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Abstract

Axions can be described by a relativistic field theory with a real scalar field φ whose self-

interaction potential is a periodic function of φ. Low-energy axions, such as those produced in

the early universe by the vacuum misalignment mechanism, can be described more simply by a

nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a

function of ψ∗ψ. We determine the coefficients in the expansion of the effective potential to fifth

order in ψ∗ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-

Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in

powers of ψ∗ψ, we develop a sequence of systematically improvable approximations to the effective

potential that resum terms of all orders in ψ∗ψ.
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I. INTRODUCTION

The most compelling solution of the strong CP problem of QCD is the Peccei-Quinn

mechanism, which involves the spontaneous breaking of a U(1) symmetry of a quantum

field theory for physics beyond the Standard Model [1]. This solution implies the existence

of the axion, which is the pseudo-Goldstone boson associated with the Peccei-Quinn U(1)

symmetry [2, 3]. This U(1) symmetry is spontaneously broken at a scale fa called the

axion decay constant. The geometric mean of fa and the axion mass ma must be about

108 eV. Astrophysical and cosmological constraints have reduced the window of possible

axion masses to within one or two orders of magnitude of 10−4 eV [4].

Axions are one of the most strongly motivated possibilities for the particles that make up

the dark matter of the universe [4]. Axions can be produced in the early universe with an

abundance that is compatible with the observed dark matter density by a combination of the

cosmic string decay mechanism [5, 6] and the vacuum misalignment mechanism [7–9]. Both

mechanisms produce axions that are extremely nonrelativistic. The axions from the cosmic

string decay mechanism are incoherent, while the axions from the vacuum misalignment

mechanism are coherent. Sikivie and collaborators have pointed out that gravitational in-

teractions can bring the axions in the early universe into thermal equilibrium [10, 11]. Other

investigators have reached similar conclusions [12–15]. The thermalization of the axions can

produce a Bose-Einstein condensate, and it can drive the condensate locally towards the

lowest-energy states that are accessible.

The most appropriate field-theoretic framework for axions depends on the momentum

scale. In a fundamental quantum field theory for physics beyond the Standard Model, the

axion field is the Goldstone mode of the complex scalar field with the Peccei-Quinn U(1)

symmetry. In a low-energy effective field theory for momentum scales small compared to

fa, the axion can be represented by an elementary quantum field φ(x) that is a real Lorentz

scalar. Interactions between axions are mediated by local couplings of φ to Standard Model

fields. At smaller momentum scales below the confinement scale of QCD, axions have local

self-interactions that are generated by a potential V(φ) that is a periodic function of φ. At

still smaller momentum scales below the axion mass ma, the most appropriate framework

is a nonrelativistic effective field theory called axion EFT [16]. The axion is represented by

an elementary quantum field ψ(r, t) that is a complex scalar. The self-interactions of axions
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are generated by an effective potential Veff(ψ∗ψ).

An important application of axion EFT is to axionic dark matter. The nonrelativistic

axions produced by the vacuum misalignment mechanism have huge occupation numbers.

They are therefore often described by a real-valued classical field φ(r, t) that evolves accord-

ing to relativistic field equations. However if the axions form a Bose-Einstein condensate,

they can be described more simply by a complex-valued classical field ψ(r, t) that evolves

according to the nonrelativistic field equations of axion EFT. Many of the theoretical issues

concerning axion dark matter can be more appropriately addressed within axion EFT.

The Lagrangian for the relativistic axion field φ is that of a real Lorentz scalar field with

a self-interaction potential V(φ). One might expect that the effective Lagrangian for axion

EFT could be completely determined from the relativistic axion Lagrangian by a simple

nonrelativistic reduction. This is indeed the case for small fluctuations around the vacuum.

The nonrelativistic reduction of a free relativistic real scalar field φ with rest mass ma is

a free nonrelativistic complex field ψ with kinetic mass ma. The relativistic equations for

the real field φ are second order in time derivatives while the nonrelativistic equations for

the complex field ψ are first order in time derivatives, so they both describe the degrees

of freedom of a single particle. The coupling constant for 2 → 2 axion scattering can

also be obtained directly by a simple nonrelativistic reduction. This determines the (ψ∗ψ)2

term in the effective potential Veff(ψ∗ψ) for axion EFT. However the higher powers of ψ∗ψ

in Veff cannot be determined by the simple nonrelativistic reduction. The simplest way to

determine them is to use the matching methods of effective field theory. Rather than deriving

the effective Lagrangian from that of the relativistic theory, its general form is assumed and

the specific terms are deduced by matching low-energy n→ n axion scattering amplitudes.

In Section II, we discuss two alternatives for the relativistic axion potential V(φ): the

more familiar instanton potential and the more accurate chiral potential. In Section III, we

study the effective potential Veff(ψ∗ψ) for axion EFT. We calculate the exact coefficients in

the expansion of Veff to 5th order in ψ∗ψ by matching low-energy axion scattering amplitudes.

If a Bose-Einstein condensate of axions is sufficiently dense, the expansion of Veff in powers

of ψ∗ψ cannot be truncated. We therefore introduce a sequence of systematically improvable

approximations to Veff that resum terms of all orders in ψ∗ψ. Our results are summarized

in Section IV.
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II. RELATIVISTIC AXION FIELD THEORY

In this Section, we present two alternatives for the relativistic axion potential V(φ): the

instanton potential [17] and the chiral potential [18]. Since the chiral potential is less familiar,

we present its derivation from the leading-order chiral Lagrangian for QCD, following closely

the analysis of Ref. [19]. Some properties of the axion were determined precisely in Ref. [19]

using a next-to-leading-order chiral Lagrangian.

A. Relativistic Lagrangian for axions

At momentum scales much smaller than the axion decay constant fa, the axion can be

described by a relativistic field theory with a real Lorentz scalar field φ(x). At still smaller

momentum scales below the QCD scale, the self-interactions of axions can be described by

a relativistic axion potential V(φ). The propagation of the axion and its self-interactions are

described by the Lagrangian

L = 1
2
∂µφ∂

µφ− V(φ). (1)

The corresponding Hamiltonian density is

H = 1
2
φ̇2 + 1

2
∇φ∗ · ∇φ+ V(φ). (2)

The relativistic axion potential V(φ) is a periodic function of φ with period 2πfa:

V(φ) = V(φ+ 2πfa). (3)

The relativistic potential is an even function of φ, so it can be expanded in powers of

φ2. We choose an additive constant in V(φ) so it has a minimum of 0 at φ = 0. The

quadratic term in the expansion is 1
2
m2
aφ

2, where ma is the axion mass. The expansion of

V(φ) to higher orders in φ2 determines the coupling constants for self-interactions of the

axion. We can define dimensionless coupling constants λ2n by using the mass ma and the

decay constant fa to set the scales:

V(φ) =
1

2
m2
aφ

2 +m2
af

2
a

∞∑
n=2

λ2n

(2n)!

(
φ

fa

)2n

. (4)

The Feynman rule for the (2n)−axion vertex is −iλ2nm
2
a/f

2n−2
a . For most purposes, the

relativistic axion field theory can be treated as a classical field theory, because loop diagrams

are suppressed by factors of m2
a/f

2
a , which is roughly 10−48.
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B. Effective theory below the weak scale

At momentum scales small compared to the masses of the W± and Z0 bosons but

above the QCD scale, the axion can be described by a relativistic scalar field φ whose

self-interactions are mediated by interactions with Standard Model fields. The terms in the

effective Lagrangian that couple the axion to the Standard Model fields reduce to

Laxion =
1

8πfa

(
αsG

a
µνG̃

aµν +
E

N
αFµνF̃

µν

)
φ+

1

2fa
Jµ∂µφ, (5)

where Ga
µν and Fµν are the field strengths for QCD and QED, G̃a

µν = 1
2
εµνλσG̃

aλσ and F̃µν

are the corresponding dual field strengths, and Jµ is a linear combination of axial-vector

quark currents that depends on the details of the axion model. The anomaly ratio E/N is

also model dependent. For example, E/N = 0 in the simplest KSVZ model [20, 21] and

E/N = 8/3 in a simple DFSZ model [22, 23]. The QCD field-strength term in Eq. (5) is

proportional to the topological charge density αsG
a
µνG̃

aµν/8π. It defines the normalization

of the axion decay constant fa. The quantization of the topological charge in the Euclidean

field theory implies a shift symmetry of the axion field, which requires the axion potential

V(φ) to satisfy the periodicity condition in Eq. (3). At low momentum, the couplings of

axions to the lightest quarks are particularly important. The lightest quarks are the up

and down quarks, which form an SU(2) flavor doublet: Q =
(
u
d

)
. Their mass term can be

expressed as

Lmass = Tr
[
M(QRQ̄L +QLQ̄R)

]
, (6)

where M = diag(mu,md) is the mass matrix of the u and d quarks.

The gluon field strength term in Eq. (5) can be eliminated by a chiral transformation of

the quark fields that depends on φ(x). The transformation can be restricted to the doublet

Q of u and d quarks:

Q(x) −→ exp
(
i(φ(x)/2fa)Tγ5

)
Q(x), (7)

where T is a hermitian 2× 2 flavor matrix with unit trace. The further condition that this

transformation commutes with the SU(2) × U(1) electroweak gauge symmetry requires T

to be proportional to the unit matrix. The transformation in Eq. (7) eliminates the QCD

field-strength term in Eq. (5), and it changes the coefficient of the QED field-strength term

and the coefficients of the axial-vector u and d currents:

Laxion =
1

8πfa

(
E

N
− 6 tr(Q2T )

)
αFµνF̃

µνφ+
1

2fa

(
Jµ − Q̄Tγµγ5Q

)
∂µφ, (8)
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where Q = diag(+2
3
,−1

3
) is the charge matrix for the u and d quarks. The transformation

in Eq. (7) changes the mass term in Eq. (6) to

Lmass = Tr
[
M(φ)QRQ̄L +M†(φ)QLQ̄R

]
, (9)

where the 2× 2 matrix M(φ) depends on the axion field:

M(φ) = exp
(
i(φ/2fa)T

)
M exp

(
i(φ/2fa)T

)
. (10)

C. Instanton potential

The relativistic axion potential that has been used in most phenomenological studies of

the axion is

V(φ) = m2
af

2
a [1− cos(φ/fa)] . (11)

This potential was first derived by Peccei and Quinn [17]. We refer to it as the instanton

potential. The dimensionless coupling constants λ2n for axion self-interactions defined by

the power series in Eq. (4) are λ2n = (−1)n+1. The negative sign of λ4 = −1 implies that

axion pair interactions are attractive. The instanton potential is illustrated in Fig. 1.

The instanton potential can be derived using an approximation that keeps only terms

that are leading order in the Yukawa coupling constants and in the self-interaction coupling

constants for the complex scalar field with the Peccei-Quinn U(1) symmetry [17]. The

instanton potential can also be derived to all orders in the coupling constants by using the

dilute instanton gas approximation [17]. Neither of these approximations is actually valid,

and there is no known way to systematically improve upon them. The instanton potential

should therefore be regarded at best as a qualitative model for the relativistic axion potential.

D. Chiral potential

QCD has an SU(2)L × SU(2)R symmetry that is spontaneously broken to its diagonal

SU(2) subgroup and is also explicitly broken to that subgroup by the quark mass term

in Eq. (6). The momentum scale for the spontaneous symmetry breaking is 4πfπ, where

fπ ≈ 92 MeV is the pion decay constant. At momentum scales far below 4πfπ, the only

degrees of freedom of QCD are the pions fields πi(x), i = 1, 2, 3. They can be expressed as an

SU(2)-valued matrix U(x) = exp(iπi(x)σi/fπ) whose expectation value in the QCD vacuum
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FIG. 1: Relativistic axion potentials V as functions of φ: instanton potential (dotted curve) and

chiral potential for z = 0.48 (thick solid curve) and for z = 0.45 and 0.51 (higher and lower thin

solid curves).

is the unit matrix. The explicit symmetry breaking of the quark mass term in Eq. (6) can

be reproduced by the pion fields by making the substitution

QLQ̄R −→
m2
πf

2
π

2(mu +md)
U(x). (12)

where mπ ≈ 140 MeV is the pion mass. The quark mass term in Eq. (9) then becomes

Lmass =
m2
πf

2
π

2(mu +md)
Tr
[
M(φ)U † +M†(φ)U

]
. (13)

One might be tempted to obtain the axion self-interaction potential V(φ) by taking the

expectation value of Lmass in Eq. (13) in the QCD vacuum, which can be obtained by setting

U equal to the identity matrix. It is evident that this is incorrect, because Tr[M(φ)+M†(φ)]

does not satisfy the periodicity condition in Eq. (3), and it depends on the choice of the

flavor matrix T in the chiral transformation in Eq. (7). To obtain the correct axion potential,

it is necessary to take into account the response of the pion fields. This can be accomplished

by setting the pion fields in Eq. (13) equal to their stationary values in the presence of a
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constant axion field φ. The resulting potential for the axion field is

V(φ) = m2
πf

2
π

(
1−

[
1− 4z

(1 + z)2
sin2(φ/2fa)

]1/2
)
, (14)

where z = mu/md is the ratio of the up and down quark masses. This potential was first

derived by Di Vecchia and Veneziano [18]. We refer to it as the chiral potential. The product

of the axion mass and the axion decay constant is given by

m2
af

2
a =

z

(1 + z)2
m2
πf

2
π . (15)

In Ref. [19], the analysis of the axion potential was carried out to next-to-leading order

in the chiral effective field theory for QCD. The numerical value of the up/down quark mass

ratio is z = 0.48(3). The product of the axion mass and decay constant is [19]

mafa =
[
7.55(5)× 107 eV

]2
. (16)

Cosmological constraints restrict the decay constant to fa <∼ 1021 eV, and astrophysical

constraints restrict it to fa >∼ 3 × 1018 eV [4]. The allowed range for the axion mass is

therefore 6× 10−6 eV <∼ ma
<∼ 2× 10−3 eV.

In Fig. 1, the chiral potential is compared to the instanton potential in Eq. (11). The

potentials have the same curvature near the minima, but the amplitude of the oscillation

for the chiral potential with z = 0.48(3) is larger by a factor of 1.48(3). Note that the

instanton potential can be derived from the chiral potential in Eq. (14) by applying the

binomial expansion to the square root, truncating the expansion after the sin2(φ/2fa) term,

and then using a trigonometric identity.

We now compare the predictions of the chiral potential in Eq. (14) and the instanton

potential in Eq. (11) for the dimensionless coupling constants λ2n for axion self-interactions

defined by the power series in Eq. (4). For the instanton potential, these coupling constants

are λ2n = (−1)n+1. For the chiral potential, there is no analytic expression for λ2n as a

function of n. The dimensionless coupling constant for the 4−axion vertex is

λ4 = −1− z + z2

(1 + z)2
. (17)

For z = 0.48(3), this coupling constant is λ4 = −0.343(15). The negative sign implies that

axion pair interactions are attractive, but their amplitude is smaller than for the instanton
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FIG. 2: Polynomial truncations of the potentials V as functions of φ: instanton potential (left

panel) and chiral potential with z = 0.48 (right panel). The truncations of the potential after

the 2nd, 3rd, 4th, and 5th powers of φ2 are shown as successively thicker solid lines. The vertical

dotted line in the right panel marks the radius of convergence of the chiral potential.

potential by about a factor of 3. For the chiral potential with z = 0.48, the next three

dimensionless coupling constants are λ6 = −0.126, λ8 = −0.874, and λ10 = −5.63. For the

instanton potential, the coupling constants alternate in sign. For the chiral potential with

z = 0.48, the first 7 coupling constants are negative. They are followed by 7 positive coef-

ficients, then 7 negative coefficients. This pattern seems to continue indefinitely, although

occasionally there are only 6 consecutive same-sign coupling constants.

There is an important difference between the chiral potential and the instanton potential

in the convergence properties of the power series in Eq. (4). For the instanton potential in

Eq. (11), the power series has an infinite radius of convergence. For the chiral potential in

Eq. (14), the radius of convergence is determined by the branch point of the square root

that is closest to the origin. The radius of convergence in φ/fa is

rc = 2| arcsin[(1 + z)/(2z1/2)]|. (18)

For z = 0.48(3), the radius of convergence 3.226(15) is a little beyond the first maxima in

the potential in Fig. 1, which are at φ/fa = ±π. The difference between the convergence
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properties of the power series for the chiral potential and the instanton potential can be seen

already at relatively low orders in φ, as illustrated in Fig. 2. For the instanton potential,

as the order of the truncation increases, the range of φ over which the difference between

two successive approximations is small gets larger and larger. For the chiral potential, as

the order of the truncation increases, the range of φ over which the difference between two

successive approximations is small never gets larger than about rcfa.

Since the relativistic potential has the periodicity property in Eq. (3), it can be expanded

in a cosine series:

V(φ) = m2
af

2
a

∞∑
j=1

bj [cos(jφ/fa)− 1] . (19)

For the instanton potential in Eq. (11), this series has only the j = 1 term. For the chiral

potential in Eq. (14), the coefficients bj in the cosine series can be expressed in terms of

hypergeometric functions:

bj =
(−1)j(2j − 2)!(1 + z)zj−1

22j−2j! (j − 1)! (1 + z2)j−1/2 2F1

(
1
2
j − 1

4
, 1

2
j + 1

4
; j + 1;

[
2z

1+z2

]2)
. (20)

These coefficients satisfy
∞∑
j=1

j2bj = −1 , (21)

which ensures that the potential in Eq. (19) has the correct mass term 1
2
m2
aφ

2. Using the

asymptotic behavior of the hypergeometric function for large j [24], we can determine the

asymptotic behavior of the coefficients:

bj −→
(−1)j(1 + z)(1− z2)1/2zj−1

√
π j3/2

. (22)

As j increases, these coefficients decrease exponentially as zj. Thus the sum over j in Eq. (19)

converges uniformly and rapidly. A relatively low-order truncation of the cosine series gives

an accurate approximation to the chiral potential. We can ensure that the coefficient of the

mass term 1
2
m2
aφ

2 is exact by not using the expression in Eq. (20) for the last coefficient

bjmax , but instead setting it equal to

bjmax = − 1

j2
max

(
1 +

jmax−1∑
j=1

j2bj

)
. (23)

For z = 0.48, the truncation with jmax = 5 gives an error that is less than 10−3 of the peak

value Vmax of the potential. The coefficients are b1 = −1.436, b2 = 0.167, b3 = −0.0394, and
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b4 = 0.0117 from Eq. (20) and b5 = −0.0026 from Eq. (23). The error decreases to 10−5 of

Vmax for jmax = 8.

The cosine series in Eq. (19) for the chiral potential can be used to develop a resummation

method for the power series in Eq. (4) when φ is outside the radius of convergence. The

coefficient λ2n in the power series can be expressed as an infinite sum:

λ2n =
∞∑
j=1

(−1)nj2nbj. (24)

The cosine function cos(jφ/fa) has a power series with an infinite radius of convergence.

The truncated cosine expansion defined by truncating the sum over j in Eq. (19) after the

jmax term therefore also has a power series with an infinite radius of convergence. The

coefficient λ2n(jmax) for that power series is obtained by truncating the sum in Eq. (24) after

the jmax term. It converges to λ2n as jmax → ∞. As jmax is increased, the power series for

the truncated cosine expansion converges as a function of jmax to V(φ) out to increasingly

larger values of φ.

III. NONRELATIVISTIC EFFECTIVE FIELD THEORY

In this section, we use effective field theory to obtain systematically improvable ap-

proximations to the effective potential Veff(ψ∗ψ) for axion EFT. We calculate the first five

coupling constants in the expansion of Veff in powers of ψ∗ψ exactly by matching low-energy

axion scattering amplitudes. We also introduce a systematically improvable sequence of

approximations for Veff in which terms of all orders in ψ∗ψ are resummed.

A. Effective Lagrangian for axion EFT

At momentum scales much smaller than the axion mass ma, the axion can be described

by a nonrelativistic effective field theory with a complex scalar field ψ(r, t). We refer to

this effective field theory as axion EFT [16]. The self-interactions of axions are described by

an effective potential Veff(ψ∗ψ). The propagation of the axion and its self-interactions are

described by the effective Lagrangian

Leff = 1
2
i
(
ψ∗ψ̇ − ψ̇∗ψ

)
−Heff , (25)
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where the effective Hamiltonian density has the form

Heff =
1

2ma

∇ψ∗ · ∇ψ + Veff(ψ∗ψ). (26)

The periodicity of V(φ) in Eq. (3) does not impose any simple constraints on Veff(ψ∗ψ).

Instead it implies that the same effective potential Veff(ψ∗ψ) describes the nonrelativistic

field theory associated with fluctuations of φ around any of the minima n(2πfa) of V(φ),

where n is an integer.

The effective potential for axion EFT can be expanded in powers of ψ∗ψ. We choose

an additive constant in Veff so it has a minimum of 0 at ψ∗ψ = 0. The first term in

the expansion is maψ
∗ψ, where ma is the axion mass. The expansion of Veff to higher

orders in ψ∗ψ determines the coupling constants for self-interactions of the axion. We define

dimensionless coupling constants vn by using the mass ma and the decay constant fa to set

the scales:

Veff(ψ∗ψ) = maψ
∗ψ +m2

af
2
a

∞∑
n=2

vn
(n!)2

(
ψ∗ψ

2maf 2
a

)n
. (27)

The Feynman rule for the n→ n axion vertex is −ivnm2
af

2
a/(2maf

2
a )n.

The Lagrangian for axion EFT in Eq. (25) has a U(1) symmetry in which the field ψ(r, t)

is multiplied by a phase. This symmetry implies conservation of the axion number:

N =

∫
d3r ψ∗ψ. (28)

In contrast, the number of axions is not conserved in the relativistic theory. For example, 2p

low-energy axions with p ≥ 2 can scatter into 2 relativistic axions through the (2p+2)−axion

vertex. This reaction cannot be described explicitly within axion EFT, because the final-

state axions are relativistic. By the optical theorem, the rate for this reaction is proportional

to the imaginary part of a one-loop 2p→ 2p scattering amplitude. The effects of this reaction

on low-energy axions can therefore be reproduced in axion EFT by a (ψ∗ψ)2p term in the

Lagrangian with an imaginary coefficient. Since this term comes from a one-loop diagram

in the relativistic theory, its coefficient is suppressed relative to the coefficient of the n = 2p

term in Eq. (27) by a factor of m2
a/f

2
a , which is roughly 10−48. We will therefore ignore the

imaginary part of the effective potential.
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FIG. 3: The tree-level diagrams for low-energy 3 → 3 scattering in the relativistic axion theory.

The first 2 diagrams are also diagrams in axion EFT. In the last diagram, the thicker line indicates

a virtual axion whose invariant mass is approximately 3m.

B. Coefficients in the effective potential

The effective potential Veff for axion EFT can be derived using the matching methods of

effective field theory. One assumes that low-energy axions can be described equally well by

the Lagrangian for the relativistic real scalar field φ in Eq. (1) or by the Hamiltonian for

the nonrelativistic complex field ψ of axion EFT in Eq. (26). The effective potential Veff

is then determined by matching low-energy scattering amplitudes in the relativistic theory

and in axion EFT. Since loop diagrams in the relativistic theory are suppressed by factors of

m2
a/f

2
a , it is only necessary to match the contributions to low-energy scattering amplitudes

from tree-level diagrams in the relativistic theory and tree-level diagrams in axion EFT.

The matching procedure of effective field theory determines the power series in ψ∗ψ for

the effective potential in Eq. (27). In the mass term maψ
∗ψ, the coefficient is determined by

the axion mass. The coefficients of the higher powers of ψ∗ψ can be determined by matching

low-energy scattering amplitudes. We begin by matching 2→ 2 axion scattering amplitudes.

The only tree-level diagram for 2 → 2 scattering is the 2 → 2 vertex. The Feynman rule

for that vertex in the relativistic theory is −iλ4m
2
a/f

2
a . The Feynman rule for that vertex in

axion EFT is −iv2/4f
2
a . To obtain the scattering amplitude with the standard relativistic

normalization of single-particle states, this must be multiplied by four factors of (2ma)
1/2.

By matching the scattering amplitudes, we obtain v2 = λ4.

We proceed to match the 3 → 3 axion scattering amplitudes. The tree-level diagrams

for 3 → 3 axion scattering in the relativistic theory are shown in Fig. 3. The first diagram

is the 3 → 3 vertex. The second diagram has two 2 → 2 vertices connected by a virtual

axion line. These two diagrams also give contributions to 3 → 3 scattering in axion EFT.

The third diagram has 3 axions scattering into a single virtual axion and then back into

three axions. This diagram does not contribute in axion EFT, because the invariant mass
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FIG. 4: The tree-level diagrams for low-energy 4 → 4 scattering in the relativistic axion theory.

The first 6 diagrams are also diagrams in axion EFT. In the last 5 diagrams, the thicker lines

indicate virtual axions whose invariant mass is approximately 3m.

of the virtual axion is approximately 3m. Having already determined v2, we determine v3

by matching the 3→ 3 axion scattering amplitudes: v3 = λ6 − (17/8)λ2
4.

We can determine v4 by matching the 4 → 4 scattering amplitudes from the tree-level

diagrams in Fig. 4. There are 11 diagrams, 6 of which also contribute in axion EFT. We

can then determine v5 by matching the 5 → 5 scattering amplitudes from the tree-level

diagrams. There are 48 diagrams, 17 of which also contribute in axion EFT. The diagrams

have up to 3 virtual axion lines, some with invariant mass that is approximately 5m.

The exact results for the dimensionless coupling constants vn in the effective potential

for axion EFT in Eq. (27) from matching the n → n scattering amplitudes with n up to 5

are

v2 = λ4, (29a)

v3 = λ6 −
17

8
λ2

4, (29b)

v4 = λ8 − 11λ4λ6 +
49

4
λ3

4, (29c)

v5 = λ10 −
45

2
λ4λ8 −

131

6
λ2

6 +
4315

24
λ2

4λ6 −
51725

384
λ4

4. (29d)

For the instanton potential, the first four dimensionless coupling constants in Eq. (29)

are v2 = −1, v3 = −1.125, v4 = −2.25, and v5 = 1.76. The coefficient v3 has the opposite

sign as λ6. The behavior of the first four polynomial truncations of the instanton effective

potential seems to be compatible with an infinite radius of convergence.
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FIG. 5: Polynomial truncations of the effective potentials Veff as functions of |ψ|: instanton effective

potential (left panel) and chiral effective potential with z = 0.48 (right panel). The truncations

of the potential after the 2nd, 3rd, 4th, and 5th powers of ψ∗ψ are shown as successively thicker

solid lines. The vertical dotted line in the right panel marks the radius of convergence of the chiral

nonrelativistic reduction potential.

For the chiral potential with z = 0.48, the first four dimensionless coupling constants in

Eq. (29) are v2 = −0.343, v3 = −0.376, v4 = −1.841, and v5 = −17.2. These coefficients vn

all have the same signs as λ2n. If this pattern continues, the first positive coefficient would

be v9. The first four polynomial truncations of the chiral effective potential are shown in

Fig. 5. The sequence of polynomial truncations converges rapidly for small values of ψ∗ψ.

However the sequence seems to diverge for ψ∗ψ beyond r2
cmaf

2
a/2, where rc = 3.23 is the

radius of convergence of the chiral nonrelativistic reduction potential in Eq. (18).

C. Naive nonrelativistic reduction

A polynomial truncation of the power series in Eq. (27) for the effective potential Veff is

useful only if ψ∗ψ is much less than maf
2
a . Otherwise it is necessary to keep terms of all

orders in ψ∗ψ. A first approximation to the effective potential for axion EFT that includes

terms of all orders in ψ∗ψ can be obtained by making a naive nonrelativistic reduction. The
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real field φ in the relativistic Hamiltonian density in Eq. (2) is replaced by

φ(r, t) =
1√
2ma

[
ψ(r, t)e−imat + ψ∗(r, t)e+imat

]
, (30)

where ψ(r, t) is a complex scalar field. Most of the resulting terms in the Hamiltonian density

have a rapidly oscillating phase factor eijmat, where j is a nonzero integer. Upon dropping

terms with a rapidly oscillating phase factor and also dropping the terms proportional to ψ̇

and ψ̇∗, we obtain an effective Hamiltonian density H of the form in Eq. (26). The resulting

power series for the effective potential is

V(0)
eff (ψ∗ψ) = maψ

∗ψ +m2
af

2
a

∞∑
n=2

λ2n

(n!)2

(
ψ∗ψ

2maf 2
a

)n
. (31)

(The meaning of the superscript (0) will be clear later.) In Eq. (31), half of the mass term

maψ
∗ψ comes from the φ̇2 term in Eq. (2), and the other half comes from the φ2 term in

V(φ). We call the potential with this power series the nonrelativistic reduction potential.

By comparing the coefficients v
(0)
n = λ2n of the interaction terms in Eq. (31) with the exact

coefficients vn given in Eqs. (29), we see that only v2 is correct. Thus the nonrelativistic

reduction potential has limited accuracy at small ψ∗ψ.

It is convenient to introduce a dimensionless number density variable n̂ defined by

n̂ = 2ψ∗ψ/(maf
2
a ). (32)

By the ratio test, the radius of convergence in n̂ of the power series for V(0)
eff is the same as

the radius of convergence in φ2/f 2
a of the power series for V in Eq. (4). Inside the radius of

convergence, the nonrelativistic reduction potential V(0)
eff can be defined by the power series.

Outside the radius of convergence, it is necessary to use a resummation method to calculate

V(0)
eff . The nonrelativistic reduction potential represents a selective resummation of terms to

all orders in ψ∗ψ. It is likely to be a better approximation for ψ∗ψ of order maf
2
a than the

polynomial in ψ∗ψ obtained by any truncation of the power series.

We first consider the instanton nonrelativistic reduction potential. For the instanton

potential in Eq. (11), the dimensionless coupling constants in Eq. (31) are λ2n = (−1)n+1.

The power series in Eq. (31) has an infinite radius of convergence and it can be summed

analytically:

V(0)
eff (ψ∗ψ) = 1

2
maψ

∗ψ +m2
af

2
a

[
1− J0(n̂1/2)

]
, (33)
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FIG. 6: Nonrelativistic reduction potentials V(0)
eff with 1

2maψ
∗ψ subtracted as functions of |ψ|:

instanton potential (dotted curve) and chiral potentials for z = 0.48 (thicker solid curve) and for

z = 0.45 and 0.51 (thinner solid curves). The horizontal lines are the asymptotic values of the

subtracted potentials at large |ψ|.

where J0(z) is a Bessel function. This potential was first derived in Ref. [25]. The explicit

term proportional to ψ∗ψ is half the mass term in Eq. (33). The other half of the mass term

comes from the second term in Eq. (33), which is a bounded function of ψ∗ψ. The instanton

nonrelativistic reduction potential is illustrated in Fig. 6, where V(0)
eff with half the mass term

subtracted is shown as a function of n̂1/2. For small n̂, this subtracted potential is 1
2
maψ

∗ψ.

For large n̂, the subtracted potential approaches m2
af

2
a with the asymptotic behavior

V(0)
eff (ψ∗ψ)− 1

2
maψ

∗ψ −→ m2
af

2
a

[
1−

(
4

π2n̂

)1/4

cos(n̂1/2 − 1
4
π)

]
. (34)

The damped oscillatory behavior at large n̂ is a remnant of the periodicity of the instanton

potential.

We next consider the chiral nonrelativistic reduction potential. If the chiral potential in

Eq. (14) is expanded as a cosine series as in Eq. (19), the nonrelativistic reduction potential

can be expressed as a Bessel series. To obtain the Bessel series, we expand cos(jφ/fa) as a

power series in φ, make the substitution in Eq. (30), and then drop rapidly oscillating terms.
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The resulting power series in ψ∗ψ can be summed analytically to get the Bessel function

J0(jn̂1/2). The resulting nonrelativistic reduction potential is

V(0)
eff (ψ∗ψ) = 1

2
maψ

∗ψ +m2
af

2
a

∞∑
j=1

bj
[
J0(jn̂1/2)− 1

]
. (35)

The term 1
2
maψ

∗ψ comes from the φ̇2 term in Eq. (2), and the second term comes from V(φ)

in Eq. (19). The coefficients bj for the chiral potential are given in Eq. (20). Since the Bessel

functions J0(jn̂1/2) are bounded functions of n̂ and the coefficients bj decrease exponentially

at large j, the sum over j in Eq. (35) converges. The chiral nonrelativistic reduction potential

seems to be the sum of 1
2
maψ

∗ψ and a term that is a bounded function of ψ∗ψ. The potential

with 1
2
maψ

∗ψ subtracted is shown in Fig. 6. It has the same qualitative behavior as the

instanton nonrelativistic reduction potential. At large n̂, the subtracted potential approaches

1.30m2
af

2
a for z = 0.48, oscillating around that value with an amplitude that decreases as n̂

increases. This oscillatory behavior at large n̂ is a remnant of the periodicity of the chiral

potential.

The chiral nonrelativistic reduction potential has a power series expansion in ψ∗ψ as in

Eq. (31). The coefficient λ2n can be obtained analytically by expanding the chiral potential

in Eq. (14) in powers of φ, and it is expressed as an infinite series in Eq. (24). The radius of

convergence in n̂1/2 of the power series for V(0)
eff , which is given in Eq. (18), is rc = 3.23 for

z = 0.48. Outside this radius of convergence, it is necessary to use a resummation method to

calculate the nonrelativistic reduction potential V(0)
eff . The Bessel series for the nonrelativistic

reduction potential in Eq. (35) can be used to construct such a resummation method. The

Bessel function J0(jn̂1/2) has a power series with an infinite radius of convergence. The

truncated Bessel expansion defined by truncating the sum over j in Eq. (35) after the jmax

term therefore also has a power series with an infinite radius of convergence. The coefficient

λ2n(jmax) for that power series is obtained by truncating the series in Eq. (24) after the jmax

term. As jmax is increased, the truncated Bessel expansion converges as a function of jmax

to V(0)
eff out to increasingly larger values of n̂.

D. Improved effective potentials

The nonrelativistic reduction potential V(0)
eff defined by the power series in Eq. (31) is

of limited accuracy at small ψ∗ψ, but it may provide a better approximation to the exact
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FIG. 7: The tree-level diagrams for n→ n scattering in the relativistic axion theory with no virtual

axion lines (left diagram) and with one virtual axion line (right diagram). The corresponding

diagrams in axion EFT are all those with no virtual axion lines and those with one virtual axion

line for which |p− q| = 1.

effective potential Veff for large ψ∗ψ than any truncation of the power series for Veff . The

nonrelativistic reduction potential would be a more compelling approximation if it was the

first in a sequence of effective potentials. We proceed to propose such a sequence that we

call improved effective potentials.

The power series in Eq. (31) for the nonrelativistic reduction potential V(0)
eff can be ob-

tained by approximating the coefficients vn in the power series in Eq. (27) for the effective

potential by v
(0)
n ≡ λ2n. In the effective field theory approach, this is equivalent to match-

ing the contributions to the n → n scattering amplitude for all n from diagrams with no

virtual propagators. These diagrams are the 2n axion vertex in the relativistic theory and

the n→ n vertex in axion EFT. For n = 3 and 4, these diagrams are the left-most diagram

in Fig. 3 and the top diagram in Fig. 4, respectively. For general n, the set of diagrams is

those in the left diagram in Fig. 7, which has n incoming lines attached to n outgoing lines

at a single vertex.

A sequence V(k)
eff , k = 0, 1, 2, . . ., of effective potentials can be defined by matching the

contributions to the n → n scattering amplitude for all n from diagrams with at most

k virtual propagators. The nonrelativistic reduction potential is the k = 0 term in this

sequence: V(0)
eff . We will refer to the potentials V(k)

eff with k ≥ 1 as improved effective potentials.

They will be defined by the power series expansion in Eq. (31) with the coefficients vn

replaced by v
(k)
n . The coefficients v

(k)
n agree with the exact coefficients vn for n = 2, . . . , k+2.

Thus the convergence of this sequence of effective potentials to Veff for small ψ∗ψ is just as

fast as the sequence of polynomial truncations of Veff . We expect the sequence V(k)
eff to

be increasingly accurate for large ψ∗ψ as k increases, because increasingly larger classes of
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diagrams are summed. We expect the sequence V(k)
eff to converge to Veff as k →∞, because

all diagrams are included in this limit.

The first improved effective potential V(1)
eff is obtained by matching the contributions to

scattering amplitudes from diagrams with zero or one virtual axion lines. The set of diagrams

for n → n scattering in the relativistic theory are shown in Fig. 7. The left diagram has n

incoming lines attached to n outgoing lines at a single vertex. These are also diagrams in

axion EFT. The right diagram in Fig. 7 has two vertices connected by a single virtual axion

line. The first vertex has p incoming lines and q outgoing lines. The corresponding diagrams

in axion EFT are the subset for which |p − q| = 1. The contributions to the dimensionless

coupling constant vn from matching both sets of diagrams in Fig. 7 can be expressed as a

sum over p and q:

v(1)
n = λ2n +

1

2

n∑
p=0

′
n∑
q=0

′
(
n

p

)(
n

q

)
λp+q+1λ2n−p−q+1

(
1− δ|p−q|,1

(p− q)2 − 1
−
δ|p−q|,1

4

)
. (36)

As indicated by the primes on the sums, the values of p and q are further constrained by the

requirement that p+ q be an odd integer ranging from 3 to 2n− 3. This constraint can be

made implicit by adopting the conventions that λ2 = 0 and that λm = 0 if m is odd. The

power series for the first improved effective potential V(1)
eff can be determined by inserting

the coefficients v
(1)
n in Eq. (36) into the power series in Eq. (27), provided n̂ is within the

radius of convergence. If n̂ is inside the radius of convergence, the potential V(1)
eff can be

defined by the power series. If n̂ is outside the radius of convergence, it is necessary to use

some resummation method to calculate V(1)
eff .

We first consider the first improved instanton effective potential. The power-series coef-

ficients v
(1)
n for V(1)

eff in Eq. (36) are determined by the coefficients λm, which are equal to

(−1)
1
2
m+1 if m is even and 0 if m is odd. The power series seems to have an infinite radius

of convergence. It seems to be the sum of a term proportional to maψ
∗ψ with coefficient

0.374(2) and a term that oscillates as a function of n̂1/2 at large n̂. In Fig. 8, we show

the first improved instanton effective potential V(1)
eff with 0.374maψ

∗ψ subtracted as a func-

tion of n̂1/2. At large n̂, the subtracted potential seems to oscillate around the same value

m2
af

2
a as the corresponding nonrelativistic reduction potential in Fig. 6, except with a slowly

increasing amplitude instead of a slowly decreasing amplitude.

We next consider the first improved chiral effective potential. The power-series coefficients

v
(1)
n for V(1)

eff in Eq. (36) are determined by the coefficients λ2n in the chiral nonrelativistic
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FIG. 8: First improved effective potentials V(1)
eff with 0.374maψ

∗ψ subtracted as functions of |ψ|:

instanton potential (dotted curve) and chiral potential with z = 0.48 (solid curve). The horizontal

lines are the asymptotic values of the corresponding subtracted nonrelativistic reduction potentials

in Fig. 6.

reduction potential V(0)
eff . The power series for V(1)

eff seems to have the same radius of conver-

gence in n̂ as the power series for V(0)
eff , whose radius of convergence is given in Eq. (18). The

power series with coefficients v
(1)
n in Eq. (36) can be used to calculate V(1)

eff only for n̂ inside

the radius of convergence. Outside that radius of convergence, V(1)
eff can be calculated using a

resummation method similar to that used for the nonrelativistic reduction potential. If the

Bessel series for V(0)
eff in Eq. (35) is truncated after the jmax term, the coefficients λ2n(jmax)

in its power series expansion in Eq. (27) are given by truncating the series in Eq. (24) after

the jmax term. Inserting the coefficients λ2n(jmax) into Eq. (36) defines coefficients v
(1)
n (jmax)

that depend on jmax. The power series obtained by inserting these coefficients v
(1)
n (jmax) into

Eq. (27) seems to have an infinite radius of convergence. As jmax increases, the power series

converges as a function of jmax out to larger and larger values of n̂. We identify the function

to which it converges as the first improved chiral effective potential V(1)
eff .

We have used this resummation method to calculate the first improved chiral effective

potential V(1)
eff with z = 0.48. It seems to be the sum of a term proportional to maψ

∗ψ with
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coefficient 0.374(9) and a term that oscillates as a function of n̂1/2 at large n̂. The coefficient

of the maψ
∗ψ term seems to have the same value 0.374 as for the first improved instanton

effective potential. In Fig. 8, we show the first improved chiral effective potential V(1)
eff with

0.374maψ
∗ψ subtracted as a function of n̂1/2. At large n̂, the subtracted potential seems to

oscillate around the same value 1.30m2
af

2
a as the chiral nonrelativistic reduction potential in

Fig. 6, except with a slowly increasing amplitude instead of a slowly decreasing amplitude.

It is evident from the comparison of Figs. 8 and 6 that there are significant differences

between the first improved effective potential and the corresponding nonrelativistic reduction

potential at large ψ. This raises the question whether the sequence of improved effective

potentials V(k)
eff does in fact converge as k → ∞. It would be worthwhile to calculate the

second improved effective potential V(2)
eff to see whether there is any sign of convergence of

the sequence V(k)
eff . If the sequence does not converge, it will be necessary to develop a better

way to calculate the effective potential Veff(ψ∗ψ) for axion EFT at large values of ψ∗ψ.

IV. SUMMARY

Axions can be described by a relativistic quantum field theory with a real scalar field

φ(x). The self-interaction potential V(φ) for axions is a periodic function of φ. Most

phenomenological investigations of axions have been carried out using the instanton potential

in Eq. (11), but a more accurate potential for the QCD axion is the chiral potential in

Eq. (14), which depends on z = mu/md. The two potentials are compared in Fig. 1.

There are quantitative differences between the two potentials. There is also an important

qualitative difference that is illustrated in Fig. 2. The power series in φ for the instanton

potential has an infinite radius of convergence, while the power series for the chiral potential

has a radius of convergence in φ of rcfa, where rc is given in Eq. (18).

Nonrelativistic axions can be described more simply by a nonrelativistic effective field the-

ory called axion EFT with a complex scalar field ψ(r, t). In axion EFT, the self-interactions

of axions are described by an effective potential Veff(ψ∗ψ) that has no simple periodicity

properties. We have calculated Veff to 5th order in ψ∗ψ by matching low-energy scattering

amplitudes in the relativistic theory and in axion EFT. The coefficients of the powers of

ψ∗ψ are given in Eqs. (29) in terms of the coefficients in the expansion of V(φ) in powers of

φ2. The first four polynomial truncations of the instanton effective potential and the chiral
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effective potential are shown in Fig. 5. There is a qualitative difference between the apparent

convergence of the two effective potentials. The instanton effective potential seems to have

an infinite radius of convergence, while the chiral effective potential seems to have an finite

radius of convergence in ψ∗ψ that is roughly r2
cmaf

2
a/2.

If the number density ψ∗ψ is too large, the effective potential Veff cannot be approximated

by a truncation of its expansion in powers of ψ∗ψ. In Sec. III D, we introduced a sequence

of improved effective potentials V(k)
eff that resum terms of all orders in ψ∗ψ. The sequence is

defined diagrammatically in terms of the matching procedure for axion EFT. The coefficients

in the expansion of V(k)
eff in powers of ψ∗ψ are exact through order k+2. In the limit k →∞,

all diagrams are included, so it is plausible that V(k)
eff converges to Veff in this limit.

We call the k = 0 potential V(0)
eff in the sequence of systematically improvable effective

potentials the nonrelativistic reduction potential, and we denote it also by V(0)
eff . It can be

defined by the coefficients in its power series in Eq. (31), which are determined by the

power-series coefficients for V(φ). The instanton nonrelativistic reduction potential, which

is given in Eq. (33), was first derived in Ref. [25]. The instanton nonrelativistic reduction

potential and the chiral nonrelativistic reduction potential are compared in Fig. 6. The

instanton nonrelativistic reduction potential is the sum of 1
2
maψ

∗ψ and a term that at

large |ψ| oscillates as a function of n̂1/2 around m2
af

2
a with a decreasing amplitude. The

chiral nonrelativistic reduction potential for z = 0.48 is the sum of 1
2
maψ

∗ψ and a term

that at large |ψ| seems to oscillate around 1.3m2
af

2
a with a decreasing amplitude. There is a

qualitative difference between the two nonrelativistic reduction potentials in the convergence

properties of their power series in ψ∗ψ. The instanton nonrelativistic reduction potential has

an infinite radius of convergence, while the radius of convergence in ψ∗ψ of the power series

for the chiral nonrelativistic reduction potential is r2
cmaf

2
a/2. We introduced a resummation

method based on the cosine expansion of the relativistic chiral potential to calculate the

chiral nonrelativistic reduction potential for larger values of ψ∗ψ.

We call the k = 1 potential V(1)
eff in the sequence of systematically improvable effective

potentials the first improved effective potential. It can be defined by the coefficients in

its power series, which are given in Eq. (36) in terms of the power-series coefficients for

V(φ). The first improved instanton effective potential and the first improved chiral effective

potential with z = 0.48 are compared in Fig. 8. They both seem to be the sum of a term

proportional to maψ
∗ψ with a coefficient that is approximately 0.374 and a term that at
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large |ψ| oscillates as a function of n̂1/2 with an increasing amplitude. The second term

seems to oscillate around the same value as for the corresponding nonrelativistic reduction

potential, which is m2
af

2
a for the instanton potential and 1.3m2

af
2
a for the chiral potential with

z = 0.48. There seems to be a qualitative difference between these two improved effective

potentials in the convergence properties of their power series in ψ∗ψ. The first improved

instanton effective potential seems to have an infinite radius of convergence, while the radius

of convergence in ψ∗ψ of the power series for the first improved chiral effective potential seems

to be roughly r2
cmaf

2
a/2. We used a resummation method based on the cosine series for the

relativistic chiral potential to calculate the first improved chiral effective potential for larger

values of ψ∗ψ.

The differences between the nonrelativistic reduction potential and the first improved

effective potential can be seen by comparing Figs. 6 and 8. There is an important quanti-

tative difference in the terms proportional to maψ
∗ψ, which have been subtracted in these

two figures. Its coefficient is 1
2

for the nonrelativistic reduction potentials and 0.374 for the

first improved effective potentials. There is an important qualitative difference in the be-

havior at large ψ∗ψ, where the nonrelativistic reduction potentials oscillate with decreasing

amplitudes and the first improved effective potentials oscillate with increasing amplitudes.

These qualitative and quantitative differences raise questions about the convergence of the

sequence V(k)
eff of effective potentials. Calculations of the next potential V(2)

eff in the sequence

could shed some light on this issue. If the sequence V(k)
eff does not converge, it will be neces-

sary to develop a better way to calculate the effective potential Veff(ψ∗ψ) for axion EFT at

large values of ψ∗ψ.

An important application of axion EFT is to Bose-Einstein condensates of axions. The

effective potential Veff(ψ∗ψ) is the mean-field energy of a condensate in which the quantum

field has expectation value ψ. Sikivie and Yang have argued that the dark matter halo

of a galaxy is a dilute Bose-Einstein condensate (BEC) of axions [10]. The (ψ∗ψ)2 term

in the effective potential is relevant to the thermalization of axions, although gravitational

interactions provide a more effective thermalization mechanism [10, 11]. The negative sign of

the coefficient of the (ψ∗ψ)2 term implies that a homogeneous BEC is unstable to fluctuations

that increase the local density. This instability may limit the coherence length of an axion

BEC to regions much smaller than a galaxy [29].

Axion stars are gravitationally bound collections of axions [26]. The axions can be de-
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scribed by the real scalar field φ(x) of a relativistic field theory, with self-interactions given

by the relativistic potential V(φ) and with gravitational interactions given by general rel-

ativity. Approximate solutions of the resulting equations for stable axion stars were first

calculated numerically by Barranco and Bernal [27]. Solutions were found only for axion

stars with mass M below a critical value M∗ that was determined numerically. We refer

to these solutions as dilute axions stars, because the number density of axions is much less

than maf
2
a , even at the center of the star. In the dilute axion star, the attractive forces from

gravity and from axion pair interactions are balanced by the kinetic pressure of the axions.

The axions in a dilute axion star are nonrelativistic, so they can be described accurately and

more simply by the complex scalar field ψ(r, t) of axion EFT, with self-interactions given

by the effective potential Veff(ψ∗ψ) and with gravitational interactions given by Newtonian

gravity. Because the axions are dilute, the effective potential Veff can be truncated after

the (ψ∗ψ)2 term. Accurate numerical solutions of the resulting equations were calculated by

Chavanis and Delfini [28]. The critical mass above which a dilute axion star is unstable to

collapse is

M∗ = 10.1 |λ4|−1/2
(
h̄f 2

a/Gm
2
ac

3
)1/2

, (37)

where G is Newton’s gravitational constant. If the axion mass is ma = 10−4±1 eV and if

λ4 = −0.343, this critical mass is 10−13∓2M�, where M� is the mass of the sun. The critical

mass is comparable to the mass of an asteroid.

If the mass of a dilute axion star exceeds the critical mass M∗ in Eq. (37), the star is

unstable to collapse. As the axion star implodes, the number density at its center increases.

When ψ∗ψ becomes comparable to maf
2
a , terms in the effective potential of all orders in

ψ∗ψ become important. In this case, it is necessary to use an approximation to Veff that

includes term of all orders, such as one of the improved effective potentials V(k)
eff defined in

Sec. III D. It may be possible to describe the collapse of the dilute axion star by solving the

time-dependent field equations of axion EFT.

One possibility for the remnant from the collapse of a dilute axion star is a dense axion

star, in which the attractive force from gravity is balanced by the mean-field pressure of

the axion Bose-Einstein condensate [16]. In a dense axion star, the number density of

axions has values larger than maf
2
a in the interior of the star, so the effective potential

Veff cannot be approximated by a truncation of its power series in ψ∗ψ. In Ref. [16], the

mass-radius relation for dense axion stars was calculated under the assumption that axion
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self-interactions are described by the instanton nonrelativistic reduction potential. It would

be worthwhile to calculate the mass-radius relation and other properties of dense axion stars

using the chiral nonrelativistic reduction potential, which may be more accurate. It would

also be worthwhile to calculate these properties using the first improved effective potential

to see how strongly they depend on the approximation for the effective potential of axion

EFT.

Axion EFT should be useful to address many of the important theoretical issues con-

cerning axion dark matter. Do gravitational interactions provide a sufficiently effective

thermalization mechanism that axions remain in a Bose-Einstein condensate, as argued in

Refs. [10, 11]? Is the coherence of the axion Bose-Einstein condensate limited by instabilities

to regions the size of an asteroid, as suggested in Ref. [29]? What is the fate of a dilute

axion star if it accretes enough axions so that it exceeds the critical mass M∗ in Eq. (37) and

begins to collapse? The answers to these questions are important for determining whether

the QCD axion remains a viable candidate for the dark matter particle.
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