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One of the outstanding problems in general relativistic cosmology is that of the averaging. That
is, how the lumpy universe that we observe at small scales averages out to a smooth Friedmann-
Lemaitre-Robertson-Walker (FLRW) model. The root of the problem is that averaging does not
commute with the Einstein equations that govern the dynamics of the model. This leads to the
well-know question of backreaction in cosmology. In this work, we approach the problem using
the covariant framework of Macroscopic Gravity (MG). We use its cosmological solution with a
flat FLRW macroscopic background where the result of averaging cosmic inhomogeneities has been
encapsulated into a backreaction density parameter denoted ΩA. We constrain this averaged uni-
verse using available cosmological data sets of expansion and growth including, for the first time, a
full CMB analysis from Planck temperature anisotropy and polarization data, the supernovae data
from Union 2.1, the galaxy power spectrum from WiggleZ, the weak lensing tomography shear-shear
cross correlations from the CFHTLenS survey and the baryonic acoustic oscillation data from 6Df,
SDSS DR7 and BOSS DR9. We find that −0.0155 ≤ ΩA ≤ 0 (at the 68% CL) thus providing a
tight upper-bound on the backreaction term. We also find that the term is strongly correlated with
cosmological parameters such ΩΛ, σ8 and H0. While small, a backreaction density parameter of a
few percent should be kept in consideration along with other systematics for precision cosmology.

PACS numbers: 98.80.Es,98.80.-k,95.30.Sf

I. INTRODUCTION.

The ongoing and planned high precision surveys aim
at constraining cosmological models at the percent-level
precision. This is faced with a number of challenges
from systematic effects in the data, computational frame-
works, and theoretical issues. It has become increasingly
important to understand and take into account the non-
linear and relativistic effects of gravity. One such effect,
that has garnered considerable attention in the literature,
is the averaging problem in relativity and cosmology [1].
The problem stems from the fact that applying the Ein-
stein’s field equations to a smooth model of the universe
and performing averaging to the observed lumpy uni-
verse are two operations that do no commute. This non-
commutation leads to a difference between the dynam-
ics of the exact homogeneous and isotropic Friedmann-
Lemaitre-Robertson-Walker (FLRW) model and the ef-
fective model obtained from an averaged universe. This
difference is referred to as the backreaction and enters
into the evolution equations of the models. While it is
fair to assert that one would not expect huge effects from
such a backreaction, it remains an open question whether
its effect can be at the same level as that of other sys-
tematics in the data and thus worth considering in the
quest of precision cosmology. Various schemes of averag-
ing have been proposed in the literature and can be found
in, for example, the review [1]. The authors of Ref. [2]
developed a formalism based on spatial averaging of the
scalar model evolution equations which attracted a lot of
attention. For example, recently the formalism has been
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generalized in LRS class II spacetimes [3]. A fully covari-
ant approach that can be used to average tensors was
proposed in [4] and is considered in the field among the
most promising formalisms to study the averaging prob-
lem. In this approach, the averaging produces a macro-
scopic cosmological model so the formalism is referred to
as macroscopic gravity (MG). We use this formalism in
this work.

In this paper, we employ an elaborate framework that
includes expansion and growth observable functions de-
veloped for the MG averaged universe. Some of the de-
tails of the framework are described in our previous ex-
tended paper [5]. Here we apply it to perform for the
first time a full cosmic microwave background analysis us-
ing temperature anisotropies and polarization data from
Planck [6]. We also use the galaxy power spectrum data
from WiggleZ [7, 8], the baryonic acoustic oscillations
(BAO) from 6Df [9], SDSS DR7 [10] and BOSS DR11
[11], distances to supernovae from the Union 2.1 compi-
lation [12] and the weak lensing tomography shear-shear
cross correlations from the CFHTLenS survey [13]. We
use modified versions of the publicly available Boltzmann
code CAMB [14] and the Markov chain Monte Carlo code
CosmoMC [15].

II. AVERAGED UNIVERSE AND
MACROSCOPIC GRAVITY FORMALISM.

MG is a fully covariant, non-perturbative, effective
model which describes the large scale behavior of space-
time [4]. The formalism uses a bivector Aαα′(x, x′) to
define covariant averages of tensor fields. The average of
an arbitrary tensor field Pα...β... at a point x over some
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averaging region Σx is defined as

Pα...β...(x) = 1
VΣx

∫
Σx
Pα

′...
β′...(x

′)Aαα′(x, x′)Aβ
′

β(x′, x)...
√
−g(x′)d4x′

(1)

where, VΣx
=
∫

Σx

√
−g(x′)d4x′ is the 4-volume of the

averaging region for support point x, and the averag-
ing bivectors satisfy the conditions limx′→xAαβ′(x′, x) =

δαβ , Aαβ′(x, x′)Aβ
′

γ′′(x′, x′′) = Aαγ′′(x, x′′), Aα
′

[β,γ] +

Aα′

[β,δ′A
δ′

γ] = 0 and Aα′

β;α′ = 0.

In the MG formalism the macroscopic affine connection
is given by 〈Fα

βγ〉. Where Fα
βγ is the “bilocal exten-

sion” of the connection coefficients which transforms like
a connection at x, like a scalar at x′, and reduces to the
microscopic connection Γαβγ in the limit where x′ goes
to x.

Fα
βγ := Aαε′

(
Aε

′

β,γ +Aε
′

β;σ′Aσ
′

γ

)
(2)

Angle brackets denote integration over the averaging re-
gion divided by the volume of the averaging region, for
example Pα ≡ 〈Aαα′Pα

′〉. There is a macroscopic cur-
vature tensor (Mα

βγδ) and a macroscopic metric (Gαβ)

corresponding to the macroscopic connection (〈Fα
βγ〉).

Additionally there is a connection (Πα
βγ) correspond-

ing to the averaged microscopic Riemann tensor (R̄αβγδ).
The difference between the two connection coefficients
is defined as the affine deformation tensor (Aαβγ =

〈Fα
βγ〉 −Πα

βγ).
Under the assumption of the splitting rules

〈Fα
βγgµν〉 = 〈Fα

βγ〉ḡµν and 〈Fα
βγF

δ
εηgµν〉 =

〈Fα
βγ〉〈F δ

εη〉ḡµν , the Einstein field equation (EFE),
and Cartan’s structure equations can be averaged out to
construct the MG field equations

ḡβεMβγ − 1
2δ
ε
γ ḡ
µνMµν = 8πG

[
T̄ εγ −

(
Zε µνγ + 1

2δ
ε
γQµν

)
ḡµν
]

(3)

R̄αβ[σρ;λ] = Aε β[ρR̄
α
εσλ] +Aαε[ρR̄

ε
βσλ] (4)

Mα
βρσ = R̄αβρσ +Qαβρσ (5)

The model is completely specified by four tensor poten-
tials which depend on the inhomogeneous substructure
and the averaging scale. These are the affine deforma-
tion tensor Aαβγ defined above, the correlation 2-form

Zα µ
β[γ νσ], the correlation 3-form Y α µ θ

β[γ νσ κπ] and the

correlation 4-form Xα µ θ τ
β[γ νσ κπ φψ]. The correlation 2-

form is defined as :

Zα µ
β[γ νσ] := 〈Fα

β[γF
µ
νσ]〉 − 〈F

α
β[γ〉〈F

µ
νσ]〉

and has the following contractions:

Qαβρµ = −2Zε α
βρ εγ Zε µνγ = 2Zε δ

µδ νγ

Qµν = Qε µνε = Zδµνδ (6)

The differential properties of the correlation 2-form are
set by the correlation 3-form and the correlation 4-form.
For the simplest model, the correlation 3 and 4-forms are
zero and the following differential and algebraic equations
hold. The differential cyclic constraint

Zα µ
β[γ νσ||λ] = 0 (7)

The integrability condition

Zε γ
β[µ δνM

α
εκπ] − Z

α γ
ε[µ δνM

ε
βκπ]

+Zα ε
β[µ δνM

γ
εκπ] − Z

α γ
β[µ ενM

ε
δκπ] = 0

(8)

The quadratic constraint equation

Zδ θ
β[γ κπZ

α µ
δε νσ] + Zδ µ

β[γ νσZ
θ α
κπ δε]

+Zα δ
β[γ νσZ

µ θ
δε κπ] + Zα µ

β[γ δεZ
θ δ
κπ νσ]

+Zα θ
β[γ δεZ

µ δ
νσ κπ] + Zα δ

β[γ κπZ
θ µ
δε νσ] = 0

(9)

III. COSMOLOGICAL SOLUTIONS TO MG
AND THE FRIEDMANN MACROSCOPIC

UNIVERSE.

The MG equations have been solved for the case when
the macroscopic metric is given by a flat FLRW metric
[16–18] under the assumption that the correlation 3-form
and 4-form are zero, the correlation 2-form (Zα µ

βγ νσ)

and the affine deformation tensor (Aαβγ) are invariant

under the six parameter group of Killing vectors (corre-
sponding to the three translational and three rotational
symmetries of the metric), and the electric part of the
correlation tensor is zero (Zα µ

βγ νσu
σ = 0 where uσ is

the timelike vector orthogonal to the hypersurface of ho-
mogeneity).

With an averaged stress energy tensor of the form of a
perfect fluid, the macroscopic EFE (3) gives:

ȧ2

a2
=

8πG

3
ρ− 1

3

A2

a2
+

Λ

3
(10)

2ä

a
+
ȧ2

a2
= −8πGp− 1

3

A2

a2
+ Λ (11)

where dots denote partial differentiation with respect to
the time coordinate t, and A2 is a positive constant
that implicitly depends on the underlying inhomogeneous
structure and the averaging scale. The sign of this con-
stant derives from the symmetry condition on the affine
deformation tensor under the group of killing vectors,
given in the previous paragraph [5, 17]. This also sets the
sign of ΩA defined further below, it can be viewed as a
mathematical and physical prior. Hence, the macroscopic
gravity correlations appear like an extra positive spatial
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curvature term in the Friedmann’s equations. Integrating
the null geodesic equation in a flat FLRW macroscopic
metric we get the luminosity distance relation modified
only by the change in expansion history due to the back-
reaction term,

dL =
1

aH0

∫ a

a′=1

da′

(ΩAa′
2 + ΩΛa′

4 + Ωma′)
1
2

. (12)

where Ωm ≡ 8
3πGρ0/H

2
0 is the matter density parame-

ter, ΩΛ ≡ Λ/3H2
0 is the cosmological constant density

parameter, ΩA = −A2/3H2
0 is the backreaction density

term also called “gravitational energy” parameter due to
averaging, and H0 is the Hubble constant, all evaluated
today.

IV. GROWTH OF STRUCTURES IN A
MACROSCOPIC GRAVITY AVERAGED

UNIVERSE.

In order to describe the growth of structure in the
macroscopic gravity model we can linearly perturb the
macroscopic metric, the stress energy tensor and the MG
potentials and solve the linearized MG field equations in
order to obtain equations satisfied by the linear perturba-
tions [5, 18]. In this situation, these long wavelength per-
turbations will describe the growth of structure at scales
below the homogeneity scale but above the non-linear
scales where the effects of the perturbations themselves
will have significant impact on their dynamics. We note
that the new evolution equations for these large-scale per-
turbations will account for the influence of the non-linear
small-scale inhomogeneities that have been averaged over
within the macroscopic gravity formalism.

The perturbed metric in the conformal Newtonian
gauge takes the form

dS2 = a(η)2(−(1 + 2φ)dη2 + (1− 2ψ)(dx2 + dy2 + dz2))
(13)

Assuming that the correlation 3-form and 4-form are
zero at first order in the perturbations the MG field equa-
tions give:

∇2ψ − 3H(Hψ + φ′) = 4πGa2(δρ+ δρA) (14)

∂i(Hφ+ ψ′) = −4πGa2

(
p+ ρ− 2A2

3a2

1

8πG

)
∂iδu (15)

φ′′ +Hφ′ + 2Hψ′ + (2H′ +H2)φ+

1

3
∇2(ψ − φ) = 4πGa2

(
δp− δρA

3

)
(16)

∇2(ψ − φ) = 8πGΣ (17)

where δρ is the energy density perturbation, δp is the
pressure perturbation, Σ is the anisotropic stress, ∂i is
the partial derivative, δρA is the energy perturbation to
the gravitational stress energy tensor, a prime denotes
the derivative with respect to η, ∂iδu is the irrotational

part of the comoving peculiar velocity of the fluid and H
is defined as a′

a .
The gravitational stress energy tensor takes the form

of a perfect fluid with an effective equation of state −1/3.

ρA = −3
A2

a2
+ δρA +O(ε2) (18)

pA =
A2

a2
− 1

3
δρA +O(ε2) (19)

where ε is the order of the linear perturbations.
As noted in [18] the MG equations also place con-

straints on the derivatives of φ and δui unless A2 ∼ ε.
This seems to indicate that setting the correlation 3-form
and 4-form to zero is not compatible with a perturbed
macroscopic metric. If we assume that the linear pertur-
bations to the correlation 3-form and 4-form are of order
O(ε), φ and δui are no longer restricted but the gravita-
tional stress energy tensor can have additional O(ε) cor-
rections. In this work we did not consider such additional
corrections assuming that the terms we used lead the cor-
rections and hence the perturbed gravitational stress en-
ergy tensor takes the form of a perfect fluid with equation
of state −1/3. While unlikely, it is unclear if these ad-
ditional terms will affect significantly the observational
constraints obtained on backreaction. Further studies
should be devoted to deriving and analysing these ad-
ditional terms. In this case the macroscopic EFE will
be of the form given by Eq. (14-17), however the av-
eraged stress energy tensor and the gravitational stress
energy tensor are no longer conserved independently at
first order. The era of interest to us in this work is after
matter-radiation equality. We will argue that deep within
the matter dominated era (still well before decoupling)
the perturbation to the gravitational energy density must
be tightly coupled to the perturbation to the matter en-
ergy density, since it is the inhomogeneities and motion
of the matter that cause the gravitational stress energy.
In-fact we will consider the perturbation to the gravi-
tational stress energy as being stationary in the matter
frame (i.e. they have the same peculiar velocity). Fur-
thermore the matter energy is conserved at first order
(even though the first order stress energy tensor is cou-
pled to the first order gravitational stress energy tensor)
since the proper mass is conserved. Now, using stress en-
ergy conservation we can write the evolution equations
for adiabatic perturbations.

δA =
2

3
δm; δ′m = −∇2δu+ 3ψ′ (20)

(
1− 2

3

ΩA
Ωm

)(
∇2δu

′ −∇2ψ
)

+

(
1− 4

3

ΩA
Ωm

)
H∇2δu

+
1

6

ΩA
Ωm
∇2δm = 0

(21)
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TABLE I: Marginalized parameter constraints (68% confidence) from the cosmological observations, the CMB temperature
(Planck) and low l polarization data (lowP) from Planck 2015, the distance to supernovae data from Union 2.1 (Sn), the galaxy
power spectrum from WiggleZ (MPK), the weak lensing tomography shear-shear cross correlations from the CFHTLenS survey
(wl) and the baryonic acoustic oscillation data from 6Df, SDSS DR7 and BOSS DR9 (BAO).

Parameters Planck Planck+lowP+Sn+MPK+wl Planck+lowP+Sn+MPK+wl+BAO

MG Vanilla MG Vanilla MG Vanilla

Ωbh
2 0.02216 ± 0.00023 0.02220 ± 0.00023 0.02223 ± 0.00022 0.02231 ± 0.00022 0.02218 ± 0.00021 0.02228 ± 0.00020

Ωch
2 0.1201 ± 0.0022 0.1198 ± 0.0022 0.1188 ± 0.0018 0.1178 ± 0.0017 0.1194 ± 0.0015 0.1182 ± 0.0011

θ 1.04080 ± 0.00049 1.04086 ± 0.00048 1.04093 ± 0.00046 1.04109 ± 0.00044 1.04086 ± 0.00042 1.04104 ± 0.00041

τ 0.079 ± 0.019 0.079 ± 0.019 0.066 ± 0.015 0.067 ± 0.015 0.059 ± 0.013 0.065 ± 0.013

ΩA −0.0234+0.0234
−0.0051 N/A −0.0196+0.0196

−0.0053 N/A −0.0124+0.0124
−0.0031 N/A

logAs 3.092 ± 0.037 3.091 ± 0.036 3.062 ± 0.028 3.06 ± 0.028 3.05 ± 0.025 3.06 ± 0.024

ns 0.9642 ± 0.0064 0.9648 ± 0.0064 0.9670 ± 0.0057 0.969 ± 0.0054 0.9653 ± 0.0049 0.9683 ± 0.0043

H0 69.3 ± 2.2 67.3 ± 1.0 69.6 ± 1.3 68.13 ± 0.78 68.49 ± 0.69 67.95 ± 0.52

ΩΛ 0.725 ± 0.038 0.684 ± 0.014 0.727 ± 0.024 0.696 ± 0.010 0.709 ± 0.013 0.6942 ± 0.0068

Ωm 0.298 ± 0.020 0.316 ± 0.014 0.293 ± 0.012 0.304 ± 0.010 0.3033 ± 0.0071 0.3058 ± 0.0068

σ8 0.859 ± 0.031 0.830 ± 0.014 0.838 ± 0.021 0.8133 ± 0.0093 0.826 ± 0.014 0.8126 ± 0.0090

V. RESULTING CONSTRAINTS AND
DISCUSSION.

We fit the gravitational energy (backreaction) density
parameter ΩA and the following six base cosmological pa-
rameters: the physical baryon density parameter Ωbh

2,
the physical cold dark matter parameter Ωch

2, the ratio
of the sound horizon to the angular diameter distance of
the surface of last scattering θ, the reionization optical
depth τ , the spectral index of the power spectrum ns and
the logarithm of the amplitude of the primordial curva-
ture power spectrum logAs. We use the MG framework
and the data sets as described in the previous sections.
We use the implementation and codes as described in our
detailed previous paper [5].

Our results are summarized in Table I and Figure 1.
We find that the combined data sets constrain the av-
eraging gravitational energy density parameter, or back-
reaction term to −0.0155 ≤ ΩA ≤ 0 (at the 68% CL).
This provides a tight constraint on backreaction within
the MG formalism using the latest available data sets
including a full CMB analysis. We also find that in-
cluding ΩA in the fit produces only small deviations of
the six base cosmological parameters from their ΛCDM
values which are within one sigma. However, some de-
rived parameters are highly degenerate with ΩA. For ex-
ample, Corr(ΩA,ΩΛ) = −0.86, Corr(ΩA, H0) = −0.62,

Corr(ΩA, σ8) = −0.94, where Corr(p, q) is the corre-
lation coefficient between parameters p and q. These
correlation coefficients are in agreement with the 2D
confidence contours given in Fig. 1. This significantly
increases the errors associated with the constraints on
these derived parameters.It is interesting that the well
known tension between the local measurement of H0

and the measurements from Planck is not present in
the MG model. Measurements from Cepheid and SN
data by Reiss et al [19] finds H0 = 73.8 ± 2.4, and a
reanalysis by Efstathiou [20] using a revised geometric
maser distance to NGC4258 (one of the distance an-
chors) finds H0 = 72.5 ± 2.5. The Planck value of
H0 = 67.3±1.0 is off by two sigma while the MG Planck
value is H0 = 69.3± 2.2, within one sigma of both local
measurements.

It should be noted that the evolution equations for the
perturbations (20-21) as used in our analysis hold only
after the beginning of the matter dominated era, however
we are interested here in backreaction effects after decou-
pling and well-after radiation domination so this should
have no impact on the results. There are also some lim-
itations in using some of the data sets. For example,
when using the matter power spectrum, it is not possible
to calculate the power spectrum for the non linear scales
since there is no fitting model calibrated against simula-
tions equivalent to the Halofit code for LCDM, however
it is known that linear theory is a good fit to the data to
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FIG. 1: 2-D marginalized joint contour plots (68% and 95% confidence levels) between ΩA and the other cosmological parameters
for the Macroscopic gravity model from the combined data sets.

k ≤ 0.2hMpc−1 [8]. Using the Weak lensing data is more
sensitive to this limitation but we verified that truncating
the nonlinear scales has very little effect on the overall
constraints obtained. Using and interpreting the BAO
data depends on the growth of structure and hence the
available data is for the ΛCDM and would perhaps not
hold if the effects of backreaction are significant. For the
MG formalism, we assumed that the effect on light prop-
agation is dominated by the contribution from the modi-
fied Friedmann’s equation and we expect our main results
here to hold even if other effects are introduced. There
are possible additional terms of the order ε from the per-
turbation that can be added to the gravitational stress
energy tensor that we did not consider assuming that the
terms we used capture the leading effect of backreaction.
Although unlikely, it is unclear if such additional terms

will change, in a significant way, the bounds obtained on
backreaction from observations. The derivation and in-
clusion of such additional terms are beyond the scope of
this paper and is left for further investigation. Moreover,
we find that the constraints from the expansion history
seems to provide the bulk of the constraining power on
the backreaction term [5]. Finally, it is worth mention-
ing that the analysis here is based on the cosmological
exact solution currently available in MG. It remains an
open question if other viable cosmological solutions to
MG exist and can be derived in the future.

There has been a considerable debate as to the signifi-
cance of backreaction for cosmology, particularly regard-
ing the framework of Green and Wald [21–24] which is an
extension of the Burnett’s formulation of the shortwave
approximation using weak limits to the problem of back-
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reaction [25]. The main conclusion by Green and Wald is
that if the matter stress energy satisfies the weak energy
condition, the effective stress energy due to backreaction
is trace-free and has the equation of state of radiation.
They thus conclude that it has a negligible dynamical
effect and cannot play the role of dark energy. In the
MG formalism used in our paper, the effective stress en-
ergy tensor from averaging (backreaction) is not trace-
free and has the equation of state of curvature. Also,
Green and Wald have found in [21] that within their for-
malism the effect of small-scale inhomogeneities on the
long wavelength perturbations is to add extra terms to
the perturbed stress energy which they state corresponds
to what one would expect from kinetic motions, and New-
tonian potential energy and stresses. Buchert et al. [26]
objected that Green and Wald formalism is not general
enough to capture generic properties of a realistic back-
reaction. They also pointed out that some assumptions
have discarded important points in the fitting and averag-
ing problem, by construction. Green and Wald responded
[27] to the criticism stating that their results remain valid

and that there are various ways to define what backreac-
tion is, which was in turn described again to be limited
by [26]. They finally proposed a heurestic description in
[28] to justify their previous results. Our work using MG
formalism finds that current available data constrain the
backreaction term to be small to have any large dynam-
ical effect but still of possible significance at the level of
systematic effects for precision cosmology.

We conclude from this cosmological analysis of the co-
variant MG formalism using multiple data sets and, for
the first time, the full CMB analysis, that the effects of
averaging inhomogeneities lead to a small backreaction
term compared to other cosmological parameters. Such
a small backreaction term may remain significant when
compared to percent-level systematics in the data for pre-
cision cosmology.

We thank S. M. Koksbang for comments on the
manuscript. MI acknowledges that this material is based
upon work supported in part by an award from the John
Templeton Foundation and by the NSF under grant AST-
1517768.
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