered the reduced integrated bispec-
trum up to wavenumber k < kmax for a fixed sub-volume
size R. We then assume that the reduced integrated bis-
pectrum with different sub-volume sizes are uncorrelated,
so that we can add the information from different sub-
volume sizes by simply summing different sub-volume
radii R (see, Section V C for the justification). Assuming
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FIG. 2. The galaxy number density as a function of the red-
shift assumed in the Fisher matrix calculations. The function
approximates the large galaxy count, low-accuracy redshift
sample proposed for SPHEREx (σ̃z = 0.1, cumulative) in
Figure 10 of [6].

that each sub-volume VR is identical, we multiplied the
number of sub-volumes Nzi

sub = Vzi/
∑
R VR with Vzi be-

ing the survey volume of the redshift bin centered around
zi. We approximate the uncertainties of measuring the
reduced integrated bispectrum ibR(k) by its leading or-
der, Gaussian covariance as

∆ib2R(k, z) =
1

NkR

[
σ2
R,z + Pshot/VR

]
[PR,z(k) + Pshot]

2

σ4
R,zP

2
R,z(k)

(35)

in which, NkR ≈ 2π (k/kmin)
2

(with kmin ' π/R) is the
number of independent Fourier modes in a sub-volume
[23, 28], and

PR,z(k) =
1

VR

∫
d3q

(2π)3
W 2
R(q)Pz(|k− q|) (36)

is the convolved power spectrum, and Pshot is the shot
noise of the galaxy sample. Here, we assume that the
galaxies are Poisson sample of the underlying density
field so that Pshot = 1/n̄g with the number density n̄g.
As for the survey specifics, we adopt the survey volume
and number density of the low-accuracy sample of the
planned SPHEREx survey [6]. In Figure 2, we show the
galaxy number density of the low-accuracy sample in Fig-
ure 10 of [6].

0 100 200 300 400 500
r (Mpc/h)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ξ R
(r

)/
σ

2 R

R= 20Mpc/h

R= 100Mpc/h

R= 200Mpc/h

FIG. 3. The smoothed two-point correlation function ξR(r)
as a function of the comoving distance r (normalized by σ2

R),
for three smoothing scales R = 200, 100, 20 Mpc/h. The ver-
tical lines are r = 2R lines, and are plotted to show that the
correlation is small for sub-volumes separated by r > 2R.

B. Reduced integrated trispectrum

Similarly, the Fisher information matrix for the re-
duced integrated trispectrum is given by

FitR,αβ =
∑
zi

Nzi
sub

∑
R

∑
k≤kmax

∂itR(k, zi)

∂pα

∂itR(k, zi)

∂pβ

1

∆it2R(k, zi)
, (37)

with the covariance matrix (again, approximated by the
leading order, diagonal part)

∆it2R(k, z) =
VR
Nk,∆

[
σ2
R,z + Pshot/VR

]
[PR,z(k) + Pshot]

3

σ4
R,zP

4
R,z(k)

.

(38)

Here, Nk,∆ ≈ (4/3)π2 (k/kmin)
3

is the number of in-
dependent equilateral-type triangular configurations (of
size k) inside each sub-volume [23].

C. Note on correlation matrix

When calculating the Fisher information matrix, we
have assumed that there is no cross-correlation among
locally calculated power spectra and bispectra from dif-
ferent sub-volumes. To see that this is a reasonable ap-
proximation, note that the dominant contribution for

the matrix element
〈
itR(k,x)itR(k,x′)

〉
separated by

|x′ − x| = r is given by〈
itR(k,x)itR(k,x′)

〉
≈ VR
Nk,∆

ξR(r)

σ2
RPR(k)

(39)
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where,

ξR(r) =
1

V 2
R

∫
q2dq

2π2
W 2
R(q)P (q)j0(qr), (40)

is the two-point correlation function of the density field
smoothed over the size of the sub-volume.

We plot the smoothed correlation function ξR(r)/σ2
R in

Figure 3. In the zero shot noise limit, the off-diagonal el-
ement of the covariance matrix can be well approximated
by ξR(r)/σ2

R (for both the integrated bispectrum and in-
tegrated trispectrum). In the presence of shot noise, we
expect the normalized matrix element (non-diagonal) to
be smaller. For each R, we see that the correlation is very
weak when r > 2R, which is the distance between the
centers of adjacent two sub-volumes. In addition, there
must be some correlation from non-Gaussian coupling to
very long wavelength modes common to neighboring sub-
volumes, but the scale dependence of the integrands in
Eq. (5), Eq. (26) indicates that this should be small.

We have also assumed the reduced trispectra at differ-
ent wavenumbers are uncorrelated. That is〈

itR(k1)itR(k2)
〉
≈ δD(k1 − k2)∆it2R(k)

(and similarly for the integrated bispectrum). This ap-
proximation breaks down at smaller scales and lower red-
shifts when non-linearities are strong [29] (see in par-
ticular Figure B.1. and the discussion around it in the
Ref. [29]). It is also worthwhile to note other impor-
tant results from [29]: (i) that the cross correlation be-
tween integrated bispectrum with different k values with
different sub-volume sizes gets weaker, because different
long-wavelength modes are involved, (ii) that having dif-
ferent sized sub-volumes and different redshifts is use-
ful in breaking the degeneracy between the primordial
and late-time contributions to the integrated bispectrum.
This is because, the primordial integrated bispectrum sig-
nal depends on the sub-volume size (through σ2

R) and
is also inversely proportional to the growth factor D(z)
whereas the late time contributions are nearly indepen-
dent of these. Similarly, we see that the reduced inte-
grated trispectrum signal (primordial) has different z and
R dependence compared to the late time contribution.

Note that at a given single redshift, ib
(f local

NL )
R (in the

squeezed limit) and ibb2 are both constant and therefore
degenerate. It is, therefore, necessary to use more than
one sub-volume sizes to break this degeneracy for a sin-
gle redshift bin. On the other hand, for the integrated
trispectrum, such a strong degeneracy is absent (see Fig-
ure 1). The results of our Fisher matrix analysis consid-
ering multiple redshift bins in the range 0.1 < z < 3.0,
and using the number density expected for the SPHEREx
survey is presented next.

VI. FISHER FORECAST RESULTS

We now present results from the Fisher matrix analy-
sis. We will focus on the projected constraints on the

b1

−0.20

−0.18

−0.16

−0.14

b 2

1.94 1.96

b1

−5

0

5

f N
L

−0.20 −0.15

b2

f N
L

kmax = 0.2 (Mpc/h)−1

Nbins
z = 12

zmin = 0.1, zmax = 3.0

- - - R = 100 Mpc/h

N = 260924

—– R = 100, 1000 Mpc/h

N = 1302

FIG. 4. Fisher forecast ellipses for two of (f local
NL , b1, b2)

marginalized over the other, assuming SPHEREx survey vol-
ume and other parameters given above in the figure. See
Figure 2 for the assumed galaxy number density as a func-
tion of the redshift. The two different ellipses in each plot
represent different choices for sub-volumes: (i) dashed green
– only one type of sub-volume with radius R = 100 Mpc/h;
this means that the total number of sub-volumes when divid-
ing the whole survey is large (N = 260924), (ii) solid blue
– two sizes of sub-volumes with R = 100, 1000 Mpc/h in
equal numbers (except for when the volume of a redshift bin
is smaller than the volume of the larger sub-volume). The
Fisher constraint for these two cases are: σ(fNL) = 4.0, 1.2;
σ(b1) = 0.02, 0.16 and σ(b2) = 0.03, 0.22.

non-Gaussianity amplitudes f local
NL and APD(4). The

fiducial values we use for this analysis are: f local
NL =

0 andAPD(4) = 0. For the SPHEREx survey, we use
a constant fiducial linear bias parameter b1 = 1.95 and
compute the non-linear bias parameters b2 and b3 using
the fitting functions in Table 3 of [21].

A. f local
NL constraint from integrated bispectrum

In Figure 4, we show the projected 1 − σ (68% confi-
dence level) error ellipse for fNL and the bias parameters
using the integrated bispectrum. We can see that con-
straints of order σ(fNL) ≈ 1 is possible with SPHEREx
survey by using the integrated bispectrum method. This
result is the same order of magnitude with the projec-
tion obtained in [6] using the full bispectrum. However,
we note that we have not included the scale-dependent
bias from local primordial non-Gaussianity (which domi-
nates the constraint in [6]) nor optimized the sub-volume
choices. Therefore, it must be possible to further improve
the constraint.
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Survey R (Mpc/h) Nsub−volumes σ(fNL)

SPHEREx 100, 1000 1302 1.20

SPHEREx [1, 2, 3, 4, 5]× 100 5775 1.71

eBOSS LRGs 200, 500 408 20.5

eBOSS quasars 200, 500 1750 54.5

TABLE I. Fisher forecast results for fNL. In the first row,
we have considered two sub-volume sizes: one large R =
1000 Mpc/h (N = 255) and one small: R = 100 Mpc/h
(N = 1047). In the second row, we have used five different
sub-volume sizes: R = 100, 200, 300, 400, 500 Mpc/h; there
are 1155 of each of these sub-volumes.

b1

−10

0

10

b 2

−10 0 10

b1

−2

0

2

A
P

D
(4

)

×106

−10 0 10

b2

A
P

D
(4

)

kmax = 0.2 (Mpc/h)−1

Nbins
z = 12

zmin = 0.1, zmax = 3.0

- - - R = 200 Mpc/h

N = 32615

—– R = 200, 500 Mpc/h

N = 3912

FIG. 5. Fisher forecast ellipses for two of (APD(4), b1, b2)
marginalized over the other and b3 (which is not shown),
assuming SPHEREx survey volume. The different colored
ellipses represent different sets of sub-volume types: (i)
dashed green – only one type of sub-volume with radius
R = 200 Mpc/h, (ii) solid blue – two sizes of sub-volumes
with R = 200, 500 Mpc/h in equal numbers. The Fisher con-

straints for these two cases are: σ(APD(4)) = 1.57 × 106,
2.49 × 106; σ(b1) = 2.93, 10.2; σ(b2) = 2.96, 10.6. Note that
while the two figures in the bottom panel look very similar,
they have slightly different 1− σ errors for b1 and b2.

In addition, in Table I, we also list Fisher constraint
on fNL by considering the luminous red galaxies (LRGs)
and the quasars from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS). We take the survey pa-
rameters, the expected number densities, and the bias
parameters from [30] (See Table 2 in the reference).

B. APD(4) constraint from integrated trispectrum

In Figure 5, we show the projected 1 − σ (68% con-
fidence level) error ellipse for APD(4) and the bias pa-
rameters using the integrated trispectrum. With the
same survey parameters that was used for fNL, we obtain
σ(APD(4)) ≈ 106. See Table II for a list of constraints
on the non-Gaussianity parameter APD(4) and the cor-
responding constraint on glocal

NL for other choices of sub-
volume sizes. By using only the equilateral configuration
of the bispectrum, we can obtain σ(glocal

NL ) ≈ 3 × 105.
By adding the position dependence of the other trian-
gular configurations, we should expect improvements in
the glocal

NL constraints. Note that this is different than
the case of f local

NL using integrated bispectrum in which
we use all the power spectra in the “position-dependent
power spectrum”. In the equilateral configuration, the
total number of triangles used is roughly given by

Nequil,∆ ≈ 2π2

(
kmax

kmin

)4

.

If we use all the triangles possible, however, then the
rough count of the number of triangles becomes

Nall,∆ ≈ π2

(
kmax

kmin

)6

.

Therefore, if we assume that the ratio of the primor-
dial contribution to the late-time contributions to the
integrated trispectrum do not change drastically when
considering non-equilateral configurations, we can esti-
mate the approximate improvement expected in the glocal

NL
constraint when including all triangular configurations
by taking the square root of the ratio Nall,∆/Nequil,∆.
That is roughly one expects improvement of the order
O (kmax/kmin); so, it is reasonable to expect an improve-
ment to σ(glocal

NL ) by a factor of 10 than what is obtained
in our Fisher forecasts (with only the equilateral config-
uration). In that case, σ(glocal

NL ) ≈ 104 may be possible
with the SPHEREx survey using the position-dependent
bispectrum method, which is nearly a factor of 10 better
than the current best constraint from Planck satellite.

VII. CONCLUSIONS

We have developed the “position-dependent bis-
pectrum,” a higher-order extension of the position-
dependent power spectrum in Ref. [1]. We have shown
that, when applied to galaxy surveys, this new observ-
able can open up a new and efficient avenue of measuring
the four-point correlation functions in the squeezed limit;
through the method, the galaxy surveys can be an even
more powerful probe of primordial non-Gaussianities.
We have shown that the projected uncertainty of measur-
ing glocal

NL from a SPHEREx-like galaxy survey is already
comparable to that of Planck result (σ(glocal

NL ) ≈ 105).
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Survey R (Mpc/h) Nsub−volumes σ(APD(4)) σ(glocalNL )

SPHEREx [1, 2, 3, 4, 5]× 100 5775 1.85× 106 3.08× 105

SPHEREx 200, 500 3912 2.49× 106 4.15× 105

SPHEREx 100, 1000 1302 4.04× 106 6.73× 105

eBOSS LRGs 200, 500 408 1.80× 107 3.00× 106

eBOSS quasars 200, 500 1750 6.43× 107 1.07× 107

TABLE II. Fisher forecast results for APD(4). In the last column, we have translated the constraint on APD(4) to the constraint
on the local-type primordial trispectrum amplitude glocalNL using glocalNL = APD(4)/6.

But, this result is obtained by using only a small subset
(equilateral configuration of the local bispectra) of all the
available triangles, and we expect an order-of-magnitude
better constraint by using all triangular configurations.
For the constraint on f local

NL , we find that the position-
dependent power spectrum with SPHEREx survey can
provide σ(f local

NL ) ≈ 1; this value is consistent with the
previous studies if one restricts to the squeezed-limit of
the galaxy bispectrum.

One goal of constraining the position dependence of
the statistics like the power spectrum and bispectrum
is to bound the non-Gaussian cosmic variance that may
affect the translation between properties of the observed
fluctuations and the particle physics of the primordial
era. This cosmic variance arises from the coupling of
modes inside our Hubble volume (that we observe from,
for example, galaxy surveys) to the unobservable modes
outside. For scenarios with mode coupling of the local
strength (β = 0 for the coupling of the bispectrum to
long wavelength modes), the cosmic variance uncertainty
can be significant even for very low levels of observed
non-Gaussianity. For example, consider a universe with
a trispectrum of the sort given in Eq. (17), that induces a
bispectrum of the equilateral type in biased sub-volumes.
As plotted in [18], if our Hubble volume has values of

f equil
NL = 10, gequil

NL = 5 × 103, the value of f equil
NL in an

inflationary volume with 100 extra e-folds can be between
0 and 20 at 1− σ (68% confidence level). From Table II,

this value of gequil
NL (= APD(4)/2) is more than two orders

of magnitude below our rough estimate of what can be
ruled out by a SPHEREx like survey, and so is unlikely to
be reached even by including more configurations of the
bispectrum. If models that can generate a trispectrum
like that in Eq. (17) are physically reasonable (which is
certainly possible, although we have not yet investigated
in detail), it will be hard to conclusively tie a detection of

f equil
NL to single-clock inflation, unless we have other ways

of quantifying the non-Gaussian cosmic variance.

We have made several approximations here in order to
convey the basic utility of the position-dependent bispec-
trum, and there are many ways in which our analysis can
be improved. In particular, we have not included com-
plimentary, and potentially very significant, information
from the scale-dependent bias, nor the information from
higher order position-dependent power spectrum corre-
lations (e.g, 〈P (k)xR

δ̄2
xR
〉), which would further distin-

guish trispectra configurations. To obtain the best con-
straint from a given galaxy survey (e.g. SPHEREx that
we adopted here), we should also extend the position-
dependent bispectrum to include more general triangu-
lar configurations and optimize the selection sub-volume
sizes and numbers. We will address these issues in future
work.
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Appendix A: Trispectrum expressions

Here we list the expression for galaxy trispectrum in-
duced by late time non-linear gravitational evolution and
non-linear bias, taken from [22]. We assume that the
primordial fluctuations follow Gaussian statistics. See
Eq. (29) for the full expression including the galaxy bias
parameters.
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where the symmetrized perturbation theory kernels are given by (See, [20] for a review)
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By directly taking the appropriate equilateral and soft
limit |k4| = q → 0, and after angular averaging, we can

get the integrated trispectrum iT
(1)
R (k). For example, for
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