
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Viscosity of fused silica and thermal noise from the
standard linear solid model

N. M. Kondratiev and M. L. Gorodetsky
Phys. Rev. D 94, 081102 — Published 27 October 2016

DOI: 10.1103/PhysRevD.94.081102

http://dx.doi.org/10.1103/PhysRevD.94.081102


Viscosity of fused silica and thermal noise from SLS model

N.M. Kondratiev
Russian Quantum Center, Skolkovo 143025, Russia

M. L. Gorodetsky∗

Russian Quantum Center, Skolkovo 143025, Russia and
Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia

The Fluctuation-Dissipation Theorem states that each source of dissipation yields corresponding
fluctuations. The most obvious source of dissipation in liquids is viscosity – internal friction between
layers of matter. However this property also exists in solid materials in glass state – amorphous
substance that couldn’t become a crystal due to high viscosity. Fused silica is a low-loss glass
material used in many interferometric applications demanding high stability as Fabry-Perot etalons
and gravitational wave detector mirrors and suspensions. Very high viscosity (ranged from 1017 to
1040 Pa s in literature) can be the source of additional noise, and influence performance of such
devices. We show that fused silica may be described with the Standard Linear Solid model of
viscoelastisity and present a method to estimate this type of noise.

PACS numbers: 04.80.Nn, 42.79.Wc, 07.60.Ly, 05.40.Ca

I. INTRODUCTION

For modern high precision measurements any source of
noise can be critical. The LIGO project [1] that resulted
in first direct observation of gravitational waves [2] has to
account many fundamental sources of fluctuations. The
Brownian noise coming from chaotic thermal motion of
particles is one of the enemies. Thermal noise in coat-
ings, substrates and suspensions of the interferometer’s
mirrors results in fluctuations of their surfaces which add
a phase noise to the signal [3, 4]. A lot of other processes
can degrade the sensitivity of the device [5, 6].

The common way to calculate thermal noises is a
Fluctuation- Dissipation Theorem. It states that any dis-
sipation in a system results in added fluctuations. The
theory gives the spectral density of surface fluctuations
in mirrors of the LIGO antennae in the form [3]:

S(ω) =
4kBT

ω
Im[αs + αc

j + αs
j ], (I.1)

where ω is the frequency, kB is the Boltzmann’s constant
and T is the temperature, αs is dynamic permittivity of
the substrate, αcj and αsj are coating and coating induced
substrate dynamic permittivities. In [3, 7, 8] those values
were found to be

αs =
1√
πw

1− ν2s
Ys

, (I.2)
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∑
j

βjdj
πw2

(1 + νj)(1− 2νj)

Yj(1− νj)
, (I.3)
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∑
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dj
πw2

Yj
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2(1− 2νs)

2

Y 2
s

, (I.4)
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where w is the Gaussian beam radius on the mirror, Ys
and νs are Young’s modulus and Poisson coefficient of the
substrate, Yj and νj are the parameters of j-th coating
layer, dj and βj are thickness and interference coefficient
of j-th coating layer. The dissipation is then introduced
empirically in the form of the loss angle Y → Y (1− iφ).

There are several models that try to describe this loss
angle theoretically [9, 10] and phenomenologically [11].
Viscosity is one of the sources of dissipation. In the fol-
lowing section we show that viscosity can be introduced
into equations in the same way, providing a new type of
noise.

II. MODEL OF VISCOSITY

In hydrodynamics the viscosity can be introduced into
Navier-Stokes equation through the viscose stress tensor
σvik:

σvik = η

[
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

]
+ ζδik

∂vl
∂xl

, (II.1)

where η is the shear viscosity, ζ is the volume viscosity
and ~v is the velocity of the particles. Combined with ten-
sor Hooke’s law it gives the Kelvin-Voigt model for vis-
coelastic materials, which works well for modeling creep
in solid materials [12]. This model was also successfully
used to explain experimental data in [13]. However, this
model does not give correct results for ultrasonic losses in
our case of high-viscosity limit as in spectral representa-
tion it corresponds to complex substitution of shear and
bulk moduli

K → K + iωζ, (II.2)

G→ G+ iωη. (II.3)

It can be shown that this results in unrealistically high
noise and even leads to wrong dispersion relation for
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FIG. 1. “Elementary cell” of the SLS model.

sound waves. There is another viscosity model, called
Maxwell model which is usually used for glasses [14].
However, this model does not lead to exponential mater
flow rate measured in [15] and allows infinite motion that
was not observed in experiment [16]. That is why we use

a more general Standard Linear Solid model (SLS) for
viscoelastic materials [17].

The SLS model can be illustrated with the spring dia-
gram, shown on figure 1. This “elementary cell” consists
of a first (static or long-term) spring Y with shear and
bulk moduli G and K, second (dynamic) spring Y ′ with
parameters G′ and K ′, and a dashpot with shear and
bulk (volumetric) viscosity η and ζ. The first spring gov-
erns the static behavior of the system while the higher
frequency motion uses both. Here we should note, how-
ever, that for ultra high viscosities of glasses all “static”
load experiments are too fast for the second spring to re-
lax (unless they are made at timescale of years). In this
way both in measurements of speed of sound and in static
load experiments only the sum of the above introduced
moduli is observed. This can be also shown directly us-
ing the model master equations (II.4), tending viscosities
to infinity.

The master equation for the tensor stress-strain rela-
tionship in Standard Linear Solid model is

(
1 +

G

G′

)
ε̇+

1

3

(
K

K ′
− G

G′

)
tr (ε̇) +

G

η
ε+
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3
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K
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σ

2η
+

1

3

(
1
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2η

)
tr (σ) (II.4)

where indices i and j in stress σ and strain ε tensor no-
tation, so as delta functions δij in front of trace are omit-
ted. Having dynamic moduli G′,K ′ → ∞ we arrive at
the Kelvin-Voigt. Having K,G → 0 (long-term spring
removed), we come to Maxwell model. Finally, in high
viscosity limit (η, ζ →∞) the problem reduces to general
static problem with “quasi-static” moduli G0 = G + G′

and K0 = K +K ′ that describe both high-frequency ex-
periments and static load experiments held at time scales
less than several years.

Taking spectral representation of (II.4) we can get the
following complex substitution for shear and bulk moduli
with which we can introduce viscous losses:

K → K +
iωζK ′

K ′ + iωζ
, (II.5)

G→ G+
iωηG′

G′ + iωη
. (II.6)

Unfortunately, the parameters of the model G′,K ′, G,K
as well as viscous parameters η, ζ at room temperatures
are difficult to measure.

A. Standard Linear Solid parameters

To estimate the SLS parameters of fused silica a series
of recent results [13, 15, 16] may be used. In those works

a flow of fused silica plates during decades under their
own weight was studied. We propose to reconsider these
results in the view of SLS model.

Assuming that time dependence of the fields can be
separated from coordinate part so that ε̂(~r, t) = ε̂(~r)T (t)
and σ̂(~r, t) = σ̂(~r)Ts(t), and using (II.4) we obtain:

σµ>3(~r)

εµ>3(~r)
=

(1 +G/G′)Ṫ +GT/η

Ṫs/(2G′) + Ts/(2η)
= CG, (II.7)

tr(σ(~r))

tr(ε(~r))
=

(1 +K/K ′)Ṫ +KT/ζ

Ṫs/(3K ′) + Ts/(3ζ)
= CK , (II.8)

where µ > 3 means non-diagonal terms (Voigt notation).
The direct expressions for stress tensor diagonal can also
be obtained:

σµ<=3(~r)

εµ<=3(~r)
=CG +

1

3
(CK − CG)

tr (ε(~r))

εµ<=3(~r)
. (II.9)

The form of the relations (II.7)-(II.9) suggests that there
are probably two different oscillatory behaviors (e.g.
time dependences) for diagonal (related to volumetric)
and non-diagonal (related to shear motion) terms of the
tensors. In this way the displacement vector may be
decomposed in two parts as ~u(~r, t) = ~uK(~r)TK(t) +
~uG(~r)TG(t). So for stress tensor we also can write
σ̂(~r, t) = σ̂K(~uK)TsK (t) + σ̂G(~uG)TsG(t). Note that σG
and σK act like linear differential operators.
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The equation of elastic motion can be written as fol-
lowing [18]:

ρ~̈u = −ρg + div σ̂, (II.10)

where ρ is density, g is gravity acceleration, and div σ̂ =
∂σik

∂xk
in Cartesian system of coordinates. Substituting the

above suggested decomposition into homogeneous equa-
tions we can see that due to linearity we can treat equa-
tions for ~uK and ~uG separately. Furthermore the equa-
tions are of the same form with respect to the partial
index (K or G). The displacements should be matched
to satisfy the boundary conditions. The solution can be
introduced in the form of the sum of a particular solution
of full equation and a combination of solutions of homo-
geneous equations. Nontrivial homogeneous equations of
motion for cylindrical symmetry (uϕ = 0 and ∂

∂ϕ = 0),

omitting the part index can be written as follows:

ρT̈ur = Ts

(
1

r

∂

∂r
(rσr) +

∂

∂z
σ5

)
, (II.11)

ρT̈uz = Ts

(
1

r

∂

∂r
(rσ5) +

∂

∂z
σz

)
. (II.12)

Now dividing the equations over Ts we collect all
time-dependent variables on the right and coordinate-
dependent on the left, thus performing coordinate sepa-
ration. So we get T̈ /TS = k2, where k2 is the separation
parameter in units of 1/(Pa1/2 s). This constant enumer-
ates the solutions of homogeneous equation and is to be
summed over in attempt to satisfy the boundary condi-
tions. It is shown further that this value is not needed
for the determination of time constant. Combining this
result with (II.7) and (II.8) we find the temporal parts
of equations in the form

−k2
(

(1 +G/G′)Ṫ +
G

η
T

)
=

1

2G′
...
T +

1

2η
T̈ . (II.13)

The corresponding equation and solution for volumetric
part is obtained by changing G→ K, η → ζ and 2→ 3.
This equation for high viscosity approximation provides
three time constants:

γ0 =− GG′

η(G+G′)
, (II.14)

γ± =− G′2

2η(G+G′)
± ik
√
G+G′. (II.15)

This results in a solution in the form of damped (eReγ±t)
oscillations with frequencies Imγ±, near momentary equi-
librium, exponentially (eγ0t) approaching the final sta-
tionary displacement U0. Note that γ0 is indepen-
dent of k and thus on the whole coordinate part solu-
tion, factorizing overall exponential decay tendency. In
this way we obtain the exponential tendency function
U0(1 − exp(γ0(t − t0)) used in [15] to approximate the

experimental data. Although it can be shown numer-
ically that there is more energy in volume part of de-
formations, we assume that this exponential damping is
related mostly to shear process. The observable is the
z-displacement in the mirror’s center which can be es-
timated as

∫
thickness

εzzdz +
∫
radius

εrzdr, thus the shear
part scales with the disc radius and prevails.

The parameters U0 and γ−10 of exponential approxi-
mation are badly determined (40% and 111% of relative
variance for 95% confidence). So we use estimations ob-
tained for the last two plates [13]. It was shown that their
relaxation has already finished (a year shift was less than
the accuracy limit of 0.5 nm), allowing the authors to
extract the parameters with 10% accuracy.

We can get an estimate for U0 from stationary con-
sideration that obviously coincides with the common one
[19, 20]:

U0 =
gρR2

16Y h2
(3(5R2 + 4h2)− 4(3R2 − h2)ν − 3R2ν2),

(II.16)

where Y = 9KG
3K+G is Young modulus, ν = 3K−2G

2(3K+G) is

Poisson ratio, R is plate radius, h is its thickness and
ρ is density. To complete the system of equations we
use expressions for longitudinal and transversal speed of
sound, modified according to the SLS model (II.5), (II.6)
at high frequency and viscosity limit:

v2l ≈
3(K +K ′) + 4(G+G′)

3ρ
(II.17)

v2t ≈
G+G′

ρ
(II.18)

In addition we make an assumption that the Poisson
ratio for static parameters should be of the same order
as that for quasi-static one. Being small this should be
suitable for our estimations

Used values Estimated values

U0 35 ,nm K 8.7 GPa

ν0 0.17 G 7.3 GPa

ct 3764 m/s G′ 23.8 GPa

γ−1
0 12 years η 2.1 × 1018 Pa·s

TABLE I. Material parameters obtained from literature and
estimated.

The results are summarized in table I. The estimated
viscosity is 10 times higher than that obtained in original
paper [13]. Nevertheless it is still much less than extrap-
olation values following from high-temperature measure-
ments.

III. VISCOSITY NOISE

We can now use permittivities (I.2)-(I.4) with the sub-
stitution (II.5)-(II.6) to calculate the noises.
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Ss =
4kBT

ω2

1

4
√
πw(v2l − v2t )2v4t ρ

2

(
v4t
K ′2

ζ
+ (3v4l − 6v2l v

2
t + 4v4t )

G′2

3η

)
, (III.1)

Scj =
4kBT

ω2

∑
j

|βj |2dj
πw2

1

v4ljρ
2
j

(
K ′2j
ζj

+
4G′2j
3ηj

)
, (III.2)

Ssj =
4kBT

ω2

∑
j

dj
πw2

1

(v2l − v2t )2v4ljρ
2

(
2v2ljv

2
tj

ρj(v
2
lj
− v2tj )

ρ(v2l − v2t )

(
K ′2

ζ
+
G′2

3η

)
−

(
v4tj

K ′2j
ζj

+ (3v4lj − 6v2tjv
2
lj + 4v4tj )

G′2j
3ηj

))
.

(III.3)

Here v2l and v2t – longitude and transverse wave veloci-
ties of the substrate and j-th layer, G′ K ′ – short time
shear and bulk moduli of substrate and j-th layer, η ζ –
shear and bulk viscosity of substrate and j-th layer, ρ –
materials’ densities.

Layer ν n Y GPa φ

s 0.17 1.45 72 7.6 × 10−12f0.77

l 0.17 1.45 72 0.4 × 10−4

h 0.23 2.06 140 2.3 × 10−4

TABLE II. Substrate (s), high-refractive (h) and low refrac-
tive (l) layer parameters, used for calculation. Other con-
stants are λ = 1.064 mkm; w = 0.06 m; T = 290 K.
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FIG. 2. Brownian noises from substrate and coating (dashed
lines) for parameters from table II according to [21] with vis-
cosity noises (solid lines). The error estimation is 15% (dots).

We use mirror parameters from [21], given in Table
II. Here “l” stands for low refraction material (silica),
“h” stands for high refraction material (tantala) and “s”
for substrate (high-quality silica). Y and σ are Young
modulus and Poisson ratio of the layers (used to estimate
Brownian noises), n goes for refraction indices, φ goes for

loss angles, λ is laser wavelength, w is the laser beam spot
radius (e−2 power) and T is temperature.

The numerical estimates of silica part together with
the standard Brownian noise is shown on Fig. 2. The
coating part appears to be by several orders lower then
viscosity substrate noise due to it’s small thickness. It
can be neglected until tantala has its viscosity at least 5
orders smaller than silica does (see fig.3).
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on the viscosity of the substrate ηS , silica layer ηl or tantala
layer ηh in units of η0 = 2.1 × 1018 Pa·s. The rest of the
viscosities were taken equal to η0 for each curve.

IV. CONCLUSION

The viscosity of fused silica can be the source of ad-
ditional noise in LIGO antennae exceeding the substrate
Brownian noise at frequencies bellow 19 Hz. However, if
we use the viscosity value as calculated in [16] this point
moves close to 100 Hz – the maximum of LIGO sensi-
tivity. Furthermore, the whole volumetric part of the
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noise is unknown due to absence of appropriate material
parameters data.

Another uncertainty is attributed to viscosity in mir-
ror’s coating which is totally unknown. Remembering
that regular mechanical coating losses are three orders of
magnitude higher than in bulk material making coating
Brownian noise the limiting factor of the LIGO detec-
tor, viscosity in stressed coating may suggest surprises.
Note that the less is the viscosity, the higher is the noise.
We also note that temperature reduction may be an effi-
cient way to reduce the viscosity noise increasing viscos-
ity itself. Nevertheless, the coating Brownian noise still
prevails remaining the limiting factor for LIGO interfer-

ometers for now.
We also conclude that fused silica can be described by

the Maxwell model of viscosity for times, smaller than 12
years from the start of relaxation, while the SLS model
should be used otherwise.
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