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Andrina Nicola,∗ Alexandre Refregier, and Adam Amara
Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland

Recent observational progress has led to the establishment of the standard ΛCDM model for
cosmology. This development is based on different cosmological probes that are usually combined
through their likelihoods at the latest stage in the analysis. We implement here an integrated
scheme for cosmological probes, which are combined in a common framework starting at the map
level. This treatment is necessary as the probes are generally derived from overlapping maps and
are thus not independent. It also allows for a thorough test of the cosmological model and of
systematics through the consistency of different physical tracers. As a first application, we combine
current measurements of the Cosmic Microwave Background (CMB) from the Planck satellite, and
galaxy clustering and weak lensing from SDSS. We consider the spherical harmonic power spectra
of these probes including all six auto- and cross-correlations along with the associated full Gaussian
covariance matrix. This provides an integrated treatment of different analyses usually performed
separately including CMB anisotropies, cosmic shear, galaxy clustering, galaxy-galaxy lensing and
the Integrated Sachs-Wolfe (ISW) effect with galaxy and shear tracers. We derive constraints on
ΛCDM parameters that are compatible with existing constraints and highlight tensions between data
sets, which become apparent in this integrated treatment. We discuss how this approach provides
a complete and powerful integrated framework for probe combination and how it can be extended
to include other tracers in the context of current and future wide field cosmological surveys.

PACS numbers: 98.80.-k, 98.80.Es

I. INTRODUCTION

The past two decades have seen immense progress in
observational cosmology that has lead to the establish-
ment of the ΛCDM model for cosmology. This devel-
opment is mainly based on the combination of differ-
ent cosmological probes such as the CMB temperature
anisotropies, galaxy clustering, weak gravitational lens-
ing, supernovae and galaxy clusters. Until now, these
probes have been, for the most part, measured and anal-
ysed separately using different techniques and combined
at late stages of the analysis, i.e. when deriving con-
straints on cosmological parameters. However, this ap-
proach is not ideal for current and future surveys such as
the Dark Energy Survey (DES1), the Dark Energy Spec-
troscopic Instrument (DESI2), the Large Synoptic Survey
Telescope (LSST3), Euclid4 and the Wide Field Infrared
Survey Telescope (WFIRST5) for several reasons. First,
these surveys will cover large, overlapping regions of the
observable universe and are therefore not statistically in-
dependent. In addition, the analysis of these surveys
requires tight control of systematic effects, which might
be identified by a direct cross-correlation of the probes
statistics. Moreover, each probe provides a measurement
of the cosmic structures through a different physical field,

∗ andrina.nicola@phys.ethz.ch
1 http://www.darkenergysurvey.org.
2 http://desi.lbl.gov.
3 http://www.lsst.org.
4 http://sci.esa.int/euclid/.
5 http://wfirst.gsfc.nasa.gov.

such as density, velocity, gravitational potentials, and
temperature. A promising way to test for new physics,
such as modified gravity, is to look directly for deviations
from the expected relationships of the statistics of the
different fields. The integrated treatment of the probes
from the early stages of the analysis will thus provide
the cross-checks and the redundancy needed not only to
achieve high-precision but also to challenge the different
sectors of the cosmological model.

Several earlier studies have considered joint analyses of
various cosmological probes. Mandelbaum et al. [1], Cac-
ciato et al. [2] and Kwan et al. [3] for example derived
cosmological constraints from a joint analysis of galaxy-
galaxy lensing and galaxy clustering while Liu et al.
[4] used the cross-correlation between the galaxy shear
field and the overdensity field together with the cross-
correlation of the galaxy overdensity with CMB lensing
to constrain multiplicative bias in the weak lensing shear
measurement in CFHTLenS. Recently, Singh et al. [5]
performed a joint analysis of CMB lensing as well as
galaxy clustering and weak lensing. Furthermore, Eifler
et al. [6] and Krause and Eifler [7] have theoretically in-
vestigated joint analyses for photometric galaxy surveys
by modelling the full non-Gaussian covariance matrix be-
tween cosmic shear, galaxy-galaxy lensing, galaxy clus-
tering, photometric baryon acoustic oscillations (BAO),
galaxy cluster number counts and galaxy cluster weak
lensing.

Extending beyond this, we present and implement an
integrated approach to probe combination. In this first
implementation we combine data from CMB tempera-
ture anisotropies, galaxy overdensities and weak lens-
ing. We use data from Planck 2015 [8] for the CMB,
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for galaxy clustering we use photometric data from the
8th data release of the Sloan Digital Sky Survey (SDSS
DR 8) [9] and the weak lensing shear data comes from
SDSS Stripe 82 [10]. We combine these probes into a
common framework at the map level by creating pro-
jected 2-dimensional maps of CMB temperature, galaxy
overdensity and the weak lensing shear field. In or-
der to jointly analyse this set of maps we consider the
spherical harmonic power spectra of the probes includ-
ing their cross-correlations. This leads to a spherical har-
monic power spectrum matrix that combines CMB tem-
perature anisotropies, galaxy clustering, cosmic shear,
galaxy-galaxy lensing and the ISW [11] effect with galaxy
and weak lensing shear tracers. We combine this power
spectrum matrix together with the full Gaussian covari-
ance matrix and derive constraints on the parameters
of the ΛCDM cosmological model, marginalising over a
constant linear galaxy bias and a parameter accounting
for possible multiplicative bias in the weak lensing shear
measurement. In this first implementation, we use some
conservative and simplifying assumptions. For instance
we include a limited range of angular scales for the differ-
ent probes to reduce our sensitivity to systematics, nui-
sance parameters and nonlinear corrections. With this,
we work under the assumption of Gaussian covariance
matrices and with a reduced set of nuisance parameters.

This paper is organised as follows. In Section II we de-
scribe the framework for integrated probe combination
employed in this work. The theoretical modelling of the
cosmological observables is summarised in Section III.
Section IV describes the data analysis for each probe,
especially the map-making procedure. The computation
of the spherical harmonic auto- and cross-power spectra
is discussed in Section V and the estimation of the co-
variance matrix is detailed in Section VI. In Section VII
we present the cosmological constraints derived from the
joint analysis and we conclude in Section VIII. More de-
tailed descriptions of data analysis as well as robustness
tests are deferred to the Appendix.

II. FRAMEWORK

The framework for integrated probe combination em-
ployed in this work is illustrated in Fig. 1. In a first step
we collect data for different cosmological probes as taken
by either separate surveys or by the same survey. For our
first implementation described below we use cosmological
data from the CMB temperature anisotropies, the galaxy
overdensity field and the weak lensing shear field. After
data collection, we perform probe specific data analysis
which involves data selection and systematics removal.
We then homogenise the data format by creating pro-
jected 2-dimensional maps for all probes considered. The
common data format allows us to combine the cosmolog-
ical probes into a common framework at the map level.
We compute both the spherical harmonic auto- and cross-
power spectra of this set of maps and combine them into
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FIG. 1. Synopsis of the framework for integrated probe com-
bination employed in this work.

the spherical harmonic power spectrum matrix Cij` . This
matrix captures the cosmological information contained
in the two-point statistics of the maps. In a last step we
compute the power spectrum covariance matrix and com-
bine it with theoretical predictions to derive constraints
on cosmological parameters from a joint fit to the mea-
sured spherical harmonic power spectra. The details of
the implementation for CMB temperature anisotropies,
galaxy overdensities and weak lensing are described be-
low.

III. THEORETICAL PREDICTIONS

The statistical properties of both galaxy overdensity
δg and weak lensing shear γ, as well as their cross-
correlation can be measured from their spherical har-
monic power spectra. These generally take the form of
weighted integrals of the nonlinear matter power spec-
trum P nl

δδ(k, z) multiplied with spherical Bessel functions
j`(kχ(z)). Their computation is time-consuming and we
therefore resort to the the Limber approximation [12–14]
to speed up calculations. This is a valid approximation
for small angular scales, typically ` > O(10), and broad
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redshift bins [15]. For simplicity, we further focus on flat
cosmological models, i.e. Ωk = 0, for the theoretical pre-
dictions. The spherical harmonic power spectrum Cij` at
multipole ` between cosmological probes i, j ∈ {δg, γ}
can then be expressed as:

Cij` =

∫
dz

c

H(z)

W i (χ(z))W j (χ(z))

χ2(z)

× P nl
δδ

(
k =

`+ 1/2

χ(z)
, z

)
, (1)

where c is the speed of light, χ(z) the comoving distance,

H(z) the Hubble parameter and W i′ (χ(z)) denotes the
window function for probe i′.

For galaxy clustering the window function is given by

W δg (χ(z)) =
H(z)

c
b(z)n(z), (2)

where b(z) denotes a linear galaxy bias and n(z) is the
normalised redshift selection function of the survey i.e.∫

dz n(z) = 1. We focus on scale-independent galaxy
bias since we restrict the analysis to large scales, which
are well-described by linear theory.

The window function for weak lensing shear is

W γ (χ(z)) =
3

2

ΩmH
2
0

c2
χ(z)

a

∫ χh

χ(z)

dz′n(z′)
χ(z′)− χ(z)

χ(z′)
,

(3)
where Ωm denotes the matter density parameter today,
H0 is the present-day Hubble parameter, χh is the co-
moving distance to the horizon and a denotes the scale
factor.

Similarly to the spherical harmonic power spectra of
galaxy clustering and weak lensing the spherical har-
monic power spectrum of CMB temperature anisotropies
T can be related to the primordial matter power spec-
trum generated during inflation as [16]

CTT
` =

2

π

∫
dk k2P lin

δδ (k)

∣∣∣∣∆T`(k)

δ(k)

∣∣∣∣2 , (4)

where ∆T` denotes the transfer function of the tempera-
ture anisotropies and δ is the matter overdensity.

The CMB temperature anisotropies are correlated to
tracers of the large-scale structure (LSS) such as galaxy
overdensity and weak lensing shear primarily through the
integrated Sachs-Wolfe effect [11]. On large enough scales
where linear theory holds, the spherical harmonic power
spectra between these probes can be computed from ex-
pressions similar to those above. In the Limber approx-
imation [12–14], the spherical harmonic power spectrum
between CMB temperature anisotropies and a tracer i of
the LSS becomes: [17]

CiT` = 3
ΩmH

2
0TCMB

c2
1

(`+ 1/2)2

∫
dz

d

dz
[D(z)(1 + z)]

×D(z)W i (χ(z))P lin
δδ

(
k =

`+ 1/2

χ(z)
, 0

)
, (5)

where TCMB denotes the mean temperature of the CMB
today, i ∈ {δg, γ} and W i (χ(z)) represents the window
functions defined in Equations 2 and 3. We have fur-
ther split the linear matter power spectrum P lin

δδ (k, z)
into its time-dependent part parametrised by the growth
factor D(z) and the scale-dependent part P lin

δδ (k, 0). For
a derivation of Eq. 5 for the galaxy overdensity field as
tracer of the LSS see e.g. Padmanabhan et al. [18]. The

derivation for CγT
` is similar and is detailed in Appendix

A.
To compute the auto-power spectrum of the CMB tem-

perature anisotropies we use the publicly available Boltz-
mann code class6 [19]. For the other power spectra
we use PyCosmo [20]. We calculate the linear matter
power spectrum from the transfer function derived by
Eisenstein and Hu [21]. To compute the nonlinear mat-
ter power spectrum we use the Halofit fitting function
[22] with the revisions of Takahashi et al. [23].

IV. MAPS

A. Cosmic Microwave Background

We use the foreground-reduced CMB anisotropy maps
provided by the Planck collaboration [24] in their 2015
data release. We choose these over the uncleaned single-
frequency maps because they allow to perform the fore-
ground correction on the maps rather than the power
spectrum level. This is important when considering
probe combination. The Planck foreground-reduced
CMB anisotropy maps have been derived using four dif-
ferent algorithms: Commander, NILC, SEVEM and SMICA.
The maps are given in HEALPix7 [25] format and are
provided in Galactic coordinates at two different reso-
lutions of NSIDE = 1024 and NSIDE = 2048. These
correspond to pixel areas of 11.8 and 2.95 arcmin2 re-
spectively. Different data configurations are available
[24]; we use both the half-mission half-sum (HMHS)
maps, which contain both signal and noise, and the half-
mission half-difference maps (HMHD), which contain
only noise and potential residual systematic uncertain-
ties. All four maps yield consistent estimates of both the
spherical harmonic power spectrum of the CMB temper-
ature anisotropies as well as the spherical harmonic cross-
power spectrum between CMB temperature anisotropies
and tracers of the LSS [24, 26, 27]. Since the Planck
collaboration found the Commander approach to be the
preferred solution for studying the CMB anisotropies at
large and intermediate angular scales, we also choose it
for our analysis. Each of the four foreground reduction
methods also provides a confidence mask inside which the
CMB solution is trusted. Following the Planck collabora-
tion [24], we adopt the union of the confidence masks for

6 http : //class-code.net.
7 http : //healpix.sourceforge.net.
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TABLE I. Summary of used data.

CMB
temperature
anisotropies

Survey: Planck 2015 [24]
Fiducial foreground-reduced map: Commander

Sky coverage: fsky = 0.776

galaxy
overdensity

Survey: SDSS DR8 [9]
Sky coverage: fsky = 0.27

Galaxy sample: CMASS1-4
Number of galaxies: Ngal = 854 063

Photometric redshift range 0.45 ≤ zphot < 0.65

weak lensing

Survey: SDSS Stripe 82 co-add [10]
Sky coverage: fsky = 0.0069

Number of galaxies: Ngal = 3 322 915
Photometric redshift range: 0.1 . zphot . 1.1
r.m.s. ellipticity per component: σe ∼ 0.43

Commander, SEVEM and SMICA. This is referred to as the
UT78 mask and covers 77.6% of the sky at a resolution of
NSIDE = 2048. To downgrade the mask to NSIDE = 1024,
we follow the description outlined in Planck Collabora-
tion et al. [24]. The HMHS CMB anisotropy map derived
using Commander is shown in the top panel of Fig. 2 for
resolution NSIDE = 1024 and the corresponding HMHD
map is shown in Fig. 18 in the Appendix.

B. Galaxy overdensity

The SDSS [28–31] obtained wide-field images of 14 555
deg2 of the sky in 5 photometric passbands (u, g, r, i, z
[32–34]) up to a limiting r-band magnitude of r ' 22.5.
The photometric data is complemented with spectro-
scopic data from the Baryonic Oscillations Spectroscopic
Survey (BOSS) [29, 35, 36]. BOSS was conducted as part
of SDSS III [29] and obtained spectra of approximately
1.5 million luminous galaxies distributed over 10 000 deg2

of the sky. The SDSS photometric redshifts for DR8 [9]
are estimated using a local regression model trained on
a spectroscopic training set consisting of 850 000 SDSS
DR8 spectra and spectroscopic data from other surveys8.
The algorithm is outlined in Beck et al. [37].

In our analysis, which is described in the following, we
largely follow Ho et al. [38]. We select objects classified
as galaxies from the PhotoPrimary table in the Cat-
alog Archive Server (CAS9). To obtain a homogeneous
galaxy sample we further select CMASS galaxies using
the color-magnitude cuts used for BOSS target selection
[29] and outlined in Ho et al. [38]. This selection isolates

8 More details can be found on
http://www.sdss3.org/dr8/algorithms/photo-z.php.

9 The SDSS Catalog Archive Server can be accessed through
http://skyserver.sdss.org/CasJobs/SubmitJob.aspx.

luminous, high-redshift galaxies that are approximately
stellar mass limited [39, 40]. We further restrict the sam-
ple to CMASS galaxies with SDSS photometric redshifts
between 0.45 ≤ z < 0.65, i.e. we consider the photo-
metric redshift slices CMASS1-4. This selection yields a
total of Ngal = 1 096 455 galaxies.

To compute the galaxy overdensity field, we need to
characterise the full area observed by the survey and
mask regions heavily affected by foregrounds or poten-
tial systematics. The area imaged by the SDSS is divided
into units called fields. Several such fields have been ob-
served multiple times in the SDSS imaging runs. The
survey footprint is the union of the best observed (pri-
mary) fields at each position and is described in terms
of Mangle [41–43] spherical polygons. Each of these
polygons is matched to the SDSS field fully covering it10.
In order to select the survey area least affected by fore-
grounds and potential systematics we follow Ho et al. [38]
and Ross et al. [40] and restrict the analysis to polygons
covered by fields with score11 ≥ 0.6, full width at half
maximum (FWHM) of the point spread function (PSF)
PSF-FWHM < 2.0 arcsec in the r-band and Galactic extinc-
tion E(B− V) ≤ 0.08 as determined from the extinction
maps from Schlegel et al. [44].

To facilitate a joint analysis between the LSS probes
and the CMB, which is given as a map in Galactic coor-
dinates, we transform both the galaxy positions as well
as the survey mask from equatorial (RA, DEC) to Galactic
(l, b) coordinates. We construct the continuous galaxy
overdensity field by pixelising the galaxy overdensities
δg = δn/n̄ onto a HEALPix pixelisation of the sphere
with resolution NSIDE = 1024. We mask the galaxy over-
density map with a HEALPix version of the SDSS sur-

10 This information is found in the files window unified.fits and
window flist.fits.

11 http://www.sdss3.org/dr10/algorithms/resolve.php.
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FIG. 2. Summary of the three maps in Galactic coordinates used in this analysis. The all-sky maps are in Mollweide projection
while the zoom-in versions are in Gnomonic projection. The HMHS map of CMB temperature anisotropies as derived using
Commander is shown in the top panel. It is masked using the UT78 mask. The middle panel shows the systematics-corrected (see
text) galaxy overdensity map for CMASS1-4 galaxies. Grey areas have been masked either because they lie outside the survey
footprint or are potentially contaminated by systematics. The lower panel shows the map of the SDSS Stripe 82 shear modulus
|γ̂|. Grey areas have been masked because they are either unobserved or do not contain galaxies for shear measurement. The
zoom-in figures (left) are enlarged versions of the 5 × 5 deg2 region centred on (l, b) = (53°,−33.5°) shown in the maps. The
zoom-in for the galaxy shear map is overlaid with a whisker plot of the galaxy shears. All three maps have resolution NSIDE

= 1024.
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FIG. 3. Redshift distribution for the LSS probes. The fig-
ure shows the redshift selection function of SDSS CMASS1-4
galaxies, the redshift selection function for the SDSS Stripe
82 galaxies as well as the weak lensing shear window function
defined in Eq. 3. The redshift selection function for CMASS1-
4 galaxies as well as the weak lensing shear window function
have been rescaled relative to the Stripe 82 redshift selection
function.

vey mask, which is obtained by random sampling of the
Mangle mask. To account for the effect of bright stars,
we use the Tycho astrometric catalog [45] and define
magnitude-dependent stellar masks as defined in Pad-
manabhan et al. [46]. We remove galaxies inside the
bright star masks and correct for the area covered by
the bright stars by removing the area covered by the star
masks from the pixel area Apix,corr = Apix,uncorr −Astars

when computing the galaxy overdensity. The final map
covers a fraction fsky ≈ 0.27 of the sky and contains
Ngal = 854 063 galaxies.

Even after masking and removal of high contamina-
tion regions, there are still systematics left in the galaxy
overdensity map. The correction for residual systematic
uncertainties in the maps follows Ross et al. [40] and
Hernández-Monteagudo et al. [47] and is described in Ap-
pendix B. The final map is shown in the middle panel of
Fig. 2.

As well as the maps we need an estimate for the red-
shift distribution of the galaxies in our sample. To this
end we follow Ho et al. [38] and match photometrically
detected galaxies to galaxies observed spectroscopically
in SDSS DR9 [48]. We then estimate the redshift dis-
tribution of the photometric galaxies from the spectro-
scopic redshift distribution of the matching galaxies. The
selected CMASS1-4 galaxies have spectroscopic redshifts
0.4 . z . 0.7 as can be seen from the redshift distribu-
tion shown in Fig. 3.

C. Weak lensing

We take weak lensing data from the SDSS Stripe 82
co-add [10], which comprises 275 deg2 of co-added SDSS
imaging data with a limiting r-band magnitude r ≈ 23.5
and r-band median seeing of 1.1 arcsec. The shapes of
objects detected in the SDSS were measured from the
adaptive moments [49] by the PHOTO pipeline [50] and
are available on the CAS12. Photometric redshifts for all
detected galaxies were computed using a neural network
approach as described in Reis et al. [51] and are available
as a DR7 value added catalog13.

In the following analysis we closely follow the work
by Lin et al. [52]. We select objects identified as galax-
ies in the co-add data (i.e. run = 106 or run = 206)
from the CAS and we restrict the sample to galaxies
with extinction corrected i-band magnitudes in the range
18 < i < 24. Further we select only objects that pass
the clean photometry cuts as defined by the SDSS14 and
do not have flags indicating problems with the measure-
ment of adaptive moments as well as negative errors on
those. The former cuts especially exclude galaxies con-
taining saturated pixels. We use shapes measured in
the i-band since it has the smallest seeing (1.05 arc-
sec) [10, 52] and further consider only galaxies with ob-
served sizes at least 50% larger than the PSF. This re-
quirement is quantified by requiring the resolution factor
R = 1− mRrCcPSF/mRrCc [49] to satisfy R > 0.33, where
mRrCc and mRrCcPSF denote the sum of the second order
moments in the CCD column and row direction for both
the object and the PSF.

For the above galaxy sample we compute PSF-
corrected galaxy ellipticities using the linear PSF correc-
tion algorithm as described in Hirata and Seljak [53]. For
weak lensing shear measurement we follow Lin et al. [52]
and restrict the sample to galaxies with PSF-corrected
ellipticity components e1, e2 satisfying |e1| < 1.4 as well
as |e2| < 1.4 and photometric redshift uncertainties
σz < 0.15. This sample has an r.m.s. ellipticity per com-
ponent of σe ∼ 0.43. We then turn the PSF-corrected
ellipticities for this sample into shear estimates. The de-
tails of the analysis are described in Appendix C.

After computing weak lensing shear estimates from
the ellipticities we apply a rotation to both the galaxy
positions and shears from equatorial to Galactic coordi-
nates15 to allow for combination with the CMB. We pix-
elise both weak lensing shear components onto separate
HEALPix pixelisations of the sphere choosing a resolu-
tion of NSIDE = 1024 as for the galaxy overdensity map.
At this resolution the mean number of galaxies per pixel
is about 38, which corresponds to ngal ' 3.2 arcmin−2.

12 See footnote 9.
13 http : //classic.sdss.org/dr7/products/value added/,

http : //das.sdss.org/va/coadd galaxies/.
14 http://www.sdss.org/dr12/tutorials/flags/.
15 The exact rotation of the shears is described in Appendix D.
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We apply a mask to both maps, which accounts for both
unobserved and empty pixels. The final maps are con-
structed using Ngal = 3 322 915 galaxies and cover a sky
fraction fsky ≈ 0.0069. The map of the shear modulus
|γ̂| is shown in the bottom panel of Fig. 2 together with
a zoom-in region with overlaid whisker plot illustrating
the magnitude and direction of the weak lensing shear.

We follow Lin et al. [52] and estimate the redshift dis-
tribution of the galaxies from their photometric redshift
distribution. The redshift distribution is shown in Fig. 3
together with the window function for weak lensing shear
defined in Eq. 3. We see that the selected galaxies have
photometric redshifts z . 1.0.

V. SPHERICAL HARMONIC POWER
SPECTRA

We calculate the spherical harmonic power spectra of
the maps presented in the previous section using the pub-
licly available code PolSpice16 [54, 55]. The PolSpice
code is designed to combine both real and Fourier space
in order to correct spherical harmonic power spectra mea-
sured on a cut-sky from the effect of the mask. The
algorithm can be summarised as follows: starting from
a masked HEALPix map, PolSpice first computes the
so-called pseudo power spectrum, which is then Fourier
transformed to the real space correlation function. In or-
der to correct for the effects of the mask, the latter is
divided by the mask correlation function. In a last step,
the demasked correlation function is Fourier transformed
back to the spherical harmonic power spectrum. This ap-
proach ensures that PolSpice can exploit the advantages
of real space while still performing the computationally
expensive calculations in Fourier space.

Demasking can only be performed on angular scales on
which information is available, which translates to a max-
imal angular scale θmax for which a demasked correlation
function can be computed. This maximal scale leads
to ringing when transforming back from real to Fourier
space, which can be reduced by apodising the correlation
function prior to inversion. Both these steps lead to bi-
ases in the power spectrum recovered by PolSpice. The
kernels relating the average PolSpice estimates to the
true power spectra can be computed theoretically for a
given maximal angular scale and apodisation prescription
and need to be corrected for when comparing theoretical
predictions to observed power spectra.

An additional difficulty arises in the computation of
spherical harmonic power spectra of spin-2 fields. Finite
sky coverage tends to cause mixing between E-and B-
modes. The polarisation version of PolSpice is designed
to remove E- to B-mode leakage in the mean [55]. Details
on our earlier application of PolSpice to LSS data are
described in Appendix A of Becker et al. [56].

16 http://www2.iap.fr/users/hivon/software/PolSpice/.

TABLE II. Spherical harmonic power spectrum parameters
and angular multipole ranges.

Power spectrum θmax [deg] θFWHM [deg] `-range ∆`

CTT
` 40 20 [10, 610] 30

C
δgδg
` 80 40 [30, 210] 30
Cγγ` 10 5 [70, 610] 60

C
δgT

` 40 20 [30, 210] 30

CγT` 10 5 [70, 610] 60

C
γδg
` 10 5 [30, 210] 60

In order to calculate both the auto- and cross-power
spectra for all probes, we need to estimate the maximal
angular scale θmax. This is not a well-defined quantity
but we can separately estimate it for each probe from the
real space correlation function of its mask. The real space
correlation function of the survey mask will fall off signif-
icantly or vanish for scales larger than θmax. We there-
fore estimate θmax as the scale around which the mask
correlation function significantly decreases in amplitude.
Appendix E illustrates this analysis for the example of
the SDSS Stripe 82 weak lensing shear mask. In order to
reduce Fourier ringing we apodise the correlation func-
tion using a Gaussian window function; following Chon
et al. [55] we choose the FWHM of the Gaussian window
as θFWHM = θmax/2. Survey masks with complicated an-
gular dependence might not exhibit a clear fall-off, which
complicates the choice of θmax. We therefore validate our
choices of θmax and θFWHM with the Gaussian simulations
as described in Appendix F and G. We find our choices
to allow the recovery of the input power spectra for all
the probes and settings.

All spherical harmonic power spectra are corrected for
the effect of the HEALPix pixel window function and
the power spectra involving the CMB map are further
corrected for the Planck effective beam window function,
which complements the CMB maps.

We now separately describe the measurement of all
the six spherical harmonic power spectra. To compute
the power spectra, we use the maps and masks described
in Section IV at resolution NSIDE = 1024, except for the
CMB temperature power spectrum. For the latter we use
the maps at resolution NSIDE = 2048, but we do not ex-
pect this to make a significant difference. The PolSpice
parameter settings used to compute the power spectra
are summarised in Tab. II. This table further gives the
angular multipole range as well as binning scheme em-
ployed for the cosmological analysis. For all probes con-
sidered, the uncertainties are derived from the Gaussian
simulations described in Section VI B and Appendix F.



8

A. CMB

We use the half-mission half-sum (HMHS) map to es-
timate the CMB signal power spectrum and the half-
mission half-difference (HMHD) map to estimate the
noise in the power spectrum of the HMHS map.

The minimal angular multipole used in the cosmolog-
ical analysis is chosen such as to minimise demasking
effects and the cut at ` = 610 ensures that we are not
biased by residual foregrounds in the maps as discussed
in Section VII. The resulting power spectrum is shown
in the top panel of Fig. 4. In Appendix H we compare
the CMB auto-power spectrum computed from the differ-
ent foreground-reduced maps. As illustrated in Fig. 16
in Appendix H we find that the measured CMB auto-
power spectrum is unaffected by the choice of foreground-
reduced map.

B. Galaxy clustering

The galaxy overdensity maps described in Section IV
are estimated from discrete galaxy tracers. Therefore,
their spherical harmonic power spectrum receives con-
tributions from the galaxy clustering signal and Poisson
shot noise. To estimate the noise power spectrum, we
resort to simulations. We generate noise maps by ran-
domising the positions of all the galaxies in the sample
inside the mask. Since this procedure removes all cor-
relations between galaxy positions, the power spectra of
these maps will give an estimate of the level of Poisson
shot noise present in the data. In order to obtain a ro-
bust noise power spectrum, we generate 100 noise maps
and estimate the noise power spectrum from the mean of
these power spectra.

The spherical harmonic galaxy clustering power spec-
trum contains significant contributions from nonlinear
structure formation at small angular scales. The effects
of nonlinear galaxy bias are difficult to model and we
therefore restrict our analysis to angular scales for which
nonlinear corrections are small. We can estimate the sig-
nificance of nonlinear effects by comparing the spheri-
cal harmonic galaxy clustering power spectrum computed
using the nonlinear matter power spectrum as well as the
linear matter power spectrum. Since galaxies are more
clustered than dark matter this is likely to underestimate
the effect. We find that the difference between the two
reaches 5% of the power spectrum uncertainties and thus
becomes mildly significant at around `max ∼ 250. This
difference is smaller than the difference derived in Ho
et al. [38] and de Putter et al. [57] which is likely due to
the fact that we consider a single redshift bin and do not
split the data into low and high redshifts. In order not
to bias our results we choose `max = 210 which is com-
parable to the limit used in Ho et al. [38] and de Putter
et al. [57]. To determine the minimal angular multipole
we follow Ho et al. [38], who determined that the Limber
approximation becomes accurate for scales larger than

` = 30.
The middle right panel in Fig. 4 shows the spher-

ical harmonic galaxy clustering power spectrum com-
puted from the systematics-corrected map in Galactic
coordinates. In Appendix H, we compare the spherical
harmonic power spectrum derived from the systematics-
corrected maps in Galactic and equatorial coordinates.
We find small differences at large angular scales, but the
effect on the bandpowers considered in this analysis is
negligible, as can be seen from Appendix H (Fig. 14). To
test the procedure for removing systematic uncertainties,
we compare the spherical harmonic power spectra before
and after correcting the maps for residual systematics.
We find that the removal of systematics marginally re-
duces the clustering amplitude on large scales, which is
expected since Galactic foregrounds exhibit significant
large scale clustering. Small angular scales on the other
hand, are mostly unaffected by the corrections applied.
These results are shown in Appendix H (Fig. 17).

C. Cosmic shear

The power spectrum computed from the weak lensing
shear maps described in Section IV C contains contribu-
tions from both the cosmic shear signal and the shape
noise of the galaxies, which is due to intrinsic galaxy el-
lipticities. In order to estimate the shape noise power
spectrum we follow the same methodology as for galaxy
clustering and resort to simulations. We generate noise-
only maps by rotating the shears of all the galaxies in our
sample by a random angle. This procedure removes spa-
tial correlations between galaxy shapes. Since the weak
lensing shear signal is at least an order of magnitude
smaller than the intrinsic galaxy ellipticities, the power
spectrum of the randomised map gives an estimate of
the shape noise power spectrum. As for galaxy cluster-
ing, we compute 100 noise maps and estimate the shape
noise power spectrum from the mean of these 100 noise
power spectra.

For the cosmological analysis we choose broader multi-
pole bins than for the CMB temperature anisotropies and
galaxy clustering since the small sky fraction covered by
SDSS Stripe 82 causes the cosmic shear power spectrum
to be correlated across a significantly larger multipole
range. The low and high ` limits are chosen to minimise
demasking uncertainties and the impact of nonlinearities
in the cosmic shear power spectrum.

The spherical harmonic power spectrum of the weak
lensing shear E-mode is displayed in the bottom right
panel of Fig. 4 and the B-mode power spectrum is shown
in the Appendix (Fig. 19). We see that the E-mode power
spectrum is intrinsically low as compared to the best-fit
theory power spectrum. These results are similar to those
derived by Lin et al. [52], who found a low value of Ω0.7

m σ8

for Stripe 82 cosmic shear. As can be seen, we do not
detect a significant B-mode signal.

When comparing the weak lensing shear E-mode power
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FIG. 4. Spherical harmonic power spectra for all probes used in the cosmological analysis. The top left panel shows the power
spectrum of CMB anisotropies computed from the Commander CMB temperature map at resolution of NSIDE = 2048. The middle
left panel shows the cross-power spectrum between CMB temperature anisotropies and galaxy overdensity computed from the
systematics-reduced SDSS CMASS1-4 map and the Commander map at resolution NSIDE = 1024. The middle right panel shows
the spherical harmonic power spectrum of the galaxy overdensity computed from the systematics-reduced SDSS CMASS1-
4 map at NSIDE = 1024. The bottom left panel shows the spherical harmonic power spectrum between CMB temperature
anisotropies and weak lensing shear measured from the Commander CMB map and the SDSS Stripe 82 weak lensing maps at
resolution NSIDE = 1024. The bottom-middle panel shows the spherical harmonic power spectrum between galaxy overdensity
and galaxy weak lensing shear computed from the systematics-reduced SDSS CMASS1-4 map and the SDSS Stripe 82 galaxy
weak lensing shear map at resolution NSIDE = 1024. The bottom right panel shows the spherical harmonic power spectrum of
cosmic shear E-modes computed from the SDSS Stripe 82 weak lensing shear maps. The angular multipole ranges and binning
schemes for all power spectra are summarised in Table II. All power spectra are derived from the maps in Galactic coordinates.
The solid lines show the theoretical predictions for the best-fit cosmological model determined from the joint analysis which is
summarised in Tab. III. The theoretical predictions have been convolved with the PolSpice kernels as described in Section V.
The error bars are derived from the Gaussian simulations described in Section VI B and Appendix F.

spectra computed from the maps in Galactic and equato-
rial coordinates, we find discrepancies. These are mainly
caused by the correction for additive bias in the weak
lensing shears. As described in Appendix C, the PSF-
corrected galaxy shears are affected by an additive bias.
Following Lin et al. [52], we correct for this bias by sub-
tracting the mean shear of each CCD camera column
from the galaxy shears. This correction is performed in
equatorial coordinates and ensures that the mean shear
vanishes in this coordinate system. When the galaxy po-
sitions and shears are rotated from equatorial to Galactic

coordinates, this ceases to be true. Therefore the correc-
tion for additive bias is coordinate-dependent and it is
this effect that causes the main discrepancies between
the measured power spectra. Further descriptions of the
impact of the additive shear bias correction can be found
in Appendix H 1.

The discrepancies between the cosmic shear power
spectra measured from maps in Galactic and equatorial
coordinates are still within the experimental uncertain-
ties. We therefore choose to correct for the additive shear
bias in equatorial coordinates, apply the rotation to the
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corrected shears and compute the cosmic shear power
spectrum from the maps in Galactic coordinates. We
note however, that these differences will become signifi-
cant for surveys measuring cosmic shear with higher pre-
cision. It is therefore important to develop coordinate-
independent methods for shear bias correction when per-
forming a joint analysis of different cosmological probes.

D. CMB and galaxy overdensity cross-correlation

To compute the spherical harmonic cross-power spec-
trum between CMB temperature anisotropies and the
galaxy overdensity, we use the maps and masks described
in Sections IV A and IV B.

We generally have two possibilities to compute cross-
correlations between two maps with different angular
masks. We can either compute the cross-correlation by
keeping the respective mask for each probe, or we can
compute a combined mask, which is the union of all pix-
els masked in at least one of the maps. When testing
both these cases on Gaussian simulations, we observed
a better recovery of the input power spectra when ap-
plying the combined mask to both maps. We therefore
mask both maps with the combined mask, which covers
a fraction of sky fsky ∼ 0.26.

The spherical harmonic cross-power spectrum between
CMB temperature anisotropies and galaxy overdensity
is shown in the middle left panel of Fig. 4. We see
that the ISW power spectrum is very noisy, which makes
its detection significance small. Since the power spec-
trum uncertainties for the considered angular scales are
mainly due to cosmic variance, we suspect that the low
signal-to-noise is mainly due to the fraction of sky cov-
ered by the SDSS CMASS1-4 galaxies. Despite its low
significance, we include the ISW power spectrum in our
analysis, because we expect it to help break degenera-
cies between cosmological parameters. We check that
the ISW power spectrum does not depend on the choice
of foreground-reduced CMB map. We find that the re-
sults using the maps provided by the NILC, SEVEM and
SMICA algorithms are virtually the same, as illustrated in
Appendix H (Fig. 16).

E. CMB and weak lensing shear cross-correlation

We estimate the spherical harmonic cross-power spec-
trum between CMB temperature anisotropies and the
weak lensing shear E-mode field from the maps and
masks described in Sections IV A and IV C. Both maps
are masked with the combination of the masks, which
covers a fraction of sky fsky ∼ 0.0065.

The bottom left panel in Fig. 4 shows the spherical
harmonic power spectrum between CMB temperature
anisotropies and the weak lensing shear E-mode field.
As can be seen, the noise level is too high to allow for

a detection of the ISW correlation between CMB tem-
perature anisotropies and weak lensing shear. This is to
be expected due to the small sky fraction covered by the
SDSS Stripe 82 galaxies and the intrinsically low signal-
to-noise of this cross-correlation. Nevertheless, we in-
clude the power spectrum into the joint analysis to pro-
vide an upper limit on the ISW from weak lensing. The
measured power spectrum is unaffected by the choice of
CMB mapmaking method, as illustrated in Fig. 16 in
Appendix H.

F. Galaxy overdensity and weak lensing shear
cross-correlation

We compute the spherical harmonic cross-power spec-
trum between the galaxy overdensity and weak lensing
shear E-mode field from the maps and masks described
in Sections IV B and IV C. We mask both maps with the
combination of the two masks. The combined mask cov-
ers a sky fraction fsky ∼ 0.0053.

The spherical harmonic cross-power spectrum between
galaxy overdensity and weak lensing shear E-mode is
shown in the bottom-middle panel of Fig. 4. We see
that the signal-to-noise of the power spectrum is low at
the angular scales considered. This is probably due to
the small sky fraction covered by Stripe 82 galaxies. We
nevertheless include this cross-correlation in our analysis
to serve as an upper limit. In Appendix H we show the
comparison between the power spectra measured from
the maps in Galactic and in equatorial coordinates. We
find reasonable agreement between the two, even though
the discrepancies are significantly enhanced compared to
the effects on the galaxy overdensity power spectrum.
As discussed in Section V C this is probably due to the
coordinate-dependence of the additive shear bias correc-
tion.

VI. COVARIANCE MATRIX

In order to obtain cosmological constraints from a joint
analysis of CMB temperature anisotropies, galaxy clus-
tering and weak lensing we need to estimate the joint
covariance matrix of these cosmological probes. In this
work we assume all the fields to be Gaussian random
fields, i.e. we assume the covariance between all probes
to be Gaussian and neglect any non-Gaussian contribu-
tion. This is appropriate for the CMB temperature field
as well as the galaxy overdensity field at the scales consid-
ered but it is only an approximation for the weak lensing
shear field [58]. For example, for a survey with source
redshifts zs = 0.6, Sato et al. [58] found that neglecting
non-Gaussian contributions leads to an underestimation
of the diagonal terms in the cosmic shear covariance ma-
trix by a factor of approximately 5 at multipoles ` ∼ 600.
In our case the discrepancy may be more pronounced
since our sample contains a significant number of galaxies
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with zs < 0.6. On the other hand we will be less sensi-
tive to the non-Gaussian nature of the covariance matrix
since the covariance for our galaxy sample is dominated
by shape noise especially at the highest multipoles con-
sidered. We therefore decide to leave the introduction of
non-Gaussian covariance matrices to future work.

In this work, we employ two different models for the
joint Gaussian covariance matrix CG: the first is a theo-
retical model and the second is based on simulations of
correlated Gaussian realisations of the three cosmologi-
cal probes. We use the theoretical covariance matrix to
validate the covariance matrix obtained from the simula-
tions.

A. Theoretical covariance estimate

The covariance between cosmological spherical har-
monic power spectra is composed of two parts: cosmic
variance and noise. For spherical harmonic power spectra
computed over the full sky, different ` modes are uncorre-
lated and the covariance matrix is diagonal. Partial sky
coverage, i.e. fsky < 1, has the effect to couple different
` modes and thus leads to a non-diagonal covariance ma-
trix. This covariance becomes approximately diagonal if
it is binned into approximately uncorrelated bandpowers
of width ∆` [59]. Cabré et al. [59] found the empirical
relation ∆`fsky ∼ 2 to be a good approximation. In this
case the covariance matrix between binned power spectra

Cij` and Ci
′j′

`′ can be approximated as [6, 59, 60]

CovG(Cij` , C
i′j′

`′ ) = 〈∆Cij` ∆Ci
′j′

`′ 〉 '
δ``′

(2`+ 1)∆`fsky

[
(Cii

′
` +N ii′)(Cjj

′

` +N jj′)

+ (Cij
′

` +N ij′)(Cji
′

` +N ji′)
]
,

(6)

where i, j, i′, j′ denote different cosmological probes; in
our case i, j, i′, j′ ∈ {T, δg, γ}. The quantities N ij are
the noise power spectra of the different probes, which
vanish unless i = j.

Given a cosmological model and survey specifications
such as fractional sky coverage and noise level, we can
approximate CG using Eq. 6 for each block covariance
matrix. We choose a hybrid approach: we adopt a cos-
mological model to calculate the signal power spectra
whereas we approximate N ij with the measured noise
power spectra used to remove the noise bias in the data
as described in Section V.

B. Covariance estimate from Gaussian simulations

The theoretical covariance matrix estimate described
above is expected to only yield accurate results for uncor-
related binned power spectra, since in this approximation
the covariance matrix is fully diagonal. For this reason we
also estimate the covariance matrix in an alternative way

that does not rely on this approximation: we estimate an
empirical covariance matrix from the sample variance of
Gaussian simulations of the three cosmological probes.
To this end, we simulate correlated realisations of both
the two spin-0 fields, CMB temperature and galaxy over-
density, as well as the spin-2 weak lensing shear field.
We follow the approach outlined in Giannantonio et al.
[61] for simulating correlated maps of spin-0 fields and
we make use of the polarisation version of the HEALPix
routine synfast to additionally simulate correlated maps
of the spin-2 field. We estimate noise maps from the data
and add these to the correlated signal maps. The details
of the algorithm are outlined in Appendix F.

In order to compute the power spectrum covariance
matrix, we apply the masks used on the data to the sim-
ulated maps and calculate both the auto- and the cross-
power spectra of all the probes using the same method-
ology and PolSpice settings as described in Section V.
We generate Nsim random realisations and estimate the
covariance matrix as

CovG(Cij` , C
i′j′

`′ ) =
1

Nsim − 1

Nsim∑
k=1

[
Cijk (`)− C̄ijk (`)

]
×
[
Ci
′j′

k (`′)− C̄i
′j′

k (`′)
]
,

(7)

where C̄ijk (`) denotes the mean over all realisations.
The accuracy of the sample covariance estimate de-

pends on the number of simulations. As described in
Cabré et al. [59], Nsim = 1000 achieves better than 5% ac-
curacy for estimating the covariance matrix for the ISW
effect from Gaussian simulations. We therefore follow
Cabré et al. [59] and compute the covariance matrix from
the sample variance of Nsim = 1000 Gaussian realisations
of the 4 maps or 6 spherical harmonic power spectra re-
spectively.

The correlation matrix for the spherical harmonic
power spectra derived from the Gaussian simulations for
binning schemes and angular multipole ranges described
in Section V is shown in Fig. 5. We see that the survey
masks lead to significant correlations between bandpow-
ers.

VII. COSMOLOGICAL CONSTRAINTS

Each of the power spectra presented in Section V car-
ries cosmological information with probe-specific sensi-
tivities and degeneracies. An integrated combination of
these cosmological probes therefore helps break these pa-
rameter degeneracies. It further provides robust cosmo-
logical constraints since it is derived from a joint fit to the
auto- as well as cross-correlations of three cosmological
probes.

In order to derive cosmological constraints from a joint
fit to the six spherical harmonic power spectra discussed
in Section V, we assume the joint likelihood to be Gaus-
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sian, i.e.

L (D|θ) =
1

[(2π)d detCG]1/2

× e− 1
2 (Cobs

` −Ctheor
` )TC−1

G (Cobs
` −Ctheor

` ), (8)

where CG denotes the Gaussian covariance matrix.
Ctheor
` denotes the theoretical prediction for the spher-

ical harmonic power spectrum vector of dimension d and
Cobs
` is the observed power spectrum vector, defined as

Cobs
` =

(
CTT
` C

δgT
` C

δgδg
` CγT

` C
γδg
` Cγγ`

)
obs

. (9)

A Gaussian likelihood is a justified assumption for both
the CMB temperature anisotropy and galaxy clustering
power spectra due to the central limit theorem. Since
the weak lensing shear power spectrum receives signifi-
cant contribution from non-linear structure formation, its
likelihood will deviate from being purely Gaussian [62].
It has been shown however, that a Gaussian likelihood is
a sensible approximation, especially when CMB data is
added to weak lensing [63]. In our first implementation
we will thus assume both a joint Gaussian likelihood and
Gaussian single probe likelihoods.

We estimate the covariance matrix using both meth-
ods outlined in Section VI. In both cases we com-
pute the covariance for a ΛCDM cosmological model,
which we keep fixed in the joint fit. Note that
the covariance matrices depend on the cosmological
model and should therefore vary in the fitting proce-
dure [64]. Following standard practice, (e.g. [65]),
we approximate the covariance matrix to be constant

and compute it for a ΛCDM cosmological model with
parameter values {h, Ωm, Ωb, ns, σ8, τreion, TCMB} =
{0.7, 0.3, 0.049, 1.0, 0.88, 0.078, 2.275 K}, where h is the
dimensionless Hubble parameter, Ωm is the fractional
matter density today, Ωb is the fractional baryon den-
sity today, ns denotes the scalar spectral index, σ8 is
the r.m.s. of matter fluctuations in spheres of comoving
radius 8h−1 Mpc and τreion denotes the optical depth
to reionisation. We further set the linear, redshift-
independent galaxy bias parameter to b = 2. To obtain
an unbiased estimate of the inverse of the covariance ma-
trix derived from the Gaussian simulations, we apply the
correction derived in Kaufman [66], Hartlap et al. [67]
and Anderson [68], i.e. we multiply the inverse covari-
ance matrix by (Nsim−d−2)/(Nsim−1). The theoretical
covariance matrix estimate does not suffer from this bias
and is thus left unchanged.

From the likelihood given in Eq. 8, we derive con-
straints in the framework of a flat ΛCDM cosmologi-
cal model, where our fiducial model includes one mas-
sive neutrino eigenstate of mass 0.06 eV as in [69]. Our
parameter set consists of the six ΛCDM parameters
{h, Ωm, Ωb, ns, σ8, τreion}. We further marginalise over
two additional parameters: a redshift independent, linear
galaxy bias parameter b and a multiplicative bias param-
eter m for the weak lensing shear. The multiplicative
bias parametrises unaccounted calibration uncertainties
affecting the weak lensing shear estimator γ̂ and is de-
fined as [70]

γ̂ = (1 +m)γ. (10)

We note that we do not include additional nuisance
parameters such as additive weak lensing shear bias,
stochastic and scale-dependent galaxy bias [71–73], pho-
tometric redshift uncertainties, intrinsic galaxy align-
ments (for reviews, see e.g. [74, 75]) or parameters de-
scribing the effect of unresolved point sources on the
CMB temperature anisotropy power spectrum [76]. In
this present work we restrict the analysis to angular scales
where these effects are expected to be subdominant.

We sample the parameter space with a Monte Carlo
Markov Chain (MCMC) using CosmoHammer [77]. The
parameters sampled are summarised in Table III along
with their priors. We choose flat, uniform priors for all
parameters except for τreion and m. The optical depth to
reionisation can only be constrained with CMB polarisa-
tion data. Since we do not include CMB polarisation in
this analysis, we apply a Gaussian prior with µ = 0.089
and σ = 0.02 on τreion. This corresponds to a WMAP9
[78] prior with increased variance to accommodate the
Planck 2015 results [69]. We further apply a Gaussian
prior on the multiplicative bias m with mean µ = 0 and
σ = 0.1. This is motivated by Hirata and Seljak [53],
who found the multiplicative bias for the linear PSF cor-
rection method to lie in the range m ∈ [−0.08, 0.13] for
the sample considered in this analysis.

In our fiducial configuration presented below we use
the covariance matrix derived from the Gaussian sim-
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TABLE III. Parameters varied in the MCMC with their respective priors and posterior means. The uncertainties denote the
68% c.l..

Parameter Prior Posterior mean

h flat ∈ [0.2, 1.2] 0.699± 0.018
Ωm flat ∈ [0.1, 0.7] 0.278+0.019

−0.020

Ωb flat ∈ [0.01, 0.09] 0.0455± 0.0018
ns flat ∈ [0.1, 1.8] 0.975+0.019

−0.018

σ8 flat ∈ [0.4, 1.5] 0.799± 0.029

τreion Gaussian with µ = 0.089, σ = 0.02a 0.0792± 0.0196
b flat ∈ [1., 3.] 2.13± 0.06
m Gaussian with µ = 0.0, σ = 0.1 −0.142+0.080

−0.081

a This corresponds to a WMAP9 [78] prior with increased variance to accommodate the Planck results.

ulations as described in Section VI B. We find that this
choice does not influence our results since the constraints
derived using the theoretical covariance are consistent.
In order to further assess the impact of a cosmology-
dependent covariance matrix, we perform the equivalent
analysis using a covariance matrix computed with a cos-
mological model with ∼ 5% lower σ8. We find that the
derived parameter values change by at most 0.5σ. The
width of the contours is only marginally changed.

In addition to the joint analysis, we also derive pa-
rameter constraints from separate analyses of the three

auto-power spectra CTT
` , C

δgδg
` and Cγγ` . In all three

cases we assume a Gaussian likelihood as in Eq. 8
and derive constraints on the base ΛCDM parameters
{h, Ωm, Ωb, ns, σ8} as well as additional parameters con-
strained by each probe. These are τreion for the CMB
temperature anisotropies, b for galaxy clustering and m
for the cosmic shear.

Fig. 6 shows the constraints on the ΛCDM parame-
ters {h, Ωm, Ωb, ns, σ8} derived from the joint analy-
sis using the spherical harmonic power spectrum vec-
tor and likelihood defined in Equations 8 and 9. These
have been marginalised over τreion, b and m. Also shown
are the constraints derived from separate analyses of the

three auto-power spectra CTT
` , C

δgδg
` and Cγγ` , each of

them marginalised over the respective nuisance param-
eter. As expected, we find that the constraints derived
from the CMB anisotropies are the strongest, followed by
the galaxy clustering and cosmic shear constraints, which
both constrain the full ΛCDM model rather weakly. The
constraints from the CMB temperature anisotropies are
broader and have central values which differ from those
derived in Planck Collaboration et al. [26]. The reason for
these discrepancies is the limited angular multipole range
` ∈ [10, 610] employed in the CMB temperature analy-
sis. This causes the CMB posterior to become broader,
asymmetric and results in a shift of the parameter means.
We have verified that the Planck likelihood and our anal-
ysis give consistent results when the latter is restricted
to a similar `-range. If on the other hand, we increase

the high multipole limit to `max = 1000, we find sig-
nificant differences between our analysis and the Planck
likelihood. We therefore choose to be conservative and
use `max = 610 throughout this work. Comparing the
single probe constraints to one another we see that they
agree reasonably well, the only slight discrepancy being
the low value of both Ωm and σ8 derived from the cosmic
shear analysis. This is similar to the results derived in
Lin et al. [52] even though the values for Ωm and σ8 are
even lower in our analysis. However, care must be taken
since the amplitude of the cosmic shear auto-power spec-
trum appears to have a small dependence on the choice
of the coordinate system as discussed in Appendix H.

The potential of the joint analysis emerges when the
three auto-power spectra are combined together with
their three cross-power spectra. Due to the complemen-
tarity of the different probes the constraints tighten and
the allowed parameter space volume is significantly re-
duced. This is especially true in our case, since the con-
straints from CMB temperature anisotropies are broad-
ened due to the restricted multipole range that we em-
ployed. Including more CMB data would significantly
reduce the impact of adding additional cosmological
probes. The numerical values of the best-fit parameters
and their 68% confidence limits (c.l.) derived from the
joint analysis are given in Tab. III.

Fig. 7 compares the constraints derived from the joint
analysis to the constraints derived by the Planck Collab-
oration [69]. We show two versions of the Planck con-
straints: the constraints derived from the combination
of CMB temperature anisotropies with the Planck low-`
polarisation likelihood (TT+lowP) and the ones derived
from a combination of the latter with the Planck polar-
isation power spectra, CMB lensing and external data
sets (TT,TE,EE+lowP+lensing+BAO+JLA+H0). We
see that the joint analysis prefers slightly lower values of
the parameters Ωm and Ωb and a higher Hubble param-
eter h, but these differences are not significant. Despite
this fact we find sensible overall agreement between the
constraints derived in this work with both versions of
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FIG. 6. Cosmological parameter constraints derived from the joint analysis, marginalised over τreion, b and m and from the
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the Planck constraints. While the constraints we derived
in this analysis are broadened by the restricted multipole
range we used, the results already demonstrate the power
of integrated probe combination: the complementarity of
different cosmological probes and their cross-correlations
allows us to obtain reasonable constraints.

The measured power spectra together with the theo-

retical predictions for the best-fitting cosmological model
derived from the joint analysis are shown in Fig. 4. The
best-fit cosmology provides a rather good fit to all power

spectra except C
γδg
` and Cγγ` , whose measured values are

generally lower than our best-fit model. This is mainly
due to the assumed Gaussian prior on the multiplicative
shear bias m, which does not allow for more negative
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values of m as would be preferred by the data. If we
relax the prior to a Gaussian with standard deviation
σ = 0.2, we find a best-fit value for the multiplicative
bias parameter of m = −0.276 ± 0.108. This results in

an improved fit to both C
γδg
` and Cγγ` , but is in ten-

sion with the values derived for the multiplicative bias
by Hirata and Seljak [53]. We therefore find evidence for
a slight tension between CMB temperature anisotropy

data and weak gravitational lensing, as already seen by
e.g. [79, 80].

VIII. CONCLUSIONS

To further constrain our cosmological model and gain
more information about the dark sector, it will be essen-
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tial to combine the constraining power of different cos-
mological probes. This work presents a first implementa-
tion of an integrated approach to combine cosmological
probes into a common framework at the map level. In
our first implementation we combine CMB temperature
anisotropies, galaxy clustering and weak lensing shear.
We use CMB data from Planck 2015 [8], photometric
galaxy data from the SDSS DR8 [9] and weak lensing
data from SDSS Stripe 82 [10]. We take into account
both the information contained in the separate maps as
well as the information contained in the cross-correlation
between the maps by measuring their spherical harmonic
power spectra. This leads to a power spectrum matrix
with associated covariance, which combines CMB tem-
perature anisotropies, galaxy clustering, cosmic shear,
galaxy-galaxy lensing and the ISW [11] effect with galaxy
and weak lensing shear tracers.

From the power spectrum matrix we derive constraints
in the framework of a ΛCDM cosmological model assum-
ing both a Gaussian covariance as well as a Gaussian
likelihood. We find that the constraints derived from
the combination of all probes are significantly tightened
compared to the constraints derived from each of the
three separate auto-power spectra. This is due to the
complementary information carried by different cosmo-
logical probes. We further compare these constraints to
existing ones derived by the Planck collaboration and
find reasonable agreement, even though the joint analy-
sis slightly prefers lower values of both Ωm and Ωb and a
higher Hubble parameter h. For a joint analysis of three
cosmological probes, the constraints derived are still rel-
atively weak, which is mainly due to our conservative
cuts in angular scales. Nevertheless this analysis already
demonstrates the potential of integrated probe combi-
nation: the complementarity of different data sets, that
alone yield rather weak constraints on the full ΛCDM
parameter space, allows us to obtain robust constraints
which are significantly tighter than those obtained from
probes taken individually. In addition, our analysis re-
veals challenges intrinsic to probe combination. Exam-
ples are the need for foreground-correction at the map
as opposed to the power spectrum level and the need for
coordinate-independent bias corrections.

In this first implementation we have made simplifying
assumptions. We assume a Gaussian covariance matrix
for all cosmological probes considered. This is justified
for the CMB temperature anisotropies and the galaxy
overdensity at large scales. The galaxy shears on the
other hand exhibit non-linearities already at large scales
and their covariance therefore receives significant non-
Gaussian contributions [58]. Furthermore, we do not
take into account the cosmology-dependence of the co-
variance matrix [64]. In addition we only include sys-
tematic uncertainties from a potential multiplicative bias
in the weak lensing shear measurement and neglect ef-
fects from other sources. Finally we also used the Limber
approximation for the theoretical predictions. We leave
these extensions to future work but we do not expect

them to have a significant impact on our results since we
restrict the analysis to scales where the above effects are
minimised.

In order to fully exploit the wealth of cosmological
information contained in upcoming surveys, it will be
essential to investigate ways in which to combine these
experiments. It will be thus interesting to extend the
framework presented here to include additional cosmolog-
ical probes, 3-dimensional tomographic information and
tests of cosmological models beyond ΛCDM.
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Appendix A: Theoretical prediction for CMB and
weak lensing shear cross-correlation

The CMB temperature anisotropies are correlated with
the weak lensing shear due to the ISW effect. The
anisotropies in the temperature field generated by time-
varying gravitational potentials Φ are given by (see e.g.
[18]):

∆TISW(θ) = TCMB δTISW = 2TCMB

∫ η0

ηr

dη
∂Φ

∂η
, (A1)

where η0 denotes the conformal time today and ηr is the
conformal time at recombination. Note that we follow
the conventions for the gravitational potential Φ as in
Bartelmann [83]. These anisotropies can be decomposed
into spherical harmonics with multipole coefficients

∆TISW,`m = 4πi`2TCMB

∫ η0

ηr

dη

×
∫

d3k

(2π)3

d

dη
[Φ(k, z)]j`(kχ(z))Y ∗`m(θk). (A2)

The multipole coefficients of the weak lensing shear E-
modes can be expressed through the lensing potential ψ
and are given by [83]

aE,`m = −1

2

√
(`+ 2)!

(`− 2)!
ψ`,m = −

√
(`+ 2)!

(`− 2)!
4πi`

×
∫

dχ g(χ)

∫
d3k′

(2π)3
Φ(k′, z)j`(k

′χ(z))Y ∗`m(θk′), (A3)

where

g(χ) =
1

χ(z)

∫ χh

χ(z)

dz′
χ(z′)− χ(z)

χ(z′)
n(z′). (A4)

The spherical harmonic power spectrum CγT
` between

CMB temperature anisotropies and the weak lensing
shear is defined as

〈∆TISW,`ma
∗
E,`′m′〉 = CγT

` δ``′δmm′ . (A5)

Expressing the integrals in terms of redshift and inter-
changing the integration boundaries gives

CγT
` = (4π)2

√
(`+ 2)!

(`− 2)!
2TCMB〈

∫ z∗

0

dz

∫
k2dk

(2π)3

d

dz
[D(z)(1 + z)]Φ(k, z = 0)j`(kχ(z))

×
∫

dz′
c

H(z′)
g (χ(z′))

∫
k′2dk′

(2π)3
Φ(k′, z′)j`(k

′χ(z′))〉, (A6)

where z∗ denotes the redshift at recombination. In or-
der to derive Eq. A6 we have used that in linear per-
turbation theory the time- and scale-dependence of the
gravitational potentials can be separated i.e.:

Φ(k, z) = Φ(k, z = 0)D(z)(1 + z), (A7)

where D(z) denotes the linear growth factor. We further
have that

〈Φ(k, z = 0)Φ(k′, z′ = 0)〉 = (2π)3 P lin
ΦΦ(k, z = 0) δ(k−k′),

(A8)
and therefore Eq. A6 reduces to
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CγT
` = (4π)2

√
(`+ 2)!

(`− 2)!
2TCMB

∫ z∗

0

dz

∫
k2dk

(2π)3

d

dz
[D(z)(1 + z)]

×
∫

dz′
c

H(z′)
g (χ(z′)) D(z′)(1 + z′)P lin

ΦΦ(k, z = 0) j`(kχ(z)) j`(kχ(z′)). (A9)

Eq. A9 is the exact expression for the spherical har-
monic cross-power spectrum between CMB temperature
anisotropies and weak lensing shear. In order to speed
up computations, it can be simplified by resorting to the
Limber approximation [12–14] which gives

CγT
` =

√
(`+ 2)!

(`− 2)!
2TCMB

∫ z∗

0

dz
d

dz
[D(z)(1 + z)]

×D(z)(1 + z)
g (χ(z))

χ2(z)
P lin

ΦΦ

(
k =

`+ 1/2

χ(z)
, z = 0

)
.

(A10)

The power spectrum of the gravitational potential at late
times is related to the matter power spectrum through

Poisson’s equation

P lin
ΦΦ(k, z = 0) =

(
3

2

)2
Ω2

mH
4
0

c4
P lin
δδ (k, z = 0)

k4
. (A11)

For large ` we can make the approximations

√
(`+ 2)!

(`− 2)!
∼ `2,

(`+ 1/2)2 ∼ `2.
(A12)

Using Equations A11 and A12 we can write Eq. A10 as

CγT
` = 3

ΩmH
2
0TCMB

c2
1

(`+ 1/2)2

∫
dz

d

dz
[D(z)(1 + z)]D(z)W γ (χ(z))P lin

δδ

(
k =

`+ 1/2

χ(z)
, 0

)
, (A13)

which is the expression given in Eq. 5.

Appendix B: Treatment of systematic uncertainties
in galaxy clustering data

The number density of galaxies observed in SDSS DR8
photometric data is affected by various systematic uncer-
tainties such as stellar density, Galactic extinction and
PSF size variation [38, 40]. These effects remain even
after masking and removal of the highest contamination
regions. In order to obtain an unbiased galaxy overden-
sity map, we need to correct for the number density vari-
ation due to systematics. The SDSS recorded the val-
ues of several potential systematic uncertainties for the
observed fields: airmass, Galactic extinction and seeing
(as measured by the PSF FWHM) in all 5 SDSS bands
for the field each galaxy has been observed in as well as
sky emission at the position of the galaxy for all the 5
bands. These quantities can be queried for each galaxy
position on the CAS17. In this work, we consider four
different observational systematics: Galactic extinction

17 See footnote 9.

in the r-band as well as FWHM of the PSF, airmass
and sky emission in the i-band. A further potential sys-
tematic uncertainty is the presence of foreground stars.
Ross et al. [40] show that the effects of foreground stars
on galaxy number density are largely independent of the
magnitude of the stars. We therefore follow Ho et al. [38]
and investigate how the number density of stars with
i-band magnitudes in the range 18.0 ≤ i < 18.5 affects
the number density of detected galaxies.

We pixelise all quantities onto HEALPix maps of res-
olution NSIDE = 1024 and compute the number density
of galaxies relative to their mean number density as a
function of the value of the systematic in the pixel. In
order to correct for these systematic uncertainties, we
fit a 3rd-order polynomial to the functional dependence
of the relative galaxy number density on the systematic.
Then we multiply the uncorrected number densities by
the inverse of this function. Various potential system-
atics such as Galactic extinction and stellar density are
spatially correlated to one another. When correcting for
various systematics simultaneously, the order in which
the corrections are applied could influence results [40].
In our sample we find that the corrections are both in-
dependent of ordering and SDSS band and correcting for
the effect in one band simultaneously corrects for all the
other bands. The results are shown in Fig. 8 and we use
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those to correct the galaxy maps from residual system-
atic uncertainties. We clip the systematics maps at the
minimum and maximum systematics value shown in the
figure and apply the fitted corrections to the galaxy num-
ber density. The galaxy clustering spherical harmonic
power spectra before and after correcting for systematic
uncertainties are discussed in Section V B and shown in
Appendix H.

Appendix C: PSF correction and construction of
weak lensing shear maps

The galaxy shapes measured from images represent a
convolution of the intrinsic galaxy shapes with the PSF
of the telescope and the atmosphere. We therefore need
to correct this effect using PSF estimates measured from
the shapes of stars observed in the survey. As described
in Annis et al. [10] and Lin et al. [52], the PSF model
for SDSS Stripe 82 data is derived from weighted sums
of shapes measured in the individual runs as opposed
to the co-adds. Lin et al. [52] found that this leads to
biases that need to be removed prior to PSF correction.
In order to correct for these effects, we follow the steps
outlined in Lin et al. [52]. We select bright stars with
i-band magnitudes in 16 < i < 17, which pass the clean
photometry cuts18, and fit polynomials to the residuals
between their shapes measured from the co-adds and the
PSF model for these stars. The residuals before and after
subtraction of the polynomial fit are shown in Fig. 9.
We see that the correction introduced in Lin et al. [52]
has considerably removed both an overall bias as well
as discontinuities at the CCD camera column (camcol)
edges.

Using the revised PSF model, we correct the measured
shapes for the effect of the PSF. We use the linear PSF
correction algorithm derived in Hirata and Seljak [53],
which can be applied to the adaptive moment measure-
ments from the SDSS PHOTO pipeline19.

In order to obtain a galaxy sample for reliable weak
lensing shear measurement, we follow Lin et al. [52] and
perform two additional selection cuts on the galaxies after
PSF correction: we select galaxies with ellipticity com-
ponents e1, e2 satisfying |e1| < 1.4 as well as |e2| < 1.4
and photometric redshift uncertainties σz < 0.15. This
additional selection leaves a galaxy sample consisting of
Ngal = 3 322 915 galaxies.

Lin et al. [52] found a camcol dependent additive bias
in the PSF-corrected ellipticities. The mean ellipticities
for each camcol lie in the range |ē1| = [6 × 10−5, 0.02]
and |ē2| = [0.002, 0.009], which is larger than expected
for a mean zero field [52]. We therefore follow Lin et al.
[52] and correct for the additive bias by subtracting the

18 See footnote 14.
19 Note that there is a typo in Hirata and Seljak [53]: The quantities

Cg , Cf , Dg , Df in Eq. (B9) should be squared.

mean ellipticity for each camcol. We choose to perform
this step prior to coordinate transformation (i.e. for el-
lipticities defined relative to equatorial coordinates) as
opposed to after rotation. We find that removing the
mean camcol ellipticity reduces PSF leakage to a level
which is subdominant in our analysis.

Fig. 10 shows the distributions of the ellipticity com-
ponents e1 and e2 defined relative to equatorial coordi-
nates. They are averaged over HEALPix pixels of res-
olution NSIDE = 512, which corresponds to a pixel area
of Apix ≈ 0.013 deg2. The figure displays the ellipticity
histograms both prior to PSF correction and subtraction
of additive bias as well as the final distributions obtained
after applying both corrections. We see that the correc-
tions have removed the effects of the PSF and the final
histograms can be described by Gaussian distributions.

In the final step, these ellipticities need to be trans-
formed to shear estimates by correcting for the shear
resolution factor R, which is defined as

R =

〈
∂γ̂i
∂γi

〉
. (C1)

The shear resolution factor R quantifies the response of
the estimated mean ellipticity to an applied shear. For
the adaptive moment method described in Bernstein and
Jarvis [49] it is given by R = 2(1 − e2

int), where eint

denotes the intrinsic r.m.s. ellipticity per component.
We follow Lin et al. [52] and use eint = 0.37 as measured
by Hirata et al. [82].

In order to construct the final weak lensing shear maps
we thus apply the resolution correction to the ellipticities
and transform them from equatorial to Galactic coordi-
nates.

Appendix D: Transformation of weak lensing shear
under rotation

We rotate the weak lensing galaxy shears from equato-
rial to Galactic coordinates following the implementation
in HEALPix. The method is briefly summarised below.

The rotation angle of the shears under a coordinate
rotation as described by the rotation matrix R is equal
to twice the rotation angle ψ of the coordinate axes with
respect to which they are defined. In HEALPix the x-axis
is in the direction of eφ and the y-axis in the direction of
eθ.

In order to derive ψ we define the following quantities:
The position before rotation is denoted as r =

(
x y z

)
and the position after rotation is r′ =

(
x′ y′ z′

)
. We

further define the vector towards the north pole in the
unrotated coordinate system, which is given by p =(
x0 y0 z0

)
=
(
0 0 1

)
. Under the inverse rotation R−1

the north polar vector is mapped to p′′ =
(
x′′0 y′′0 z′′0

)
.

At the position r the unit vectors in θ- and φ-direction
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are given by

eφ =
p× r

|p× r| ,

eθ =
(p× r)× r

|(p× r)× r| .
(D1)

We have the following identities

R eφ\θ · p = eφ\θ ·R−1p,

R−1p · r = p ·R r.
(D2)

Taking into account the left-handedness of the HEALPix
coordinate system and inserting the explicit expressions,
it follows that

cosψ =
c√

1− z2
(zz′ − z′′0 ),

sinψ =
c√

1− z2
(xy′′0 − yx′′0),

(D3)

where c is a constant, which we can remove by ensuring
that sin2 ψ + cos2 ψ = 1. Under this rotation the weak
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lensing shear transforms as

γ′1 = cos 2ψ γ1 + sin 2ψ γ2,

γ′2 = − sin 2ψ γ1 + cos 2ψ γ2.
(D4)

Appendix E: Choice of PolSpice parameter settings

In this section we illustrate the determination of the
maximal angular scale θmax used to compute spherical
harmonic power spectra on the example of the SDSS
Stripe 82 mask. Fig. 11 shows the real space correlation
function of this mask. It is non-zero for small angular
scales, then starts to fall-off and approximately vanishes
for large angular separations. From this figure we see
that θmax is not a well-defined quantity. Our approach is
thus to choose a maximal angular scale by eye and vali-
date it on the Gaussian simulations. For the SDSS Stripe
82 mask, we choose θmax = 10 degrees and θFWHM = 5
degrees. When testing these PolSpice settings on the
simulations, we find a reasonable agreement between in-

put and recovered power spectra.

Appendix F: Correlated maps of spin-0 and spin-2
fields

Our analysis relies on Gaussian simulations both for
validation of the data analysis pipeline and covariance
matrix estimation. We thus need to generate correlated
HEALPix maps of both spin-0 and spin-2 fields from in-
put auto- and cross-power spectra. Cabré et al. [59] and
Giannantonio et al. [61] describe an algorithm for gener-
ating correlated HEALPix maps of spin-0 fields. In order
to consistently simulate the weak lensing shear field, we
extend this algorithm to also include correlations between
spin-0 and spin-2 fields.

These algorithms are all based on the HEALPix rou-
tine synfast, which generates HEALPix maps of reali-
sations of input spherical harmonic power spectra Cii` . If
the fields are additionally mean-subtracted, this is equiv-
alent to requiring that the spherical harmonic coefficients



22

0 2 4 6 8 10 12 14
θ [deg]

−0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
C

(θ
)

FIG. 11. Real space correlation function of the SDSS Stripe
82 mask. The dashed line denotes the value chosen for θmax.

a`m of the maps satisfy〈
ai`m

〉
= 0,〈

ai`ma
i∗
`′m′

〉
= Cii` δ``′ δmm′ .

(F1)

In synfast these conditions are imposed by assigning a
random phase ξ with mean 0, 〈ξ〉 = 0, and unit variance,
〈ξξ∗〉 = 1, to each spherical harmonic mode ` and setting

ai`m =
√
Cii` ξ. (F2)

As derived in Giannantonio et al. [61], this method can be
extended to correlated maps using more random phases.
The simplest case is to create two correlated spin-0 zero
maps with power spectra Cii` , Cjj` and cross-power spec-

trum Cij` . This is the only case relevant for our work and
it is achieved by choosing the amplitudes of the maps of
the two probes i, j as [61]

ai`m =
√
Cii` ξ1,

aj`m =
Cij`√
Cii`

ξ1 +

√
Cjj` −

(Cij` )2

Cii`
ξ2.

(F3)

As described in [61] this algorithm can be implemented
using synfast by first creating a map with power spec-
trum Cii` and a second map using the same seed with
power spectrum (Cij` )2/Cii` . Finally the second map needs
to be added to a third map, generated with a different
random seed and with power spectrum Cjj` − (Cij` )2/Cii` .
This ensures the desired auto- and cross-correlations.

To extend this algorithm to spin-2 fields, we make use
of the polarisation version of synfast, which allows us
to generate correlated spin-0 and spin-2 maps consistent
with input auto- and cross-power spectra. Let 0 denote
the spin-0 field. Then C00

` denotes the auto-power spec-
trum of the spin-0 field, CEE

` , CBB
` are the E- and B-mode

power spectra of the spin-2 field and C0E
` is the cross-

power spectrum between the spin-0 field and the spin-2

E mode. Given these input power spectra, the polarisa-
tion mode of synfast generates a map of the spin-0 field
and two maps of the spin-2 field with the desired auto-
and cross-power spectra.

In order to obtain correlated maps mT,mδg ,mγ1 ,mγ2

of CMB temperature anisotropies, galaxy overdensity
and galaxy weak lensing shear with auto- and cross-power

spectra CTT
` , C

δgT
` , C

δgδg
` , CγT

` , C
γδg
` , Cγγ` we therefore

proceed as follows:

(i) We first create three correlated HEALPix maps us-
ing synfast in polarisation mode with the power
spectra

C00
` = CTT

` ,

CEE
` = C

γγ
` /2,

CBB
` = 0,

C0E
` = CγT

` .

These maps are denoted m1
i , where i ∈ {T, γ1, γ2}.

(ii) Following Eq. F3, we then create three maps with
a new random seed and the power spectra

C00
` = C

δgδg
` − (C

δgT

` )
2/CTT

` ,

CEE
` = C

γγ
` /2,

CBB
` = 0,

C0E
` = C

γδg
` .

These maps are denoted m2
i , where i ∈ {δg, γ1, γ2}.

(iii) We create a spin-0 map generated with the same
seed as used for m1 with the power spectrum

C00
` = (C

δgT

` )
2/CTT

` ,

which is called m3.

(iv) Finally we combine the maps i.e.

mT = m1
T,

mδg = m2
δg +m3,

mγ1 = m1
γ1 +m2

γ1 ,

mγ2 = m1
γ2 +m2

γ2 .

This procedure yields four correlated
maps with auto- and cross-power spectra

CTT
` , C

δgT
` , C

δgδg
` , CγT

` , C
γδg
` , Cγγ` . The algorithm

described above introduces an unwanted, additional
correlation between mδg and mγ1 ,mγ2 . It can in
principle be corrected for by adding counter-terms to
the respective maps. Since the additional correlation
is subdominant in the present case, we neglect these
counter-terms.
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In order to obtain realistic maps we need to account for
the effects of HEALPix pixel and beam window function.
The signal measured in each HEALPix pixel is a convolu-
tion of the underlying signal with the HEALPix window
function. If further experimental beams are present, the
signal is additionally convolved with the beam window
function. Since a convolution in real space is equivalent
to a multiplication in Fourier space, we account for these
effects by multiplying the input power spectra by the
power spectra of the respective window functions prior
to generating the HEALPix maps.

To compute the covariance matrix as well as to vali-
date the analysis pipeline we need to add realistic noise
to the correlated Gaussian simulations. We choose to
add the noise on the map level. For the CMB temper-
ature anisotropies we add the Commander HMHD map
provided by the Planck collaboration to each simulated
temperature map. We do not randomise the noise map
for each new realisation since the HMHD map features
significant correlations which would be lost by randomis-
ing. Since we are adding the same noise map to each
random realisation we expect to slightly underestimate
the noise using our simulations. However, we do not
expect this to have a significant effect on our results,
since the noise in the CMB temperature power spectrum
is dominated by cosmic variance at the scales consid-
ered. For the galaxy overdensity field we create noise
maps by randomising the positions of the galaxies in our
data inside the survey mask. We then pixelise those on a
HEALPix map and add the noise map to the simulated
map. The galaxy shear noise maps are created by rotat-
ing each galaxy shear by a random angle and repixelising
the rotated shears onto HEALPix maps. As before these
noise maps are added to the signal maps to produce the
Gaussian simulations including both signal and noise.

Appendix G: Validation of spherical harmonic power
spectrum measurements

We validate the spherical harmonic power spec-
trum measurement outlined in Section V using the
correlated Gaussian simulations described in Ap-
pendix F. We compute theoretical predictions for the
six spherical harmonic power spectra considered in

this work, i.e. CTT
` , C

δgT
` , C

δgδg
` , CγT

` , C
γδg
` , Cγγ`

for a ΛCDM cosmological model with param-
eters {h, Ωm, Ωb, ΩΛ, ns, σ8, τreion, TCMB} =
{0.7, 0.3, 0.049, 1.0, 0.88, 0.078, 2.275 K}. We fur-
ther set the linear, redshift-independent galaxy bias
parameter to b = 2.

Using the algorithm described above, we generate
Nsim = 1000 Gaussian realisations of these power spec-
tra and add the noise maps determined from the data.
We then apply angular masks equivalent to those in the
data and compute the spherical harmonic power spectra
from the masked maps using the exact same methodology
and PolSpice settings as applied on the data. To esti-

mate the noise bias we follow the same randomisation
approaches as outlined in Section V.

Figures 12 and 13 show a comparison between the in-
put power spectra for all the six probes and the means of
the recovered realisations. The uncertainties are derived
from the sample covariance of the Gaussian realisations.
We see that the input power spectra are recovered rather
well. Also shown are the χ2 values between the recon-
struction and the theory. These are not rigorous mea-
sures for the goodness of the recovery since they strongly
depend on binning and angular multipole range chosen.

Appendix H: Spherical harmonic power spectrum
robustness tests

This section summarises the robustness tests per-
formed for the spherical harmonic power spectra.

1. Comparison between spherical harmonic power
spectra in equatorial and Galactic coordinates

We test that the spherical harmonic power spectra in-
volving maps which can be transformed between coordi-
nate systems, i.e. galaxy overdensity and weak lensing
shear maps, are unaffected by the rotation. The com-
parison between spherical harmonic power spectra com-
puted from maps in Galactic and equatorial coordinates
are shown in Fig. 14. We find good agreement between

the two power spectra for both C
δgδg
` and C

γδg
` , while

we find discrepancies for Cγγ` . We attribute this to the
additive bias correction applied to the galaxy shears as
outlined in Section V C. The additive bias correction de-
scribed in Appendix C, causes an asymmetry between
the galaxy shears in different coordinate systems, which
is the cause for the large discrepancies detected. This can
be seen from Fig. 15, which shows a comparison between
the cosmic shear power spectra prior to noise removal
as estimated from maps in Galactic and equatorial coor-
dinates. The left panel shows the comparison when the
additive bias correction is applied while in the right panel
we do not apply any correction. As can be seen, we find
discrepancies when we apply the additive bias correction
in equatorial coordinates and then rotate the corrected
shears to Galactic coordinates. Not applying any addi-
tive bias correction on the other hand, removes most of
these effects.

2. Comparison between spherical harmonic power
spectra derived from different foreground-reduced

CMB maps

We test that the spherical harmonic power spectra
involving CMB data are unaffected by our choice of
foreground-reduced map. The power spectra involving
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FIG. 12. Comparison between input power spectra and mean recovered power spectra as estimated from Nsim = 1000 Gaussian
realisations generated using the algorithm outlined in Appendix F. The noise level of the Gaussian realisations is tuned to
the data and the spherical harmonic power spectra have been computed using the same methodology and PolSpice settings
as applied on the data. The angular multipole ranges and binning schemes for all power spectra are summarised in Table II.
Dashed lines denote negative spherical harmonic power spectrum values.

CMB data are shown in Fig. 16 for the foreground-
reduced CMB maps derived using the component sep-
aration methods Commander, NILC, SEVEM and SMICA. As
can be seen, the power spectra are virtually the same.

3. Impact of systematics correction on galaxy
clustering power spectrum

We further investigate the effect of systematics cor-
rection on the galaxy clustering power spectrum. The
galaxy clustering spherical harmonic power spectra be-
fore and after correcting for systematic uncertainties are
shown in Fig. 17. Our systematics removal method
slightly reduces the clustering amplitude at large angu-
lar scales, while leaving small angular scales almost unaf-
fected. This is to be expected since Galactic foregrounds
typically exhibit significant large scale clustering.
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A. Connolly, I. Csabai, R. Scranton, and A. S. Szalay,
MNRAS 353, 529 (2004), astro-ph/0403255.

[83] M. Bartelmann, Classical and Quantum Gravity 27,
233001 (2010), arXiv:1010.3829.

http://dx.doi.org/ 10.1093/mnras/stv1154
http://arxiv.org/abs/1408.4742
http://dx.doi.org/10.1088/1475-7516/2016/05/034
http://arxiv.org/abs/1510.06422
http://dx.doi.org/ 10.1111/j.1365-2966.2004.08090.x
http://arxiv.org/abs/astro-ph/0403255
http://dx.doi.org/10.1088/0264-9381/27/23/233001
http://dx.doi.org/10.1088/0264-9381/27/23/233001
http://arxiv.org/abs/1010.3829

	Integrated approach to cosmology:  Combining CMB, large-scale structure and weak lensing
	Abstract
	 Introduction
	 Framework
	 Theoretical predictions
	 Maps
	Cosmic Microwave Background
	Galaxy overdensity
	Weak lensing

	 Spherical harmonic power spectra
	 CMB
	 Galaxy clustering
	 Cosmic shear
	 CMB and galaxy overdensity cross-correlation
	 CMB and weak lensing shear cross-correlation
	 Galaxy overdensity and weak lensing shear cross-correlation

	 Covariance matrix
	Theoretical covariance estimate
	 Covariance estimate from Gaussian simulations

	 Cosmological constraints
	 Conclusions
	Acknowledgments
	Theoretical prediction for CMB and weak lensing shear cross-correlation
	 Treatment of systematic uncertainties in galaxy clustering data
	PSF correction and construction of weak lensing shear maps
	 Transformation of weak lensing shear under rotation
	 Choice of PolSpice parameter settings
	Correlated maps of spin-0 and spin-2 fields
	Validation of spherical harmonic power spectrum measurements
	Spherical harmonic power spectrum robustness tests
	 Comparison between spherical harmonic power spectra in equatorial and Galactic coordinates
	 Comparison between spherical harmonic power spectra derived from different foreground-reduced CMB maps
	 Impact of systematics correction on galaxy clustering power spectrum

	References


