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We enumerate the conditions necessary for CP violation to be manifest in n-n̄ oscillations, and
build a simple model that can give rise to such effects. We discuss a possible connection between
neutron oscillations and dark matter, provided the mass of the latter lies between mp − me and
mp + me. We apply our results to a possible baryogenesis scenario involving CP violation in the
oscillations of the Ξ0.
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I. INTRODUCTION

Given the evidence for an initial period of inflation
in the early Universe, the asymmetry between matter
and antimatter that we observe implies that baryon num-
ber (B) conservation must be violated [1]. Furthermore,
while the standard model (SM) accidentally conserves B
and lepton number (L) at the renormalizable level, both
are broken by nonperturbative effects [2], with only the
combination B − L conserved (however such anomalous
processes cannot give rise to proton decay as they con-
serve B mod 3). If neutrino masses are of the Majorana
type, as in the theoretically attractive seesaw mechanism,
they provide evidence for B − L violation, via a ∆L = 2
operator, providing further motivation to consider B vi-
olation.

The two phenomenological hallmarks of B violation
are neutron-antineutron oscillation [3] and proton de-
cay. Some recent reviews of n-n̄ oscillation are given in
Ref. [4]. While proton decay is much more strongly con-
strained by experiment than neutron-antineutron oscilla-
tion, the former requires that B is violated by one unit
while the latter requires violation by two units. There-
fore, in theories of baryon number violation that only
admit ∆B = 2 operators, n-n̄ oscillations can occur at
a potentially observable rate without leading to proton
decay (for recent work in this direction, see, e.g. [5, 6]).
For this reason, studying n-n̄ oscillation is a critical com-
ponent of understanding the origin of B violation.

The basic formulae governing neutron oscillation were
first derived some time ago [7]. If B is not conserved,
there can be a nonzero transition amplitude between the
(flavor eigenstates) n and n̄ that we denote as δ. There
is a splitting, ∆m, between mass eigenstates, that are a
linear combination of n and n̄, due to δ as well as from
other interactions, e.g. with a background magnetic field.
Typically ∆m� δ. Using a basis in which the spin axis
aligns with the background magnetic field, the system is
effectively two independent two-state systems, with the
component of angular momentum which is aligned with
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the magnetic field being conserved during the transition.
For time scales short enough to neglect the possibility of
neutron decay or when the neutron is stabilized by being
in a stable nucleus, the probability for a state that is a
neutron at t = 0 to oscillate to an antineutron is

Pn→n̄ =
2δ2

∆m2
(1− cos ∆mt) . (1)

In a typical experimentally relevant situation where
∆mt� 1, this becomes Pn→n̄ ' δ2t2 ≡ (t/τnn̄)

2, which
defines the oscillation lifetime. Neutron oscillations in
nuclei lead to nuclear decays which presently set the
best observational limit on τnn̄. The lower bound on the
16O lifetime from Super-Kamiokande of 1.9× 1032 yr [8]
at 90% C. L. corresponds [9] to τnn̄ > 3.5 × 108 s, or
δ < 1.9× 10−33 GeV.

In this letter we reconsider neutral baryon oscillations
in the presence of CP -violating and baryon number vi-
olating new physics, and discuss the conditions under
which CP violation can be exhibited in the oscillations.
We also consider whether a dark matter particle could
be observed in neutron decays, and whether such de-
cays could contribute to observable CP violation and/or
baryogenesis. We find that while decays of oscillating
neutrons are not likely to exhibit a significant amount
of CP violation, it is possible that oscillations of neutral
baryons containing heavier flavors could, perhaps even be
enough to create the baryon asymmetry of the universe.
We briefly outline a baryogenesis scenario involving CP
violation in oscillations of baryons containing heavy fla-
vor.

II. CP VIOLATION IN NEUTRAL FERMION
OSCILLATIONS

Because only states with the same spin can mix (in a
basis where the spin aligns with any external magnetic
field), a two-state Hamiltonian H suffices to describe os-
cillations of spin 1/2 particles. Here we use the n-n̄ sys-
tem as an example, but our results can be applied to any
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neutral spin 1/2 particle. In vacuum H is given by

H =

(
mn − i

2Γn M12 − i
2Γ12

M∗12 − i
2Γ∗12 mn − i

2Γn

)
. (2)

(3)

For details of our formalism and how to derive M12 and
Γ12 from a more fundamental theory follow from the
treatment of Refs. [10, 11] and are recapped in the Ap-
pendix. While some authors [12] have recently claimed
that CP violation is required for neutron oscillations, it
is always possible to reparameterize the system and use a
definition of CP so that the mass matrix is not CP violat-
ing [13, 14]. CP violation in interference between mixing
and decays is possible, leading to the n → n̄ oscillation
probability in vacuum differing from that for n̄→ n,

P|n〉→|n̄〉

P|n̄〉→|n〉
− 1 =

2= (M12Γ∗12)

|M12|2 − |Γ12|2 /4−= (M12Γ∗12)
. (4)

Generally, |M12| � |Γ12| so that

P|n〉→|n̄〉

P|n̄〉→|n〉
− 1 ' 2 |Γ12|

|M12|
sinβ, (5)

with β ≡ argM12Γ∗12 a reparameterization-invariant CP -
violating phase. We now examine the characteristics nec-
essary for a model that gives n-n̄ oscillations at a rate not
too far from the current upper bounds while also gener-
ating CP violation that is not vanishingly tiny.

Models that violate baryon number only by two units
allow for n-n̄ oscillations without generating proton de-
cay, which is subject to extremely strong constraints (see,
e.g., [5]). In such a model, if lepton number is not vio-
lated, Γ12 for the neutron system can be generated by
operators that allow for the decays

n→ p̄e+νe, n̄→ pe−ν̄e (6)

to proceed directly. However, the operators that generate
these decays are dimension-12, and it is difficult for them
to result in a value of Γ12 that is not exceedingly small
compared to 10−33 GeV. We are therefore led to consider
new states that are lighter than the neutron.

As a motivation to consider such states, let us as-
sume that baryon number is only absolutely conserved
mod 2, so that we have a conserved Z2 symmetry which
is a subgroup of baryon number. This Z2 symmetry
could be used to guarantee the stability of a dark mat-
ter Majorana fermion χ, provided that χ is lighter than
mp+me. Stability of the proton requires than χ be heav-
ier than mp − me.1 A slightly stronger lower bound of
mχ > 937.9 MeV comes from requiring that 9Be remain
stable and not decay via the reaction 9Be→ 8Be+χ. We

1 The stability of dark matter due to its mass being in this range
in a model to explain baryogenesis was considered in Ref. [15].
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FIG. 1. One diagram that leads to the decay n→ χγ as well
as to an absorptive portion to the n-n̄ transition amplitude,
Γ12, given a Majorana mass for χ. Diagrams where the photon
is attached to the scalar φ are suppressed by the large φ mass.
Removing the photon gives the diagram responsible for n-χ
(and n̄-χ) transitions.

have checked that this is the strongest bound that comes
from requiring that all stable nuclides are kinematically
forbidden from decaying to χ or χe+. We then consider
the decays of both neutron and antineutron into χ + γ
in order to generate Γ12. Justifying why χ should conve-
niently lie in this very narrow mass range is not the point
of this letter, but it could be argued for using anthropic
reasoning, or perhaps χ could be a baryon of a sector
mirror to ours [16], with its own gauge interactions. It
is also possible that χ only couples to heavy flavors, but
has a mass such that it can only decay into light flavors,
with 2 or more weak interactions are required for it to
decay, in which case the constraint on its mass can be
weakened.

As an example of how to generate an interaction that
would allow decays of the neutron or antineutron into
χ+γ, consider adding a scalar diquark, φ, that is a color
antifundamental and carries hypercharge 1/3. Then it
can couple to quarks through

L ⊃ gφūd̄+ h.c., (7)

where ū and d̄ are the (left-handed) up and down SU(2)
singlet quarks. We couple φ and d̄ to the Majorana
fermion χ,

L ⊃ yφ∗d̄χ+ h.c. (8)

These interactions generate a transition dipole opera-
tor, through diagrams like the one shown in Fig. 1, which
appears as a term in the effective Lagrangian involving
the neutron field as

Leff ⊃ µχ̄ΣµνnF
µν + h.c., (9)

with

µ ∼ eκ× gy

m2
φm

2
n

, (10)

where κ ∼ 10−2 GeV3 comes from evaluating the
hadronic matrix element 〈n|(udd)2|n〉 (for a detailed
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FIG. 2. Left: diagram responsible for Γ12 through interme-
diate on-shell χ and γ. Right: diagram responsible for M12.
The crosses represent χ mass insertions and the blobs are
the higher dimensional operators responsible for n-χ and n̄-χ
transitions, as seen in Fig. 1.

computation of this matrix element using lattice QCD,
see [17]). As shown on the left of Fig. 2, this coupling
gives a contribution to Γ12 that is

Γ12 =
µ2m2

nmχ

16π

(
1−

m2
χ

m2
n

)3

(11)

∼ 10−47 GeV

(
108 GeV

mφ/
√
gy

)4(
∆M

1 MeV

)3

. (12)

where ∆M ≡ mn − mχ � mn. There is also a contri-
bution toM12 from an off-shell intermediate χ exchange,
seen on the right of Fig. 2, that is larger than Γ12,

M12 ∼

(
κgy

m2
φ

)2
mχ

m2
n −m2

χ

(13)

∼ 10−33 GeV

(
108 GeV

mφ/
√
gy

)4(
1 MeV

∆M

)
. (14)

For CP violation to be present, there must exist another
contribution to M12, since this necessarily has the same
phase as Γ12. This can be done any number of ways,
e.g. we can add another Majorana fermion χ′ with sim-
ilar couplings as χ but different phases in the couplings.
Without fine-tuning the two separate contributions to
M12 against each other, we would then generically ex-
pect the level of CP violation in the neutron-antineutron
system to be tiny,

P|n〉→|n̄〉

P|n̄〉→|n〉
− 1 ∝ |Γ12|

|M12|
. 10−14

(
∆M

1 MeV

)4

. (15)

One may wonder whether there is a contribution to the
neutron EDM that comes from attaching a photon to di-
agrams with external neutrons and a χ-γ loop. Since the
amplitudes responsible for an EDM must have ∆B = 0
(as we argued above, and as also done in Ref. [14],) poten-
tial contributions to the EDM from these diagrams must
not contain a B-violating χ mass insertion. However, the
lack of a factor of mχ in such diagrams (in contrast to
M12 and Γ12) means that they do not contain a physi-
cal CP -violating phase and thus do not contribute to the
neutron EDM.

There is a contribution to the neutron EDM from a
d quark (chromo)EDM that arises through a χ-φ loop.
However, since we assume that the coupling of φ to quark
doublets is absent, this requires a light quark mass inser-
tion. Therefore φ masses in the 10 − 100 TeV range are
safe, even with g ∼ O(1). For a detailed discussion of
experimental limits on similar models, see [5, 18].

While a significant amount of CP violation in n-n̄ oscil-
lations does not appear promising, this analysis suggests
that oscillations of neutral baryons which are less directly
constrained by nuclear stability can exhibit larger CP vi-
olation. One might consider Λ − Λ̄ oscillations [19], but
∆B = 2 operators with ∆S = 2 are highly constrained
from decays of dinucleons into 2 kaons. Other neutral
baryons are more promising. Consider oscillations of Ξ0

and Ξ̄0. Like neutron oscillation, this process involves
operators that have ∆B = 2, but also requires ∆S = 4.
Since four kaons are more massive than two nucleons,
such operators are subject to less stringent constraints
than those with ∆S = 0 or ∆S = 2. In particular,
they are not subject to strong limits from dinucleon de-
cays. It is necessary to avoid generating a similar size
for the much more constrained baryon number violat-
ing ∆S = 0, 1, 2 and ∆S = 3 [20] operators. Provided
that only SU(2) singlet strange quarks are involved in
the ∆S = 4 operators, then the radiative generation of
∆S = 0, 1 and ∆S = 2 operators is suppressed by 2
more weak loop factors as well as light quark mass in-
sertions. However a ∆S = 3 operator may be generated
via a single weak loop, greatly constraining the size of
the operator which allows oscillations of the Ξ0. Os-
cillations of baryons containing heavier flavors are less
constrained. For instance oscillations of the Ξ0

b were con-
sidered by Kuzmin in 1996 [21] and an oscillation rate
which is comparable to the decay rate was shown to be
compatible with nuclear stability bounds. Therefore, if φ
couples dominantly to heavy flavor SU(2) singlet quarks,
it is conceivable that the strongest limits on φ comes from
collider searches, and mφ/

√
gy could be a few hundred

GeV or less. Detailed study of the various flavor com-
binations for neutral baryon oscillations is underway in
Ref. [22], and has shown that there are several baryons
whose oscillation rates could be comparable to their de-
cay rates without leading to excessive dinucleon decay. In
addition, if there exists a neutral χ fermion which both
the baryon and anti baryon can decay into, the larger
mass splitting between χ and the heavy baryon allows
for sizable |Γ12/M12]. Given a mechanism for producing
neutral heavy flavored baryons out of equilibrium in the
early universe, such as via the late decay of some heavier
χ particle as in Ref. [11], then CPV in their oscillations
and decays is a potential new mechanism for baryogene-
sis.
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III. CONCLUSIONS

There is firm evidence from the matter-antimatter
asymmetry of the Universe that B is violated. Although
proton decay searches are very sensitive probes of B vio-
lation, they are less sensitive to theories that only allow
for ∆B = 2 amplitudes. Searches for n-n̄ oscillations di-
rectly test these theories. Much more rapid oscillations
of heavy flavor baryons is allowed, and this possibility
has not yet been experimentally explored.

In this letter we have enumerated the requirements for
physical CP violation in neutral baryon oscillations. For
the first time, a simple model that would give CP viola-
tion in neutral baryon oscillations was built. The model
connects the symmetry which suppresses proton decay to
the stabilization of a dark matter candidate with mass
around the mass of the proton. The amount of CP vi-
olation in neutron oscillation in this model is still very
small. Heavy flavor baryon oscillations could exhibit sig-
nificantly more CP violation, and, given a mechanism
(such as the one used in [11]) to produce them in the
early universe, after the QCD hadronization transition
but before nucleosynthesis, CP violation in heavy baryon
oscillations and decays could be the origin of the matter-
anti-matter asymmetry. This possibility is currently un-
der detailed study in Ref. [22].

Appendix A

Here we perform a detailed analysis of neutron oscil-
lation in the generic case where the spin quantization
axis does not align with the magnetic field, deriving the
nonrelativistic Hamiltonian from the effective Lagrangian
describing the neutron-antineutron system. Our aim is
to clarify some statements in the literature and make our
formalism more explicit. We show that a simple two-state
description of this phenomenon is sufficient2 (as previ-
ous studies [7] had used). Similar work has been done
recently [13, 14], however as we consider some new, pre-
viously unconsidered possibilities, such as exotic neutron
decays and the possibility of observable CP violation in
neutron oscillations, for completeness we include our re-
sults here.

1. Deriving the Hamiltonian

Our starting point is the four-component neutron field,
n. It carries a charge B = +1 under a global U(1)B of

2 Electromagnetic and CPV effects were recently studied by Gard-
ner and Jafari in Ref. [23] and CP violation by Berezhiani and
Vainshtein [12]. Our results are not in agreement with those
published results, although Gardner and Yan have updated and
extended her analysis [14].

baryon number. We write the most general Lagrangian
density for describing a free neutron as

L = n̄γµ∂µn+ LB + L6B , (A1)

where the bar denotes Dirac conjugation, n̄ = n†γ0. We
have separated the kinetic term from the bilinear terms
that conserve baryon number, LB , and those that violate
baryon number, L6B . The baryon-preserving terms are

−LB = n̄ (mnPL +m∗nPR)n, (A2)

where PL,R = (1∓γ5)/2 project out the left and right chi-
ralities of the four-component spinors. To construct the
bilinears that break baryon number, we use the charge
conjugated field nc, which carries B = −1,

−L6B = n̄c (δ1PL + δ∗2PR)n+ n̄ (δ2PL + δ∗1PR)nc.
(A3)

It can be useful to express the four-component spinors
in the chiral basis in terms of left-handed, two-component
Weyl spinors, ξ and η which carry B = +1 and −1 re-
spectively,

n =

(
ξ
η†

)
, nc =

(
η
ξ†

)
. (A4)

Note that we suppress the spinor indices for clarity. For
a thorough description of two-component spinor tech-
niques, see [24]. In terms of these fields,

−LB = mnηξ + h.c., (A5)

and

−L6B = δ1ξξ + δ2ηη + h.c. (A6)

We have defined charge conjugation so that

n −→
C

nc, ξ ←→
C

η. (A7)

Thus, C leaves LB unchanged for any mn and leaves L6B
unchanged if δ1 = δ2.

A parity transformation, P , flips helicities and can be
implemented by

n −→
P

γ0n, ξ ←→
P

η†. (A8)

LB is therefore P -invariant ifmn is real while L6B is parity
invariant if δ1 = δ∗2 .

Given the C and P transformations above, a combined
CP transformation (which is equivalent to time reversal
T since we are dealing with a local, Lorentz-invariant
theory) takes

n −→
CP

γ0nc, ξ −→
CP

ξ†, η −→
CP

η†. (A9)

CP is then conserved by LB and L 6B if mn, δ1, δ2 are all
real.
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To conserve CP , if U(1)B is violated, apparently re-
quires removing three phases to make mn, δ1, δ2 all real,
while we only have two fields at our disposal to rephase,
ξ and η. Equivalently, in the four-component language,
we can make a chiral transformation n→ eiαγ

5

n to make
mn real and then n → eiα

′
n to remove the phase of δ1

or δ2, but not both. Thus at first glance it appears that
if U(1)B is broken, it is not possible to remove CP vi-
olation. However, if U(1)B is only violated by δ1,2 then
we can take a linear combination n → cos θ n + sin θ nc,
nc → cos θ nc − sin θ n, redefining U(1)B , so that δ1 or
δ2 are removed. Thus, CP need not be violated by the
mass terms since there are then only two phases to re-
move. As long as we can redefine CP to the product
of the original CP and any purely internal transforma-
tion, such that the new CP is a symmetry, there is no
physically observable CP violation.

We also incorporate interactions with the electromag-
netic field,

Ldipole =
1

2
Fµν n̄Σµν (aPL + a∗PR)n (A10)

= aFµνησ
µνξ + h.c., (A11)

where Σµν = (i/2)[γµ, γν ], and σµν = (i/4)(σµσ̄ν −
σν σ̄µ), σµ = (1,σ), σ̄µ = (1,−σ) with σ the Pauli ma-
trices. a = µn − idn with µn, dn the neutron’s magnetic
(electric) dipole moment. We do not consider baryon-
number–violating interactions with the electromagnetic
field of the form n̄cΣµνn ⊃ ξσµνξ, ησµνη since these
vanish identically due to Fermi statistics.3

To construct the Hamiltonian, we first introduce opera-
tors that create (and annihilate) neutron and antineutron
states,

|n;p, s〉 = asp
†|0〉, |n̄;p, s〉 = bsp

†|0〉. (A12)

The algebra satisfied by the creation and annihilation
operators is{

asp, a
r
k
†
}

=
{
bsp, b

r
k
†
}

= (2π)
3
δ(3) (p− k) δsr, (A13)

with all other anticommutators zero. We decompose the

3 In Ref. [23], it was speculated that such interactions could de-
velop through higher dimensional operators due to the com-
posite nature of the neutron, as is the case for the neutron
charge radius, however that work has been updated with dif-
ferent conclusions [25]. In the language of effective field theory,
a charge radius can develop because gauge invariance forbids
writing the operator n̄γµAµn (since the neutron is neutral) but
allows n̄γµ∂νFµνn/Λ2 with Λ the compositeness scale of the neu-
tron. However, operators like n̄cΣµνF ρµ (gνρ + ∂ν∂ρ/Λ2 + . . . )n
couple two identical fermions to total angular momentum J = 1.
This configuration is symmetric under interchange of the identi-
cal fermion fields and therefore these operators vanish.

Weyl spinors in terms of these as

ξα =
∑
s

∫
d3p

(2π)
3/2

1√
2Ep

[
xspαa

s
pe
−ip·x + yspαb

s
p
†eip·x

]
,

(A14)

ηα =
∑
s

∫
d3p

(2π)
3/2

1√
2Ep

[
xspαb

s
pe
−ip·x + yspαa

s
p
†eip·x

]
,

(A15)

where Ep =
√
p2 +m2

n if we assume that baryon number
is nearly conserved, δ1,2 � mn. x and y are solutions to
the Dirac equation and carry a spinor index. They can
be expressed in terms of spin eigenstates ωs, such that
ωs†ωr = δsr, as

xspα =
√
p · σωs, yspα = 2s

√
p · σω−s, (A16)

xsp
α = −2sω−s

†√
p · σ̄, yspα = ωs†

√
p · σ̄. (A17)

The matrix elements of the Hamiltonian, Hss′

ij (i, j =
n, n̄; s, s′ = ±1/2) for the neutron-antineutron system at
rest can be computed through

− 〈i;p, s|
∫
d3xL|j;p′, s′〉

∣∣∣
p→0

(A18)

= (2π)
3
δ(3) (p− p′)Hss′

ij . (A19)

To incorporate decays of the neutron and antineutron
(as is necessary when discussing CP ), we will decompose
the Hamiltonian into a dispersive portion, M , and an
absorptive part, Γ, generated by on-shell intermediate
states,

H = M − i

2
Γ. (A20)

In the basis (|n,+〉, |n,−〉, |n̄,+〉, |n̄,−〉), where the
spin quantization axis is taken as the ẑ direction, the
dispersive portion of the Hamiltonian reads4

M =

(
< (mn)× 1−H · σ M12 × 1

M∗12 × 1 < (mn)× 1 +H · σ

)
,

(A21)

where H ≡ µnB − dnE, 1 is the 2 × 2 unit matrix,
and M12 ≡ δ∗1 + δ2. While we have retained it in this
expression for completeness, in what follows we ignore the
(known to be tiny) electric dipole moment of the neutron
and keep only the magnetic dipole moment. Because the
dispersive portion of the Hamiltonian comes from on-
shell intermediate states and we are assuming Lorentz

4 Our Hamiltonian has 〈n; +|H|n̄; +〉 = 〈n;−|H|n̄;−〉 while the
one in Ref. [23] has 〈n; +|H|n̄; +〉 = −〈n;−|H|n̄;−〉 which vio-
lates Lorentz invariance. As pointed out in Ref. [12], this error
leads to incorrect eigenvalues of the Hamiltonian in Ref. [23].
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invariance, Γ must be trivial in spin. Thus, in this basis,
it is given by

Γ =

(
Γn × 1 Γ12 × 1
Γ∗12 × 1 Γn × 1

)
, (A22)

where Γn = 1/885.6 s = 7.4 × 10−28 GeV is the free
neutron beta decay rate and Γ12 represents any common
final state that both neutron and antineutron may decay
into (which necessarily requires physics beyond the SM).

A CP transformation on H is implemented by taking
the hermitian conjugate of M and Γ separately. Given
the form of these matrices, we see that CP violation re-
quires a nontrivial phase difference betweenM12 = δ∗1+δ2
and Γ12.

The Hamiltonian in this basis can be broken up into
2× 2 blocks according to its effect on baryon number,

H ∼
(

∆B = 0 ∆B = 2
∆B = −2 ∆B = 0

)
. (A23)

The ∆B = 0 blocks mix spins (if there is an external
electromagnetic field) while, because of Fermi statistics,
the ∆B = ±2 blocks do not. Because of this, even
in the presence of (constant) electromagnetic fields, a
2 × 2 Hamiltonian is sufficient to describe the neutron-
antineutron system. To see that, we make a unitary
transformation of the Hamiltonian using the matrix

UB =


cθ e−iαsθ 0 0
0 0 cθ e−iαsθ

−eiαsθ cθ 0 0
0 0 −eiαsθ cθ

 , (A24)

with tan 2θ =
√
B2
x +B2

y/Bz and tanα = By/Bx. Op-
erating on H with this matrix gives

UBHU
†
B =


mn − µnBz − i

2Γn H12 0 0
H21 mn + µnBz − i

2Γn 0 0
0 0 mn + µnBz − i

2Γn H12

0 0 H12 mn − µnBz − i
2Γn

 , (A25)

defining H12 ≡ M12 − (i/2)Γ12, H21 ≡ M∗12 − (i/2)Γ∗12.
Thus we see that the system described by the 4×4 Hamil-
tonian given by Eqs. (A21) and (A22) is actually two
separate, identical two-state systems—this transforma-
tion aligned the spin quantization axis along the direc-

tion of the magnetic field. This justifies previous analyses
of n-n̄ transitions that used a two-state Hamiltonian [7],
despite the presence of electromagnetic fields that could
have required the consideration of neutron and antineu-
tron spin.5

To diagonalize H we make use of the matrix U ,

U =


H
−1/2
12 c1cθ H

−1/2
12 c1e

−iαsθ −H−1/2
21 s1cθ −H−1/2

21 s1e
−iαsθ

−H−1/2
12 c1e

iαsθ H
−1/2
12 c1cθ −H−1/2

21 s1e
iαsθ H

−1/2
21 s1cθ

H
−1/2
12 s2cθ H

−1/2
12 s2e

−iαsθ H
−1/2
21 c2cθ H

−1/2
21 c2e

−iαsθ
H
−1/2
12 s2e

iαsθ −H−1/2
12 s2cθ −H−1/2

21 c2e
iαsθ H

−1/2
21 c2cθ

 , (A26)

which gives

UHU−1 =


mn −∆/2− i

2Γn
mn + ∆/2− i

2Γn
mn + ∆/2− i

2Γn
mn −∆/2− i

2Γn

 . (A27)

5 The time evolution is more complicated if the direction of the external field is time dependent, as considered in Ref. [23], as the
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In these expressions, we have taken mn real, defined ∆ ≡
2
√
µ2
nB

2 +H12H21, and we use sθ and cθ to denote sin θ
and cos θ with θ as given above. We have also defined
c1,2 = N1,2

√
1 + z, s1,2 = N1,2

√
1− z with z = 2µnB/∆

and N2
1,2 = |H12 (1± z)|+ |H21 (1∓ z)|.

2. Transition Probabilities

The transition probabilities are given in terms of the
matrix U by

Pi→j =
∣∣∣UkiU−1

jk e
−iMkt

∣∣∣2 , (A28)

with MK the mass of eigenstate k. As mentioned, be-
cause the ∆S = ±2 amplitudes do not mix spins, the
probability for a neutron to oscillate into an antineutron
of the opposite spin (or vice versa) is computed to be
zero,

P|n;+〉→|n̄;−〉 = P|n̄;+〉→|n;−〉 = 0. (A29)

We find the probability as a function of time for a neutron
at t = 0 to transition to an antineutron of the same spin
(and omitting superfluous spin indices) to be

P|n〉→|n̄〉 =
2 |H21|2

|∆|2

(
cosh

∆Γt

2
− cos ∆mt

)
e−Γnt,

(A30)

and that for an antineutron at t = 0 to oscillate to a
neutron is

P|n̄〉→|n〉 =
2 |H12|2

|∆|2

(
cosh

∆Γt

2
− cos ∆mt

)
e−Γnt.

(A31)

We note here that, for Γ12 = 0, our expressions for the os-
cillation probabilities in Eqs. (A30) and (A31) agree with
standard formulae that have appeared in the literature [7]
and, in particular, are suppressed when µnB � |H12|,
|H21|. The current experimental limit on the 16O life-
time translates to |H12,21| . 10−33 GeV.
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