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We investigate neutrino flavor transformation in the early universe in the presence of a lepton
asymmetry, focusing on a two-flavor system with 1− 3 mixing parameters. We identify five distinct
regimes that emerge in an approximate treatment neglecting collisions as the initial lepton asym-
metry at high temperature is varied from values comparable to current constraints on the lepton
number down to values at which the neutrino–neutrino forward-scattering potential is negligible.
The characteristic phenomena occurring in these regimes are (1) large synchronized oscillations, (2)
minimal flavor transformation, (3) asymmetric (ν- or ν̄-only) MSW, (4) partial MSW, and (5) sym-
metric MSW. We examine our numerical results in the framework of adiabaticity, and we illustrate
how they are modified by collisional damping. Finally, we point out the existence of matter–neutrino
resonances in the early universe and show that they suffer from non-adiabaticity.

PACS numbers: 14.60.Pq, 26.35.+c

I. INTRODUCTION

In this paper we examine how cosmological lepton
asymmetries spawned at high temperature affect the en-
suing evolution of neutrino flavor. Despite the particle’s
humble stature, the consequences of neutrino physics for
the early universe are profound. As the universe cools to
a temperature of a few MeV, the weak-interaction rates
that have safeguarded thermal equilibrium in the neu-
trino sector begin to falter in their competition with Hub-
ble expansion. At roughly the same time, electrons and
positrons are annihilating and dumping entropy into the
plasma. Some neutrinos share in this heating, but not
all — leaving their once-equilibrium spectra deformed
and cool compared to those of photons, which remain in
equilibrium by dint of their swift electromagnetic interac-
tions. (See, for example, Ref. [1] for a recent discussion of
the Boltzmann transport of neutrino energy and entropy
through weak decoupling and Big Bang nucleosynthesis
(BBN).)

During this period neutrinos are all the while undergo-
ing capture on free nucleons and contributing to blocking
factors in electron/positron capture and neutron decay.
Through their role in these processes, neutrinos shape the
neutron-to-proton (n/p) ratio that will be available when
the nucleus-building begins in full force at T ∼ 70 keV.
The primordial by-products of BBN — most promis-
ingly, from an observational perspective, the elements D
and 4He — depend on the n/p ratio, and the protracted
freeze-out of weak interactions means that there is ample
time for the evolving, non-equilibrium neutrino spectra
to leave their mark on the nuclide abundances [2].

Even after neutrinos have decoupled from the plasma,
they are no mere spectators, as their energy density helps
to set the expansion rate of the universe. In the era
following e± annihilation, neutrinos are relativistic and
therefore contribute, along with photons (and possibly
other particles beyond the Standard Model), to the ra-

diation energy density ρrad. The energy density of these
species is commonly parameterized in terms of the quan-
tity Neff, defined by the relation

ρrad = 2
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This parameter is sensitive not just to the number of
flavors of neutrinos but also to their post-decoupling
spectra, which, as noted above, inevitably sustain non-
thermal distortions. Determining the precise form of
these distortions and their impact on BBN and Neff is
a rich and persistent problem in cosmology [1–10].

Of particular importance in this regard is the lepton
number

Lν =
nν − nν̄
nγ

, (2)

defined in terms of the number densities of neutrinos
(nν), antineutrinos (nν̄), and photons (nγ). In thermal
equilibrium a finite lepton number is tantamount to one
or more nonzero chemical potentials in the neutrino sec-
tor, with clear ramifications for Neff. Away from equilib-
rium the chemical potentials are no longer well-defined,
but the implications of nonzero Lν for the radiation en-
ergy density still stand. A cosmological lepton number
also exerts an influence through the special role, indi-
cated previously, that the electron flavor plays in medi-
ating the reactions

νe + n
 p+ e−

ν̄e + p
 n+ e+. (3)

The unique leverage on the primordial 4He abundance
that νe and ν̄e are afforded by virtue of these reactions
[11] has driven interest in the possibility that Lν is not
only nonzero but is (or once was) distributed unevenly
across the individual flavors. The evolution of an initial
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lepton asymmetry — a difference between Lνe and Lνx
in the effective two-flavor scenario that we will investi-
gate — depends on the interplay between collisions and
medium-enhanced oscillations, both of which are capable
of shuttling lepton number between flavors. In a lepton-
asymmetric universe especially, precise predictions ofNeff

and YP (the mass fraction of 4He) therefore demand a
careful treatment of neutrino flavor transformation.

Due to the influence of sphalerons, the lepton number
is expected in many baryogenesis models to be compara-
ble to the baryon asymmetry (or baryon-to-photon ratio)
η = nB/nγ ≈ 6 × 10−10 [12–14]. But the fact remains
that the lepton number is only modestly constrained by
measurements: Even the most stringent bounds currently
permit asymmetries of ∼ 5×10−2 [15–20], a full eight or-
ders of magnitude above η. Moreover, the past several
decades have brought forth a number of models [21–31]
that can generate a large lepton number without con-
travening the impressive agreement on η between cosmic
microwave background (CMB) and BBN data. A mea-
surement of the lepton number of the universe, whatever
its value turns out to be, will serve as a probe of physics
at and above the scale of electroweak symmetry breaking
and will put to the test theories of baryogenesis.

As of recently, a careful treatment is now motivated
from yet another direction. The detections [32, 33] of a
mysterious X-ray line in a number of galaxies and galaxy
clusters at ∼ 3.55 keV have ignited speculation that the
line may be attributable to dark matter decay. One sce-
nario consistent with this interpretation — indeed, a sce-
nario that may be said to have predicted the appearance
of a keV decay line [34] — is the resonant production of
sterile neutrino dark matter in the presence of a nonzero
lepton number [35–37]. (For reviews of the dark-matter
candidacy of sterile neutrinos, see Refs. [38, 39].) Given
the energy and flux of the alleged decay line, resonant
production singles out a range of pre-resonance lepton
numbers on the order of Lν ∼ 5× 10−4 as being in best
agreement with the X-ray observations [40]. Since the
production mechanism is agnostic to the details of how
Lν is distributed, it leaves the door open to lepton asym-
metries and any signatures that they may have left be-
hind.

Investigation into the evolution of the individual lep-
ton numbers dates back at least to the work of Savage,
Malaney, and Fuller [41], who considered the role of reso-
nant neutrino oscillations — a topic that will be a major
theme of the present work. But the current orthodoxy on
the subject originated a decade later with the watershed
numerical study by Dolgov et al. [15] and the papers by
Abazajian et al. [42] and Wong [43] that followed shortly
thereafter. (See also Ref. [44].) The authors of Ref. [15]
concluded that equilibration of the lepton number across
the flavors — the shorthand for which is simply flavor
equilibration — is achieved prior to the onset of BBN for
a lepton asymmetry on the order of the Lν constraint.
Subsequent papers on the topic [18, 19, 42, 43, 45–47]
have refined this original treatment of the problem, ex-

FIG. 1. (Color online) Schematic illustration of the landscape
of coherent flavor evolution in the inverted hierarchy as a func-
tion of lepton asymmetry L = Lνe −Lνx . The black swath at
the top of the figure indicates the realm of lepton asymme-
tries that are currently excluded by 4He measurements. The
five regimes at sub-constraint values of L are labelled by their
most prominent characteristics.

amining the connections to Neff, YP , and the D abun-
dance [D/H].

The literature in this area has largely been inspired by
the quest to establish rigorous limits on the neutrino de-
generacy parameters ηνα = µα/T , where µα is the chem-
ical potential of neutrino flavor α. In the event that a
lepton number completely equilibrates, the BBN-derived
limits that constrain ηνe likewise apply to the other fla-
vors. Conversely, if no equilibration occurs, then the
constraints on ηνµ and ηντ are considerably weaker than
those on ηνe , as they are bounded solely by their contri-
bution to the radiation energy density. The objective of
this paper is not to revisit the question of constraints on
neutrino degeneracy, but rather to explore more fully the
panoply of flavor evolution that may have occurred in the
early universe. While smaller values of Lν push into the
realm of effects that are thought to be currently unde-
tectable, we demonstrate — with an eye to forthcoming
observational improvements — that varying the initial
lepton number leads to dramatically different behaviors.

To this end we identify five regimes of coherent flavor
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evolution that may be found for lepton numbers at or
below observational constraints (Fig. 1). We label these
regimes by their principal characteristics, which are, in
order of decreasing lepton asymmetry,

I. large synchronized oscillations,

II. minimal flavor transformation,

III. asymmetric (ν- or ν̄-only) MSW conversion,

IV. partial MSW conversion, and

V. symmetric MSW conversion.

We elucidate the physics behind these behaviors with fre-
quent recourse to the framework of (non-)adiabatic level-
crossings. We also discuss how the inclusion of collisions,
in the approximate form of scattering-induced quantum
damping, differently affects these regimes. Coarse fea-
tures of the coherent oscillation physics are found to
persist in the presence of damping. We argue that
this finding motivates further exploration of the lepton-
asymmetric terrain with a treatment that goes beyond
the approximations of the present study.

The equations of motion relevant to the evolution of
a lepton asymmetry in the early universe are set out in
Sec. II. The regimes of coherent evolution are presented
in Sec. III, followed by discussions of adiabaticity, the
matter–neutrino resonance, and the importance of colli-
sions. A conclusion is given in Sec. IV. Throughout this
paper we use natural units in which c = ~ = kB = 1.

II. NEUTRINO KINETICS IN THE EARLY
UNIVERSE

For reasons made clear below, the active period for
neutrino flavor transformation begins around 10 − 20
MeV and continues down to — or, depending on the
lepton asymmetry, through — the epoch of neutrino de-
coupling at ∼ 1 MeV. Over these temperatures the three
flavors of active neutrinos are immersed in a hot, dense
bath of electrons, positrons, and free nucleons; the µ±

and τ± that abounded at higher temperatures have all
but disappeared, while e± remain relativistic through to
the very bottom of this temperature range. Protons and
neutrons, in contrast, have long since become nonrela-
tivistic, and their densities are minuscule in comparison
on account of the high entropy of the plasma. Within
this medium neutrinos experience oscillations enhanced
by forward (coherent) scattering with matter particles
(e±) and other neutrinos. They also undergo momentum-
changing (incoherent) scattering with both populations.

In Sec. II A we explain how the problem of neutrino fla-
vor evolution under these conditions can be reduced to an
effective two-flavor scenario. We then go on to describe
in Sec. II B the potentials that drive the coherent mix-
ing between the two flavors and the incoherent scattering
that competes against it. We provide in Sec. II C the rel-
evant background on resonant flavor transformation and

collective oscillations. Lastly, in Sec. II D we briefly sum-
marize the numerical approach adopted in this study.

A. Two-flavor system

Under the condition that Lνµ = Lντ , the paucity of
muons and tauons in the plasma — and, correspond-
ingly, of charged-current interactions involving νµ and
ντ— entails that neutrinos are well-modeled by an ef-
fective two-flavor system consisting of νe and νx, where
νx is a superposition of νµ and ντ . We present here a
derivation of the effective mixing parameters relevant to
this two-flavor system. A similar view on the reduction
to two flavors can be found in Ref. [48].

An effective mixing angle θ parameterizes vacuum mix-
ing in the two-flavor system, with the orthogonal trans-
formation between the mass and flavor states given by

νe = ν1 cos θ + ν2 sin θ

νx = −ν1 sin θ + ν2 cos θ, (4)

where ν1,2 are mass eigenstates with masses m1,2.
(Strictly speaking, as Eq. 6 below will make clear, ν1

is only an eigenstate in the limit that two of the three
physical neutrino masses are degenerate. This is exactly
the limit that we will take.) The electron neutrino νe in
the two-flavor system is identical to its three-flavor coun-
terpart ν′e, which after transforming to the appropriate
mass bases yields the constraint

ν1 cos θ + ν2 sin θ = ν′1 cos θ′12 cos θ′13

+ ν′2 sin θ′12 cos θ′13e
−iϕ1

+ ν′3 sin θ′13e
−iδe−iϕ2 , (5)

using primes to denote three-flavor mixing parameters
and δ and ϕi to denote the Dirac and Majorana CP-
violating phases. We identify θ = θ′13, so that the two-
flavor mass eigenstates are related to the three-flavor ones
by the relations

ν1 = ν′1 cos θ′12 + ν′2 sin θ′12e
−iϕ1

ν2 = ν′3e
−iδe−iϕ2 . (6)

The phases δ and ϕ2 amount to an overall rephasing of
ν2 and exert no influence on our calculations; similarly
for the other Majorana phase. We point out that this
conclusion regarding δ is consistent with the study of
CP violation in the neutrino-degenerate early universe in
Ref. [46], which showed that effects of CP violation from
the Dirac phase appear only when Lνµ 6= Lντ .

A third mass eigenstate, orthogonal to ν1 and ν2 and
having mass m3, may also be defined in order to complete
the transformation between the primed and unprimed
bases:

ν3 = −ν′1 sin θ′12 + ν′2 cos θ′12e
−iϕ1 . (7)
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This state decouples from the other two and is identical to
the third flavor eigenstate in the unprimed basis: ν3 = νy.
Written in terms of the physical flavor states,

νe = ν′e

νx = ν′µ sin θ′23e
−iδ + ν′τ cos θ′23e

−iδ

νy = ν′µ cos θ′23 − ν′τ sin θ′23. (8)

From Eqs. (6) and (7) it follows that

m2
1 = m′21 cos2 θ′12 +m′22 sin2 θ′12

m2
2 = m′23

m2
3 = m′21 sin2 θ′12 +m′22 cos2 θ′12, (9)

Since we are concerned primarily with qualitative behav-
ior in this paper, we will be content to take m′21 ≈ m′22 ,
which leads to

δm2 ≡ m2
2 −m2

1 ≈ m2
2 −m2

3 ≈ δm′231. (10)

To this level of approximation the νi (i = 1, 2, 3) states
are genuine mass eigenstates and, moreover, ν3 is de-
generate with ν1 and decouples from the νe − νx mixing
channel. With the proviso that the lepton numbers Lνµ
and Lντ are the same (but not necessarily equal to Lνe),
the flavor transformation that occurs in the temperature
range we investigate here is therefore adequately cap-
tured by νe − νx oscillations with 1 − 3 mixing parame-
ters.

This effective two-flavor system distills many of the
important aspects of the full three-flavor problem, and
the flavor-transformation phenomena we describe below
carry over to mixing in other channels. The locations
and sizes of features shift with changing parameters —
δm2
�, for instance, gives rise to resonance behavior at

lower temperatures than does δm2
atm — but the physics

behind these features is resilient. Nonetheless, it should
be kept in mind that transformation among three flavors
will lead to an even richer landscape of flavor evolution
than in the two-flavor scenario, especially in the event
that Lνe , Lνµ , and Lντ are all unequal.

B. The kinetic equations

Tracking the flavor content of an ensemble of neutri-
nos and antineutrinos is accomplished by following the
evolution of the density matrices ρ and ρ̄, which for each
comoving energy ε = E/T ≈ p/T have the 2 × 2 struc-
tures

ρ (ε, t) =

(
ρee ρex
ρ∗ex ρxx

)
, ρ̄ (ε, t) =

(
ρ̄ee ρ̄ex
ρ̄∗ex ρ̄xx

)
, (11)

where the individual matrix elements tacitly depend on ε
and t. (Throughout this paper we denote the analogous
objects for antineutrinos using the prescription να → ν̄α.
The antineutrino analogues will always be denoted with
an overbar.)

We choose a normalization such that at high temper-
ature ρ assumes the form

ρ (ε) ∼=
(
f (ε, ηνe) 0

0 f (ε, ηνx)

)
, (12)

where the diagonal entries are Fermi–Dirac equilibrium
distribution functions

f (ε, ηνα) =
1

eε−ηνα + 1
. (13)

In general, whether at high temperature or not, the diag-
onal entries of ρ encode the number densities of νe and νx
and the off-diagonal entries measure quantum coherence
between the two flavors.

The initial conditions given in Eq. (12) are justified by
the quasi-equilibrium that obtains at the starting tem-
peratures used for our calculations. At these temper-
atures the neutrinos exchange energy with the plasma
on timescales short compared to the Hubble time, ensur-
ing that the neutrino spectra retain their thermal Fermi–
Dirac shape on the latter timescale, even while the chem-
ical potentials are evolving. (To be precise, it is the num-
ber densities in energy eigenstates that are proportional
to Fermi–Dirac functions; the validity of using them in
the flavor -basis density matrix lies in the fact that at high
T the flavor and energy bases are nearly coincident.) As
the temperature drops, oscillations grow in importance
relative to incoherent scattering, and the ability of scat-
tering to preserve equilibrium spectra diminishes. But
in the scattering-dominated limit, in which our initial
temperatures safely fall, neutrinos have distribution func-
tions as in Eq. (12), and coherence between the flavors is
efficiently stamped out by the high scattering rate.

For each mode ε the neutrino and antineutrino density
matrices obey the equations of motion

i (∂t −Hp∂p) ρ (ε, t) = [H (ε, t) , ρ (ε, t)] + C
i (∂t −Hp∂p) ρ̄ (ε, t) =

[
H̄ (ε, t) , ρ̄ (ε, t)

]
+ C̄, (14)

where H is the Hubble parameter, H is the Hamiltonian,
and C is the collision term encapsulating incoherent scat-
tering [49]. The collision term depends on the neutrino
density matrices and the background-particle distribu-
tion functions across all energies.

The Hamiltonian consists of three ingredients: a vac-
uum potential Hvac, which is driven by the mass-squared
splitting δm2 and the vacuum mixing angle θ; a thermal
potential He, which is due to forward scattering of neu-
trinos with the e± jostling about in the plasma; and a
self-coupling potential Hν , which arises from neutrino–
neutrino scattering. Written out,

H = Hvac +He +Hν

=
δm2

2E
B− 8

√
2GFE%e±

3m2
W

L

+

√
2GF
2π2

∫
dE′E′2 [ρ (E′)− ρ̄∗ (E′)] , (15)
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where in the flavor basis B = U (diag [−1/2, 1/2]) U† with
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix U,
L = diag [1, 0], %e± denotes the energy density of e±, GF
is the Fermi constant, and mW is the W boson mass.
The time-dependence of E, %e± , ρ, and ρ̄ is implicit.
Antineutrinos, meanwhile, evolve under the Hamiltonian
H̄ = Hvac +He −H∗ν .

Strictly speaking, the Hamiltonian relevant to neu-
trino propagation in a medium contains more terms
than those shown in Eq. (15) [50]. In addition to the
finite-temperature charged-lepton potential (∼ %e±) and
the finite-density neutrino potential (∼ (nνe − nνx) for
the diagonal portion), neutrinos also experience a finite-
temperature neutrino potential (∼ (%νe − %νx), again for
the diagonal portion) and a finite-density charged-lepton
potential (∼ (ne− − ne+)). By the charge neutrality of
the universe, however, the e± asymmetry must balance
the baryon asymmetry, making this contribution to the
potential very small. The thermal neutrino potential,
meanwhile, is O(G2

F ) and is further suppressed by a fac-
tor comparable to the lepton asymmetry. Lastly, we leave
out the µ± contribution to He, as in the scenarios we are
concerned with, their population has dwindled close to
zero by the time flavor transformation begins.

The collision term C in Eq. (14) represents inelastic
scattering of neutrinos and is proportional to G2

F . A
fully realistic treatment would involve computing quan-
tum Boltzmann collision integrals [51, 52], a task that
has only recently been accomplished for the first time
[53]. Whereas in Ref. [53] de Salas and Pastor executed
a high-precision calculation of Neff in the standard (i.e.,
lepton-symmetric) scenario, our aim here is to point out
that an initial lepton asymmetry at high temperature
shapes the subsequent neutrino flavor evolution in diverse
and complicated ways. For this study we instead set C
to be a quantum damping term that is proportional to ρ
but has vanishing diagonal entries [54–59]. Using such a
term for C amounts to the ansatz that the chief effect of
collisions is to eliminate coherence between the flavors.

The paradigm typically associated with quantum
damping holds that a collision acts as a measurement of
the scattered neutrino, thereby collapsing it into a defi-
nite flavor state. Although this picture is only a heuris-
tic and has its limitations, it correctly suggests that a
system of (anti)neutrinos immersed in a thermal bath
ultimately approaches a mixed state with equal νe (ν̄e)
and νx (ν̄x) probabilities. One of the fundamental issues
at stake with a lepton asymmetry is the timescale over
which this descent to a maximum-entropy state (and the
concomitant flavor equilibration) transpires. Conceptual
aid notwithstanding, damping does not in fact capture
all of the microphysics of scattering, and in Sec. III D
we will address the deficiencies of this approximation at
length.

Rather than solving for the flavor evolution directly as
a function of t, we work in terms of a parameter x = Ma,
where M is an arbitrary energy scale and a is the scale
factor; doing so transfigures the equations of motion into

ordinary differential equations. Furthermore, for a two-
flavor system the density matrix ρ can be projected onto
the Pauli matrices according to

ρ =
1

2

(
P0 + ~P · ~σ

)
. (16)

Given that C has vanishing diagonal entries, the trace of
ρ is preserved by the equations of motion and has value

Trρ = P0 = f
(
ηiνe
)

+ f
(
ηiνx
)
, (17)

where f
(
ηiνα
)

is the initial distribution function of να,
prior to any significant flavor transformation. The po-

larization vector ~P , meanwhile, does evolve: If similar
projections are performed for H and C, Eq. (14) can be
recast as

Hx
d~P

dx
= ~H× ~P −D ~PT . (18)

Along the same lines, we will make use of the notation

H =

(
Hz HT
H∗T −Hz

)
, V =

(
Vz VT
V∗T −Vz

)
, (19)

where V = He +Hν denotes the weak-interaction poten-
tial arising from coherent forward scattering and where,
for example, HT = Hx − iHy encodes the component of

the Hamiltonian vector ~H that is transverse to the fla-
vor (z-) axis. The damping parameter D that appears
in Eq. (18) is related to the scattering amplitudes of the
neutrino flavor states. To illustrate: If the medium were
such that the two flavors had equal scattering amplitudes,
interactions would be unable to differentiate between the
two flavors and there would be no damping (D = 0).
At the other extreme, if one of the flavors were non-
interacting (for instance, in active–sterile mixing), then
the damping parameter would be one-half the total in-
teraction rate Γα of the other flavor (D = Γα/2).

In the plasma of the early universe, νe and νx scatter
with different (but nonzero) cross-sections, and a detailed
derivation of D would add up the contributions from all
the individual weak-interaction processes relevant to this
environment. We opt for a coarser treatment here, taking

D ≈ 1

2
(Γe − Γx) ≈ 1

2
dexG

2
F pT

4 (20)

with dex ≈ 0.35 [59]. The approximation in Eq. (20)
is sufficiently accurate for the objectives of this study.
Indeed, for most of the paper we focus on the coherent
regime, in which D = 0; it is only in Sec. III D that we let
D assume the approximate form given above. To be sure,
the flavor evolution we are tracking occurs over a range
of temperatures in which collisions are important. But as
we discuss in detail in Sec. III D, broad characteristics of
the coherent regime survive the inclusion of damping, and
a close analysis of the coherent transformation sheds light
on the physics underlying the behavior in the presence of
both oscillations and collisions.
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Translating the density matrix ρ into the polarization

vector ~P affords a geometric interpretation to the fla-
vor evolution of the system (more detailed expositions of
which may be found in Refs. [55, 60]). At high temper-

atures ~P lies along the z-axis because of the peremptory
destruction of coherence by collisions. As the tempera-

ture (and by extension the scattering rate) drops, ~P is
able to travel away from the z-axis: The path it follows
is determined by a competition between its desire to pre-

cess around the Hamiltonian vector ~H and the constant
push exerted by collisions back toward the flavor axis.

Meanwhile ~H itself migrates in response to the falling
temperature and the movement of the individual polar-

ization vectors. ~P tries to track ~H as the latter drifts,
but its success in doing so is moderated by the constant
buffeting of collisions and the degree of non-adiabaticity.
We address the latter criterion in Sec. III B.

At any time the relative number density of νe and νx of
a given mode ε (taken to have finite width dε) can be read
off by projecting that mode’s polarization vector onto the
flavor axis and providing the appropriate thermodynamic
prefactor:

Pz,ε = ρee,ε − ρxx,ε

=⇒ dnνe,ε − dnνx,ε =
T 3

2π2
dε ε2Pz,ε. (21)

We have written the number density of να in mode ε
as dnνα,ε in preparation for integrating over all modes.
Performing the sum over ε and dividing by T 3 (to get
a redshift-invariant quantity) yields the z-component of
the integrated polarization vector:

Pz,int ≡
1

2π2

∑
ε

dε ε2Pz,ε =
nνe − nνx

T 3
, (22)

where nνe and nνx are the total number densities across
all energies. The quantities P̄z and P̄z,int, appropriate to
antineutrinos, are defined analogously. We will present
many of our numerical results as plots of Pz,int and P̄z,int,
as they convey the “average” flavor evolution of the sys-
tem; where illuminating, we will zoom in on the indi-
vidual modes. Note that with these definitions Pz > 0
(P̄z > 0) reflects a predominance of electron neutrinos
(antineutrinos).

C. Resonant flavor mixing and collective
oscillations

One of the linchpins of neutrino flavor phenomenol-
ogy in the early universe and other astrophysical envi-
ronments is the Mikheyev–Smirnov–Wolfenstein (MSW)
mechanism by which coherent scattering with a matter
background causes neutrinos to acquire effective masses
and mixing angles [61, 62]. Letting ∆ ≡ δm2/2E, the
in-medium mass-squared splitting δm2

M is defined by

∆2
M ≡

(
δm2

M

2E

)2

≡ ∆2 sin2 2θ + (∆ cos 2θ − Vz)2
(23)

and the in-medium mixing angle θM by

sin2 2θM ≡
∆2 sin2 2θ

∆2
M

. (24)

(For the purposes of introducing the traditional MSW
mechanism, we are neglecting neutrino–neutrino scatter-
ing in Eqs. (23) and (24), but we will return to these
definitions later on in order to incorporate self-coupling.)
Resonance occurs when Vz = ∆ cos 2θ: The effective mix-
ing angle is at its maximum (to wit, θM = π/4) and the
effective mass-squared splitting at its minimum. Since
the thermal potential He (Eq. (15)) depends only on the
energy density of e± in the plasma, the matter back-
ground modifies the oscillations of neutrinos and antineu-
trinos in precisely the same way.

Neutrino–neutrino coherent scattering gives rise to
“index-of-refraction” effects in much the same fashion as
a matter background, but with an added layer of com-
plexity. As seen in Eq. (15), the evolution of ρ(ε) for a
particular mode ε depends, through the self-coupling po-
tential Hν , on the density matrices for all other modes ε′,
meaning that the problem of flavor evolution in a dense
neutrino system is a nonlinear one. A fascinating range
of collective behaviors has been shown to result. (See
Ref. [63] for a review, or Refs. [64–69] for a selection
of recent work in this active area.) The role of nonlin-
ear coupling in the early universe is perhaps best epit-
omized by the phenomenon of synchronized oscillations
that emerges when the self-coupling is strong enough to
“glue” all of the individual modes together and prevent
them from kinematically decohering [70–73].

Synchronized oscillations are seen in our results to be
one of the hallmarks of coherent flavor evolution in a uni-
verse with a lepton asymmetry within a couple orders of
magnitude of the current constraint on Lν . At the other
end of the spectrum, with a lepton asymmetry on the
order of the baryon asymmetry η, self-coupling is unim-
portant and the MSW mechanism reigns supreme. In the
following section we discuss these two regimes and several
others that emerge at intermediate lepton asymmetries.

The type of behavior exhibited depends fundamentally
on the relative sizes of the individual contributions to the
Hamiltonian. We depict in Fig. 2 the magnitudes of the
diagonal potentials as functions of temperature, with four
different curves for Hν,z corresponding to different initial
lepton asymmetries. As we describe below, one of the ba-
sic determinants of the flavor evolution is the magnitude
of Hν,z where the vacuum- and thermal-potential curves
intersect, which is to say at MSW resonance. We will also
see the limitations of this picture, which fails to account
for the off-diagonal components of the Hamiltonian.

D. Numerical details

We have employed two independent programs for solv-
ing the equations of motion (Eq. (18)), one based on a
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FIG. 2. (Color online) Magnitudes of the individual diag-
onal potentials for ε = 3: |Hvac, z| (red, upper solid curve
at T = 1 MeV), |He,z| (blue, other solid curve), and |Hν,z|
(black, dashed). The last of these was computed assuming
no flavor transformation. From top to bottom the dashed
curves correspond to degeneracy parameters ηνe = 5× 10−3,
5×10−5, 2×10−6, 1.5×10−7, and 5×10−8 (Eq. (25)); chemical
potentials in νµ were taken to be zero.

fourth-order explicit Runge–Kutta solver and the other
on a Magnus-method solver. The Magnus method, which
is tailor-made for tracking unitary evolution, has been
used previously in work on neutrino flavor transformation
in supernovae; for a thorough description, see Ref. [74].
We have achieved consistent results with the two codes,
and we have confirmed that in the coherent limit each
one individually conserves |~P | and Trρ = P0 to high pre-
cision.

As shown below, certain flavor-evolution regimes host
rapid, highly aperiodic oscillations, and in such regimes
the behavior of individual modes depends sensitively on
the physical and computational parameters of the calcu-
lation. The very fine features displayed in these scenarios
are without (and may simply defy) a detailed physical ex-
planation and, moreover, are beyond the level of precision
aimed at in this study. Rather, our focus is on the major
qualitative features, which we have found to be robust.

III. RESULTS AND DISCUSSION

In this section we present our results through the exam-
ple of five different initial lepton asymmetries that typify
the major regimes of coherent flavor evolution in the in-
verted hierarchy (IH). We then apply the concept of adi-
abaticity to gain insight into the behaviors manifested in
these prototypical cases. Following a discussion of the
coherent regimes, we introduce collisions in the form of
quantum damping. As a rule of thumb, the impact of
damping is (in a non-quantitative sense) proportional to
the amount of flavor transformation that would occur in
the absence of damping: That is to say, for damping to

gain leverage on the evolution of ~P , a significant ~PT must
develop, and for this to be the case there must be sub-

stantial transformation of ~P away from the initial flavor

eigenstate. To understand the results with damping, it
is therefore necessary to understand the results without.

In what follows we focus most of our attention on the
IH because it, unlike the normal hierarchy (NH), plays
host to an MSW resonance and, by implication, to gen-
erally more substantial flavor transformation. We will
briefly discuss the NH when we turn to damping.

A. Regimes of coherent evolution

Before any flavor transformation has occurred neutri-
nos of flavor α are described by a Fermi–Dirac equilib-
rium spectrum with neutrino degeneracy parameter ηνα
(Eq. (13)). For the purposes of this study we assume that
at high temperatures the lepton number is positive and
entirely contained in νe, so that ηνx = 0 and ηνe can be
deduced from the lepton number via

Lν ≈
1

12ζ (3)

(
π2ηνe + η3

νe

)
≈ 0.68ηνe , (25)

where the second approximation applies for the small de-
generacy parameters we are considering. We would find
similar results, but with the roles of neutrinos and an-
tineutrinos swapped, if instead we were to take a nega-
tive ηνe or were to put the lepton number entirely in νx.
Furthermore, the choice of setting ηνx = 0 at high tem-
perature is inessential for our results, as it is the lepton
asymmetry which dictates the role of the self-coupling
potential.

Note that we take no stance on what mechanism ac-
tually produces the initial lepton numbers. The question
of how to generate an asymmetry that survives washout
from scattering processes is an important one and has
been examined in Ref. [75]. This question is, however,
outside the purview of the present study.

The five regimes of coherent flavor evolution that we
have identified in our numerical results are depicted
schematically in Fig. 1. In our sweep of the lepton-
number terrain, the values of ηνe that we have found
best embody the features associated with these regimes
are as follows: 5× 10−8, 1.5× 10−7, 2× 10−6, 5× 10−5,
and 5× 10−3.

1. ηνe = 5× 10−8: Symmetric MSW

Generally speaking, the dominant feature in the flavor-
transformation landscape is the equality of |Hvac,z| and
|He,z|, which for 1 − 3 mixing occurs in the region of
T ∼ 5 MeV. For ηνe . 5 × 10−8 this is the only feature
(Fig. 3), as the self-coupling is so weak as to leave trans-
formation through the resonance essentially untouched.
At these small lepton numbers — as would be expected
if neutrino–neutrino scattering were simply omitted —
neutrinos and antineutrinos of all modes undergo com-
plete MSW conversion. We emphasize that, unlike in a
supernova environment, both neutrinos and antineutrinos
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FIG. 3. (Color online) Symmetric MSW: Pz,int (blue, upper
curve at T = 20 MeV) and P̄z,int (red) in the IH with initial
degeneracy parameters ηνe = 5× 10−8, ηνx = 0.
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FIG. 4. (Color online) Partial MSW: Pz,int (blue, upper curve
at T = 20 MeV) and P̄z,int (red) in the IH with initial degen-
eracy parameters ηνe = 1.5× 10−7, ηνx = 0.

resonantly transform due to He being CP-symmetric: At
high temperatures νe and ν̄e are at energies lower than νx
and ν̄x, respectively, thanks to the thermal potential, but
at low temperatures (in vacuum) are at higher energies,
thanks to the IH.

Evidently, if the neutrino chemical potential is entirely
in νe and if it is of the same order as the baryon asym-
metry η, then neutrino–neutrino scattering has an ig-
norable impact on flavor evolution. This conclusion is
unsurprising given Fig. 2, which shows that |Hν,z| for
ηνe = 5× 10−8 is always about an order of magnitude or
more below either |Hvac,z| or |He,z|. It is worth point-
ing out that at such small lepton numbers the e± finite-

density potential H(FD)
e =

√
2GF (ne− − ne+) L should

be included in the equations of motion for consistency,
but this term likewise makes an inconsequential contri-
bution to the total Hamiltonian. The effect of the ther-
mal potential from the neutrino background is yet more
feeble.

20 10 5 2
T (MeV)
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Pz,ϵ / | Pz,ϵ (20 MeV) |

FIG. 5. (Color online) Partial MSW: Pz,ε for ε = 1.15 (blue,
bottommost curve at T = 2 MeV), 2.36 (red, topmost curve
at T = 2 MeV), and 4.78 (purple), with the same parameters
as in Fig. 4. Note that here and in subsequent plots Pz,ε
has been normalized to an initial value of unity for each ε;
this choice puts all modes on equal footing for the purpose of
comparing flavor evolution.

20 10 5 2
T (MeV)

-2

0

2

4

Potential (×10-17 MeV)

FIG. 6. (Color online) Partial MSW:Hz (blue, nearly-vertical
curve) and |HT | (red) as functions of T for the ε = 4.78 mode
shown in Fig. 5.

2. ηνe = 1.5× 10−7: Partial MSW

As ηνe is scaled up, MSW transformation becomes
overall less effective for both neutrinos and antineu-
trinos (Fig. 4). The incompleteness of the conversion
of Pz,int and P̄z,int is attributable to the differing out-
comes of individual modes: The lowest-energy modes
go through MSW unfettered while higher-energy modes
exhibit large, aperiodic oscillations of high frequency
(Fig. 5).

The higher-energy modes transform inefficiently due
to a loss of adiabaticity, as indicated in Fig. 6. Prior
to resonance the off-diagonal potential HT fluctuates
rapidly and achieves (nearly) vanishing magnitude at var-
ious points. Since |HT | mediates the transition proba-
bility between states, this behavior allows neutrinos to
depart from their initial energy-eigenstate track at the
level-crossing. In Sec. III B we introduce the quantita-
tive measure of adiabaticity traditionally used in studies
of resonant neutrino conversion, and we explore further
the role it plays in our results. For now, suffice it to say
that in this regime self-coupling suppresses adiabaticity
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because it is strong enough to influence H but not strong
enough to force the individual modes to pass through
resonance collectively. Such behavior is connected to the
fact that for most modes the three contributions to the
Hamiltonian are of comparable magnitude in the MSW
region.

3. ηνe = 2× 10−6: Asymmetric (ν- or ν̄-only) MSW

Moving to greater values of ηνe , the partial conver-
sion of neutrinos becomes even more stunted while the
conversion of antineutrinos actually grows more effective
(Fig. 7).

The cancellation of Hvac,z and He,z in the MSW re-
gion precipitates some degree of transformation in both
neutrinos and antineutrinos. However, since Hν,z ex-
ceeds the other two by a factor of ∼ 10 in magnitude,
MSW conversion is stillborn (in the case of neutrinos)
or delayed until the vacuum potential overtakes the self-
coupling soon thereafter (in the case of antineutrinos).
Starting at the MSW region and continuing down to
T ∼ 3 MeV, antineutrinos gradually cross over from
predominantly ν̄x to predominantly ν̄e; by the bottom
of this temperature range they have almost completely
transformed.

Neutrinos undergo only marginal conversion because
the large self-coupling potential, which enhances the ef-
fective mass of νe relative to νx, props up νe into the
higher energy eigenstate over most of this temperature
range, thus wiping out what would otherwise be an MSW
resonance. (A level-crossing does occur at higher tem-
perature where the thermal and self-coupling potentials
cancel, but this resonance appears well before the MSW
region and, as we will discuss in Sec. III C, is neutralized
by non-adiabaticity.) Conversely, the initial population
of ν̄x is effectively immersed in a bath of νe, which serves
to elevate the energy of ν̄x over that of ν̄e until Hvac

becomes dominant. Hence self-coupling does not elimi-
nate the antineutrino level-crossing in the MSW region,
though it does significantly alter evolution through it.

A notable characteristic of this regime is that the loca-
tion of |Hν,z| ∼ |Hvac,z| has been pulled away from that of
|He,z| ∼ |Hvac,z|— compare to the partial MSW regime,
where they coincide — but the regions are still close
enough together that the flavor transformation instigated
by the traditional MSW mechanism can be capitalized on
to enact a flavor swap by the later |Hν,z| ∼ |Hvac,z| can-
cellation. As we observe in the next regime, increasing
further the separation between the two locations leads to
MSW manqué — but here the separation actually sal-
vages efficient conversion of antineutrinos.

4. ηνe = 5× 10−5: Minimal transformation

With ηνe = 5× 10−5 the locations of |Hν,z| ∼ |Hvac,z|
and |He,z| ∼ |Hvac,z| are well-removed from one another.
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-7 )

FIG. 7. (Color online) Asymmetric MSW: Pz,int (blue, upper
curve at T = 20 MeV) and P̄z,int (red) in the IH with initial
degeneracy parameters ηνe = 2× 10−6, ηνx = 0.
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FIG. 8. (Color online) Minimal transformation: Pz,int (blue,
upper curve at T = 10 MeV) and P̄z,int (red) in the IH with
initial degeneracy parameters ηνe = 5× 10−5, ηνx = 0.

As a result the MSW level-crossing is now thwarted
entirely, and virtually no flavor conversion takes place
(Fig. 8). What transformation does occur commences
near T ∼ 5 MeV, as usual, but fails to get very far
due to the strong “inertial” effect exerted by Hν . The
self-coupling keeps νe and ν̄x in the heavier eigenstates
throughout MSW, preventing Hz from ever crossing into
negative territory (or H̄z into positive).

Since coherence between the flavors only marginally
develops at these lepton numbers, there is meager
fuel for decoherence to consume, and the minimal-
transformation regime is consequently the best preserver
of its initial lepton asymmetry when damping is turned
on. It is a tantalizing coincidence that this regime also en-
compasses the range of lepton numbers suggested by res-
onant production of sterile neutrino dark matter, which
favors the neighborhood of Lν ∼ 5× 10−4 [40] when the
∼ 3.55 keV X-ray line of Refs. [32, 33] is attributed to the
decay of sterile neutrinos. These lepton numbers occupy
the top end of the minimal-transformation regime, where
synchronized oscillations are beginning to grow in ampli-
tude but are still unable to realize a large net conversion
of flavor.

A phenomenon notably absent from this regime and
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FIG. 9. (Color online) Large synchronized oscillations: Pz,int
(blue, upper curve at T = 10 MeV) and P̄z,int (red) in the IH
with initial degeneracy parameters ηνe = 5× 10−3, ηνx = 0.

the foregoing ones is the spectral swap, in which nearly
all antineutrinos below a certain energy threshold change
flavor and nearly all antineutrinos above the threshold do
not (or similarly for neutrinos) [76, 77]. For ηνe . 10−7

spectral swaps are ruled out by virtue of the fact that
the self-coupling potential never dominates. But for
ηνe = 5× 10−5, for instance, Hν remains dominant suffi-
ciently far below temperatures at which |Hvac,z| ∼ |He,z|
that the requisite conditions for a spectral swap might be
thought to prevail as Hvac,z finally does overtake Hν,z.
In actuality the spectral swap is preempted by the MSW
region, which in the minimal-transformation regime de-
posits neutrinos and antineutrinos essentially into the
nearest mass eigenstates. With all well-populated modes
already in mass eigenstates before Hvac takes over, no
spectral swap can occur. The synchronized-oscillation
regime proves to be the exception to this trend, as we
discuss below.

5. ηνe = 5× 10−3: Large synchronized oscillations

In this regime the lepton asymmetry is large enough
that neutrino–neutrino scattering shifts towards promot-
ing rather than resisting transformation. Once the ex-
pansion rate and the e± density have dropped suffi-
ciently, large synchronized oscillations ensue, with all of
the modes locked together by self-coupling (Fig. 9).

Although on the face of it this regime hosts perhaps
the most active flavor evolution, in some ways the be-
havior is just that of the minimal-transformation regime
writ large. In both regimes modes undergo synchronized
oscillations after first gesturing towards MSW conver-
sion, and then move into mass eigenstates as Hν be-
comes unimportant. But for larger ηνe the gesture to-
wards MSW is stronger, the synchronized oscillations last
longer and have larger amplitudes, and the movement
into mass eigenstates entails more significant transforma-
tion at late time. The minimal-transformation scenario
of ηνe = 5× 10−5 is an extreme example of the shrinking
of these features, down to a size indiscernible at the scale
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FIG. 10. (Color online) Large synchronized oscillations: P̄z,ε
for ε = 1.15 (upper blue curve at T = 0.2 MeV), 2.36 (upper
red curve at T = 0.2 MeV), 3.57 (purple), 4.78 (lower blue
curve at T = 0.2 MeV), and 5.99 (lower red curve at T = 0.2
MeV), computed with the same parameters as in Fig. 9. A
spectral swap — wherein modes below the threshold εth ≈ 3.5
change flavor and those above do not — is evident.

of Fig. 8.

The qualitatively novel feature that distinguishes
the synchronized-oscillation regime from the minimal-
transformation regime is that (for ηνe > 0) antineutrinos
do not return en masse to the lighter mass eigenstate; in-
stead many modes move to the heavier one, more closely
associated with ν̄e. Conversion of antineutrinos in this
manner is more dramatic for larger initial ηνe , even caus-
ing P̄z,int to change sign for ηνe & 5× 10−3. The upward
drifting of Pz,int at low temperatures reflects the spectral
swap that occurs as Hvac comes to dominate (Fig. 10).
The threshold energy, below which ν̄ swap, moves up to
higher ε as the lepton asymmetry is increased; it is for
this reason that the spectral swap has no discernible im-
pact on the minimal-transformation regime.

Large-amplitude synchronized oscillations are associ-
ated with a solution of the equations of motion in which
the off-diagonal elements of Hν steer the evolution of the
system into self-sustained maximal mixing for both neu-
trinos and antineutrinos [78]. What our results highlight
is the fact that this solution is not easily accessed in the
early universe: As shown in Fig. 9, even an asymmetry
of ∼ 10−3 does not foster maximal mixing, even though
the mixing angle is still significantly enhanced over its
value in vacuum. In the minimal-transformation regime,
where the mixing angle is suppressed, the failure to enter
this off-diagonal-driven mode is at its most spectacular.

In a sense the very largest allowable lepton asymme-
tries — those about an order of magnitude greater even
than the exemplar asymmetry portrayed in Fig. 9 —
actually overshoot this mode of self-sustained maximal
mixing, displaying instead synchronized MSW transfor-
mation at T ∼ 5 MeV followed by synchronized oscil-
lations of non-maximal amplitude (Fig. 11). The phe-
nomenon of synchronized MSW, where all modes undergo
efficient MSW conversion in unison, can be understood
from the following perspective. Decomposing the Hamil-
tonian into its constituents and taking the coherent limit,
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Eq. (18) becomes

Hx
d~P

dx
=
(
~Hvac + ~He + ~Hν

)
× ~P . (26)

At high temperature all of the individual modes point

along the z-axis, and in the limit | ~Hν | � | ~Hvac|, | ~He| they
remain locked together even as the temperature cools and
they depart from that axis. Their alignment implies that,

for any given mode, ~P (very nearly) points along ~Hν and
so Eq. (26) can be approximated as

Hx
d~P

dx
≈
(
~Hvac + ~He

)
× ~P . (27)

The upshot is that all modes follow the track that the
average energy mode ε ≈ 3.15 would undergo if there
were no self-coupling. (Further details on synchronized
MSW conversion are provided in, for example, Ref. [42].)

Lepton asymmetries at the top end of the
synchronized-oscillation regime are converging on
this limit, but as shown in Fig. 11 — for an initial
degeneracy parameter ηνe = 5 × 10−2 — the resonant
conversion is incomplete, as the approximation that all
~P (ε) are aligned is an imperfect one. Since | ~Hν | � | ~Hvac|
for the entire temperature range depicted in Fig. 11,
synchronized oscillations then take over at T . 5 MeV,

once | ~He| has fallen off. As the lepton asymmetry is
dialed up further, the efficiency of conversion through
the synchronized MSW mechanism increases and the
amplitude of post-MSW synchronized oscillations de-
creases. In a somewhat poetic turn, the evolution of
Pz,int and P̄z,int at infinite lepton asymmetry is identical
(up to scale) to that at zero lepton asymmetry.

We wish to underscore the point that despite the dom-
inance by several orders of magnitude of Hν all the way
through the MSW region, this regime strongly bears the
fingerprints of the matter background. If it were not
for the cancellation between Hvac,z and He,z, the ampli-
tude of the oscillations would be diminished down to the
scale set by the vacuum mixing angle (as indeed it is in
the NH), and the spectral swaps at these lepton asym-
metries would be erased. The synchronized-oscillation
regime thus highlights the insistent influence that can be
exerted even by a would-be MSW resonance.

B. Adiabaticity

In our discussion of the five regimes just laid out, we
have stressed the decisive role of level-crossings in deter-
mining flavor transformation. But the presence or ab-
sence of level-crossings is not the whole story. An impor-
tant tool for understanding the behavior of neutrinos as
they pass through resonance is the adiabaticity parame-
ter γ, which quantifies the efficiency of flavor conversion
[79–82]. The parameter is defined as

γ ≡ 2π
δt

lres
M

≈ ∆res
M

∣∣∣∣dHzdt
∣∣∣∣−1

res

δHz, (28)
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FIG. 11. (Color online) Top end of the synchronized-
oscillation regime: Pz,int (blue, upper curve at T = 10 MeV)
and P̄z,int (red) in the IH with initial degeneracy parameters
ηνe = 5× 10−2, ηνx = 0.

with lres
M ≡ 2π/∆res

M the in-medium oscillation length at
resonance and δt the resonance width, which is to say
the time required for sin2 2θM to fall to half its resonant
value. The approximation above comes from the defini-
tion of lres

M and a recasting of δt in terms of δHz. Since
the self-coupling and thermal potentials are varying much
more rapidly than the vacuum potential, we can make the
further approximation that, for the purposes of comput-
ing adiabaticity, Hvac,z is constant. We then obtain an
expression for γ equivalent to that in Ref. [36].

An adiabaticity parameter γ � 1 corresponds to a res-
onance width broad enough to contain many oscillation
lengths, indicating that the potentials change sufficiently
slowly that neutrinos are able to track the Hamiltonian
through the level-crossing. A small value of γ, conversely,
corresponds to a large probability of neutrinos jumping
from one energy eigenstate to the other: The Landau–
Zener probability for such a transition is P ≈ e−πγ/2

[83, 84]. The early universe is ripe for adiabaticity, as γ is
ultimately a comparison of the fast-fluttering dynamical
timescale set by oscillations to the molasses-like Hubble
timescale set by gravity. We shall see, however, that un-
der certain circumstances self-coupling can compromise
this propensity.

Resonance occurs whenever the vacuum potential can-
cels with the weak-interaction potential, producing de-
generate instantaneous energy eigenstates:

Vz =
δm2 cos 2θ

2εresT
. (29)

The left-hand side implicitly depends on εres. (Recall the
definition of V in and below Eq. (19).) Solving for the
resonant comoving energy yields

εres =
Hν,z
2H̃e,z

1±

√
1− 2δm2 cos 2θ

T

H̃e,z
(Hν,z)2

 , (30)

with H̃e,z = |He,z|/ε. While this expression is always
valid, its predictive power, in the sense of allowing one to



12

identify where resonance will occur without solving the
equations of motion, is questionable due to the nonlin-
earity inherent in neutrino evolution. Broadly, Eq. (30)
can be used to predict the locations of level-crossings
only so long as no significant flavor transformation has
yet occurred. But once the polarization vectors have
departed appreciably from their initial alignment along
the z-axis, Hν has therefore also departed appreciably
from its initial value, and so all bets are off as far as
Eq. (30) goes. These comments are especially germane
to the entire minimal-transformation regime and to much
of the synchronized-oscillation regime, wherein resonance
is never achieved despite the appearance that Eq. (30)
would countenance the existence of one.

Our numerical results demonstrate that tuning the lep-
ton asymmetry does not considerably shift the location
of the MSW resonance, provided that the self-coupling is
not large enough to eliminate the resonance altogether.
This finding suggests that an analysis of the adiabatic-
ity neglecting Hν may prove enlightening as to how the
lepton asymmetry “perturbs” the matter-only MSW sce-
nario. Ignoring the contribution from self-coupling, the
resonant weak-interaction potential is

Vz = Hres
e,z =

(
7
√

2π2GF
45m2

W

∣∣δm2
∣∣ cos 2θ

)1/2

T 2, (31)

introducing the notation Hres
e,z to denote the thermal po-

tential of the mode instantaneously at resonance. While
for any particular mode ε the thermal potential He,z is
dropping precipitously as T 5, the resonant thermal po-
tential Hres

e,z drops only as T 2. It turns out that the
relatively sluggish descent of Hres

e,z ensures that MSW is
always adiabatic in the early universe, so long as elec-
trons and positrons are relativistic and the neutrino self-
coupling can be neglected. Under these circumstances
the adiabaticity parameter is

γ ≈ 1

23/4

1

5

√
7

π

mPl

mW

√
GF
g∗
|δm2| cos 2θ tan4 2θ, (32)

where mPl is the Planck mass, mW is the W boson mass,
and g∗ is the number of relativistic degrees of freedom.
Both mPl and g∗ enter through the derivative of the ther-
mal potential, which is dictated by Hubble expansion: In
the radiation-dominated epoch the Hubble constant is

H =

√
8π3g∗

90

T 2

mPl
. (33)

We have taken g∗ to be constant over the span of tem-
peratures relevant to this study, thus ignoring the small
decrease that occurs as the last remaining µ± disappear
near the top of this temperature range and the later de-
crease that occurs as the e± population starts to become
non-relativistic near the bottom.

Looking at Eq. (32), the adiabaticity parameter is evi-
dently independent of temperature when Hν = 0 and is,
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FIG. 12. (Color online) Resonant comoving energy εres (red,
solid) as a function of T, with Hν = 0. Also plotted is
the Fermi–Dirac average-energy mode εavg ≈ 3.15 (black,
dashed).

moreover, very large: γ ≈ 130 for 1 − 3 mixing, guaran-
teeing that all modes undergo efficient MSW conversion,
regardless of the temperature at which their respective
resonances occur. This fortuitous behavior, which is pe-
culiar to the thermal potential, occurs because the res-
onance width and the in-medium oscillation length are
growing with the same dependence on T . The growth of
the resonance width can be traced directly to the slowing-
down of the Hubble rate H ∝ T 2.

Even as the resonance width is broadening, the rate
at which the resonance sweeps upward through the en-
ergy modes is accelerating as a function of temperature:
εres ∝ 1/T 3. Fig. 12 shows εres(T ) for Hν set to zero.
Reassuringly, εavg ≈ 3.15 becomes resonant right near 5
MeV.

The preceding discussion gives credence to the notion
that the resonant flavor transformation seen at T ∼ 5
MeV across a range of lepton asymmetries is adiabatic by
default — that is, when only Hvac and He are considered.
But as our numerical results have revealed, self-coupling
can obstruct the efficiency of resonant conversion in non-
trivial ways.

One can glean some general insights into the effects
of neutrino–neutrino scattering by re-deriving the in-
medium mixing angle and mass-squared splitting, allow-
ing in particular for the off-diagonal elements of Hν .
In general these elements consist of nonzero real and
imaginary parts, which (in keeping with our notation
in Eq. (19)) we write as Vx and Vy, respectively. A
complex potential, however, spoils the reformulation in
terms of effective in-medium oscillation parameters, so
we rotate to a flavor-space coordinate system in which
the off-diagonal part of the entire Hamiltonian H is real.
Effective mixing parameters can be defined in this new
coordinate system and then translated back in terms of
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Vx and Vy from the original, with the results

∆2
M = (Vz −∆ cos 2θ)

2
+ (∆ sin 2θ + Vx)

2
+ V2

y

sin2 2θM =
(∆ sin 2θ + Vx)

2
+ V2

y

(∆ sin 2θ + Vx)
2

+ V2
y + (Vz −∆ cos 2θ)

2 .

(34)

It is important to note that these are only instantaneous
mixing parameters, as the coordinate system required to
make the off-diagonal elements of H real is constantly
changing. The validity of employing such a technique in
an analysis of adiabaticity is made plausible by noting
that rotations about the flavor axis do not mix Hz and
HT .

Working from Eq. (34), the resonance width expressed
as a weak-interaction potential is

δVz =
√

(∆ sin 2θ + Vx)
2

+ V2
y , (35)

and, just as in the Hν = 0 case, ∆res
M = δVz. The defini-

tion of γ (Eq. (28)) then leads to

γ ≈
(∆ sin 2θ + Vx)

2
+ V2

y∣∣∣5HHe,z + 3HHν,z − L̇νe−L̇νx
Lνe−Lνx

Hν,z
∣∣∣
res

≈

∣∣∣∣∣ |HT |2Ḣz

∣∣∣∣∣
res

, (36)

where in the last expression we emphasize an alternative
interpretation of the adiabaticity parameter as the ratio
of the off-diagonal part of H (squared) to the rate of
change of its diagonal part. In evaluating the derivative
we have again taken g∗ to be constant.

While the term proportional to He,z in the denomina-
tor of Eq. (36) is always negative, the two terms propor-
tional toHν,z are of the same sign leading into resonance.
When Hν,z dominates over He,z, the final term in the de-
nominator therefore makes γ smaller. On the other hand,
whenHe,z dominates, the term can either make γ smaller
(if ηνe < 0 initially) or make it larger (if ηνe > 0 ini-
tially). That adiabaticity plummets as flavor conversion
proceeds in the moderate-to-large-L regime is well-known
from studies of resonant production of sterile neutrinos.
It reflects the fact that as the potential sweeps through
resonance more rapidly, the resonance width contracts
and conversion becomes less efficient. What is less fa-
miliar is that flavor conversion can evidently feed back
positively on the adiabaticity of the resonance when the
lepton number is small but nonzero.

Eq. (36) is comparable to expressions in Refs. [36, 37,
85, 86], all of which consider resonant transformation be-
tween an active and a sterile state. In that context the
derivative of the lepton number drags down the adia-
baticity with such resolve that the depletion of the lep-
ton number ultimately halts the conversion process. As
suggested in the preceding paragraph, in our context as
well the possibly adverse effect of L̇νe on γ implies that

adiabaticity may fail for some initial lepton asymmetries.
It deserves emphasis, however, that there is a crucial dif-
ference between the resonant production of sterile neu-
trino dark matter and the resonant conversion between
active flavors: Because the sterile flavor eigenstate is un-
charged under weak interactions, the forward-scattering
neutrino–neutrino potential in an active–sterile system
does not have off-diagonal elements. In the polarization-
vector picture for active–sterile mixing, the self-coupling
potential consequently points along the z-axis, whereas
for active–active mixing it tracks the polarization vectors
away from the flavor axis. This distinction corresponds
in Eq. (36) to Vx and Vy being nonzero; it adds, as a
result, another lever controlling adiabaticity. In cases
where cancellation occurs in the term (∆ sin 2θ + Vx)

2
,

the off-diagonal weak-interaction potential can in fact
enfeeble γ, producing non-adiabaticity so long as Vy is
not too large. In other cases, though, off-diagonal self-
coupling bolsters γ by enlarging the resonance width and
the in-medium mass-squared splitting.

Adiabaticity accounts for the general behavior seen in
our numerical results wherever a level-crossing is present.
Despite these successes, as an analytical tool it has two
shortcomings: One, it is too coarse an instrument to ex-
plain the precise evolution of individual modes through
resonance, which often display radically different behav-
ior from one another even when nearby in energy. (The
partial-MSW regime exemplifies this point, as flavor evo-
lution in this case exhibits highly non-trivial dependence
on neutrino energy.) And two, adiabaticity offers no in-
sights into those regimes where the nonlinearity of self-
coupling causes the system to avert resonance altogether.

C. Matter–neutrino resonances in the early
universe

In this paper we have presented scenarios in which fla-
vor evolution prior to T ∼ 10 MeV is quite restrained:
The large potentials at high temperatures ensure that θM
is minuscule, thereby preventing significant transforma-
tion away from the initial flavor eigenstates. In truth it
is not obvious a priori that this statement always holds,
as lepton asymmetries for which self-coupling dominates
at ∼ 10 MeV will have some higher temperature at which
He,z surpasses Hν,z in magnitude. If the two potentials
are of opposite sign, then there will be a level-crossing at
this higher, pre-MSW temperature. Such a level-crossing
has been dubbed a matter–neutrino resonance (MNR)
and in recent years has been shown to be a possible con-
duit for significant flavor transformation in merger and
accretion-disk environments [87–92]. (Related, albeit dis-
tinct, analyses have also been performed for supernovae
[93].) No explorations of MNR in the early universe have
yet been conducted.

We have searched the regimes discussed above for signs
of flavor transformation associated with the MNR mech-
anism. Our numerical results have confirmed that level-
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crossings do indeed occur, but in the scenarios we have
examined the transformation associated with these reso-
nances is in most cases negligible. The explanation ap-
pears to lie in the fact that the resonances are generally
traversed non-adiabatically. Referring again to Eq. (36),
γ may be diminished either by a small off-diagonal po-
tential HT or by a large sweep rate in the diagonal po-
tential Hz. We speculate that both factors are at play in
preventing efficient conversion through the MNR. At the
high temperatures at which these resonances occur the
overall magnitude of Hz leading into the level-crossing
is larger than it is for the lower-temperature MSW res-
onance. Moreover, the Hubble constant, which sets the
resonance sweep rate, is larger as well. At the same time,
whereas the off-diagonal weak-interaction potentials are
expected to be small leading into either an MSW reso-
nance or an MNR because neutrinos have yet to leave
their initial flavor states to any appreciable extent, the
off-diagonal vacuum potential is smaller at high temper-
atures.

As one would anticipate based on this argument, the
most visible impact of MNR is found when the level-
crossing occurs at relatively low temperatures. In partic-
ular, ηνe ∼ 10−6 seems to be most clearly affected by the
presence of the MNR, which induces non-negligible flavor
transformation starting at temperatures near 10 MeV.
Hints of MNR conversion can be seen in our asymmetric-
MSW exemplar (Fig. 7), where it appears that neutri-
nos are on their way through resonance before abruptly
halting their conversion at T ∼ 8 MeV. Ultimately the
overall amount of conversion is limited here too by non-
adiabaticity, and the intermingling of the MSW transi-
tion with the MNR largely reverses the conversion that
does occur. (Interestingly, for ηνe ∼ 10−6 the MNR
begets some degree of flavor transformation in the NH
as well, in defiance of the general trend for this hierar-
chy. The flavor evolution, as it happens, is very similar
to that in the IH but with the behavior of neutrinos and
antineutrinos exchanged.)

We conclude that conversion through MNR is limited
given the parameters adopted in our study. However,
we do not rule out the possibility that a more thorough
investigation of the MNR phenomenon in the early uni-
verse may reveal sizable effects under appropriate cir-
cumstances. We reiterate that such resonances can exist
in the early universe, but that the obstacle to significant
transformation is non-adiabaticity.

D. Flavor evolution with quantum damping

Up to this point the discussion has been couched in the
coherent limit. In reality collisions — which we model
as quantum damping — will modify these results. The
generic effect of damping is to battle against the develop-
ment of coherence between the flavors. It is the combina-
tion of oscillations and coherence-erasing damping that
leads to depolarization (Pz, P̄z → 0) and therefore flavor

10 5 2 1
T (MeV)

-1

0

1

2

3

4

P j,int (×10
-6 )

FIG. 13. (Color online) Minimal transformation (damped):
Pj,int for j = z (blue, topmost curve at T = 1 MeV), j = x
(red, bottommost curve at T = 1 MeV), and j = y (pur-
ple), with the parameters of the minimal-transformation sce-
nario in Fig. 8 (initial degeneracy parameters ηνe = 5× 10−5,
ηνx = 0), in the presence of collisional damping. Antineutri-
nos undergo qualitatively similar evolution.

equilibration.

Indeed, equilibration is generally most effective when
flavor transformation is, in the absence of damping, most
appreciable. An immediate consequence is that equili-
bration is relatively ineffective for most lepton numbers
in the NH, which typically fosters only minimal coherent
flavor transformation due to the lack of a level-crossing in
the MSW region. While the effects of damping are not
entirely insubstantial in the NH, they are usually con-
fined to the relatively placid period during which neu-
trinos and antineutrinos migrate from their initial flavor
eigenstates to the nearby mass eigenstates.

Damping is a more potent force in the IH. The
synchronized-oscillation regime, for example, evinces
much more efficient depolarization than is witnessed in
the NH for the same lepton asymmetries. At the other
end, in the symmetric-MSW regime, depolarization is
nearly complete. But the general trend of efficient de-
polarization in the IH is not without exception: The
development of coherence in the minimal-transformation
regime is so limited — self-coupling is too overpowering
for an MSW resonance to occur but too weak to elicit
large-amplitude synchronized oscillations — that damp-
ing leaves intact a sizable fraction of the initial asymme-
try between the flavors (Fig. 13). Previous authors have
noted that MSW transitions and synchronized oscilla-
tions are vehicles for flavor equilibration, but the exis-
tence of a region where neither phenomenon is very com-
pelling, and therefore damping is relatively muted, has
not been pointed out before.

In comparing Fig. 13 (damped) with Fig. 8 (coherent),
it may come as a surprise that equilibration is not less
substantial in the damped case than what is shown in
Fig. 13. The reason is that the flavor evolution plays out
in a hierarchy of scales in which the oscillation length is
smaller than the mean free path, which in turn is smaller
than the MSW resonance width that would obtain for
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FIG. 14. (Color online) Asymmetric MSW (damped): Pz,int
for neutrinos (blue, upper curve at T = 20 MeV) and P̄z,int
(red), with the parameters of the asymmetric-MSW scenario
in Fig. 7 (initial degeneracy parameters ηνe = 2×10−6, ηνx =
0), in the presence of collisional damping.

Hν = 0. The picture is this: In the MSW region neu-
trinos and antineutrinos partially convert flavor, much
as they do in the absence of damping. The polariza-
tion vectors accordingly swing away from the flavor axis,

and as they do so damping shrinks ~PT . But due to the
high oscillation frequency relative to the scattering rate,

the change in |~PT | is quickly redistributed over all of the

components of ~P , so that rather than being flattened
against the flavor axis, the polarization vectors are able
to evolve in a manner reminiscent of the coherent case,
albeit with shrinking magnitude. In spite of collisions the

modes remain largely synchronized, so that ~P ∼ ~Hν ∼ ~H
(where ∼ indicates that the vectors are roughly parallel)
as long as self-coupling dominates. At low temperatures
~Hvac takes over and all modes move adiabatically into
the upper mass eigenstate, just as they do in the coher-

ent limit. As a matter of fact, the evolution of Pz,int/|~P |
is very similar for the damped and coherent cases; the
visual differences between Figs. 13 and 8 are primarily a
result of the long timescale over which the MSW region
extends.

Fig. 14 further illustrates the principle that the degree
of depolarization is related to the degree of flavor trans-
formation that takes place in the coherent limit. For
ηνe = 2 × 10−6, Pz,int at weak-decoupling temperatures
is ∼ 1/3 of its initial value at T & 20 MeV, whereas P̄z,int

only retains ∼ 1/12 of its initial magnitude and manages
to change its sign. The damping of antineutrinos takes
place almost entirely during theHν-mediated MSW reso-
nance, of which the small residual P̄z,int is a consequence.
The damping of neutrinos, on the other hand, is more
complicated (Fig. 15). Low- and medium-energy modes
damp through the MSW region, with greater depolariza-
tion associated with greater ε, but the high-energy modes
undergo damping both through the MSW region and the
MNR that occurs at T ∼ 10 MeV. Since the scattering
rate increases rapidly with temperature, the effectiveness
of damping is amplified at the MNR.

20 10 5 2
T (MeV)0.0
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Pz,ϵ / | Pz,ϵ (20 MeV) |

FIG. 15. (Color online) Asymmetric MSW (damped): Pz,ε
in the collisionally-damped scenario depicted in Fig. 14, for
ε = 1.15 (blue, topmost curve at T = 2 MeV), ε = 3.57 (red),
and ε = 5.99 (purple, bottommost curve at T = 2 MeV).

Although collisional damping has traditionally been
employed in studies of lepton asymmetries, it is nonethe-
less wanting in realism. As some authors have noted
[45, 47], modeling incoherent scattering strictly through
this traditional off-diagonal damping term is dubious
inasmuch as thermal equilibration requires scattering
processes that shuffle neutrinos between energy bins,
which such a term cannot provide. More specifically,
if collisions are taken simply to impose damping (C →
−D ~PT in the polarization-vector language), then one can
show that depolarization is inconsistent with the preser-
vation of Fermi–Dirac spectra.

To see that this is so, suppose that at some initial
temperature T1 the neutrino gas is in thermal equilib-
rium with the plasma. Then, according to our normal-
ization of ρ, P0 is the sum of the Fermi–Dirac equilibrium
spectra that obtain at this temperature: P0 (ε, T1) =
f
(
ε, ηiνe

)
+ f

(
ε, ηiνx

)
. Suppose also that at some lower

temperature T2 damping has achieved complete depo-
larization: Pz (ε, T2) ≈ 0 for all ε. Using the fact that
coherent evolution and quantum damping both preserve
Trρ = P0, it follows that

ρee (ε, T2) =
Pz (ε, T2) + P0 (ε, T2)

2

=
f
(
ε, ηiνe

)
+ f

(
ε, ηiνx

)
2

. (37)

Since the average of two Fermi–Dirac spectra is not in
general another Fermi–Dirac spectrum, this result im-
plies that the νe distribution function ρee picks up distor-
tions from Fermi–Dirac as the polarization vectors shrink
to zero — a troubling conclusion if Pz goes to 0 at high
enough temperature that neutrinos must still be in ther-
mal equilibrium.

The consequences of Eq. (37) are borne out numeri-
cally: Because the damping term is proportional to neu-
trino momentum, it engenders a spectral feature wherein
higher-energy modes undergo greater depolarization than
their lower-energy counterparts. This feature would be
smoothed out somewhat by a more rigorous treatment of
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incoherent scattering, but it is also indicative of the non-
trivial evolution of a system of neutrinos toward equi-
librium. Spectral distortions associated with the flavor-
equilibration process may compound those known to be
generated thermally through the overlapping epochs of
e± annihilation and weak decoupling.

The crucial missing ingredient that enforces thermal
equilibrium is momentum-changing scattering, which is
disallowed when collisions are modeled strictly as quan-
tum damping. In this vein, the need for a detailed treat-
ment of incoherent scattering was emphasized by Wong
[43], who cautioned that the extent of flavor equilibra-
tion depends on how collisions are implemented. To date,
the most sophisticated analyses of flavor evolution with a
lepton asymmetry are those performed by the authors of
Refs. [18, 19, 45, 47], who have combined an off-diagonal
damping term with classical Boltzmann collision integrals
along the diagonals of C. By revealing a wider range
of possible coherent phenomena than has hitherto been
recognized, our results buttress the need for continued
progress in this direction.

As the findings of Ref. [1] have demonstrated, BBN
calculations that self-consistently couple neutrino trans-
port to the thermodynamics of the plasma yield changes
in the predicted primordial abundance of D — relative
to the case of instantaneous neutrino decoupling — that
are an order of magnitude larger than they would be if
the non-linear feedback between the neutrinos, plasma,
and nuclides were omitted. The calculations of Ref. [1],
however, were performed with zero lepton number in the
classical Boltzmann limit. Ref. [53], meanwhile, tack-
led the full problem of oscillations and quantum collision
integrals but was predicated on the assumption of zero
lepton asymmetry. A similar approach to the complete
quantum kinetic equations [51, 94–97], including fully re-
alistic quantum collision integrals [52] and a nonzero lep-
ton asymmetry, may divulge signatures of flavor evolu-
tion in the early universe that are currently believed to
be unobservable.

IV. CONCLUSION

In this paper we have numerically solved the coherent
equations of motion governing neutrino flavor transfor-
mation in the early universe with a range of initial lep-
ton asymmetries. In so doing we have discovered that
beneath the current constraints on the lepton number
there lurks a menagerie of possible coherent flavor phe-
nomena, which we have sectioned off into five distinct
regimes. Starting from a lepton asymmetry comparable
to the present bound and moving down to the realm of
negligible self-coupling, these regimes are as follows: (1)
Large synchronized oscillations, (2) minimal transforma-
tion, (3) asymmetric MSW, (4) partial MSW, and (5)
symmetric MSW. The existence of these regimes is a tes-
tament to the richness of the nonlinear problem of flavor
evolution in a dense, expanding environment. And as we

have demonstrated, this richness is not entirely erased by
collisional damping — a finding that points to the merits
of further study of this problem with quantum kinetics
that go beyond the approximations employed here.

To explain the phenomena observed in our numerical
results we have employed the conceptual apparatus of
(non-)adiabatic level-crossings and the well-established
understanding of synchronized evolution as a collective
mode that emerges when the self-coupling potential is
dominant. Yet we also contend that in fact the minimal
transformation regime, which occurs for lepton asym-
metries on the order of ∼ 5 × 10−5, points to the lim-
itations of these concepts. The distinctive absence of
flavor conversion in this regime is due to it encompass-
ing lepton asymmetries that are strong enough to elim-
inate level-crossings in the MSW region but not strong
enough for Hν to develop the dominant off-diagonal com-
ponents needed for large-amplitude synchronized oscilla-
tions, much less forHν to bind the individual modes suffi-
ciently for a synchronized MSW transition to take place.
As far as we are aware, a convincing analytical under-
standing of this regime does not currently exist. We note
again that it is an intriguing coincidence that the range
of lepton numbers most consistent with an interpretation
of the unidentified X-ray line reported in Refs. [32, 33]
falls within this regime, which is the one most resistant
to damping-induced flavor equilibration.

We have also reported for the first time the existence
of an MNR in the early universe. The influence of the
resonance on coherent flavor evolution is very modest ex-
cept for a small range of lepton asymmetries for which
the level-crossing occurs shortly before the MSW region.
Its presence is accentuated by damping, which capital-
izes on the coherence developed through the resonance.
We have found that adiabaticity restricts the amount of
flavor conversion through the MNR, but mixing through
the δm2

� channel, which has MSW resonances at lower
temperatures than those studied here, may permit more
adiabatic circumstances.

The sub-constraint lepton asymmetries we have inves-
tigated are, by definition, thought to lie presently out of
reach of observation. Nonetheless, the diversity of flavor
phenomena revealed in this study may have unrecognized
implications for BBN. The current era is one of preci-
sion cosmology, with 30-meter-class telescopes [98–100],
forthcoming spectroscopic galaxy surveys [101–103], and
a Stage-IV CMB experiment [102, 104] at the vanguard
— to name just a few. Impressive advances in determina-
tions of Neff, YP , [D/H], and other cosmological observ-
ables are on the horizon. These measurements promise to
provide new insights, but exploiting them thoroughly will
require a scrupulous treatment of neutrino evolution. It
remains to be seen whether a solution of the full quantum
kinetic equations coupled to BBN will unearth traces of
the physics presented in this study.
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